
Base Station MIMO Detector Algorithm
Implementations

Tuomo Hänninen, Hamid Yadegar Amin and Markku Juntti
Centre for Wireless Communications

P.O. Box 4500, FI-90014 University of Oulu, Finland
Email: tuomo.hanninen@oulu.fi

Abstract—In this paper, we implement a high throughput
multiple-input multiple-output (MIMO) detector for single-
carrier frequency-division multiple access (SC-FDMA) base sta-
tion. High-level Synthesis (HLS) tool is used for implementing
the algorithm on Xilinx Virtex and Zynq FPGAs.

First, we compare the throughput performance and power
consumption results of the different implementations. Second, we
evaluate the quality of the results by comparing the HLS results
to handwritten register-transfer level (RTL) implementations. In
conclusion, the HLS tools have evolved into applicable imple-
mentation tools. Furthermore, the possible slight losses in the
performance or design complexity with the HLS design method
could be counteracted by choosing a higher category FPGA.

I. INTRODUCTION

3GPP release 8 and beyond wireless cellular systems [1] use
single-carrier frequency-division multiple access (SC-FDMA)
as the uplink transmission scheme instead of orthogonal fre-
quency division multiplexing (OFDM) [2]. The reduced peak-
to-average power ratio of single-carrier transmission reduces
the mobile transmitter cost by allowing cheaper power am-
plifiers [3]. Multiple-input multiple-output (MIMO) antenna
configuration [4], [5] is used in these systems to increase
the peak data rates. Similar to any spatial multiplexing based
MIMO transmission, a spatial equalizer is required in the
receiver to cancel the inter-antenna interference (IAI). Both
linear and nonlinear receiver structures have been considered
for MIMO receivers with an emphasis on ones operating in
OFDM systems, wherein inter-symbol interference (ISI) is not
a problem. In single-carrier transmission an equalizer is needed
in the receiver to cancel also the ISI. Different variants of
sphere detector (SD) [6], which calculate the maximum like-
lihood (ML) solution with reduced complexity, have received
a lot of attention in the literature. For systems employing
forward error control (FEC) coding, the soft output list sphere
detector (LSD) [7] is needed. In [8], we proposed a two stage
receiver structure Frequency domain linear MMSE filter with
sphere detection for SC-FDMA uplink transmission. The K-
best list LSD algorithm [9] was considered for our receiver.
The receiver structure and sphere detector are illustrated in
Figure 1 [8].

In [10], we implemented the K-best LSD algorithm on a
40nm Xilinx Virtex 6 field-programmable gate array (FPGA)
using an early version of Xilinx Vivado High-level Synthesis
(HLS) tool to get a good understanding of its complexity. In
[11], we implemented the same MIMO detector algorithm on

Remove

CP
DFT

Sphere

detector
Decoder

IDFT

Remove

CP
DFT

MMSE

IDFT

De-intP/S

zr

White

ning

zw

..
.R

..
.T ..
.T

Fig. 1. SC-FDMA receiver with sphere detection.

28 nm Virtex 7, 20 nm Virtex UltraScale and 16 nm Virtex
UltraScale+ FPGA using the latest version Vivado HLS tool
to evaluate both the evolution of HLS tools and the evolution
of FPGAs. The HLS tools enabled the implementation and
comparison of different macroarchitectures in a relatively short
time. The architecture optimization was done in the C language
level, which gave a clear benefit in terms of design time and
effort.

In this paper, we extend the implementations to cover
two different Xilinx Zynq FPGAs. The Zynq architecture
differs from previous FPGAs by integrating a complete ARM
Cortex-A9 processor. The Zynq SoC integrates the software
programmability of a processor with the hardware programma-
bility of an FPGA. This enables hardware acceleration while
integrating central processing unit (CPU), digital signal pro-
cessor (DSP) and mixed signal functionality on a single
device. Additionally, we continue the HLS tool evaluation by
comparing the HLS results to conventional handwritten RTL
design approach.

The rest of this paper is organized as follows. In Section
II, introduces the HLS methodology. Section III describes
the principles of the sphere detector algorithm used in the
implementations. Section IV, compares the throughput perfor-
mance and power consumption results of the Virtex and Zynq
FPGA implementations. Section V evaluates the quality of the
results by comparing the HLS results to handwritten register-
transfer level (RTL) implementations. The summary and final
conclusions are given in Section VI.

II. HIGH LEVEL SYNTHESIS

HLS design methodology provides an automated path to
generate optimized RTL code directly from algorithms written
in e.g. C++. Algorithms are developed and verified in C++
using integer and fixed-point bit-accurate data types. HLS is

used to generate RTL code from those specifications. The
generated RTL code is verified using the C++ algorithm and
testbench using the test infrastructure created by the HLS tool.
The main goal of using the HLS methodology is to improve
productivity by shortening the time to create hardware and
to reduce the errors introduced by manual refinement thereby
shortening the verification time.

