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Abstract: In this paper, a mass adaptive control method combining robust sliding mode 

control (SMC) and linear active disturbance rejection control (LADRC) is designed for 

the quadrotor load unmanned aerial vehicle (UAV) with mass variation. The scheme 

combines the advantages of SMC and LADRC. SMC can enhance the robustness of the 

controller, improve the anti-disturbance performance and overcome the problem of low 

control precision caused by bandwidth limitation of LADRC. The linear extended state 

observer (LESO) can estimate the external and internal disturbances of the system in 

real time, and then compensate the total disturbance through the PD controller. In order 



to simplify parameter setting, adaptive control is introduced in LADRC to adjust 

controller parameters in real time. In addition, adaptive law is also used to control the 

mass variation of the quadrotor. Then the stability of the whole system is verified by 

Lyapunov stability theory. Finally, the comparison with LADRC shows the superiority 

of the designed scheme, which can track the reference signal stably and effectively. 

Keywords: Quadrotor, Attitude Control, Sliding Mode Control, Mass Variation, 

Adaptive Control, Linear Active Disturbance Rejection Control 

 

1.Introduction 

The quadrotor UAV has the advantages of simple structure and strong 

maneuverability. It has become a research hotspot and has been widely used in many 

fields [1,2]. The quadrotor load UAV can carry out tasks such as object handling, rescue 

and data collection [3], so the research on the quadrotor cannot be ignored. 

The quadrotor has a complicated mathematical model, which makes it particularly 

difficult to design its control scheme. In [4], a robust PID controller is proposed to 

realize the quadrotor trajectory tracking task. Considering the rotation and translation 

of the quadrotor, a nonlinear PID algorithm is designed in [5]. Aiming at the yaw and 

altitude channels of the quadrotor, a multiple-model adaptive controller is designed in 

[6]. Aiming at the model uncertainty and unknown disturbance of the quadrotor, a 

robust adaptive recursive sliding mode control scheme is adopted in [7]. In [8], 

considering the attitude and altitude control of the quadrotor system with bounded 

disturbances, an adaptive non-singular terminal SMC is proposed. Taking into account 



the disturbances of the quadrotor during the trajectory tracking, a global SMC algorithm 

is proposed in [9]. In [10], in order to ensure that the quadrotor can effectively track the 

desired trajectory, a multilayer neural dynamic controller is designed. 

The active disturbance rejection control (ADRC) technology is simple structure and 

strong control performance, and it does not need the accurate mathematical model, so 

it can be used in quadrotor system with nonlinear and strong coupling [11]. In [12], the 

obstacle avoidance function of the quadrotor is realized by the ADRC. In [13], the 

ADRC technology is adopted to enhance the anti-disturbance performance of the 

quadrotor system. In [14], ADRC is used to solve the input delay and external 

disturbances of the quadrotor. In view of the complex coupling and strong nonlinearity 

of the powered parafoil system, an ADRC scheme is used in [15] to compensate its 

coupling. In the airship system, an ADRC scheme is adopted to control its horizontal 

trajectory tracking [16]. However, the traditional ADRC contains nonlinear functions 

and many parameters, which makes parameter tuning complicated. Therefore, Gao 

introduces the concept of bandwidth and proposes a linear active disturbance rejection 

controller (LADRC) with fewer parameters, which consists of a PD controller and a 

linear extended state observer (LESO) [17]. The LADRC retains the advantages of 

strong anti-disturbance ability and simple structure, and also reduces the adjustable 

parameters, which greatly improves its application in actual engineering. Aiming at the 

strong coupling and nonlinearity of the quadrotor system, an improved LADRC 

strategy is proposed in [18]. In [19], the LADRC is adopted to estimate and compensate 

the disturbances of variable speed micro-hydro plant in real time. In order to solve the 



oscillatory system with time delay, LADRC is adopted to compensate the time delay in 

[20]. In [21], a LADRC control scheme is proposed to control the steam temperature of 

boiler outlet. Despite the above advantages, LADRC has strong correlation among its 

parameters, which leads to the complexity of parameter tuning. Moreover, it is well 

known that although a higher bandwidth can better track the expected signal and 

suppress disturbance, the bandwidth in the practical application is limited by the 

dynamic uncertainties. In addition, high bandwidth may cause oscillations and even 

lead to system instability, as well as increase operating costs. Therefore, in practical 

applications, bandwidth is limited by the requirements of performance and dynamic 

uncertainty, which leads to a decrease in the control precision of LADRC. 

