
Int J Comput Vis (2018) 126:21–35

https://doi.org/10.1007/s11263-017-1036-4

Baseline and Triangulation Geometry in a Standard Plenoptic

Camera

Christopher Hahne1
· Amar Aggoun1

· Vladan Velisavljevic1
· Susanne Fiebig2

·

Matthias Pesch2

Received: 4 August 2016 / Accepted: 20 July 2017 / Published online: 20 August 2017

© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we demonstrate light field trian-

gulation to determine depth distances and baselines in a

plenoptic camera. Advances in micro lenses and image sen-

sors have enabled plenoptic cameras to capture a scene from

different viewpoints with sufficient spatial resolution. While

object distances can be inferred from disparities in a stereo

viewpoint pair using triangulation, this concept remains

ambiguous when applied in the case of plenoptic cameras.

We present a geometrical light field model allowing the trian-

gulation to be applied to a plenoptic camera in order to predict

object distances or specify baselines as desired. It is shown

that distance estimates from our novel method match those of

real objects placed in front of the camera. Additional bench-

mark tests with an optical design software further validate

the model’s accuracy with deviations of less than ±0.33%

for several main lens types and focus settings. A variety of
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applications in the automotive and robotics field can benefit

from this estimation model.

Keywords Light field · Plenoptic · Camera · Microscope ·

Triangulation · Baseline · Distance · Estimation

1 Introduction

Computer vision has been striving to recreate our human

visual perception. Wheatstone’s fundamental observations

(Wheatstone 1838) state that a set of solely two adjacent cam-

eras facilitates imitating a human’s binocular vision. Using

these two images in conjunction with a stereo display tech-

nique, e.g. stereoscopic glasses (Huang et al. 2015), allows

for the reproduction of depth as perceived by human eyes.

With regard to the location in object space, however, this

stereo vision system concedes much more freedom than

the human’s perception as the distance between cameras,

called baseline, may vary. Hence, the flexibility in camera

stereoscopy makes it possible to adapt to particular depth

scenarios. For example, triangulation is used in stellar paral-

lax to measure the distance to stars (Hirshfeld 2001). What

applies to a macroscopic universe, may also be useful for a

microscope.

However, miniaturising multiple stereo setups to the level

as required by microscopes poses a problem to hardware fab-

rication since lens diameters restrict baseline gaps between

cameras. As an alternative, a Micro Lens Array (MLA) may

be placed in front of an image sensor of an otherwise conven-

tional microscope (Levoy et al. 2006; Broxton et al. 2013),

which is generally known as a light field camera. An obvious

attempt to regard the micro lens pitch as the baseline proves

to be impractical as optical parameters of the objective lens

affect a light field’s geometry (Hahne et al. 2014a, b).
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The light field camera, also known as plenoptic camera,

was adopted to the field of computer vision ever since Adel-

son and Wang (1992) published an article, which coined the

term plenoptic deduced from Latin and Greek meaning “full

view”. The authors were the first to computationally generate

a depth map by solving the stereo correspondence problem

based on footage from a plenoptic camera and concluded

that its baseline is confined to the main lens’ aperture size.

Although Adelson and Wang could not provide methods to

acquire quantitative baseline measures, the authors predicted

the baseline to be relatively small. When Levoy and Han-

rahan (1996) proposed a concise 4-D light field notation,

each ray in the light field could be represented by merely

four coordinates (u, v, s, t) obtained from the rays’ inter-

section at two two-dimensional (2-D) planes placed behind

one another. In respect of a plenoptic camera, these sampling

planes may be represented by MLA and image sensor. In case

of a plenoptic camera, maximum directional light field reso-

lution is captured when focusing micro lenses to infinity (Ng

2006), which is accomplished by placing the MLA stationary

one focal length in front of the sensor. This plenoptic cam-

era type has been made commercially available by Lytro Inc.

(2012) and is capable of synthetically focusing images (Ng

et al. 2005; Fiss et al. 2014; Hahne et al. 2016).

By shifting the sensor away from the MLA focal plane,

research has shown that the spatial and directional resolution

can be traded off, which involves different image synthesis

approaches (Lumsdaine and Georgiev 2008; Georgiev et al.

2006). To distinguish between these optical setups, Lytro’s

camera was later named Standard Plenoptic Camera (SPC)

in a publication by Perwass and Wietzke (2012), who devised

a more complex MLA that features different micro lens types.

The spatio-angular trade-off in a plenoptic camera is deter-

mined by diameter, focal length, image position and packing

of the micro lenses, just as the sensor pixel pitch, which thus

makes it part of the optical hardware design.

Over the years, several studies have provided different

methods to acquire disparity maps from an SPC (Heber and

Pock 2014; Bok et al. 2014; Jeon et al. 2015; Tao et al.

2017). To the best of our knowledge, researchers have not

dealt with the estimation of an object’s distance using tri-

angulation on the basis of disparity maps obtained from a

light field camera. One reason might have been that baselines

are required, which are not obvious in the case of plenoptic

cameras as the optics involved is more complex than with

conventional stereoscopy. Attempts to estimate a plenoptic

camera’s baseline were initially addressed in publications

by our research group (Hahne et al. 2014a, b), which pro-

vided validation through simulation only. Besides, main lens

pupil positions have been ignored in this work, yielding large

deviations when estimating the distance to refocused image

planes obtained from an SPC (Hahne et al. 2016). It is thus

expected that our previous triangulation scheme (Hahne et al.

