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Abstract 

Background: Artemisinin resistance in Plasmodium falciparum manifests as slow parasite clearance but this measure 

is also influenced by host immunity, initial parasite biomass and partner drug efficacy. This study collated data from 

clinical trials of artemisinin derivatives in falciparum malaria with frequent parasite counts to provide reference para-

site clearance estimates stratified by location, treatment and time, to examine host factors affecting parasite clear-

ance, and to assess the relationships between parasite clearance and risk of recrudescence during follow-up.

Methods: Data from 24 studies, conducted from 1996 to 2013, with frequent parasite counts were pooled. Parasite 

clearance half-life (PC1/2) was estimated using the WWARN Parasite Clearance Estimator. Random effects regression 

models accounting for study and site heterogeneity were used to explore factors affecting PC1/2 and risk of recrudes-

cence within areas with reported delayed parasite clearance (western Cambodia, western Thailand after 2000, south-

ern Vietnam, southern Myanmar) and in all other areas where parasite populations are artemisinin sensitive.

Results: PC1/2 was estimated in 6975 patients, 3288 of whom also had treatment outcomes evaluate d during 

28–63 days follow-up, with 93 (2.8 %) PCR-confirmed recrudescences. In areas with artemisinin-sensitive parasites, the 

median PC1/2 following three-day artesunate treatment (4 mg/kg/day) ranged from 1.8 to 3.0 h and the proportion of 

patients with PC1/2 >5 h from 0 to 10 %. Artesunate doses of 4 mg/kg/day decreased PC1/2 by 8.1 % (95 % CI 3.2–12.6) 

compared to 2 mg/kg/day, except in populations with delayed parasite clearance. PC1/2 was longer in children and in 

patients with fever or anaemia at enrolment. Long PC1/2 (HR = 2.91, 95 % CI 1.95–4.34 for twofold increase, p < 0.001) 

and high initial parasitaemia (HR = 2.23, 95 % CI 1.44–3.45 for tenfold increase, p < 0.001) were associated indepen-

dently with an increased risk of recrudescence. In western Cambodia, the region with the highest prevalence of 

artemisinin resistance, there was no evidence for increasing PC1/2 since 2007.

Conclusions: Several factors affect PC1/2. As substantial heterogeneity in parasite clearance exists between locations, 

early detection of artemisinin resistance requires reference PC1/2 data. Studies with frequent parasite count measure-

ments to characterize PC1/2 should be encouraged. In western Cambodia, where PC1/2 values are longest, there is no 

evidence for recent emergence of higher levels of artemisinin resistance.
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Background
Parasite clearance is a robust measure of the efficacy of 

anti-malarial drugs, which has been used particularly to 

measure the pharmacodynamic effects of artemisinin 

derivatives [1]. Initial studies conducted in patients with 

severe malaria employed frequent parasite counting to 

characterize clearance profiles, and these demonstrated 

that artemisinin derivatives cleared parasitaemia more 

rapidly than quinine [2]. More recently, frequent para-

site counting has been used to characterize artemisinin 

susceptibility in vivo [3], and to validate molecular mark-

ers [4, 5] and in vitro assays for detection of artemisinin 

resistance [6]. Parasite clearance following artemisinin 

treatment is influenced by a number of factors other than 

parasite susceptibility, including host immunity, initial 

parasite biomass and partner drug efficacy. It is therefore 

essential to control for such potential confounding factors 

in order to identify temporal changes in parasite clearance 

resulting from reduced anti-malarial drug susceptibility.

�e WorldWide Antimalarial Resistance Network 

(WWARN) Parasite Clearance Estimator (PCE) [7] 

was developed to automate and standardize analysis of 

frequent parasite count data. �is tool is freely avail-

able online [8] and provides an automated report for each 

patient. �e derived measure, parasite clearance half-life 

(PC1/2), generated by the PCE reflects the extent to which 

ring-stage parasites are killed and removed from the cir-

culation, and is currently considered the most reliable 

measure of parasitological responses to treatment with 

artemisinin or its derivatives [5, 9–16]. �is standardized 

approach to PC1/2 measurement allows comparison in 

space and time of artemisinin resistance, which manifests 

as a slow parasite clearance rate in patients. Within the 

WWARN framework, investigators who obtained frequent 

parasite count data have joined several study groups [17] 

to evaluate this metric. �is pooled analysis presents refer-

ence parasite clearance estimates stratified by geographic 

location, treatment and study population, and explores 

the relationship between parasite clearance measures and 

the risk of recrudescent infection (treatment failure). �e 

effects of different sampling strategies on clearance esti-

mates have been published separately [18].