In the existing research on the quadrotor, most of them are established the 

mathematical model of the quadrotor by assuming that its mass is constant. However, 

this assumption may not hold true in practical application. For example, the quadrotor 

is used for carrying objects, pesticide spraying, etc. Its mass is variable, which will lead 

to the position of its centroid to change and cause time-varying disturbances, thus 

affecting its control precision. Therefore, the time-varying mass problem should be 

considered in the process of quadrotor modeling. 

In this paper, we have established a more accurate mathematical model and proposed 

a control scheme that combines robust SMC and LADRC. The main contributions of 

this paper are as follows: 

(1) The mathematical model of the quadrotor load UAV is established, which takes into 

account the air resistance, the position of centroid and the moments acting on the 



quadrotor to make the established model more accurate. In addition, the adaptive 

law is introduced for the problem of mass variation. 

(2) A control scheme combining robust SMC and LADRC is proposed. The scheme 

combines the advantages of both. LESO is used to estimate the internal and external 

disturbances of the system and compensate it with the PD controller. SMC can 

further enhance the robustness of the controller and overcome the shortcomings of 

low control precision of LADRC due to limited bandwidth. 

(3) In view of the strong correlation of LADRC parameters, the introduction of adaptive 

control can adjust the parameters of controller in real time according to the state of 

the system, which greatly simplifies the parameter setting process, and also 

provides a novel method for proving the stability of the whole controller. 

(4) The system is verified to be stable by using Lyapunov stability theory, the 

simulation results are compared with LADRC to verify that the designed scheme 

has strong anti-disturbance ability and fast response speed, which proves its 

effectiveness.  

The rest of this article is structured as follows: The mathematical model of the 

quadrotor is established in Section 2; The control scheme is given in section 3; Section 

4, the stability analysis of the system is given; Section 5 is the simulation results and 

discussion; Section 6 summarizes the paper. 

2. Mathematical model 

According to Figure 1, the quadrotor can be modelled using six coordinates, namely 

x   , y   and z   for the position coordinates, and   ,    and    for the attitude 



coordinates [22]. When the quadrotor is loaded, its center of mass moves down from 

the origin of the body fixed frame B . The dynamics model of the quadrotor load UAV 

is established with reference to the earth fixed frame E  and the body fixed frame B  

[23].  
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Fig.1 Structure diagram of a quadrotor load UAV 

According to the matrix transformation relationship between the earth fixed frame 

E  and the body fixed frame B  [24, 25], the following formula can be obtained 
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With the consideration of Newton's second law, the position dynamics model of the 

quadrotor load UAV is obtained as 
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where [ ]T

E
V x y z ; V  is the linear velocity of the quadrotor in the earth fixed 



frame E ; EG  is the total lift provided by the four motors; M  is the mass of the 

quadrotor; m   is the mass of the load; g   is the acceleration due to gravity; 

1 [ ]T

f f f fK k x k y k z   & & &   is the air resistance matrix, f
k   is the air resistance 

coefficient. 

Considering the body fixed frame B , the total lift of UAV is as follows  
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According to formulas (2) and (4), the position dynamics model of the quadrotor load 

UAV is as follows  
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     (5) 

When the quadrotor UAV is loaded, its center of mass shifts downward, resulting in 

an increase in the distance from the motor to the centroid, which affects the pitch and 

roll angle movement of the quadrotor. The quadrotor carries the load through the mount 

platform, and the two can be regarded as a whole. The centroid coordinate of the 

quadrotor is 1 1 1( , , )x y z  , the centroid coordinate of the load is 2 2 2( , , )x y z  . The 

following formula gives the mathematical method of determining the position of the 

centroid. 
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where ( , , )a a ax y z  is the centroid coordinate of the quadrotor load UAV. According to 

Fig.1, the centroid coordinates of the quadrotor and the load are (0,0,0)  and 2(0,0, )z  

respectively. Substituting into the above equation, the centroid coordinates of the 

quadrotor load UAV can be obtained as (0,0, )az .  