Fig. 1 Block diagram for experimental validation

2014a, b) entails errors in the experimentation which is sub-

ject to investigation. A more recent study by Jeon et al. (2015)

has also proposed a baseline estimation method without giv-

ing details on the optical groundwork and lacking validation

activities.

In this paper, we propose a refined optics-geometrical

model for light field triangulation and estimate object dis-

tances captured by an SPC. Our plenoptic model is the

first to pinpoint virtual cameras along the entrance pupil of

the objective lens. Verification is accomplished through real

images from a custom-built SPC and a ray tracing simula-

tor (Zemax 2011) for a quantitative deviation assessment. A

top-level overview of the processing pipeline for experimen-

tal validation is given in Fig. 1. By doing so, we obtain much

more accurate baseline and object distance results than by

our previous method (Hahne et al. 2014a) and Jeon et al.

(2015). The proposed concept will prove to be valuable in

fields where stereo vision is traditionally used.

This paper has been organised in the following way. Sec-

tion 2 briefly reviews the binocular vision concept by means

of the geometry in order to recall stereo triangulation. This

is followed by a step-wise development of an SPC ray model

in Sect. 3 where the extraction of viewpoints images from a

raw SPC capture is also demonstrated. Experimental work

is presented in Sect. 4, which aims to assess claims made in

Sect. 3 by measuring baseline and tilt angle from a dispar-

ity map analysis and a ray tracing simulation (Zemax 2011).

Results are summarised and discussed in Sect. 5.

2 Stereoscopic Triangulation

2.1 Coplanar Stereo Cameras

The SPC can be seen as a complex derivative of a stereo

vision system. The stereo triangulation concept is presented

hereafter to serve as a groundwork.

Figure 2 illustrates a stereoscopic camera setup where

sensors are coplanar. The depicted setup may be parame-

terised by the spacing of the cameras’ axes, denoted as B

for baseline, the cameras’ image distance b and the optical
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Fig. 2 Stereo triangulation scheme with parallel cameras where a point

is projected through the optical centres OL , OR yielding two image

points (orange) in each camera. The relative displacement of these

points returns the horizontal disparity �x = xR − xL . The baseline

B, object distance Z and image distance b affect the measured disparity

(Color figure online)

centres OL , OR for each camera, respectively. As seen in the

diagram, an object point is projected onto both camera sen-

sors indicated by orange dots. With regard to corresponding

image centres, the position of the image point in the left cam-

era clearly differs from that in the right. This phenomenon

is known as parallax and results in a relative displacement

of respective image points from different viewpoints. To

measure this displacement, the horizontal disparity �x is

introduced given by �x = xR − xL , where xR and xL denote

horizontal distances from each projected image point to the

optical image centre. Nowadays, image detectors are com-

posed of discrete photosensitive cells making it possible to

locate and measure �x . The disparity computation is a well

studied task (Marr and Poggio 1976; Yang et al. 1993; Bobick

and Intille 1999) and is often referred to as solving the corre-

spondence problem. Algorithmic solutions to this are applied

to a set of points in the image rather than a single one and

thus yield a map of �x values, which indicate the depth of a

captured scene.

An object point’s depth distance Z can be directly fetched

from parameters in Fig. 2. As highlighted with a dark tone of

grey, �x may represent the base of any acute scalene triangle

with b as its height. Another triangle spanned by the base B

and height Z is a scaled version of it and shown in light grey.

This relationship relies on the method of similar triangles and

can be written as an equality of ratios

Z

B
=

b

�x
. (1)

To infer the depth distance Z , Eq. (1) may be rearranged to

Z =
b × B

�x
. (2)

As seen by these equations, it is feasible to retrieve informa-

tion about the depth location Z . Likewise, if �x is constant, it

Fig. 3 Stereo triangulation scheme with non-parallel cameras where

sensors are seen to be coplanar. Φ denotes the tilt angle of the right

camera’s main lens OR as related to that of the left camera OL

may be obvious that by decreasing the baseline B, the object

distance Z shrinks. Given a case where the depth range is

located at a far distance, it is thus recommended to aim for a

large baseline. Note that this relationship and corresponding

mathematical statements only hold for cases where optical

axes of OL , OR are aligned in parallel.

2.2 Tilted Stereo Cameras

Reasonable scenarios exist in which a camera’s optical axis

is tilted with respect to the other. In such a case, the principle

of similar triangles does not apply in the same manner as in

Eq. (1).

Taking the left camera as the orientation reference, the

right lens OR is seen to be tilted as shown in Fig. 3. In this

case, perspective image rectification is commonly employed

to correct for non-coplanar stereo vision setups (Burger and

Burge 2009). Iocchi (1998) concludes that optical axes inter-

sect in a point Z0 as both axes lie on the x, z plane if angle

rotation occurs around the y-axis, whereas image planes of

both cameras are still seen to be parallel. In traditional stereo

vision, this yields deviations such that Iocchi’s (1998) method

serves as a first-order approximation for small angle rota-

tions in the absence of image processing. As demonstrated in

Sect. 3.2, this approach, however, is suitable for our plenop-

tic triangulation model where imaginary sensor planes of

virtual cameras are coplanar, whilst their optical axes may

be non-parallel. Let Φ be the rotation angle, then laws of

trigonometry allow to put

Z0 =
B

tan(Φ)
(3)

and

Z =
b × B

�x +
b × B

Z0

(4)
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which may be shortened to

Z =
b × B

�x + b × tan(Φ)
(5)

after substituting for Z0. This approximation suffices to esti-

mate the depth Z for small rotation angles Φ in stereoscopic

systems without the need of an image rectification.

