
Base Station Location Optimization for Minimal
Energy Consumption in Wireless Networks
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Abstract—This paper studies the combined problem of base
station location and optimal power allocation, in order to
optimize the energy efficiency of a cellular wireless network.
Recent work has suggested that moving from a network of a small
number of high power macrocells to a larger number of smaller
microcells may improve the energy efficiency of the network.
This paper investigates techniques to optimize the number of
base stations and their locations, in order to minimize energy
consumption. An important contribution of the paper is that
it takes into account non-uniform user distributions across the
coverage area, which is likely to be encountered in practice. The
problem is solved using approaches from optimization theory that
deal with the facility location problem. Stochastic programming
techniques are used to deal with the expected user distributions.
An example scenario is presented to illustrate how the technique
works and the potential performance gains that can be achieved.

I. INTRODUCTION

There is currently great interest in energy efficient wireless
communications systems from the cellular industry. The strong
focus on improving data rates for broadband wireless access
in third generation mobile systems has led to a situation where
cellular base stations consume a significant proportion of the
total energy budget for telecommunication networks. Figures
from cellular operators and from other companies, e.g. [1],
[2],[3] [4], suggest that they are the biggest sources of energy
consumption in current networks. A typical UK-based network
consumes 40− 50 MW [5], which is not a big portion of the
total UK energy budget. However, data volumes in wireless
networks are predicted to grow between 100− 1000 times in
the next ten years, which would lead to enormous increases in
energy budgets and costs. Therefore, the issue of how to create
energy efficient “green radio” networks is becoming one of
the most important topics in shaping future wireless networks.
More specifically, how to reduce the energy consumption of
the base stations in the network is of primary interest.

There are a variety of short term measures that can be
implemented to improve energy efficiency. However, in the
long term cellular operators need to understand how to make
their networks as energy efficient as possible, investigating

many different potential network architectures. For some time,
smaller cell concepts such as microcells or picocells which use
lower power transmissions and smaller cell regions than tradi-
tional macro-cells have been studied. Recently, the concept of
femtocells has also become practical [6]. Unlike a conventional
cell in which a base station normally serves more than one
hundred users, a femtocell base station normally serves a few
users in a home or office environment. Apart from offering
better quality of service (QoS), a microcell or femtocell might
have a potential advantage of reducing the energy consumption
in the network since the base stations are much closer to the
users in this scenario.

However, employing a microcell or femtocell requires in-
stalling many more base stations. The sources of base station
energy consumption can be broadly divided into two major
parts (see section 2.4 in [1]): (1) The generation of radio
frequency (RF) signals, especially the power amplifier, and
(2) central equipment. Between these two sources, the energy
consumption by RF generation plays a major role and counts
for 60% − 75% of the total energy consumption, and can
be effectively reduced by decreasing the transceiver power.
Upgrading the hardware (such as materials) can reduce the
energy consumption of the central equipment [4]. Never-
theless, when evaluating the energy efficiency of microcells
or femtocells, there is an tradeoff between the savings in
transceiver energy and the additional energy costs for the
extra central equipment required in the larger number of base
stations. In order to find the optimal tradeoff and minimize the
total energy consumption, one needs to carefully consider the
number and locations of base stations, given different users’
distributions and densities in different parts of the network.

This paper focuses on developing optimization tools that can
effectively determine the number and locations of the base sta-
tions for minimizing the overall long term energy consumption
of the network, while ensuring that a minimal level of QoS
in the network is always satisfied. We consider time-division-
multiple-access (TDMA) and a simple base station cooperation
protocol. It is shown that the optimization tool is a combination
of facility location optimization and stochastic programming.

Past works on optimization of base stations or connecting
points have focused more on coverage, transmission efficiency
or user demands [9], [10], [11], [12]. Furthermore, many of



these works focus purely on upper layer instead of physical
layer and medium access control issues. Some of the previous
works have considered only static networks instead of mobile
networks [7], [8]. In [13], numerical results were given to
reveal the relationship between the number of micro-cells
and network energy consumption, but only a uniform user
distribution was assumed and there was no optimization on the
specific location of the micro-cells. To the best of the authors’
knowledge, there has been no work focusing on optimizing
the base station pattern for minimal physical layer energy
consumption of cellular networks considering non-uniform
user distributions.

