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Background: Colon cancer (COAD) has been identified as being among the most
prevalent tumors globally and ranked the third major contributor to cancer-related
mortality. COAD is a molecularly heterogeneous disease. There are great differences in
clinical manifestations and prognosis among different molecular subtypes.

Methods:379 TCGA-COAD samples were divided into four subtypes: primary
proliferative, with collective, crypt-like, and EMT invasion. The differences among the
four subtypes were analyzed from themultidimensional perspectives of immunity, genomic
variation, and prognosis. The limma packagewas utilized to identify differentially expressed
genes (DEGs) amongst different molecular subtypes. Phenotype-related coexpressed
gene modules were identified using WGCNA. The polygenic prognosis model was created
utilizing the lasso Cox analysis and verified by time-dependent subject operating
characteristics (ROC).

Results: There are some differences in prognosis, TMB and common gene variation,
immune score, and immunotherapy/chemotherapy between proliferative and three
invasive molecular subtypes. 846 differential genes (DEGs) were obtained by limma
packet analysis. Differential gene analysis was utilized to screen the DEGs among
distinct subtypes, which were significantly enriched in the pathways related to
tumorigenesis and development. Co-expression network analysis found 46 co-
expressed genes correlated with proliferative and three invasive phenotypes. Based on
differentially co-expressed genes, we developed a prognostic risk model of 8-genes
signature, which exhibited strong stability regardless of external and internal validation. RT-
PCR experiments proved the expression of eight genes in tumor and normal samples.

Conclusion:We have developed an eight-gene signature prognostic stratification system.
Furthermore, we proposed that this classifier can serve as a molecular diagnostic tool to
assess the prognosis of colon cancer patients.
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INTRODUCTION

Colon cancer is extensively recognized to be among the most
prevalent tumors globally and has been ranked as the third major
contributor to cancer mortality (Labianca et al., 2010). COAD is
the main pathological type of colon cancer. A growing body of data
indicates that COAD is a molecularly diverse illness in which
unique molecular alterations influence the growth and survival of
tumor cells, as well as their differentiation, apoptosis, and distant
metastasis (Comprehensive molecular c, 2012). The conventional
TNM staging may not be able to evaluate its metastatic potential
because of the unique heterogeneity of COAD, and its staging may
not be completely positively correlated with survival (Chu et al.,
2016). Although the survival rate of COAD patients has been
improved with the increase of treatment methods, the prognosis is
still very poor (Neri et al., 2010; Roncucci and Mariani, 2015).In
addition to targeted therapy, immunotherapy seems to be a
promising treatment for advanced CRC. Recent research has
demonstrated that immunotherapy could be beneficial for colon
cancer patients who have DMMR/MSI-H (Asaoka et al., 2015;
Overman et al., 2017), and the benefit is not obvious inMSS/MSI-L
patients. Unfortunately, the proportion of DMMR/MSI-H in
metastatic colon cancer is only about 5% (Jung et al., 2020),
and the effective rate in such patients is only 30–40% (Le et al.,
2017), which indicates that there are some limitations in the
application of MSI status as an immune checkpoint inhibitor.
On the other hand, it shows that due to the obvious heterogeneity
of advanced CRC, a single molecular expression state may not be
enough to reflect the information of the whole tumor. Therefore, it
is urgent to explore a reliable biomarker or prognostic system, and
further clarify the specific information of COAD typing, so as to
provide the basis for clinical individualized treatment.

According to the spontaneousmodel of canine colorectal cancer
and the characteristics of human CRC, Shayingzhao et al. divided
CRC into the proliferative type and metastatic type, in which the
metastatic type was specifically divided into collective type, crypt-
like type, and EMT. These four subtypes have their unique
biological behavior, pathway activation, and molecular
mutation. Proliferative type shows that abnormal Wnt/β-catenin
signaling pathway activation results in cell cycle and proliferation,
which is the most significant feature of proliferative tumors. In a
series of mechanisms, epithelial cellsmay be changed into cells with
a mesenchymal phenotype in a process known as epithelial-
mesenchymal transformation (EMT). This transformation
makes it easier for tumor cells to separate from the primary
tissue and metastasize (Thiery, 2002; Friedl and Gilmour, 2009).
Collective invasion is defined as the migration of a group of cells
while maintaining intercellular contact. These cells are usually
epithelial. CryptLike invasion refers to the CryptLike invasion of
cancer cells through CryptLike structures. At present, the research
is limited. Usually, these cancer cells are MYC positive, similar to
crypt stem cells or progenitor cells. The researchers believe that due
to the significant proliferation of fibroblasts, they can develop
crypts in non-mucosal sites, making the microenvironment more
likemucosa (Wang et al., 2018).In this study, only the pathway and
some specific molecular mutation characteristics of each subtype
were preliminarily analyzed, but there was no overall

comprehensive analysis of the prognostic characteristics and
potential therapeutic targets of each subtype.

In this study, according to the molecular typing determined by
Zhao et al., we analyzed the differences between the proliferative and
three invasive molecular subtypes in prognosis, TMB and common
gene variation, immune score, and the efficacy of immunotherapy/
chemotherapy.The co-expressed genes related to proliferative
phenotype and three invasive phenotypes were identified by co-
expression network analysis. Based on the differentially co-expressed
genes, we built the prognostic risk model of 8-gene signature
(SPARCL1, HAND1, CRIP2, ZNF385A, CXCL1, CLEC10A,
PTGS1, and PTN). Regardless of external and internal validation,
the 8-gene signature has strong stability, indicating that our risk
predictionmodel can play a stable predictive effect. Based on this, we
provide a stable prognosticmodel for colorectal cancer and provide a
basis for individualized treatment of different subtypes of COAD.