2 / ( )az z m M m                            (7) 

Considering the Newton-Euler equation [26, 27], the attitude dynamics model is 

written as 
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where ( , , )
x y z

I diag I I I   is the moment of inertia matrix; [ ]T    & & &   is the 

angular velocity of the quadrotor rotating about each axis; M  is the resultant moment 

acting on the quadrotor; 2 [ ]T

f f f fK lk lk k     & & &   is the resistance moment; 

N  and O  are the pulling moment and reaction torque of the quadrotor, respectively. 
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where 1b  is the lift coefficient; 2b  is the anti-torque coefficient; l  is the length of 

the quadrotor arm. 

According to formulas (8) (9) and (10), the attitude dynamics of the quadrotor is 



obtained as 
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where  ,   and   are respectively the roll, pitch and yaw angles of the quadrotor 

UAV. 

Use the virtual control variables ( 1U , 2U , 3U , 4U )  to simplify the dynamic model, 

as shown in the following formula 
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According to the above formula, the dynamic model of the quadrotor load UAV is 

written in the following form 

1

1

1

2 2

2

2 2

3

4

(sin cos cos sin sin ) / ( )

(sin sin cos sin cos ) / ( )

cos cos / ( )

( ) / /

( ) / /

( ) /

f

f

f

a y z x f x

a z x y f y

x y z

x U k x M m

y U k y M m

z U g k z M m

U l z I I I lk I

U l z I I I lk I

U I I I

    
    
 

  

  
 

   
   
   

    

    
  

&& &

&& &

&& &

&& & &&

&& & &&

&&&& /f zk I










  &

        (13) 

The quadrotor dynamics model in formula (13) can also be expressed in the following 

form [28]. 
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3. Control scheme design 

Aiming at the problems of strong coupling, nonlinear and mass variation of the 

quadrotor load UAV, this section proposes a control scheme combining robust sliding 

mode control and LADRC, and establishes an adaptive control of mass. The following 

Fig.2 shows the block diagram of the control scheme. 

Quadrotor

System

dZ

Z







d

d

d

SMC

SMC

SMC

SMC

A-LADRC

A-LADRC

A-LADRC

A-LADRC

1U

2U

3U

4U

 

Fig.2 Block diagram of control scheme 

The attitude channel and altitude channel of the quadrotor are controlled by SMC 

and LADRC, which can effectively reduce the influence of external disturbances on the 

quadrotor, and LADRC can also eliminate the coupling between each channel and 

improve the performance of the overall control scheme. In addition, in order to simplify 

the parameter setting and eliminate the problem of time-varying mass, adaptive control 



is adopted to adjust the parameters and mass variation in real time. 

 

3.1 Design of linear active disturbance rejection control 

The quadrotor is subject to various disturbances in flight, The LADRC can 

effectively eliminate the influence of disturbances on the quadrotor and improve the 

anti-disturbance performance of the controller [29]. Fig.3 shows the structure diagram 

of the controller. 
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Fig.3 Structure diagram of controller 

The dynamics of the quadrotor in formula (14) is written into the nonlinear system 

in the following form. 
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where  1 2

T
u u u   is the measurable system state; Q   and P   are the nonlinear 

functions of the system; b  is the external disturbances. 



The total disturbance of the system is designed in the following form  
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where  1 2 3

T     is the gain vector of LESO. 

Remark 1: The LESO can treat the combined effect of the unknown external and 

internal disturbances of the system as extended state, and observe this extended state 

through output feedback, then use the PD controller to compensate. In addition, the 

LESO does not depend on the specific mathematical model of the system, it is only 

related to the order of the plant. 

The gain of the observer is parameterized by the characteristic equation, it can be 

obtained that 
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Remark 2: The increase of the bandwidth    of LESO is helpful to improve the 



control precision of LADRC, but increasing   will cause the output of the controller 

to increase, which is not conducive to the practical application of engineering. In 

addition, the high bandwidth will also cause oscillation and lead to system instability. 

Therefore, in practical applications, the control precision of LADRC is reduced due to 

the limitation of bandwidth. In order to solve this problem, this paper introduces SMC 

to improve the overall performance of the controller. 

It is defined that the estimated values of the extended state space representation of 

the system are 1
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Remark 3: In order to simplify the parameter setting, adaptive control is introduced to 

adjust 
p

k  and dk  in real time, which is beneficial to the stability analysis of the whole 

quadrotor system and provides a novel method to enhance the stability of the controller. 

Formulas (36) and (37) give the adaptive law of 
p

k   and dk  , and the adaptive 

adjustment curves of 
p

k  and dk  are given in Fig.7.  