The remainder of this paper is organised as follows. Section
II describes the system model used in this paper. Section III
describes the algorithms and optimization tools that are used in
this paper to solve the power consumption problem described
above. Section IV then presents example results that show
the validity of the methods proposed here. Finally, Section V
presents conclusions to the paper.

II. SYSTEM MODEL

Consider a conventional urban or rural cellular network,
in which all mobile users are served by a base station.
The problem to be solved is to place several (smaller) base
stations with much lower transceiver power budget in the
same region to reduce the overall use of energy. This can
be achieved by allowing collaboration among the new base
stations to serve the users cooperatively. More specifically, we
assume a TDMA Protocol in which one user is served in each
time slot. Therefore, we assume no interference among the
users. We consider only the power consumption in downlink
transmission, since this dominates the RF power consumption
of a typical base station. For simplicity, we ignore the small
scale fading (e.g., Rayleigh fading) or lognormal shadowing
terms and consider only the pathloss terms when modeling
the physical channel. However, these effects can easily be
included without changing the operation of the algorithms in
this paper. We assume that the base station knows the forward
channel state information (CSI) so that the transmit powers
are optimally allocated among the base stations when serving
a user.

A. Power and QoS Constraint

We assume that on average there are N users in the region
and we plan to locate M base stations. The receive power at
each user i (i = 1, ..., N ) is required to meet the minimal
value Pi, which depends on the QoS requirements of the user.
In this paper we define the minimal QoS for each user i as the
minimal data rate Vi required by that user. Assume the receive
noise at the receiver has unit variance. Under the assumption
that each link can operate at a data rate approaching the
Shannon bound on capacity, the power Pi needs to meet the
following inequality:

1
N

log (1 + Pi) ≥ Vi. (1)

The division by N denotes the fact that the bandwidth is shared
equally among the N users according to the TDMA protocol.
The base station j transmits at a power pij to user i. On
assuming that the path loss between base station j and user i
is Dij , the receive power at user i can be expressed as

Pi =
M∑
j=1

pijDij . (2)

Each base station has a transmission power constraint

pij ≤ Pup, (3)

due to power amplifier limitations.
Apart from transmitting the message, each base station

will need additional power for communicating back to the
core network, commonly termed the backhaul. We assume
the power required for this operation of the base station is
a constant Pc, unlike its variable RF transmit power.

B. User Distribution

We divided the region into R smaller areas. We then assume
that the calling users in each area are uniformly distributed.
Since we care about the long term effect of the system, we
consider samples across large time scales (e.g., days) instead
of small time scales (e.g., minutes). Thus we assume there is
no correlation among the samples. We pick L different times
(t1, t2,..,tL) of a day. In each area r (r = 1, .., R), we make
an observation of the user pattern, denoted by Otl,rq , at time
tl (l = 1, .., L) in each day q (q = 1, .., Q). We assume that
the number of users in area r observed at time tl in day q,
denoted by ntl,rq , follows a uniform distribution between N low

tl,r

and Nhigh
tl,r

across day q. The user patterns Otl,rq are assumed
to be independent across q, tl and r.

C. Problem Formulation

The problem is to find an optimal number of base stations
and the position of each base station in this region so that
the long term total energy consumption is minimized. This
problem is similar to the facility location problem [14]. The
facility location problem has been studied for several years
in the context of location decision-making. The problem is
understood as finding the optimal way of allocating facilities
that minimizes the cost of installation (i.e, fixed cost) and the
unitary cost of transporting “products” from these facilities
to each customer (i.e, variable costs). Therefore, the relation
with the power efficiency problem studied in this paper is
straightforward.

Finding the optimal points for the locations of the base
stations is extremely complex. A suboptimal but much simpli-
fied approach is to predefine the M potential locations and to
choose a subset of these locations to build base stations such
that the total power consumption of the network is minimized.
Following this approach, we define M binary variables xj
(j = 1, ...,M ). A base station j will be deployed if xj = 1,
otherwise xj = 0. Since a base station will only consume



energy only if it is deployed, we introduce the following
constraint:

pij ≤ Pupxj . (4)

For simplicity we assume that the QoS requirements for all
users are the same, i.e., Vi ≡ V for i = 1, ..., N . Combining
(1) and (2) and changing the measures to a linear form, we
obtain:

M∑
j=1

pij
Lij
≥ P, (5)

where Lij represents the distance attenuation with i = 1, ..., N
and j = 1, ...,M . Thus, the optimization problem for a
particular pattern Otl,rq can be presented in the following
mathematical form:

min Pc

M∑
j=1

xj +
N∑
i=1

M∑
j=1

pij (6)

s.t. pij ≤ Pupxj , ∀i ∈ ΩN ,∀j ∈ ΩM (7)
M∑
j=1

pij
Lij
≥ P, ∀i ∈ ΩN (8)

xj ∈ {0, 1}, ∀j ∈ ΩM (9)
pij ≥ 0, ∀i ∈ ΩN ,∀j ∈ ΩM (10)

where, ΩM = {1, ..,M} and ΩN = {1, .., N}
The approach presented on this paper is to determine the

base station allocation that minimizes the expected power
consumption over some user patterns Otl,rq (q = 1, .., Q and
l = 1, ..., L) for a given area r (r = 1, .., R). Our approach
is to average the power values over K distinct user location
scenarios, which is also termed a stochastic model under
certainty. The result is as follows:

min
K∑
k=1

πk

Pc M∑
j=1

xj +
Nk∑
i=1

M∑
j=1

pkij

 (11)

s.t.
M∑
j=1

pkij
Lkij
≥ P k, ∀k ∈ ΩK ,∀i ∈ ΩNk (12)

pkij ≤ Pupxj , ∀k ∈ ΩK ,∀i ∈ ΩNk,∀j ∈ ΩM (13)

xj ∈ {0, 1}, ∀j ∈ ΩM (14)

pkij ≥ 0, ∀k ∈ ΩK ,∀i ∈ ΩNk,∀j ∈ ΩM (15)

where K is the number of scenarios (i.e, patterns) considered
in the analysis for a given area r and ΩK = {1, ..,K}. Nk
represents the number of users at scenario k and therefore, P k

also depends on k. At each scenario we observe a particular
user distribution within the region. Hence, we can represent
the distance attenuation between user i and base station j as
Lkij . Since we would like to serve each user at least at a
minimum QoS rate, pkij will also depend on each scenario.

Notice that xj will remain the same over all scenarios so we
will get a long term solution for the base station allocation
but a particular one (recourse action) for the transmitting
policy. The scalar πk is the probability of the occurrence of
scenario k. The practical behaviour of any numerical algorithm
strongly depends on the conditioning of the problem. We
have observed in particular that although constraint (13) was
expressed in dB scale it was always very badly scaled and this
challenged the optimization algorithm. We have adopted an ad-
hoc scaling of this constraint in order to reduce the magnitude
of the coefficients which appear in it. Namely, we divided
this constraint by a factor of 1010. This has not changed the
mathematical model but it has improved the performance of
the algorithm and the accuracy of optimal solution.

III. ALGORITHMS AND OPTIMIZATION TOOLS

There are several ways to solve facility location problems
[7], [14]. Since we formulate the power minimization problem
using a Mixed Integer Programming (MIP) model, we have
decided to use the simplex method and the branch and bound
algorithm. To do so, we model this problem in software called
FICOTMXpress Optimization Suite 7 [15].

The basic methodology proposed to solve the power mini-
mization problem is characterized in the following steps:

1) Reduce the complexity of the problem by choosing M
possible locations within a given region.

2) Define K scenarios with their corresponding values of
P k, Lkij , and πk.

3) Solve the problem using any suitable algorithm. In this
study we suggest the combined use of the simplex
method and the branch and bound algorithm.

An extension of this approach is to re-optimize the base
station allocation. This can be performed in the following way.
Once we have solved the stochastic problem, we can classify
all the users served by each base station in a group. Then, we
can calculate the weighted center of gravity among the users
of each group and relocate the base stations accordingly. This
problem can be solved either using a quadratic model or a
linear model, with continuous variables representing the new
position of each base station. We may consider the weight as
the probability of occurrence of each scenario. This extension
is useful only if we have the freedom of placing a base
station wherever we want. One other possible extension is
that once we have decided the location of the base stations,
we can calculate the minimum Pup needed for each base
station to satisfy the requirements of the users. Doing this
we just change the fixed power consumption associated with
the central equipment.