MATERIALS AND METHODS

Data Sources
TCGA GDC API was employed to obtain the RNA SEQ data of
TCGA-COAD.After screening, we included a sumof 343 samples. In
addition, we downloaded the GSE17538 chip data set in conjunction
with survival duration from the Gene Expression Omnibus (GEO)
database and finally included 226 samples. The subtypes of TCGA-
COADwere screened from the SupplementaryMaterials studied by
Shaying Zhao et al. (Wang et al., 2018), after deleting redundant
samples through the sample information in the ‘case’ column, a total
of 366 samples were divided into four subtypes, of which 155 samples
were collective subtypes, 76 samples were crypt-like subtypes, 62
samples were EMT subtypes, and 73 samples were identified as
proliferative subtypes. As shown in Supplementary Table S1.

Data Preprocessing
TCGA Data Preprocessing
The RNA-seq data of TCGAwere preprocessed in the steps below
to obtain 343 colon cancer samples:

1) Extraction of primary colon cancer samples.
2) Patients having a survival duration of more than 30 days and a

good survival status were included.
3) Patients with molecular typing results in the study of Shaying

Zhao et al.
4) The expression profiles of 25483 genes were obtained by

matching ENSG to GeneSymbol.

GEO Data Preprocessing
Preprocess geo dataset GSE17538 in several steps:

1) Download the standardized probe expression profile data of
GSE17538 chip data from the GEO database;

2) According to the annotation file of the platform
corresponding to each chip data, convert the expression
profile at the probe level into the expression profile at the
gene level. In this regard, when several probes correspond to
the very same gene, the gene expression should be calculated
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using the average of the multiple probes, and the probe should
be removed in the case where only one probe corresponds to
multiple genes;

3) The samples of primary colon cancer were extracted, and
the patients having a survival duration of more than
30 days and a good survival status were included in the
present study. Finally, GSE17538 included 229 samples.

Relationship Between Proliferative and
Invasive Molecular Subtypes and TMB and
Common Gene Variants
Further, we explored whether there were differences in genomic
data between molecular subtypes. We acquired the mutation data
set and copy number variation data processed by mutect2
software of TCGA-COAD. Then, the Fisher test was employed
to screen the genes that have a substantial mutation, significant
copy deletion, and significant copy amplification differences in
each subtype.

Differential Analysis of Proliferative and
Invasive Molecular Subtypes in the
Efficacy of Immunotherapy/
Chemotherapy
We examined the differences among distinct molecular
subtypes in immunotherapy and chemotherapy. TIDE(http://
tide.dfci.harvard.edu/) Software was utilized to evaluate the
potential clinical effects of immunotherapy in proliferative
and invasive molecular subtypes. The higher the tide
prediction score, the higher the possibility of immune escape,
suggesting that the patient is less likely to benefit from
immunotherapy.

Identify Phenotype Related Coexpressed
Gene Modules
We used the WGCNA module in R software(Langfelder and
Horvath, 2008) to detect phenotype-related co-expression
modules. Specifically, we selected TCGA expression profile
data set and screened genes having MADmore than 50 percent
as gene expression profiles. Firstly, we clustered the samples
together and screened them for co-expression modules. In the
study, we discovered that the co-expression network
corresponds to the scale-free network, indicating that the
log(k) of the node with linkage degree k is inversely
associated with the log(P (k), which is the probability of the
node, and the correlation coefficient is higher than 0.85. We
then transformed an adjacency matrix from an expression
matrix, and subsequently transformed the adjacency matrix
into a topology matrix. Subsequently, for the purpose of
clustering genes, we utilized the average linkage hierarchical
clustering technique as per the standards of a hybrid dynamic
cut tree with the aid of Tom. We also specified 30 as the limit
quantity of genes present in each gene network module. After
determining the gene modules utilizing the dynamic cutting
approach, we computed the eigengenes of each module one at a

time and clustered the modules together utilizing the
eigengenes.

Constructing a Prognostic Risk Model on
the Basis of Subtype Differential Expression
and Co-expressed Genes
To begin with, the 343 samples in the TCGA data set are
classified into two groups: the training set as well as the
verification set. As a precaution against random allocation
variation having an adverse effect on the stability of
succeeding modeling, all samples are clustered at random
100 times before being used. In this case, the grouping of
samples is conducted in accordance with the ratio of 1:1 for
the training set to the verification set. Furthermore, utilizing the
training set data, the univariate Cox proportional hazards
regression model was performed on differentially co-
expressed genes utilizing the survival coxph function in the
R-package. The level of p < 0.05 was used as the cutoff value for
filtering in order to get the genes associated with prognosis.

To significantly reduce the gene range while retaining high
accuracy, we performed additional experiments. We
employed lasso regression to additionally narrow the
prognostic genes, resulting in a reduction in the proportion
of genes in the risk model. The Lasso technique is a kind of
estimation that uses compression. When it constructs a
penalty function, it results in certain coefficients being
compressed while others are being set to zero, producing a
more refined model. In this way, it keeps its advantages in
terms of subset shrinking. It is a skewed estimating method for
dealing with complicated collinearity data sets. When
assessing variables, it may be used to optimize the selection
of parameters, and it could be used to effectively handle the
issue of multi-collinearity in regression analysis. The lasso
Cox regression analysis was performed utilizing the R
software program glmnet (Friedman et al., 2010). In this
regard, we investigated the transformation trajectory of
every independent variable separately. In addition, we
employed a 10-fold cross-validation procedure to construct
the model.