 

3.2 Design of sliding mode controller 

The SMC has the characteristics of easy implementation and strong robustness [30]. 

The introduction of SMC can further improve the anti-disturbance performance of the 

controller and solve the problem of lower control precision of LADRC. 

The sliding surface can be designed as 
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where 1w   is the adjustable parameter, 1 1 de z u    is the tracking error, 1z   is the 

estimation of the system state u  by the LESO, du  is the input signal of the system. 
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where 3z  is LESO's estimate of the total disturbance. 

With the consideration of (23), the sliding mode control law is designed in the 

following form 

1 1 3 2s dU u w e z w s   && &                     (24) 

where 2w  is a positive parameter. 

Remark 4: In order to ensure that the designed sliding mode control is stable and 

effective, an appropriate parameter 2w  is selected to satisfy 2 0w  , which is proved 

by formula (46).  

 

3.3 Adaptive law design for parameters adjustment 

According to the tracking error 2 de u u  , the filter tracking error is obtained as 

2= 1T
e                              (25) 

where 1t   is the appropriately chosen coefficient, so that when 0  , it satisfies 

2 0e  . 

Take the derivative of   to get 

2 2= 0 T

du u e     
& & &&                      (26) 

where  



2 ( ) ( , ( ))u Qv n P b H u v n   &                  (27) 

The feedback linearization method is used to define the tracking control of the input 

signal to achieve the approximate purpose. As shown in the following formula 

1ˆ ( , )n H u                           (28) 

where ˆ ( , )H u n    is pseudo control [31, 32], ˆ ( , )H u n   is any approximation of 

( , )H u v . 

By adding and subtracting ˆ ( , )H u n  to the right of formula (27), we can get 

2
ˆ( , , ) ( , )u H u v n H u n %&                       (29) 

Assumption 2: ˆ ( , )H u n  is an arbitrary approximation of ( , )H u v  , so ( , , )H u v n%   is 

close to zero. 

The pseudo control design is as follows 

20 T

pa u e                           (30) 

where a  is any positive parameter. 

Substituting formulas (21), (29) and (30) into (26), the derivative of the filtering 

tracking error is obtained as 

1 2
ˆ ˆ( ) ( )p s d da k U z k u z      & &                (31) 

 

3.4 Adaptive law design for mass variation  

In this article, we mainly study the attitude control of the quadrotor load UAV, so the 

adaptive law of mass is established according to the altitude channel. It can be obtained 

from formulas (15) and (26). 

1 2= cos cos / ( ) 0 T

z f dU g k z M m z e          
& & &&        (32) 



According to the certainty equivalence principle can be obtained  

1 2
ˆ[ 0 / ( )] / (cos cos )T

z d fU r e z g k z M m            && &     (33) 

where 0r   is an adjustable parameter, m̂  is an estimate of the mass of the load. 

Substituting formula (33) into formula (32) can obtain  

ˆ/ ( ) / ( )z z f fr k z M m k z M m      & & &              (34) 

Let ˆ ˆ1/ ( )cM M m  , 1/ ( )cM M m  , The above formula is rewritten as follows  

ˆ
z z f c f c

r k zM k zM    & & &                    (35) 

4. Stability analysis 

Theorem 1: Consider the nonlinear system in formula (15), the following adaptive law 

is applied to make the assumption valid. 

1
ˆ ˆ[ ( ) ] /p p s pk k U z k  & %                     (36) 

2
ˆ ˆ[ ( ) ] /d d d dk k u z k  & %&                      (37) 

ˆ
c z fM k z&

&                         (38) 

where  ,   and   are the appropriately selected parameters.  

Remark 5: In order to eliminate the singularity problem that may exist in the adaptive 

law (36) and (37) when 
pk% and dk% are zero. Integrating ˆ

pk
& and ˆ

dk
&  can write the 

adaptive law in the following form 

1 0
0

ˆ ˆ[ ( ) ] /
t

p p s p p
k k U z k d k     %                (39) 

2 0
0

ˆ ˆ[ ( ) ] /
t

d d d d d
k k u z k d k     %&                (40) 

where ˆ
pk  and ˆ

dk  are the estimated values of the controller parameters. As long as 

the appropriate constants 0p
k   and 0dk   are selected, it can be ensured that 

ˆ
p p p

k k k %  and ˆ
d d dk k k %  are not zero. 