3 SPC Ray Model

To conceptualise a light field ray model for an SPC, we start

tracing rays from the sensor side to the object space. For

simplification, we consider chief rays only and follow their

path from each sensor’s pixel centre at micro image domain

u to the optical centre of its corresponding micro lens s j with

lens index j . In an SPC, the spacing between MLA and image

sensor plane amounts to the micro lens focal length fs . Fig-

ure 4 visualises chief rays travelling through a micro lens and

the objective lens indicating Micro Image Centres (MICs).

With the aid of ray geometry, an MIC is found by a chief ray

connecting an optical centre of a micro lens with that of the

main lens. MICs play a key role in realigning a light field from

an SPC and are locally obtained by c = (M − 1)/2, where

M indicates one-dimensional (1-D) micro image resolutions,

which are seen to be consistent. Discrete micro image points

in the horizontal direction are then indexed by c + i , where

i ∈ [−c, c] such that 1-D micro image samples are given as

uc+i, j .

In earlier publications (Hahne et al. 2014a, b), it was

assumed that MICs lie on the optical axes of corresponding

micro lenses. However, it has been argued that this assump-

tion would only be true if the distance between objective lens

and MLA were infinitely large (Dansereau 2014). Due to the

finite separation, MICs are displaced from their micro lens

optical axes. A more accurate approach in estimating MIC

positions is to model chief rays in a way that they connect

optical centres of micro and main lenses (Dansereau et al.

2013). In Fig. 4b we further refine this hypothesis by regard-

ing the centre of an exit pupil A′ to be the origin from which

MIC chief rays arise. Detecting MICs correctly is essential

for our geometrical light ray model because MICs serve as

reference points in the viewpoint image synthesis.

Figure 5 depicts our more advanced model that combines

statements made about light rays’ paths in an SPC. For clarity,

the main lens U is depicted as a thin lens meaning that the

exit pupil centre coincides with the optical centre. However,

the distinction is maintained in the following.

3.1 Viewpoint Extraction

It has been shown in Adelson and Wang (1992), Ng (2006),

Dansereau (2014), Bok et al. (2014) that extracting view-

a

b

Fig. 4 Lens components of plenoptic camera (Hahne et al. 2016)

depicting a micro lens s j with pitch size pM in a and an objective lens

with exit pupil A′ in b. A chief ray mc+i, j pierces through the micro

lens centre and sensor sampling positions c + i which are separated by

pixel width pp . Chief rays originate from the exit pupil centre A′ and

arrive at Micro Image Centres (MICs) where red coloured crossbars

signify gaps between MICs and respective micro lens optical axes. It

can be seen that red crossbars grow towards image edges (Color figure

online)

points from an SPC can be attained by collecting all pixels

sharing the same respective micro image position. To comply

with provided notations, a 1-D sub-aperture image Ei

[
s j

]

with viewpoint index i is computed with

Ei

[
s j

]
= E fs

[
s j , uc+i

]
(6)

where u and c have been omitted in the subscript of Ei since

i is a sufficient index for sub-aperture images in the 1-D

row. Equation (6) implies that the effective viewpoint reso-

lution equals the number of micro lenses. Figure 6 depicts

the reordering process producing 2-D sub-aperture images

E(i,g) by means of index variables
[
s j , th

]
and

[
uc+i , vc+g

]

for spatial and directional domains, respectively. As can be

seen from colour-highlighted pixels, samples at a specific

micro image position correspond to the respective viewpoint

location in a camera array.

Since raw SPC captures do not naturally feature the

E fs

[
s j , uc+i

]
index notation, it is convenient to define an

index translation formula, considering the light field pho-

tograph to be of two regular sensor dimensions [xk, yl ] as

taken with a conventional sensor. In the horizontal dimen-

sion indices are converted by

k = j × M + c + i, (7)
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Fig. 5 Illustration of the SPC ray model (Hahne et al. 2016), where

MICs can be found by connecting the optical centre of the main lens

with that of each micro lens and extending these rays (highlighted in

yellow) until they reach the sensor. Here, the main lens is modelled as

a thin lens such that entrance and exit pupils are in line with principal

planes (Color figure online)

which means that [xk] is formed by

[xk] =
[
x j×M+c+i

]
=

[
s j , uc+i

]
. (8)

bearing in mind that M represents the 1-D micro image res-

olution. Similarly, the vertical index translation may be

l = h × M + c + g (9)

and therefore

[yl ] =
[
yh×M+c+g

]
=

[
th, vc+g

]
. (10)

a

b

Fig. 6 Multiple sub-aperture image extraction with a calibrated raw

image in a as obtained by an SPC and extracted 2-D sub-aperture images

E(i,g) in b where each colour represents a different perspective view.