Univariate and Multivariate Cox Analysis
and Establishment of a Nomogram
In the TCGA dataset, univariate andmultivariable Cox regression
analyses were utilized to identify the clinical independence
regarding the model. Nomogram is a method that can
intuitively and effectively present the data regarding the risk
model and may be conveniently applied in predicting the
outcomes. The nomogram makes use of the length of the
straight line to depict the effect of several factors on the result,
as well as the effect of various variable values on the outcomes. To
enhance the predictive performance, we integrated multi-factor
meaningful variables and established a new nomogram using the
Cox model. Additionally, the calibration curve was utilized to
determine its predictive performance. Finally, we performed
DCA (Decision curve analysis) to determine its credibility.
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Cell Culture
The Chinese Academy of Sciences (Shanghai, China) provided
the NCM460 cell line and the human colon cancer cell lines
including LoVo, HT29, and HCT116. All the obtained cell lines
were grown in RPMI 1640 accompanied by 10 percent fetal
bovine serum.

RNA Isolation and RT-PCR Analysis
The TRIzol reagent (Invitrogen, Carlsbad, CA, United States)
was utilized to extract RNA from the tissue samples.
Subsequently, QuantiTect Reverse Transcription Kit
(Qiagen, Valencia, CA, United States) was employed to
convert the isolated RNA into cDNA. SYBR Green (Takara,
Otsu, Shiga, Japan) was employed to quantify the results of
real-time PCR analyses, and the levels were subsequently
standardized to GAPDH levels. The primers used in the
upstream and downstream experiments have the following
sequences: SPARCL1-forward: 5′-CAACTGCTGAAACGG
TAGCA-3’; SPARCL1-reverse 5′-GAACTCTTGCCCTGTTCTGC-
3’; HAND1-forward: 5′- AGCCACCAGCTACATCGCCTAC-3’;
HAND1-reverse: 5′- GCGATCCGCCTTCTTGAGTTC-3’;
CLEC10A-Forward: 5′- TACACCTGGATGGGCCTCAG -3’;
CLEC10A- reverse: 5′- TGTTCCATCCACCCACTTCC -3;
PTGS1- forward: 5′- ATCGCCATGGAATTCAACCA-3´;
PTGS1- reverse: 5′- GTGAGCCCACTTGGAAGGAA -3´;
PTN- forward: 5′- CCATTTCCCTTCCGTTCC-3’; PTN -
reverse: 5′- AGGTTGCTACCGCTGAGTCC -3´;CXCL1-
forward: 5′- CTCGAGGCCCCTGGGGCAGAAGCCTC-3´;
CXCL1- reverse: 5′- GATATCGGGGCTCAGCAGGCGGGTCT
-3´; CRIP2- forward: 5′- ACTGATGCCTCCTCACCATC-3´;
CRIP2- reverse: 5′- TGTTTGTGAGCCAACCAGAG-3´;

RESULTS

Relationship Between Proliferative and
Invasive Molecular Subtypes and Prognosis
of Colon Cancer
We analyzed the relationship between proliferative and
invasive molecular subtypes and patient prognosis. First, we
examined the correlation between four molecular subtypes and
the OS prognosis. In Figure 1A, it can be observed that there
exist marginal considerable differences among the four
molecular subtypes (p = 0.075). Among the three invasive
molecular subtypes, EMT and CryptLike subtypes have the
worst prognosis, and Collective has the best prognosis;
additionally, we evaluated the correlation between the four
subtypes and PFS and found the same findings, that is, EMT
and CryptLike subtypes exhibited the most unfavorable
prognosis, and Collective exhibited favorable prognosis
(Figure 1B); Finally, we analyzed the relationship with DSS.
EMT and CryptLike exhibited the most unfavorable prognosis,
and Collective exhibited an improved prognosis (Figure 1C).
Our results show that there are invasion-related phenotypes in
colon cancer, in which EMT and CryptLike are more
aggressive.

Relationship Between Proliferative and
Invasive Molecular Subtypes and TMB and
Common Gene Variants
We acquired the mutation data set as well as copy number
variation data processed by mutect2 software of TCGA-
COAD. Then, we used the Fisher test to screen the genes with
significant mutation, significant copy deletion, and significant
copy amplification differences in each subtype. The mutation
characteristics of top10 in each subtype are as shown in Figures
2A–D. It can be observed that the copy number amplification of
DCAF12, AK3, ARHGEF6, GLIS3, MAGEA3, RCL1, RLN1,
SLC9A6, and SPANXB1 genes in EMT molecular subtypes are
substantially elevated in contrast with that in other subtypes.

Difference in Immune Score Between
Proliferative and Invasive Molecular
Subtypes
From the TCGA dataset, the proportion of 22 distinct immune cells
in each sample was evaluated by the CIBERSORT method, and the
distribution of these immune cell proportions in the four molecular
subtypes was as shown in Supplement Figure 1A. The box diagram
of immune cells is shown in Figure 3A, and the heat diagram of
immune cells is shown in Supplement Figure 1B. It indicated that
the Collective, CryptLike, and EMT in macrophases_ M1,
Macrophages_ M2 was significantly higher than the proliferative
molecular subtype. M1 macrophages play an anti-tumor role by
activating the immune system and releasing tumor necrosis factor,
nitric oxide, and reactive oxygen species, while macrophages M2 is
the main participant and coordinator in promoting tumor
progression in the tumor microenvironment(Atri et al., 2018).
Immune infiltration analysis showed that CryptLike and EMT
molecular subtypes had high immune microenvironment
infiltration, and proliferative had the lowest immune
microenvironment infiltration. Interestingly, CryptLike and EMT
have the highest immune infiltration scores, but the prognosis is the
worst, shown in Figures 3B–D.