Assumption 3: The signals of the whole system are bounded and the tracking error 

converges to the neighborhood of zero. 

Proof of Theorem 1: The positive definite Lyapunov function of the following form is 

designed 

2 2 21 1 1 1 1 1
=

2 2 2 2 2 2
z p p d d c cV s k k k k M M        % % % % % %          (41) 

Take the derivative of the above formula 

z z p p d d c c
V ss k k k k M M          & & &% % % %& && % %&            (42) 

Substituting formulas (22), (31) and (35) into the above formula can obtain 

1 1 1 1 2

1 1 1

2 2

1 1 1 1 2

1 1 1

ˆˆ ˆ= ( ) [ ( ) ( )] ( )

ˆ ˆ( ) ( ) ( )

p s d d z z f c f c

p p d d c c

d p s d d z z f c

p p d d c c

V s w e e a k U z k u z r k zM k zM

k k k k M M

s w e z u a k U z k u z r k zM

k k k k M M

   

  

    

  

  

  

          

  

         

  



& & && & & &

& & &% % % % % %

%& && &&& &

& & &% % % % % %

2 2

1 1 3 1 2

1 1 1

ˆ ˆ( ) ( ) ( )s d p s d d z z f c

p p d d c c

s w e z U u a k U z k u z r k zM

k k k k M M

    

    

         

  

%& && & &

& & &% % % % % %

(43) 

Substituting formula (24) into the above formula can obtain 

2

1 1 3 1 1 3 2 1 2

2 1 1 1

2 2 2 1

2 1 2

1 1

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

d d p s d d

z z f c p p d d c c

p s d d z z f c p p

d d c c

V s w e z u w e z w s u a k U z k u z

r k zM k k k k M M

w s a k U z k u z r k zM k k

k k M M

w

  

    

     

 

  



 

           

    

         

 

 

& & && & && &

& & &% % % %% % %&

&% %%& &

& &% % % %

2 2 2 1

2 1 2

1 1

ˆˆ ˆ( ) ( )

ˆ ˆ
p s d d z z f c p p

d d c c

s a k U z k u z r k zM k k

k k M M
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
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 (44) 

Substituting formulas (36), (37) and (38) into the above formula can obtain 

2 2 2

2 1 1

1 1

1 2

1

ˆ ˆ( ) ( )

ˆ ˆ[ ( ) ] / [ ( ) ] /

p s d d z z f c

p p s p d d d d

c z f

V w s a k U z k u z r k zM

k k U z k k k u z k

M k z

    

     

 

 



        

   



& %& &

% % % %&

% &

       (45) 



Simplification of the above formula can obtain 

2 2 2

2 z
V w s a r    &                       (46) 

where 2w , a  and r  are positive parameters, the above formula can be written as  

0V &                             (47) 

It can be obtained that the Lyapunov function (41) is bounded. 

According to Barbalat theorem, we can get 

lim ( ) 0
t

s t


 ， lim ( ) 0
t

t


 ， lim ( ) 0z
t

t


             (48) 

  By Lyapunov theory, 
pk%, dk% and 

c
M%  are bounded, tracking error is also bounded 

and converges to zero neighborhood, all signals of the system are bounded. 

5. Simulation Results and Discussions 

In this part, MATLAB is used for simulation test. The initial value of attitude angles 

are [0,0,0] rad, and the initial value of altitude is 0 m. The parameters of the quadrotor 

and the controller are given in the Table 1 and Table 2 respectively.  

Table 1: Parameters of the quadrotor model 

Symbol Description Value 

f
k  Coefficient of air resistance 0.15 2 2/Ns rad  

m  Mass of the quadrotor 10 kg  

g  Gravitational acceleration 9.8 2/m s  

xI  Inertial moment along x-axis 1 2
kg m  

y
I  Inertial moment along y-axis 1 2

kg m  

zI  Inertial moment along z-axis 2 2
kg m  

l  length of the quadrotor arm 0.3 m  



Table 2: Parameters of the controller 

 1w  2w  p
k  

dk    
0b  

Z  70 5 600 7 50 1 

  72 40 650 15 50 1 

  80 40 620 18 50 1 

  70 50 890 36 50 1 

Example 1: In this test, the mass of the load is kept unchanged, and m=5 kg. The input 

signals of the system are 5dZ  , 30
d
  o , 45

d
  o , 60

d
  o , and the simulation 

results are compared with those of LADRC. Fig.4 and Fig.5 show the output curves and 

the error curves of the system. This result show that the response speed of the designed 

scheme is obviously faster than that of LADRC. In the pitch angle channel and roll 

angle channel, the overshoot of SMC-LADRC is smaller than that of LADRC, and the 

designed scheme realizes the tracking of the input signal in 0.5 seconds, while the 

LADRC realizes the stable tracking in 1.5 seconds, which indicates that the designed 

control scheme is obviously better than LADRC, and it has fast response speed and 

stable tracking performance, thus proving that the SMC-LADRC scheme designed in 

the paper is effective.  