Note that the above figures consider a 180◦ image rotation by the sensor

to compensate for main lens image rotation. Micro image samples are

indexed by
[
s j , th

]
and pixels within micro images by

[
uc+i , vc+g

]
with

M = 3. Coordinates
[
uc+i , vc+g

]
index viewpoint images and

[
s j , th

]

their related spatial pixels (Color figure online)

These definitions comply with Fig. 6 and enable to apply

our 4-D light field notation
[
s j , uc+i , th, vc+g

]
to conven-

tionally 2-D sampled representations [xk, yl ], where k and l

start to count from index 0. To apply the proposed ray model

and image process, the captured light field has to be cali-
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brated and rectified such that the centroid of each micro image

coincides with the centre of a central pixel. This requires an

image interpolation with sub-pixel precision, which was first

pointed out by Cho et al. (2013) and confirmed by Dansereau

et al. (2013).

3.2 Virtual Camera Array

In the previous section, it was shown how to render multi-

views from SPC photographs by means of the proposed ray

model. Because a 4-D plenoptic camera image can be reor-

ganised to a set of multi-view images as if taken with an

array of cameras, it is supposed that each of these images

has an optical centre of a so-called virtual camera with a

distinct location. The localisation of such is, however, not

obvious. This problem was first recognised and addressed in

publications by our research group (Hahne et al. 2014a, b),

but, however, lacked of experimental verification. As a start-

ing point, we deploy ray functions that proved to be viable

to pinpoint refocused SPC image planes (Hahne et al. 2016)

and further refine the model by finding intersections along the

entrance pupil. Once theoretical positions of virtual cameras

are derived, we examine in which way the well established

concept of stereo triangulation (see Sect. 2) applies to the

proposed SPC ray model.

In order to geometrically describe rays in the light field,

we first define the height of optical centres s j in the MLA by

s j = ( j − o) × pM (11)

with o = (J − 1)/2 as the index of the central micro lens

where J is the overall number of micro lenses in the hori-

zontal direction. Geometrical MIC positions are denoted as

uc, j and can be found by tracing main lens chief rays trav-

elling through the optical centre of each micro lens. This is

calculated by

uc, j =
s j

dA′
× fs + s j , (12)

where fs is the micro lens focal length and dA′ is the distance

from MLA to exit pupil of the main lens, which is illustrated

in Fig. 4b. Micro image sampling positions that lie next to

MICs can be acquired by a corresponding multiple i of the

pixel pitch pp as given by

uc+i, j = uc, j + i × pp. (13)

Chief ray slopes mc+i, j that impinge at micro image positions

uc+i, j can be acquired by

mc+i, j =
s j − uc+i, j

fs

. (14)

Let bU be the objective’s image distance, then a chief ray’s

intersection at the refractive main lens plane Ui, j is given by

Ui, j = mc+i, j × bU + s j . (15)

where c has been left out in the subscript of Ui, j as it is

a constant and will be omitted in following ray functions

for simplicity. The spacing between principal planes of an

objective lens will be taken into account at a later stage.

Since the main lens works as a refracting element, chief

rays possess different slopes in object space, which can be

calculated as follows

Fi, j = mc+i, j × fU , (16)

with a chief ray passing through a point Fi, j along the main

lens focal plane F by means of its image side slope mc+i, j

and the main lens focal length fU . Consequentially, a chief

ray slope qi, j of that beam in object space is given by

qi, j =
Fi, j − Ui, j

fU

(17)

as it depends on the intersections at refractive main lens

plane U , focal plane FU and the chief ray’s travelling dis-

tance, which is fU in this particular case. With reference

to preliminary remarks, an object ray’s path may be pro-

vided as a linear function f̂i, j of the depth z, which is written

as

f̂i, j (z) = qi, j × z + Ui, j , z ∈ [U,∞) . (18)

As the name suggests, sub-aperture images are created at

the main lens’ aperture. To investigate ray positions at the

aperture, it is worth introducing the aperture’s geometrical

equivalents to the proposed model, which have not been con-

sidered in our previous publications (Hahne et al. 2014a). An

obvious attempt would be to locate a baseline BA′ at the exit

pupil, which is found by

BA′ = mc+i, j × dA′ , (19)

where mc+i, j is obtained from Eq. (14). Practical applica-

tions of an image-side baseline BA′ are unclear at this stage.

However, the baseline at the entrance pupil A′′ is a much

more valuable parameter when determining an object dis-

tance via triangulation in an SPC. Figure 7 offers a closer

look at our light field ray model by also showing principal

planes H1U and H2U . There, it can be seen that all rays hav-

ing i in common (e.g. blue rays) geometrically converge to

the entrance pupil A′′ and diverge from the exit pupil A′.

Intersecting chief rays at the entrance pupil can be seen as

indicating object-side-related positions of virtual cameras

A′′
i .
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Fig. 7 SPC model triangulation with bU = fU and principal planes

H1U , H2U just as the exit A′ and entrance pupil plane A′′. Red circles

next to A′′
i indicate virtual camera positions. Note that virtual cameras

A′′
−1 and A′′

1 are separated by gap G = 2 yielding baseline B2 (Color

figure online)

The calculation of virtual camera positions A′′
i is provided

in the following. By taking object space ray functions f̂i, j (z)

from Eq. (18) for two rays with different j but same i and

setting them equal as given by

qi,o × z + Ui,o = qi,o+1 × z + Ui,o+1, z ∈ (−∞,∞) ,

(20)

Φ

Fig. 8 SPC model triangulation with bU > fU . Red circles next to A′′
i

indicate virtual camera positions. Note that the gap G = 1 and therefore

B1 and Φ1 (Color figure online)

we can solve for the equation system which yields a distance

A′′H1U from entrance pupil A′′ to object-side principal plane

H1U (see Fig. 7). Recall that the index for the central micro

lens s j is found by j = o = (J − 1)/2 with o as the image centre

offset.