Differential Analysis of Proliferative and
Invasive Molecular Subtypes in the Efficacy
of Immunotherapy/Chemotherapy
We use TIDE (http://tide.dfci.harvard.edu/) Software to evaluate
the potential clinical effects of immunotherapy in proliferative and
invasivemolecular subtypes. The higher the TIDE prediction score,
the higher the possibility of immune escape, suggesting that
patients are less likely to benefit from immunotherapy. As
illustrated in Figure 4A, we discovered that there were
substantial differences in TIDE scores between distinct
molecular subtypes. The TIDE score of the proliferative subtype
is the lowest, whichmay benefit more from immunotherapy. At the
same time, we also compared the predicted T cell rejection score
and T cell dysfunction score in different molecular subtypes. As
depicted in Figures 4B,C. it is evident that CryptLike and EMT
have elevated T cell rejection scores and T cell dysfunction scores
than collective and proliferative. It may be that CryptLike and EMT
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have high immune infiltration scores, but there are T cell
dysfunction and T cell rejection, resulting in a poor prognosis of
CryptLike and EMT. The distribution difference of different
response states to immunotherapy predicted by tide software in
different immunemolecular subtypes is illustrated in Figure 4D.We
discovered that the proportion of response to immunotherapy in
collective and proliferative subtypes is substantially elevated as
opposed to that in CryptLike and EMT subtypes. In addition, we
evaluated the response of distinct subtypes to conventional
chemotherapeutic drugs 5-FU and cisplatin. It was found that

Collective and Proliferative subtypes were more sensitive to
cisplatin than other subtypes (Figure 4E).

Analysis of Differentially Expressed Genes
Among Subtypes
The DEGs among Collective ~ Other, CryptLike ~ Other, EMT ~
Other. and Proliferative-Other were obtained utilizing the limma
package. Filtering was carried out according to the thresholds of |
log2fc | > 1 and FDR <0.05. Collective ~ Other up-regulated and

FIGURE 1 | (A): Km curve of the relationship between four subtypes andOS; (B): Km curve of the relationship between four subtypes and PFS; (C): Km curve of the
relationship between four subtypes and DSS.

FIGURE 2 |Mutation features of the topmost 10 significantly mutated genes from each subtype sample. (A–D) represent collective, cryptlike, EMT, and proliferative
subtypes respectively.
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down-regulated DEGs are illustrated as the volcano figure as shown
in Figure 5A, which include 11 down-regulated and 28 up-regulated
genes, indicating that Collective ~ Other is mainly up-regulated;
CryptLike ~ Other up-regulated and down regulated DEGs are
illustrated as the volcano figure as shown in Figure 5B, which
include one down-regulated gene and 394 up-regulated genes,
indicating that CryptLike ~ Other is mainly up-regulated; EMT ~
Other down-regulated and up-regulated DEGs are illustrated as the
volcano figure as shown in Figure 5C, which include 58 down-
regulated genes and 232 up- regulated genes. The results show that
EMT ~ Other is mainly up-regulated; The down- regulated and up-
regulated DEGs of Proliferative-Other are shown in Figure 5D,
including 730 down- regulated genes and one up- regulated gene.
The results show that Proliferative-Other is mainly down-regulated.
The heat map of DEGs among subtypes is shown in Figure 5E.
Furthermore, we performed functional enrichment analysis on 846

DEGs after eliminating redundancy of differential genes among the
four subtypes via the clusterProfiler function in R software, and
defined the cutoff value of FDR <0.05. The KEGG is enriched in 55
pathways, mainly Focal adhesion, Cytokine-cytokine receptor
interaction, PI3K-Akt signaling pathway, Cell adhesion molecules
(CAMs), NF-kappa B signaling pathway, Proteoglycans in cancer,
and other pathways associated with tumor occurrence and
progression as depicted in Figure 5F; There are 1165 GO-BP
enrichment results, of which the first six GO-BP are shown in
Figure 5G.

Identify Phenotype Related Coexpression
Gene Modules
We employed the WGCNA module in R software to identify
phenotype-related coexpression modules. Specifically, we

FIGURE 3 | (A): The difference of 22 immune cell components; (B): Differences in matrix scores in different subtypes; (C): The scores of immune infiltration in
different subtypes were different; (D): The estimate scores of different subtypes were different.
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selected TCGA expression profile data set and screened genes
that had MAD of over 50 percent as gene expression profiles.
Firstly, we clustered the samples and chose the soft threshold
of 3 (Figure 6A). To guarantee a scale-free network, we choose
β = 3(Figures 6B–C). Next, the adjacency matrix was
generated by transforming the expression matrix. The
adjacency matrix was subsequently turned into a topological
matrix. To determine the gene module, we first computed the
eigenvectors for all modules one by one. Then, we clustered the
modules and merged those that are near to one another into
newer modules. We next specified the minModuleSize = 30,
DeepSplit = 2, and height = 0.25 parameters for the gene
module. Finally, a sum of 17 modules was obtained
(Figure 6D). Notably, however, the grey module is
comprised of a gene set that cannot be combined with other
modules. Figure 6E depicts the number of transcripts
produced from each module, in which the grey module is a
gene module that cannot be allocated. We examined the
association between each module and the patients’ M stage,
gender, N stage, T stage, age, Stage, and proliferative and
invasive molecular subtypes, as illustrated in Figure 6F. It
is evident that greenyellow, purple, yellow and red modules
have a substantial positive association with CryptLike and
EMT, and an inverse association with collective and
proliferative. The results of correlation analysis between GS
and MM of genes in the module are shown in Figures 6G–J the

results show that GS and MM of green, yellow, purple, yellow,
and red modules are highly positively correlated.

Developing a Prognostic Risk Model
According to Subtype Differential
Expression and Co-expression Genes
Construction of Training Set Sample Risk Model
The 343 samples from the TCGA data set have been classified into
two categories: the training set as well as the verification set. As a
precaution against random allocation bias having an adverse
effect on the stability of succeeding modeling, all samples were
clustered at random 100 times before being used. To group the
samples, a ratio of 1:1 was utilized for the training set to the
verification set. The final training set comprises 171 samples,
while the test set contains 172 samples.