Creating optimized hardware requires integer and fixed-
point arithmetic that has been optimized to the application.
Native C++ integer types as well as C++ bit-accurate integer
and fixed-point data types are supported for synthesis. The
designer drives the synthesis process using directives in a
highly interactive environment that includes analysis tools that
provide feedback on the architecture being generated by the
tool. Required directives specify the target technology and the
clock period. Optional directives provide the required control
to create a wide variety of architectures. For example, some
directives control the C++ interface mapping into hardware
interfaces, hardware hierarchy and communication between
the hierarchy block. Some directives provide control over
the architecture and parallelism of each of the blocks. Ad-
ditional directives also allow fine control over the schedule,
the type and number of hardware resources, enabling of
power optimizations and many other architectural aspects of
the generated hardware. Interface synthesis makes it possible
to map the transfer of data that is implied by passing of
C++ function arguments to various hardware interfaces such
as wires, registers, memories, buses, or more complex user-
defined interfaces. All the necessary signals and timing con-
straints are generated during the synthesis process so that the
generated RTL code conforms and is optimized to the desired
interfaces.

III. K-BEST LSD ALGORITHM

The K-best-LSD algorithm [8,9] is a breadth-first type of
tree search algorithm, i.e., the search proceeds one layer at
a time in the search tree by extending the partial candidates
with admissible nodes and calculating the PEDs. The K-best-
LSD algorithm keeps always a constant number of candidates
in each layer of the tree if no sphere radius constraint is
introduced. Therefore the algorithm has a fixed complexity,
which is a desirable in implementations. However, the algo-
rithm does not necessarily find the candidates with lowest
Euclidean distances (EDs). The K-best LSD algorithm search
with K=4 for real-valued 2× 2 64-QAM system is illustrated
in 3. In this paper, K-best LSD with list size of 8 is used for
the implementations. In real-valued 4 × 4 64-QAM scenario
this means there are eight layers and eight PED calculations
on each layer. The receiver structure and sphere detector
processing blocks considered in this paper are illustrated
in Figure 2 [11]. In this paper, we consider two different
processing blocks. The more complex algorithm is the K-best
LSD tree search algorithm illustrated in Figure 3. The less
complex algorithm, used, e.g., for the handwritten RTL vs HLS
implementation method comparison, is the log-likelihood ratio
(LLR) calculation block. The LLR processing block calculates

the soft-output information via max-log-MAP approximation.
The LSD algorithm gives a list Lb of candidates, which include
the Euclidean distance d2(L) and the corresponding symbol
vector.

H channel matrix

y received symbol vector

Q orthogonal matrix (QTQ=I)

R upper triangular matrix

L list of candidate symbol vectors

Lb list of candidate bits

d2(L) Euclidean distances of the candidates

LLR Log-likelihood values of the bits in the received symbol vector

• MMSE removes ISI

• Sphere detector performs MIMO detection

Fig. 2. Receiver with sphere detection.

Level 1

Level 2

Level 3

Level 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sorting
32 4

Sorting
8 4

Sorting
32 4

Sorting
32 4

Fig. 3. The K-best LSD tree search.

IV. IMPLEMENTATIONS ON PROGRAMMABLE LOGIC

In addition 28 nm 20 nm Virtex 7 FPGA implementations
[11] , the K-best LSD MIMO detector was implemented on
the 28 nm and 20 nm Zynq FPGAs to get good understanding
of the technology influence on the results. Table I describes
the implementation results for maximum throughput designs.

Each of the implementations achieve the target throughput
for LTE SC-FDMA 4 × 4 64-QAM uplink with a conven-
tional K-best architecture. As it is seen in Table. I, both the
Zynq FPGAs schedule with higher throughput than the Virtex
FPGAs. As an instance, the 28 nm Zynq implementation has
shown to achieve 20% increase in throughput in comparison
to 28 nm Virtex 7 implementation. With 20 nm technology,
the performance difference is even higher.