IV. NUMERICAL RESULTS

In this section we describe the experimental tests performed
to check whether using lower power base stations is a compet-
itive option. A conventional approach is to consider a single
base station located in the center of the region. We assume
that this base station has enough power to serve all user
requirements in the region.



A. The size of the cell and distance attenuation factor

Following [6] and choosing a cell radius equal to 167m,
we define a square region of 282.42m each side. Then,
we divide this region into 9 smaller squares of equal areas
(i.e., R = 9). By predefining the total number of users in
each area, we generate uniformly distributed random numbers
for x ∈ [0, 282.42] and y ∈ [0, 282.42]. This allows us to
position each user and therefore, to calculate the distance,
dij , between each user i and each base station j. Hence,
we can calculate the distance attenuation, in a linear form,
as Lij = 103.53d3.76

ij , where dij is expressed in meters. For
simplicity, we define 13 possible base station locations as is
shown in Fig. 1.

Fig. 1. Predefined locations

B. The values of V and P

In [6], the minimal downlink transmission rate for the
emerging Long Term Evolution standard is 1.5bits/s/Hz re-
gardless of the number of users. We assume there are no more
than 10 users in a sector and that the minimal QoS for each
user is V = 1.5/10 = 0.15 bits/s/hz. Employing the capacity
equation (1), we will get P ≥ 13.3 dB if we consider 30 users
in the region.

Since the value of V is determined now we allowed
ourselves to extend the program from the previously fixed
number of users per scenario to a variable number of users per
scenario. For example, we can assume that the total number
of users in the region is not always 30 but varies uniformly
between 20 and 40. In each sector, the number of users
changes as indicated in section II.B.

C. The value of Pup and Pc
As now mentioned in the introduction, Pc can be thought

of as the power consumption for central equipment while Pup
largely depends on the power amplifier. From information in
section 2.4 of [1], we can observe that the 800W power supply
for central equipment corresponds to a 2400W power supply
for the RF equipment (mainly the power amplifier). Thus it is
reasonable to assume that Pup = 3× Pc. Since we use lower
power base stations, each base station is expected to serve
only a few users. Using a uniform distribution of the users,
it is reasonable to assume that the coverage of a lower power
base station (e.g. for a microcell) is around 1/5−1/10 of that
of the conventional base station. To keep the same received
SNR and assuming a path loss exponent r = 3, it is reasonable
to scale the power limit of a microcell base station to around
0.1%−1% of the power limit of the conventional base station.
The value of Pc can be determined accordingly. In our tests we
use Pup = 143 dB for the conventional base station analysis
and we apply a scale factor of 1% to the microcell base station
power limit.

Note that these values take into account only the power con-
sumption levels. Other costs such as rental, hardware/software
and operation cost are not considered. Note that those can
be taken into account as fixed costs and thus if we want to
consider them we could add a scaled factor in front of Pc.
Our focus is on energy efficiency, therefore we intentionally
neglected these additional costs.

D. Comparison between conventional base station and micro-
cell base stations

To illustrate the reductions in the energy consumption that
can be achieved using the approach presented in this paper,
alternative policies using different scenarios with different
probabilities of occurrence have been tested.

In TABLE I we provide details of the user distributions
considering 30 users within the region. Notice that sc2, sc7
and sc8 exploit particular distributions, concentrating users in
a few selected areas.

In TABLE II, the first four samples are pure scenarios
considering just one user distribution. For samples 5 to 9,
we used the stochastic programming approach varying the
probability of occurrence of each scenario. The column
denoted by cbs shows the optimal solution in dB when we
use a conventional base station and column fbs when we use
the stochastic approach with microcell base stations. To see
an example of an optimal allocation using microcell base
stations, refer to Fig. 2. Column ∆ shows the variable power
needed using a microcell configuration as a percentage of
the variable power used with the conventional base station
approach. Even for scenarios in which we concentrate users
in r = 5 (sc7) we achieve considerable reductions in the
power consumption for RF generation.