Further, using the training set data, for the differentially co-
expressed genes (399 in total) and survival data, the survival
coxph function of the R-package was utilized to carry out a
univariate Cox proportional hazards regression model. The
filtration level was set at p < 0.05. Finally, there were 46 genes
related to prognosis.

At present, 46 differentially co-expressed genes related to
prognosis have been identified. Nevertheless, because of the
substantial proportion of these genes and the inconducive
impact on clinical detection, we must additionally reduce the

FIGURE 4 | (A): The tide scores of different molecular subtypes were different; (B): T cell dysfunction scores of different molecular subtypes were different; (C): The
T cell rejection scores of different molecular subtypes were different; (D): The difference of immune response of different molecular subtypes; (E). The box plots represent
the predicted IC50 inhibition concentration for Cisplatin.
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gene range while retaining high accuracy in the process. We
further compressed these 46 genes utilizing lasso regression to
minimize the proportion of the risk model genes. For the lasso
Cox regression analysis, we utilized the glmnet package of R
software. As illustrated in Figure 7A, we examined the change
trajectory of each independent variable. It is evident that when

lambda is progressively increased, the proportion of independent
variable coefficients that are on the verge of zero grows
progressively as well. To construct the model and examine the
confidence interval within each lambda, we employed a 10-fold
cross-validation procedure, as depicted in Figure 7B. It can be
seen from the figure that when lambda = 0.03507542, the model

FIGURE 5 | (A): Differences in gene expression between Collective and non-Collective populations are depicted on a volcano map; (B): CryptLike and non-
CryptLike groups were compared using a volcano map to identify genes that differed; (C): Volcano map of differential genes between EMT and non-EMT groups; (D):
Volcanic map of differential genes between Proliferative and non-Proliferative groups. (E). Heat map of DEGs among subtypes; (F): The results of KEGG enrichment of
846 differential genes; (G): GO-BP enrichment results of 846 different genes, where distinct colors denote distinct pathways, and connecting lines denote genes
correlated with pathways.
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reaches the optimum. In view of this, in the following stage, we
picked 14 genes when lambda = 0.03507542, which were then
utilized as targets for the subsequent step.

As part of its stepwise regression procedure, the AIC data
criterion is utilized, which takes into account both the statistical
fit as well as the total number of components employed for
fitting. AIC is reduced using a stepping technique in the Stats
package. We begin with the most complicated model and
remove one variable at a time to lower AIC. The model
performs better when the value is lower than a certain
threshold, demonstrating that the model may get a
satisfactory fit using fewer features. With the help of this
algorithm, we were able to reduce 14 genes to only eight
genes: SPARCL1, CXCL1, HAND1, CRIP2, CLEC10A,
PTGS1, PTN, and ZNF385A.

Eventually, the signature equation consists of eight genes and
is illustrated below: risk score = SPARCL1*1.8291043-
CXCL1*0.4539938 + HAND1*0.4792704 + CRIP2*1.5098001-
CLEC10A*1.2404183-PTGS1*1.2728945-PTN*2.2581275 +
ZNF385A*0.6856336.

As illustrated in Figure 7C, we computed the risk score of each
sample based on the level of expression of the sample and plotted
the risk score distribution for the sample. From the figure, it is
evident that the mortality rate for samples having an elevated risk
score was substantially greater in contrast with the death rate for
samples having a reduced risk score, indicating that high-risk score
samples have a poorer prognosis. The expression of eight separate
signature genes differs in response to an increase in risk value. The
elevated expression of SPARCL1, HAND1, CRIP2 and ZNF385A
was identified as risk variables. The high expression of CXCL1,

FIGURE6 | (A): Clustering tree of each sample; (B): An examination of the scale-free fit index for a variety of soft-threshold values (β). (C): For different soft-threshold
values, an analysis of the mean connectedness was carried out. (D): Dendrogram illustrating all DEGs/lncRNAs clustered according to a dissimilarity measure (1-TOM);
(E): Statistics of the proportion of each module genes; (F): Relationship between clinical information and each module; (G): In the green-yellow module, a scatter plot
showing the relationship between module membership and gene value for CryptLike is shown; (H): In the purple module, the scatter graphic shows the relationship
between module membership and gene importance for EMT; (I): In the yellow module, a scatter plot showing the relationship between module membership and gene
importance for CryptLike is presented; (J): For CryptLike in the red module, the scatter graphic shows the relationship between module membership and gene
importance.
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CLEC10A, PTGS1 and PTN were correlated with low risk,
indicating that these genes have a protective function. In
addition, we utilized the timeROC function of the R software to
examine the ROC of the prognostic categorization of risk score.We
examined the categorization effectiveness of prognostic predictions
in three different time periods: one-, two-, and three-year
(Figure 7D). It is evident that the model has a large area
underneath the AUC line; Eventually, we computed the zscore
on the risk scores and classified the samples with risk scores larger
than zero into two groups: high- and low-risk groups. After
plotting the KM curve as illustrated in Figure 7E, we identified
a substantial difference between the two groups (p < 0.0001), of
which 88 samples were categorized into the low-risk groupwhile 83
samples were categorized into the high-risk group.