The object-side-related position of A′′
i can be acquired by

A′′
i = qi,o × A′′ H1U + Ui,o. (21)
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Fig. 9 Photographs from our custom-built camera with a camera body

and collimator and b MLA fixation

With this, a baseline BG that spans from one A′′
i to another

by gap G can be obtained as follows

BG = A′′
i + A′′

i+G . (22)

For example, a baseline B1 ranging from A′′
0 to A′′

1 is iden-

tical to that from A′′
−1 to A′′

0 . This relies on the principle that

virtual cameras are separated by a consistent width. To apply

the triangulation concept, rays are virtually extended towards

the image space by

Ni, j = −qi, j × bN + A′′
i , (23)

where bN is an arbitrary scalar which can be thought of as a

virtual image distance and Ni, j as a spatial position at the

virtual image plane of a corresponding sub-aperture. The

scalable variable bN linearly affects a virtual pixel pitch pN ,

which is found by

pN =
∣∣Ni,o − Ni,o+1

∣∣. (24)

Setting bU = fU aligns optical axes z′
i of virtual cameras to

be parallel to the main optical axis zU (see Fig. 7). For all

other cases where bU �= fU (e.g. Fig. 8), the rotation angle

Φi of a virtual optical axis z′
i is obtained by

Φi = arctan
(
qi,o

)
. (25)

The relative tilt angle ΦG from one camera to another can be

calculated with

ΦG = Φi + Φi+G , (26)

which completes the characterisation of virtual cameras.

Figure 8 visualises chief rays’ paths in the light field when

focusing the objective lens such that bU > fU . In this case,

z′
i intersects with zU at the plane at which the objective lens

is focusing. Objects placed at this plane possess a disparity

�x = 0 and thus are expected to be located at the same

relative 2-D position in each sub-aperture image. As a con-

sequence, objects placed behind the �x = 0 plane expose

negative disparity.

Establishing the triangulation in an SPC allows object dis-

tances to be retrieved just as in a stereoscopic camera system.

On the basis of Eq. (5), a depth distance ZG,�x of an object

with certain disparity �x is obtained by

ZG,�x =
bN × BG

�x × pN + bN × tan (ΦG)
(27)

and can be shortened to

ZG,�x =
bN × BG

�x × pN

, if ΦG = 0 (28)

Table 1 Micro lens

specifications for λ = 550 nm
MLA fs (mm) pM (µm) ts (mm) n(λ) Rs1 Rs2 H1s H2s (mm)

(I.) 1.25 125 1.1 1.5626 0.70325 −∞ 0.396

(II.) 2.75 125 1.1 1.5626 1.54715 −∞ 0.396

Table 2 Main lens parameters
Focus Image distance Exit pupil position

d f bU (mm) dA′ (mm)

f193 f90 f197 f193 f90 f197

∞ 193.2935 90.4036 197.1264 111.0324 85.1198 100.5000

4 m – – 208.3930 – – 111.7666

3 m 207.3134 93.3043 – 125.0523 88.0205 –

1.5 m 225.8852 96.6224 – 143.6241 91.3386 –

Principal plane separation

H1U H2U (mm)

f193 f90 f197

−65.5563 −1.2273 147.4618

123



Int J Comput Vis (2018) 126:21–35 29

which is only the case where bU = fU . One may notice that

Eq. (28) is an adapted version of the well-known triangulation

equation given in Eq. (2).

4 Validation

We deploy a custom-made plenoptic camera containing a full

frame sensor with 4008 × 2672 active image resolution and

pp = 9 μm pixel pitch. Photos of our camera are depicted in

Fig. 9. Details on the assembly and optical calibration of an

SPC can be found in Hahne’s thesis (2016). Lens and MLA

specifications are provided hereafter.

4.1 Lens Specification

Experimentations are conducted with two different micro

lens designs, denoted as MLA (I.) and (II.), which can be

found in Table 1. Input parameters relevant to the trian-

gulation are fs and pm . Besides this, Table 1 provides the

lens thickness ts , refractive index n, radii of curvature Rs1,

Rs2 and principal plane distance H1s H2s . The number of

micro lenses in our MLA amounts to 281 × 188 for hor-

izontal and vertical dimensions, respectively. These values

allow for modelling the micro lenses in an optical design

software.

It is well known that the focus ring of today’s objective

lenses moves a few lens groups whilst others remain static,

which, in consequence, changes the lens system’s cardinal

points. To prevent this and simplify the experimental setup,

we only shift the plenoptic sensor away from the main lens

to vary its image distance bU by keeping the focus ring at

infinity. In doing so, we assure cardinal points remain at

the same relative position. However, the available space in

our customised camera constrains the sensor’s shift range

to an overall focus distance of d f ≈ 4 m where d f is the

distance from the MLA’s front vertex to the plane that the

main lens is focused on. For this reason, we examine two

focus settings (d f → ∞ and d f ≈ 4 m) in the exper-

iment. To acquire the main lens image distance bU , we

employ the thin lens equation and solve for bU as given by

bU =

(
1

fU

−
1

aU

)−1

, (29)

with aU = d f − bU − H1U H2U as the object distance. After

substituting for aU , however, it can be seen that bU is an

input and output parameter at the same time, which turns out

to be a typical chicken-and-egg case. To treat this problem, we

define the initial image distance to be the focal length (bU :=

fU ) and substitute the resulting bU for the input variable

afterwards. This procedure is iterated until both values are the

same. Objective lenses are denoted as f193, f90 and f197 with
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Fig. 10 Disparity maps from sub-aperture images E(i,g) with

bU = fU . a Central image E(0,0) containing 281 by 188 pixels; b

disp. map with G = 4, max{�x} = 5 and block size = 29; c disp.