In order to emphasize e.g. the throughput or the energy
efficiency of the implementation, Xilinx Vivado provides
implementation strategies [12]. Considering the requirement,

TABLE I
K-BEST LSD IMPLEMENTATION - MAXIMUM THROUGHPUT

Virtex 7 Virtex
Ultra-
Scale

Zynq Zynq
Ultra-
Scale

Technology 28nm 20nm 28nm 20nm
LUT 81445 71960 87896 70982
FF 80742 52930 118501 47089
Freq [MHz] 167 172 200 238
Throughput [Mbps] 501 516 600 714
Dynamic power [mW] 1760 840 1400 1330
Energy [nJ/bit] 3.5 1.6 2.3 1.8

software tries different optimization methods in placing and
routing. Table II, presents performance of four different im-
plementation strategies for Virtex 7 which all achieved the
maximum throughput of 501 Mbps. The strategy A (Perfor-
manceRefinePlacement), increases the placer effort in the post-
placement optimization phase and disables timing relaxation
in the router. The strategy B (PerformanceNetDelaylow), com-
pensates for the optimistic delay estimation and adds extra de-
lay cost to distance and high fanout connections. The strategy
C (AreaExplore), uses multiple optimization algorithms to get
potentially fewer LUTs. The strategy D (Flow run post rout
opt), enables physical optimizations in post implementation
phase including routing. The result show that in addition to
achieve the highest throughput, strategy D manages to perform
a better performance in terms of power. Thus, the strategy D
results for Virtex 7 were exploited in the power consumption
comparison.

Similar iterative approach was exploited to find the lowest
power consumption for Virtex UltraScale, Zynq and Zynq Ul-
traScale FPGAs. Table III demonstrate the power consumption
of the implementations with the throughputs normalized to
501 Mbps. In addition to capability of achieving a higher
throughput, the more advanced FPGAs have shown a better
power performance as well.

TABLE II
VIVADO HLS 2017 IMPLEMENTATION STRATEGIES

Strategy A B C D
Technology 28nm 28nm 28nm 28nm
LUT 81450 81446 83105 81445
FF 80742 80742 80742 80742
DSP 565 565 565 565
Freq (MHz) 167 167 167 167
Throughput(Mbps) 501 501 501 501
Power(mW) 1770 1800 2270 1760
Energy(nJ/bit) 3.53 3.60 4.50 3.5

TABLE III
K-BEST LSD IMPLEMENTATION - POWER CONSUMPTION WITH

NORMALIZED THROUGHPUT

Virtex 7 Virtex
Ultra-
Scale

Zynq Zynq
Ultra-
Scale

Technology 28nm 20nm 28nm 20nm
LUT 81445 71922 87809 68004
FF 80742 52930 118445 47089
Freq [MHz] 167 167 167 167
Throughput [Mbps] 501 501 501 501
Dynamic power [mW] 1760 840 1140 950
Energy [nJ/bit] 3.5 1.7 2.2 2.0

V. HANDWRITTEN RTL VS HLS RESULTS

The main benefit of the HLS design method is the reduced
time to create the hardware compared to manually generated
RTL. Two additional LLR implementation comparisons were
carried out to study this implementation aspect. In the first
comparison, the design effort for the handwritten RTL was not
limited. Significantly more time was spent to create an optimal
manual reference design compared to HLS implementation.
The implementations were targeted on ASIC which does
not require any vendor specific DSP exploitation optimiza-
tion. The synthesis results for the LLR processing block
are summarized in Table IV. The HLS tool implementation
of the LLR block is approximately 9% larger compared to
the handwritten implementation and the difference in power
consumption is 18.5%. The results are somewhat expected for
a large design, where the compiler is not able to extract all
necessary information from a high level language. The design
of both implementations required several iterations until a
sufficient performance was achieved. However, the workload
per iteration differed significantly between the handwritten
RTL and the HLS tool for the benefit of the HLS tool. In
addition, finding an optimal tradeoff between the area and
latency by changing the pipelining structure and the level of
parallelism was much faster with the HLS tool. The same is
true for changing the design frequency.

In the second comparison, the same design is implemented
on an FPGA using Vivaldo HLS tool and target technology
independent behavioral VHDL. In this case, the design effort
for the C source code and handwritten RTL were more compa-
rable. In both design methods, there are various optimization
options for the synthesize and implementation phase. In HLS
method, the optimization tools are presented by directives such
as pipelining and, in case of VHDL, optimization tools are
provided by various synthesize and implementation strategies.
Targeting Virtex 7 as the hardware and benefiting all optimiza-
tion tools, both designs are accomplished. As shown in Table
V, the three different HLS implementations schedule with
much higher frequency. With the same throughput, the HLS
implementation has approximately 51% lower complexity and
90% lower power consumption compared to the handwritten
implementation. Once the VHDL code is provided, synthe-
sis tool considers its architecture as optimal and does not
effectively contribute to architecture optimizations process.

However, HLS tries various architectures in gate level process
to achieve the optimal solution. The results suggest that using
the RTL for describing the design, the RTL needs to be
completely optimized for the target technology to achieve
decent results. C source code and HLS tool design method
enables to write target independent behavioral description
of the algorithm and later optimize the design for different
technologies.