Multiple Data Sets Confirm the Stability of the
Eight-Gene Signature
The validation set from TCGA as well as all other data sets were
utilized to assess the robustness of the model, with a similar model
and equivalent coefficients as the training set being used to make
the determination. After determining the levels of expression of the
risk score of each sample, the ROC analysis of the risk score of each
sample was performed utilizing the timeROC function in the R
software. We examined the categorization effectiveness of
prognostic predictions in three different time periods: one-,

two-, and three-year. We subsequently computed the zscore and
the risk scores, classified the samples with risk scores larger than
zero into two groups: high-and low-risk. Then, we created the KM
curve. In the TCGA internal validation data, as depicted in Figures
8A–B, we found that the model exhibits an elevated AUC in the
independent internal validation data set, and a substantial
difference was observed between the low- and high-risk groups
according to the risk value (p = 0.016). Specifically, 94 samples were
categorized into the low-risk group while 78 samples were
categorized into the high-risk group. In the whole TCGA data
set, as depicted in Figures 8C,D, it was discovered that the AUC of
the model in 3 years reaches 0.76, and there is also a considerable
difference between the low- and high-risk groups according to the
risk value of the samples (p < 0.0001), of which 162 samples are
categorized into the high-risk groups while 181 samples fall under
the low-risk group.

In the external verification set GSE17538, we employed a similar
model and equivalent coefficients as those utilized in the training
set. In a similar manner, the risk score of each sample was
determined in accordance with the degree of expression of the
sample. In addition, we utilized the timeROC function in the R
software to investigate the ROC of the prognostic categorization of
the risk score. We examined the categorization effectiveness of
prognostic predictions in three different time periods: one-, two-,
and three-year (Figure 8E); In the end, we calculated the risk score,

FIGURE 7 | (A): The change trajectory of each independent variable, where the independent variable lambda log value is represented by the horizontal axis, while
the independent variable coefficient is represented by the vertical axis; (B): In each lambda, the confidence interval is calculated; (C): The survival status, survival duration,
risk score, and eight-gene expression in the TCGA training set; (D): The classification of the ROC curve and AUC is performed based on an 8-gene signature; (E): In the
training set, the survival curve distribution of an 8-gene signature was calculated using the KM algorithm.
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classified the samples into low- and high-risk groups, and plotted
the KM curve, as demonstrated in Figure 8F. The findings
illustrated a statistically substantial difference between the two
groups (p = 0.0082), of which 121 samples are categorized into the
high-risk group while 208 samples fall under the low-risk group.

Cox Analysis and Nomogram Construction of 8-Gene
Signature
The risk score was shown to be strongly linked to survival in the
TCGA data set, according to univariable Cox regression analysis
(Figure 9A). Corresponding multivariable Cox regression analysis
found that risk score was still substantially linked to survival
(Figure 9B HR = 1.86, 95% CI = 1.42—2.45, P < 1 e-5). The
findings described above demonstrate that our eight-gene signature
model exhibits strong predictive performance in terms of clinical
applicability. Specifically, to examine the correlation between
biological activities and risk scores among various samples, we
utilized the gene expression profiles related to these samples,
performed single sample GSEA analysis utilizing the GSVA
package of the R software, measured the scores of each sample
on various functions, and acquired the ssGSEA scores of each

sample related to each function, and thereafter obtained the
connection between any of these functions and risk scores.
Figure 9C illustrates our selection of functions with correlations
larger than 0.3. It could be observed that eight pathways were
positively linked to the sample risk score, while three pathways
were inversely linked to the sample risk score. As demonstrated in
Figure 9D, we chose the 11 topmost correlated KEGG pathways
and performed cluster analysis on them based on their enrichment
ratings. We found that the tumor-related pathways such as
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION,
KEGG_FOCAL_ADHESION, and KEGG_ECM_RECEPTOR_
INTERACTION increased as the risk score continued to increase.

The univariate and multivariate analyses illustrated that in
addition to the risk score, the clinical feature M stage was found
to independently function as a prognostic marker, implying that they
had complementary value. To additionally enhance the prediction
performance, we integrated the M stage and risk score, established a
new nomogram using the Cox model, and combined the two
independent prognostic predictors (Figure 9E), according to this
model, we found that risk score has themost contribution toOS, with
the M stage coming second. In addition, we utilized the calibration

FIGURE 8 | (A): In the TCGA test set, the ROC curve and AUC were categorized utilizing an 8-gene signature; (B): In the TCGA test set, the KM survival curve
distribution of an eight-gene signature was examined; (C): In the whole TCGA data set, the ROC curve and AUC were categorized utilizing an 8-gene signature; (D): The
distribution of the KM survival curve for an eight-gene signature throughout the whole TCGA data set. (E): The classification of the ROC curve and AUC is based on an
eight-gene signature; (F): The KM survival curve illustrating the distribution of the eight-gene signature within the independent validation data set GSE17538.
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curve to determine the predictive accuracy regarding the model
(Figure 9F). The findings illustrated that the predictive calibration
curve of three estimation points in one-, three-, and five-year is
proximate to the standard curve, indicating that the model possesses
strong predictive accuracy. Furthermore, we utilized DCA (decision
curve) to assess the reliability (Figure 9G) of the model. It was
discovered that at a high-risk threshold of 0.1–0.3, the advantages of
nomogram and risk score substantially outweigh those ofM stage and
extreme curve by a wide margin. When the high-risk threshold is
0.3–0.5, the benefits of risk score, nomogram, andM stage are similar.
When the high-risk threshold is greater than 0.5, the net benefits of
the nomogram are greater than 0, which has clinical significance. On
the whole, risk score and nomogram have good reliability when the
high-risk threshold is 0.1–0.5.When the high-risk threshold is greater
than 0.5, the nomogram has a high benefit rate.