map with G = 8, max{�x} = 9 and block size = 39; d disp. map with

G = 4, max{�x} = 5 and block size = 29. a Reference image E(0,0)

where d f → ∞. b �x values from E(−2,0) and E(2,0). c �x values

from E(−4,0) and E(4,0). d �x values from E(0,0) and E(4,0)
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Table 3 Baseline results BG with infinity focus (bU = fU )

(a) B4 from Fig. 10b, d (b) B8 from Fig. 10c

�x ZG,�x (cm) Measured B4 (mm) �x ZG,�x (cm) Measured B8 (mm)

2 203 2.5806 4 203 5.1611

3 136 2.5806 6 136 5.1611

3.5 116 2.5806 7 116 5.1611

4 102 2.5806 8 102 5.1611

(c) Comparison of predicted and measured BG where d f → ∞

BG Predicted Avg. measured Deviation

BG (mm) BG (mm) E R RBG
(%)

Proposed B4 2.5806 2.5806 0.0000

B8 5.1611 5.1611 0.0000

Hahne et al. (2014a, b) B4 2.5806 12.0566 −367.2090

B8 5.1611 24.1133 −367.2090

index numbers representing focal lengths in millimetres. The

lens designs for f193 and f90 were found in Caldwell (2000),

Yanagisawa (1990) whilst f197 is obtained experimentally

using the technique provided by TRIOPTICS (2015). Table 2

lists calculated image, exit pupil and principal plane distances

for the main lenses. It is noteworthy that all parameters are

provided with respect to 550 nm wavelength. Precise focal

lengths fU are found in the image distance column at the

infinity focus row.

4.2 Experiments

To verify claims made about SPC triangulation, experiments

are conducted as follows. Baselines and tilt angles are esti-

mated based on Eqs. (22) and (26) using parameters given

in Tables 1 and 2. Thereof, we compute object distances

from Eq. (27) for each disparity and place real objects at

the calculated distances. Experimental validation is achieved

by comparing predicted baselines with those obtained from

disparity measurements. The extraction of a disparity map

from an SPC requires at least two sub-aperture images that

are obtained using Eq. (6). Disparity maps are calculated by

block matching with the Sum of Absolute Differences (SAD)

method using an available implementation (Abbeloos 2010,

2012). To measure baselines, Eq. (27) has to be rearranged

such that

BG =
ZG,�x × (�x × pN + bN × tan (ΦG))

bN

. (30)

This formula can also be written as

ΦG = arctan

⎛
⎝

BG×bN

ZG,�x
− �x × pN

bN

⎞
⎠ , (31)

which yields a relative tilt angle ΦG in radians that can be

converted to degrees by multiplication by 180/π .

Stereo triangulation experiments are conducted such that

B4 and B8, just as Φ4 and Φ8, are predicted based on main

lens f197 and MLA (II.) with d f → ∞ and d f ≈ 4 m focus

setting. Real objects were placed at selected depth distances

ZG,�x calculated from this setup.

An exemplary sub-aperture image E(i,g) with infinity

focus setting and related disparity maps is shown in Fig. 10.

A sub-pixel precise disparity measurement has been applied

to Fig. 10b, d as the action figure lies between integer dis-

parities. It may be obvious that disparities in Fig. 10b, d are

nearly identical since both viewpoint pairs are separated by

G = 4, however placed at different horizontal positions. This

justifies the claim that the spacing between adjacent virtual

cameras is consistent. Besides, it is also apparent that objects

at far distances expose lower disparity values and vice versa.

Comparing Fig. 10b, c shows that a successive increase in the

baseline BG implies a growth in the object’s disparity val-

ues, an observation also found in traditional computer stereo

vision.

Table 3 lists baseline measurements and corresponding

deviations with respect to the predicted baseline. This table is

quite revealing in several ways. First, the most striking result

is that there is no significant difference between baseline pre-

dictions and measurements using the model proposed in this

paper. The reason for a 0% deviation is that objects are placed

at the centre of predicted depth planes ZG,�x . An experi-

ment conducted with random object positions would yield

non-zero errors that do not reflect the model’s accuracy, but

rather our SPC’s capability to resolve depth, which depends

on MLA and sensor specification. Hence, such an experiment

is only meaningful when evaluating the camera’s depth res-

olution. A more revealing percentage error is obtained by a
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larger number of disparities, which in turn requires the base-

line to be extended. These parameters have been maximised

in our experimental setup making it difficult to further refine

depth. To obtain quantitative error results, Sect. 4.3 aims to

benchmark proposed SPC triangulation with the aid of a sim-

ulation tool (Zemax 2011).