A similar test was performed but now considering 20 ≤
N ≤ 40. The number of users per area is illustrated in TABLE
III. In these trials we did not choose any particular distribution



TABLE I
DISTRIBUTION OF USERS AMONG THE REGION (N = 30)

number of users
region sc2 sc5 sc7 sc8

1 0 5 0 15
2 0 2 0 5
3 0 3 0 0
4 0 3 0 5
5 1 5 30 5
6 0 2 0 0
7 0 2 0 0
8 29 3 0 0
9 0 5 0 0

TABLE II
OPTIMAL POWER REQUIREMENTS FOR DIFFERENT SAMPLES (N = 30)

probability of occurrence (πk)
sample sc2 sc5 sc7 sc8 cbs (dB) fbs (dB) ∆

1 1 0 0 0 141.7 126.0 2.5%
2 0 1 0 0 143.8 129.1 1.2%
3 0 0 1 0 138.4 125.6 29.1%
4 0 0 0 1 143.2 127.4 1.9%
5 0.25 0.25 0.25 0.25 142.2 129.1 2.8%
6 0.7 0.1 0.1 0.1 141.9 128.9 3.4%
7 0.1 0.7 0.1 0.1 143.2 129.1 2.0%
8 0.1 0.1 0.7 0.1 140.4 128.8 6.9%
9 0.1 0.1 0.1 0.7 142.9 129.1 2.3%

as we did in previous test. In TABLE IV we compare the
optimal allocation given both microcell and conventional base
station configurations. The stochastic programming approach
gives a reduction of more than 96% of the power consumption
on radio frequency generation in all cases.

TABLE III
DISTRIBUTION OF USERS AMONG THE REGION (20 ≤ N ≤ 40)

number of users
region sc20 sc25 sc30 sc35 sc40

1 0 4 5 3 3
2 0 1 0 4 5
3 1 5 5 3 2
4 3 3 3 2 4
5 4 2 3 5 5
6 2 1 5 1 7
7 3 3 2 5 6
8 4 5 2 4 4
9 3 1 5 8 4

V. CONCLUSIONS

In order to make cellular wireless networks more energy
efficient and sustainable for the future, it is very important
to minimize the power required to cover users in a given
area. One potential approach to reducing power consumption
is to study the trade-off between power consumption and the
number of base stations to cover a given area. The optimization
criterion includes both terms that are proportional to radio

Fig. 2. Optimal allocation for pure sc5 (i.e., sample 2)

TABLE IV
OPTIMAL POWER REQUIREMENTS FOR DIFFERENT SAMPLES

(20 ≤ N ≤ 40)

probability of occurrence (πk)
sample sc20 sc25 sc30 sc35 sc40 cbs (dB) fbs (dB) ∆

1 1 0 0 0 0 139.8 126.5 3.8%
2 0 1 0 0 0 142.0 128.0 2.6%
3 0 0 1 0 0 143.5 128.5 2.0%
4 0 0 0 1 0 146.5 130.5 1.2%
5 0 0 0 0 1 148.6 131.9 1.3%
6 0.2 0.2 0.2 0.2 0.2 145.2 130.1 1.4%
7 0.1 0.2 0.4 0.2 0.1 144.7 129.9 1.6%
8 0.05 0.1 0.7 0.1 0.05 144.1 129.6 1.6%
9 0.3 0.3 0.3 0.05 0.05 143.1 129.2 1.6%

10 0.05 0.05 0.3 0.3 0.3 146.4 130.7 1.4%
11 0.3 0.15 0.1 0.15 0.3 145.6 130.3 1.4%

frequency power used by the base stations and also con-
stant power terms that reflect additional power consumption
required by base stations, e.g. for communication with the
core network of the service provider. This criterion provides a
powerful and quite general approach to minimize the energy
consumption of the network.

The use of a stochastic programming approach using mixed
integer programming to model and solve the base station
location problem from a power efficiency perspective has been
demonstrated in this paper. A key feature of the proposed
scheme is that it can provide an optimal allocation considering
different user patterns. This allows the algorithm to take
account of different traffic distributions in the coverage area
at different times of day and even to account for traffic
growth projections for the network going into the future.
The algorithm selects the optimal base station locations from



a finite set of possible choices specified by the algorithm
operator. This is a reasonable reflection of reality given that
network operators may have access only to certain locations
in buildings or streets to deploy their infrastructure.

Results show that the use of this tool can lead to very large
power reductions of at least 96% for the example scenario
that was considered in the paper. This demonstrates that
the proposed technique can find significantly improved base
station allocation solutions compared to the baseline case of
a macrocell deployment. Some extensions can be included to
improve the algorithm performance and this will be the subject
of future work in this area.
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