Comparison Between RiskModel and Other
Models
Following a review of the literature, we eventually obtained five
prognosis-related risk models to be used for comparison with our

eight-gene model including 15-gene signature (Dai) (Dai et al.,
2018), 9-gene signature(Mo) (Mo et al., 2019), 12-gene
signature(Sun) (Sun et al., 2018), 13-gene signature(Tian) (Tian
et al., 2017),15-gene signature(Xu) (Xu et al., 2017). In the attempt of
making themodelmore similar to some degree, the risk score of each
COAD sample from TCGA was computed as per the matching
genes in the five models, utilizing the same approach, and the risk
score was zscore. After the zscore, the samples whose risk score was
found to exceed zero were categorized into low- and high-risk
groups. The difference in COAD prognosis between the two
groups was computed and compared. Figures 10A–J depicts the
ROC and COAD-KM curves of the five models. It can be seen that
the AUC values of the five models in 1, 2, and 3 years are lower than
our model. The COAD prognosis of the low and high grouped
samples of the five models except for the 9-gene signature (Mo)
model was different (log-rank p < 0.05). Our model was discovered
to be more rational and accurate even when fewer genes are used.
Moreover, we also utilized the “rms” package in R to determine the
concordance index (C-index) of various models in order to compare
the predictive accuracy among models. According to Figure 10K,
the C-index of the eight-genesmodel is the greatest, showing that the

FIGURE 9 | (A): Findings of the univariate analysis and clinical characteristics of the risk score; (B): Findings of the multivariate analysis and clinical characteristics of the risk
score. (C). KEGGpathways that are substantially linked to risk score are grouped together in a cluster; (D): Changes in the association between KEGGpathways that are strongly
associated with the risk score and ssGSEA score (the sample is represented by the abscissa, and the risk scores are elevated from the left side to the right side). (E): Nomogram
model of M stage and risk score combination; (F): One-, three-, and five-year Calibration curve of the nomogram; (G): Decision curve of M stage, risk score, and nomogram.
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overall performance of our model is better than the other five
models.

Verification of 8 Gene Expression
In order to study the expression patterns of genes in tumors and
normal cell lines, PCRwas used to detect the mRNA expression of
genes, and the results showed that the expression of SPARCL1,
HAND1, CLEC10A, PTGS1 genes in tumor group was
significantly lower than that in the normal group. However,
the expression of CXCL1 in tumor group was significantly
higher than that in the control group. There is no difference
in the expression of ZNF385A and CRIP2 between the tumor and
the control group (Figures 11A–H).

DISCUSSION

The tumor microenvironment performs an integral function in
the progression of tumors and it is not only a barrier for tumor
cell metastasis (Wang and Hielscher, 2017; Lin et al., 2019), but
also a favorable “soil” for tumor cell reproduction, and endows
tumor cells with the ability to metastasize to a distance (Mao and
Schwarzbauer, 2005). In addition to tumor cells, the tumor
microenvironment is composed of stromal cells, inflammatory
cells, vascular system, and extracellular matrix (Frankel et al.,
2017), in which tumor-related immune cells are an important
part. Previous studies have shown that stromal-rich tumors have
been proved to be unfavorable for prognosis, and the same
conclusion has been reached in colorectal cancer (West et al.,
2010; van Pelt et al., 2018; Geessink et al., 2019), which is
consistent with our results in this study. The EMT and
cryptlike subtypes with the worst prognosis have high immune
microenvironment infiltration. Of course, our results also provide
another possible reason. In these two subtypes, the T cell rejection
score and T cell dysfunction score are high. It is speculated that
the genetic abnormalities of tumor cells will reprogram the
surrounding infiltrating cells, resulting in the tumor
microenvironment conducive to tumor development. This
gene abnormality is usually manifested in the abnormal
amplification of some specific genes. These results show that
COAD leads to different prognostic outcomes due to its high
heterogeneity. At present, the clinical TNM stage may not fully
reflect its prognosis and the choice of treatment methods. The
2020 ESMO colon cancer clinical practice guide recommends the
application of immune scores to predict the prognosis of patients
with colon cancer and guide clinical medication (Argilés et al.,
2020). On the other hand, our results show that the proportion of
response to immunotherapy in Collective and Proliferative
subtypes is substantially elevated as opposed to that in
CryptLike and EMT subtypes, which cannot be perfectly
explained by the results of this study. However, we speculate
that this may be related to the imbalance of intestinal-specific
microbiota. Studies have shown that in crypt-like infiltration,
mucosal microbiota still exists even if the tumor has distant
metastasis. While in EMT invasion, the tumor seems to lose the
mucosal microbiota (Bullman et al., 2017). The state of intestinal
flora also performs an integral function in the efficacy of immune

checkpoint inhibitors (Westdorp et al., 2021). Unfortunately, we
lack the analysis of intestinal flora in this study. We will improve
this part of data in further research to provide a basis for further
guiding clinical medication.

Proliferation and metastasis are the two characteristics of
tumors. There is a deviation in the gene expression of these two
characteristics of tumors. We extracted the DEGs of these two
groups of COAD to screen the genes that perform an instrumental
function in tumors. The results of pathway enrichment suggest that
the pathways involved by these genes are concentrated in Cell
adhesion molecules (CAMs) (Bronikowska et al., 2021), cytokine
receptor interaction (Wen et al., 2021), focal adhesion (Lu et al.,
2021), NF kappa B signaling pathway (Takakura et al., 2021),
proteoglycans in cancer (Jinmin Sun et al., 2021), PI3K Akt
signaling pathway (Xue et al., 2021), etc, which are strongly
associated with to the onset and progression of tumors. Further
cluster analysis showed that CryptLike, EMT, Collective and
Proliferative were distributed in different modules respectively.
These results showed that different clinical subtypes of colorectal
cancer not only showed differences in tumor behavior, but also the
fundamental reason was the abnormal activation of different genes
and pathways, which was not only an important reason for tumor
progression but also a key clinical target.