A second observation is that our previous methods (Hahne

et al. 2014a, b) yield identical baseline estimates, but fail

experimental validation exhibiting significantly large errors

in the triangulation. This is due to the fact that our previ-

ous model ignored pupil positions of the main lens such that

virtual cameras were seen to be lined up on its front focal

plane instead of its entrance pupil. Baseline estimates calcu-

lated according to a definition provided by Jeon et al. (2015)

further deviate from our results with B4 = 290.7293 mm

and B8 = 581.4586 mm. As the authors disregard optical

centre positions of the sub-aperture images, it is impossible

to obtain distances via triangulation and assess results using

percentage errors.

Whenever d f → ∞, virtual camera tilt angles in our

model are assumed to be ΦG = 0◦. Accurate baseline

measurements inevitably confirm predicted tilt angles as

measured baselines would deviate otherwise. To ensure this

is the case, a second SPC triangulation experiment is carried

out with d f ≈ 4 m, yielding images shown in Fig. 11.

Disparity maps in Fig. 11b, d give further indication that

the spacing between adjacent virtual cameras is consistent.

Results in Table 4 demonstrate that tilt angle predictions

match measurements. It is further shown that virtual cameras

are rotated by small angles of less than a degree. Neverthe-

less, these tilt angles are non-negligible as they are large

enough to shift the �x = 0 disparity plane from infinity to

d f ≈ 4 m, which can be seen in Fig. 11.

Generally, Tables 3 and 4 suggest that the adapted stereo

triangulation concept proves to be viable in an SPC without

measurable deviations if objects are placed at predicted dis-

tances. A maximum baseline is achieved with a short MLA

focal length fs , large micro lens pitch pM , long main lens

focal length fU and a sufficiently large entrance pupil diam-

eter.

A baseline approximation of the first-generation Lytro

camera may be achieved with the aid of the metadata

(*.json file) attached to each light field photograph as it con-

tains information about the micro lens focal length fs =

0.025 mm, pixel pitch pp ≈ 0.0014 mm and micro lens pitch

pM ≈ 0.0139 mm, yielding M = 9.9286 samples per micro

image. The accommodated zoom lens provides a variable

focal length in the range of fU = 6.45–51.4 mm (43–341 mm

as 35 mm-equivalent) (Ellison 2014). It is unclear whether

the source refers to the main lens only or to the entire optical

system including the MLA. From this, hypothetical baseline

estimates for the first-generation Lytro camera are calculated

via Eqs. (20)–(22) and given in Table 5.
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Fig. 11 Disparity maps from sub-aperture images E(i,g) with

bU > fU . a Central image E(0,0) containing 281 by 187 pixels; b

disp. map with G = 4, max{�x} = 5 and block size = 33; c disp.

map with G = 8, max{�x} = 9 and block size = 39; d disp. map with

G = 4, max{�x} = 5 and block size = 33. a Reference image E(0,0)

where d f ≈ 4 m. b �x values from E(−2,0) and E(2,0). c �x values

from E(−4,0) and E(4,0). d �x values from E(0,0) and E(4,0).
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Table 4 Tilt angle results ΦG with 4 m focus (bU > fU )

(a) Φ4 from Fig. 11b, d (b) Φ8 from Fig. 11c

�x ZG,�x (cm) Measured Φ4 (◦) �x ZG,�x (cm) Measured Φ8(
◦)

0 384 0.0429 0 384 0.0857

1 218 0.0429 2 218 0.0857

2 152 0.0429 4 152 0.0857

4 95 0.0429 8 95 0.0857

(c) Comparison of predicted and measured ΦG where d f ≈ 4 m

ΦG Predicted Avg. measured Deviation

ΦG (◦) ΦG (◦) E R RΦG
(%)

Proposed Φ4 0.0429 0.0429 0.0000

Φ8 0.0857 0.0857 0.0000

Hahne et al. (2014a, b) Φ4 0.0429 −0.3427 899.3410

Φ8 0.0857 −0.6852 899.2393

Table 5 Baseline estimates of Lytro’s 1st generation camera

fs (mm) fU (mm) B1 (mm) B8 (mm)

0.025 6.45 0.3612 2.8896

0.025 51.4 2.8784 23.0272

Disparity analysis of perspective Lytro images should lead

to baseline measures BG similar to those of the prediction.

However, verification is impossible as the camera’s auto-

matic zoom lens, settings (current principal planes and pupil

locations) are undisclosed. Reliable measurements of such

require disassembly of the main lens, which is impractical

in the case of present-day Lytro cameras as main lenses are

unmountable.

4.3 Simulation

To obtain quantitative measures, this section investigates the

positioning of a virtual camera array by modelling a plenop-

tic camera in an optics simulation software (Zemax 2011).

Table 6 reveals a comparison of predicted and simulated vir-

tual camera positions just as their baseline BG and relative

tilt angle ΦG . Thereby, the distance from an objective’s front

vertex V1U to entrance pupil A′′ is given by

V1U A′′ = V1U H1U + A′′H1U (32)

bearing in mind that A′′ H1U is the distance from entrance

pupil A′′ to object-side principal plane H1U and V1U H1U sep-

arates the front vertex V1U from its object side principal plane

H1U . Simulated V1U A′′ are obtained by extending ray slopes

qi, j towards the sensor, whilst these virtually elongated rays

are seen to ignore lenses and finding the intersection of qi, j

and qi, j+1.