 



 

Fig.4 The tracking output curves 

 

 

Fig.5 The error curves 

Example 2: In this test, in order to test the control performance of the designed method 

and LADRC under the same bandwidth, keeping the parameters and input signals 

unchanged. Gaussian noise with mean value of 0 and variance of 2 is introduced to 

simulate the noise disturbance in the process of quadrotor flight. Fig.6 is simulation 

diagram of Gaussian noise. Fig.7 shows the adaptive curves of 
p

k   and dk  . The 



output curves and error curves under Gaussian noise are given in Fig.8 and Fig.9. 

 

Fig.6 Gaussian noise simulation diagram 

 

Fig.7 Adaptive adjustment curves for p
k  and dk  

 



 

Fig.8 The output curves under Gaussian noise 

 

 

Fig.9 The error curves under Gaussian noise 

Through the analysis of Fig.7, it can be clearly seen that the values of 
p

k  and dk  are 

adjusted in real time, indicating that the introduction of adaptive law is effective, which 

can adjust the parameters in real time according to the state of the system. In addition, 

it can eliminate the parameter deviation and improve the control precision. Fig.8 and 

Fig.9 clearly show that when the bandwidth is the same, the tracking curves of SMC-



LADRC has smaller fluctuation, while the fluctuation of LADRC is larger. This 

indicates that the introduction of robust SMC is effective, it can well overcome the 

problem of low control precision caused by the limited bandwidth of LADRC, which 

improve the anti-disturbance performance of the system. 

Example 3: The load mass of the quadrotor load UAV in practical application may be 

constantly changing. In this test, keeping the input and parameters of the system 

unchanged, and use the mass variation as an disturbance, the simulation results are 

compared with those of SMC-LADRC without the adaptive of mass. Fig.10 shows the 

variation of load mass m . The output curves of the system with the mass variation is 

given in Fig.11. Fig.12 shows the error curves. 

 

Fig.10 Load mass variation diagram 

 



 

Fig.11 The output curves with mass variation 

 

 

Fig.12 The error curves with mass variation 

Through the analysis of Fig.11 and Fig.12, it can be seen that the SMC-LADRC with 

mass adaptive law can well reduce the influence of mass variation on the altitude 

channel. In the pitch angle and roll angle channels, the overshoot of the proposed 

scheme is smaller than that of the one without mass adaptive. However, in the yaw 

angle channel, the difference between the output curves and the error curves of the two 



is very small, which can be seen from the quadrotor mathematical model in formula 

(13) that the mass variation has no direct effect on the yaw channel. Through the 

analysis of the simulation results, it can be obtained that the designed mass adaptive 

law is effective, which can reduce the influence of mass variation on the quadrotor. 

6. Conclusion 

In this paper, considering the mass variation of the quadrotor in practical application, 

the dynamic model of a quadrotor load UAV is established, and a composite control 

scheme combining robust SMC and LADRC is proposed. The LADRC is used to 

estimate and compensate the disturbances, but it is limited by the bandwidth, which 

leads to the decrease of its control precision. The introduction of SMC can further 

improve the robustness of the system and overcome the problem of low control 

precision caused by limited bandwidth. In addition, introducing adaptive law to adjust 

the adjustable parameters in real time is to simplify the parameter setting process of the 

controller, which is beneficial to the stability analysis of the whole system. Moreover, 

considering the mass variation of the quadrotor, an adaptive law is designed for real-

time control. The Lyapunov stability theory proves that the system is stable. Finally, the 

simulation results are compared with LADRC to verify the superiority and effectiveness 

of the designed scheme, and the proposed mass adaptive law is also effective. In the 

future work, we will study the feasibility of the designed method in the practical 

application and improve it according to experiments. 
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