In order to further enhance clinical applicability, we
established prognostic gene signatures related to differential
genes. After lasso regression analysis, the combination with the
maximum occurrence frequency includes 8 genes: SPARCL1
(SPARC-like protein 1), CXCL1 (Growth-regulated alpha
protein), HAND1 (Heart- and neural crest derivatives-
expressed protein 1), CRIP2 (Cysteine-rich protein 2),
CLEC10A(C-type lectin domain family 10, member A),
PTGS1 (Prostaglandin G/H synthase 1), PTN (Pleiotrophin),
ZNF385A (Zinc finger protein 385A), The role of these genes in
tumors has been preliminarily studied. SPARCL1 is considered
a tumor suppressor, which inhibits tumor progression in a
variety of tumors. SPARCL1 may prevent the activity of
colorectal cancer through its DNA methylation (Hu et al.,
2021). The expression of SPARCL1 in HeLa cells is low at
the protein level and transcription level. When SPARCL1 is
overexpressed in HeLa cells the proliferation, migration, and
invasion of cells are strongly inhibited (Zhang et al., 2021).
CXCL1, as a chemokine, has been proved to promote tumor
progression in a variety of tumors. The CXCL1 overexpression
has a positive relationship with the migration and invasive
activity of osteosarcoma cell lines (Lee et al., 2021). In acute
leukemia, bladder cancer, and other tumors, its expression is
increased, and its prognosis is poor, (Xiaoqi Sun et al., 2021;
Yazdani et al., 2021). HAND1 is a mesodermal marker (Yi et al.,
2020). At present, there are many studies on its role in EMT, but
there are contradictions about its role in tumors. HAND1 is
expressed in invasive gastrointestinal stromal tumors (GIST)
(Hemming et al., 2021). However, in medulloblastoma, HAND1
expression may be the key to weaken EMT, which may be
different from previous research conclusions (Asuthkar et al.,
2016), but it may be related to different apparent modifications
of HAND1 in tumors (Tan et al., 2014). CRIP2 is a transcription
factor, which is an unfavorable prognostic factor for breast
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FIGURE 10 | (A, B): The receiver operating characteristic (ROC) of the 15 gene signature (Dai) risk model, as well as the COAD KM curve of low- and high-risk
clustered samples; (C, D): The ROC curve of the 9-gene signature (Mo) and the COAD KM curve of the low/high; (E, F): The ROC of 12-gene signature(Sun) as well as
COAD KM curve of Low/High; (G, H): ROC of 13-gene signature(Tian) and COAD KM curve of Low/High; (I, J): ROC of 15-gene signature(Xu) and COAD KM curve of
Low/High/; (K). C-indexes of six prognostic risk models.
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cancer as well as colorectal cancer (Shi et al., 2016; Zhang et al.,
2020). CRIP2 is an autophagy inhibitory protein. CRIP2
mediated copper metabolism activates autophagy in cancer
cells (Chen et al., 2021). Moreover, CRIP2 was confirmed to
be up-modulated at the mRNA and protein levels of anti-
radiation cells, which is a potential diagnostic biomarker and
a key biomarker for predicting prognosis (Li et al., 2021).
CLEC10A, also known as MGL (macrophage galactose type
C lectin), has recently been reported to perform a crucial part in
enhancing immune cell activities. CLEC10A can recognize
tumor-associated antigens and pass them to CD4 T cells
(van Vliet et al., 2007). Moreover, CLEC10A has been shown
to greatly enhance the stimulation of antigen-specific CD8
T cells (Napoletano et al., 2012). The role of CLEC10A in
enhancing the anticancer effects of immune cells has
undoubtedly drawn the interest of researchers, and it has
been identified as a potential target for cancer
immunotherapy treatment (Eggink et al., 2018). Constitutive
cyclooxygenase (COX) - 1 (gene PTGS1) is significantly related
to the concentration of PGE2 in the colon and is highly
expressed in colon cancer. Therefore, PTGS1 may be
regarded as another potential target for colon cancer
prevention in high-risk groups (Sidahmed et al., 2016;
Ayiomamitis et al., 2019). In colorectal cancer, PTN may
play a role as the downstream of PRPH and promote tumor
progression (Huang et al., 2021). Tumor-related macrophages
increase the proportion of tumor stem cells in lymphoma via the
secretion of PTN (Wei et al., 2019). Upregulation of PTN by
activating the NF- κ B pathway promotes tumor cell
proliferation, inhibits apoptosis and chemosensitivity (Huang

et al., 2018). According to the results of a meta-analysis,
increased expression of PTN was substantially associated
with advanced TNM stage and dismal OS in cancer patients
(Zhou et al., 2018). ZNF385A, as RNA binding proteins (RBPs),
is a constituent factor of the COAD prognosis model, but its
specific mechanism is not clear (Chang et al., 2021). These
results show that although these genes play different roles in
tumors, according to the current research results, more genes
may participate in apparent modification, which may also be
why there exist obvious differences in the expression of these
genes in distinct phenotypes of COAD, which performs an
instrumental function in the prognosis of COAD, but this needs
our further verification.

In conclusion, in this study, we further analyzed the
differences between molecular subtypes of prognosis of
patients with COAD, TMB and common gene variants,
immune score, and efficacy of immunotherapy/
chemotherapy based on the research of Shayingzhao et al.
Moreover, the risk score prognostic model of 8 genes is
constructed according to the differential genes. The risk
score constructed according to these 8 genes can divide the
patients into low- and high-risk groups. The death proportion
of the samples with a high-risk score is substantially elevated
as opposed to that with the low-risk score, implying that the
high risk score samples exhibit unfavorable prognoses.
Further application of the training set as well as
verification set have higher AUC shows that risk score
constructed by our 8 genes has a stable role in predicting
prognosis and provides a basis for clinical precision
treatment.

FIGURE 11 | Gene expression verification in normal samples and tumor samples. From (A to H) represent SPARCL1, HAND1, CLEC10A, PTGS1, PTN, CXCL1,
ZNF385A, and CRIP2, respectively.
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