Observations in Table 6 indicate that the baseline grows

with

– larger main lens focal length fU

– shorter micro lens focal length fs

Table 6 Baseline and tilt angle simulation with G = 6 and i = 0

Setup Prediction Simulation Deviation (%)

d f fU fs V1U A′′ (mm) BG (mm) Φi (◦) V1U A′′ (mm) BG (mm) Φi (◦) E R R
V1U A′′ E R RBG

E R RΦi

Inf f193 (II.) 240.2113 3.7956 0.0000 240.1483 3.7949 0.0000 0.0262 0.0184 –

f90 (II.) 27.4627 1.7752 0.0000 27.4081 1.7748 0.0001 0.1988 0.0225 –

f193 (I.) 240.2113 8.3503 0.0000 239.3988 8.3450 0.0000 0.3382 0.0635 –

3 m f193 (II.) 240.2113 4.2748 −0.0816 239.8612 4.2738 −0.0816 0.1457 0.0234 0.0000

f90 (II.) 27.4627 1.8357 −0.0361 27.3309 1.8352 −0.0360 0.4799 0.0272 0.2770

f193 (I.) 240.2113 9.4047 −0.1795 238.9043 9.3964 −0.1795 0.5441 0.0883 0.0000

1.5 m f193 (II.) 240.2113 4.9097 −0.1897 239.6932 4.9078 −0.1897 0.2157 0.0387 0.0000

f90 (II.) 27.4627 1.9049 −0.0774 27.2150 1.9042 −0.0773 0.9020 0.0367 0.1292

f193 (I.) 240.2113 10.8014 −0.4173 238.1212 10.7866 −0.4173 0.8701 0.1370 0.0000
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– decreasing focusing distance d f (aU )

given that the entrance pupil diameter is large enough to

accommodate the baseline. Besides, it has been proven that

tilt angle rotations become larger with decreasing d f . Base-

lines have been estimated accurately with errors below 0.1%

on average, except for one example. The key problem caus-

ing the largest error is that MLA (I.) features a shorter focal

length fs than MLA (II.) which produces steeper light ray

slopes mc+i, j and hence severe aberration effects. Tilt angle

errors remain below 0.3% although results deviate by only

0.001◦ for f90 and are even non-existent for f193. However,

entrance pupil location errors of about ≤1% are larger than

in any other simulated validation. One reason for these inac-

curacies is that the entrance pupil A′′ is an imaginary vertical

plane, which in reality may exhibit a non-linear shape around

the optical axis.

An experiment assessing the relationship between dispar-

ity �x and distance ZG,�x using different objective lenses

is presented in Table 7. From this, it can be concluded that

denser depth sampling is achieved with larger main lens focal

length fU . Moreover, it is seen that a tilt in virtual cameras

yields a negative disparity �x for objects further away than

d f , which is a phenomenon that also applies to tilted cameras

in stereoscopy. The reason why d f ≈ ZG,�x when �x = 0

is that ZG,�x reflects the separation between ray intersection

and entrance pupil A′′, which lies nearby the sensor and d f is

the spacing between ray intersection and MLA’s front vertex.

Overall, it can be stated that distance estimates based on the

stereo triangulation behave similar to those in geometrical

optics with errors of up to ±0.33%.

5 Discussion and Conclusions

In essence, this paper presented the first systematic study

on how to successfully apply the triangulation concept to a

Standard Plenoptic Camera (SPC). It has been shown that an

SPC projects an array of virtual cameras along its entrance

pupil, which can be seen as an equivalent to a multi-view

camera system. Thereby, the proposed geometry of the SPC’s

light field suggests that the entrance pupil diameter constrains

the maximum baseline. This backs up and further refines

an observation made by Adelson and Wang (1992), who

considered the aperture size to be the baseline limit. Our cus-

tomised SPC merely offers baselines in the millimetre range,

which results in relatively small stereo vision setups. Due to

this, depth sampling planes move towards the camera, which

will prove to be useful for close range applications such as

microscopy. It is also expected that multiple viewpoints taken

with small baselines evade the occlusion problem.

The presented work has provided the first experimen-

tal baseline and distance results based on disparity maps T
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obtained by a plenoptic camera. Predictions of our geomet-

rical model match measures of the experimentation without

indicating a significant deviation. An additional benchmark

test of the proposed model with an optical simulation soft-

ware has revealed errors of up to ±0.33% for baseline

and distance estimates under different lens settings, which

supports the model’s accuracy. Deviations are due to the

imperfections of objective lenses. More specifically, predic-

tion inaccuracies may be caused by all sorts of aberrations

that result in a non-geometrical behaviour of a lens. By com-

pensating for this through enhanced image calibration, we

believe it is possible to lower the measured deviation.

The major contribution of the proposed ray model is that

it allows any SPC to be used as an object distance estima-

tor. A broad range of applications for which stereoscopy has

been traditionally occupied can benefit from this solution.

This includes endoscopes or microscopes that require very

close depth ranges, the automotive industry where tracking

objects in road traffic is a key task and the robotics industry

with robots in space or automatic vacuum cleaners at home.

Besides this, plenoptic triangulation may be used for qual-

ity assurance purposes in the large field of machine vision.

The model further assists in the prototyping stage of plenop-

tic photo and video cameras as it allows the baseline to be

adjusted as desired.

Further research may investigate how triangulation applies

to other types of plenoptic cameras, such as the focused

plenoptic camera or coded-aperture camera. More broadly,

research is also required to benchmark a typical plenoptic

camera’s depth resolution against that of competitive depth

sensing techniques like stereoscopy, time of flight and light

sectioning.
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