TABLE IV
LLR IMPLEMENTATION - OPTIMIZED HANDWRITTEN RTL VS HLS TOOL

Design method Optimized VHDL Catapult C
Technology 180nm CMOS 180nm CMOS
Complexity [kGE] 15.5 16.9
Frequency [MHz] 150 150
Throughput [Mbps] 121 121
Power [mW] 27 33

’

TABLE V
LLR IMPLEMENTATATION - BEHAVIORAL RTL VS HLS TOOL

Design method Behavioral VHDL Vivado HLS
I II III

Technology Virtex 7 Virtex 7 Virtex 7 Virtex 7
FF 47 180 117 86
LUT 561 310 243 211
Complexity [Slices] 608 490 360 297
Frequency [MHz] 76 217 230 320
Throughput [Mbps] 76 217 115 80
Power [mW] 30 12 3 2

VI. CONCLUSION

Different target FPGAs were compared when implement-
ing MIMO detector processing blocks for SC-FDMA uplink
receiver. Furthermore, HLS design method was evaluated
by comparing implementation results to conventional design
method.

Table VI summarizes the achievable gains in the imple-
mentation process. Higher throughput performance with large
designs was achieved with the Zynq FPGAs compared to
Virtex FPGAs. Similarly, 20 nm technology enabled 17% -
52% lower power consumption compared to 28 nm technology
within the same FPGA family. The fully optimized handwrit-
ten RTL implementation had only 5% higher throughput and
20% lower power consumption compared to HLS implemen-
tation. However, if target independent behavioral VHDL was
used, which reduces the design time significantly, the HLS
implementation achieved better results. Therefore, HLS design
method should be at least seriously considered as an alternative
to traditional and more time consuming design method.

In conclusion, the HLS tools have evolved into practical
implementation tools. One of the most significant evolution
steps is that the modern tools can synthesize even high
complex wireless communication algorithms in relatively sort
time. Therefore, they enable the iterative design approach
required by the HLS method. Furthermore, smaller silicon

technology can be exploited to achieve better results without
modifying the algorithm or source code. Thus, while choosing
between algorithms with different performance-complexity
ratio, it should be noted that few tens of percentage difference
in performance or complexity falls within the variation of
FPGA technology or design method selection. Choosing a
higher category FPGA has higher gain than choosing a manual
handwritten RTL design approach. Therefore, the possible
slight losses in the performance or design complexity with
the HLS design method could be counteracted by a higher
category FPGA.

TABLE VI
SUMMARY OF THE ACHIEVABLE GAINS

Performance Power
consumption

Zynq vs Virtex (28 nm) +20% -35%
Zynq vs Virtex (20 nm) +38% +13%
20 nm vs 28 nm (Virtex) +3% -52%
20 nm vs 28 nm (Zynq) +19% -17%
Fully optimized RTL vs HLS +5% -20%
HLS vs Behavioral RTL -42% -90%

REFERENCES

[1] 3rd Generation Partnership Project (3GPP), “Physical layer procedures,”
3GPP TS 36.213 V11.0.0, Tech. Rep., 2012.

[2] Z. Zvonar, “Multiuser detection in asynchronous CDMA frequency-
selective fading channels,” Wireless Personal Communications, vol. 2,
no. 4, pp. 373–392, 1995.

[3] D. Falconer, S. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson,
“Frequency domain equalization for single-carrier broadband wireless
systems,” IEEE Communications Magazine, vol. 40, no. 4, pp. 58–66,
Apr. 2002.

[4] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, Nov.
1999.

[5] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, and A. Naguib, “From theory
to practice: An overview of MIMO space-time coded wireless systems,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp.
281–302, Apr. 2003.

[6] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum–likelihood
detection and the search for the closest lattice point,” IEEE Transactions
on Information Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.

[7] B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-
antenna channel,” IEEE Communications Letters, vol. 51, no. 3, pp.
389–399, Mar. 2003.

[8] J. Ketonen, J. Karjalainen, M. Juntti, and T. Hänninen, “MIMO detection
in single carrier systems,” in Proceedings of the 19th European Signal
Processing Conference, Aug. 2011.

[9] K. Wong, C. Tsui, R. K. Cheng, and W. Mow, “A VLSI architecture of a
K-best lattice decoding algorithm for MIMO channels,” in Proceedings
of the IEEE International Symposium on Circuits and Systems, May
2002.

[10] T. Hänninen, J. Janhunen, and M. Juntti, “Novel detector implementa-
tions achieving 3G LTE downlink and uplink requirements,” in SDR-
WInnComm, Jan. 2013.

[11] T. Hänninen, M. S. Saud, H. Y. Amin, and M. Juntti, “MIMO detector
implementations using high-level synthesis tools from different gener-
ations,” in Asilomar Conference on Signals, Systems, and Computers,
Nov. 2017.

[12] Xilinx, “Vivado design suite user guide implementation,” UG904
v2013.4, Tech. Rep., 2013.