Methods
Data acquisition

Any study involving patients with uncomplicated falci-

parum malaria, treated with either artemisinin combi-

nation therapy (ACT) or oral artesunate monotherapy, 

in which peripheral parasitaemia was measured at least 

twice daily in the first 3 days after starting treatment, was 

eligible for inclusion in this pooled analysis. In addition, 

the minimum data required were enrolment date, patient 

age, drug treatment, study location and characteristics, 

and details of the parasite counting method. Studies with 

frequent parasite counts were identified using literature 

reviews and existing collaborations within WWARN. 

Principal investigators were subsequently approached 

to participate in this study group [19]. �e datasets 

uploaded to the WWARN repository were standardized 

using the WWARN Data Management and Statistical 

Analysis Plans for clinical data [20] and pooled into a sin-

gle database of quality-assured individual patient data.

Parasite inclusion criteria, counting methods and blood 

sampling schedules were different among studies; for a 

detailed description see Additional file 1: Table S1.

Statistical analysis

De�nitions

As a measure of transmission intensity, malaria endemic-

ity estimates were obtained for study sites and year from 

the Malaria Atlas Project [21]. Anaemia was defined 

according to WHO guidelines [22], (i.e., haemoglobin 

concentration cut-offs for moderate anaemia were 10 g/dL 

in children <5 years of age and 11 g/dL in older patients, 

and for severe anaemia were 7 and 8 g/dL, respectively). 

For studies where haematocrit only was measured, the 

following relationship was used to estimate haemoglo-

bin: haematocrit (%)  =  5.62  +  2.60  ×  haemoglobin (g/

dL) [23]. Nutritional status of children aged <5 years was 

assessed by the weight-for-age indicator using the igrowup 

package developed by the WHO [24].

Analysis of parasite counts

PC1/2 was estimated only for patients with sufficient par-

asite counts defined as sampling at least 12-h in the first 

48 h (a maximum of a 16-h gap between any two meas-

urements, as a 2-h window on each side was allowed) and 

at least 24-h sampling (maximum 28-h gap) after 48  h 

until parasite clearance [18]. �e following deviations 

from this rule were accepted as they were deemed not to 

have substantial effects on the PC1/2 estimate [18]: sam-

pling was not performed until parasite clearance but the 

last recorded parasitaemia was <100 or <1000 parasites/

µL with at least five positive parasite counts available; 

a longer gap was observed between a set of measure-

ments but there were at least two positive parasite counts 

directly after the gap, or a zero count was recorded after 

the gap and the last recorded parasitaemia before the gap 

was either <100 or <1000/µL and at least five positive par-

asite count measurements were available before the gap.

PC1/2 was calculated by the PCE [7] for each patient 

(variable called slope_half_life in the output files), based 

on the linear segment of the decline in the log-trans-

formed parasitaemia-time profile. A lag-phase (an ini-

tial, flat part of the parasitaemia-time profile which 

precedes the log-linear decline) and a tail (a levelling 
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out in the parasitaemia-time profile which follows the 

log-linear decline), if present, are identified by the PCE 

automatically.

Reliability of PC1/2 estimates was assessed by (a) the 

standard deviation of residuals from the final linear 

model used to estimate PC1/2; (b) the duration of the 

lag phase (as a long lag phase is very unlikely if an arte-

misinin derivative is given and absorption is adequate); 

(c) the number of positive parasite counts used in the 

estimation; (d) pseudo-R2 statistics; and, (e) the width of 

the 95 % confidence interval around the PC1/2.

Pseudo-R2 is a measure of goodness of fit of the final 

model and is provided by the PCE tool. Low values of 

pseudo-R2 indicate that the predicted values from the 

polynomial model are far from the measured parasitae-

mias. Pseudo-R2 is calculated from the fitted values of the 

final linear model used to estimate the PC1/2 (after exclu-

sion of the lag phase and tail) and the observed log-para-

sitaemias, excluding zero counts.

Parasite clearance and clinical covariates

Factors affecting PC1/2 were investigated in the ran-

dom effects regression model (to account for study site 

heterogeneity) with PC1/2 being modelled after log 

transformation. Separate analyses were performed in 

artemisinin-resistant and artemisinin-sensitive areas. �e 

resistant areas were defined as locations in which delayed 

parasite clearance had been reported previously [3, 9–11, 

14–16, 25–28] (i.e., western Cambodia, western �ailand 

after 2000, southern Vietnam, southern Myanmar), while 

the sensitive areas were defined as all other locations.

In studies which randomized treatment arms to 2 and 

4 mg/kg/day artesunate doses, meta-analysis of the dif-

ferences in mean log-transformed PC1/2 between treat-

ment arms was performed using a fixed effects model 

using the inverse variance method. Heterogeneity was 

evaluated by I2 [29].

Analysis of treatment outcome

�e risk of recrudescence was assessed by survival anal-

ysis using WHO definitions of therapeutic efficacy out-

come [30]. Patients with no PCR results were excluded 

from the treatment outcome analysis. Cox regression 

model with random effects in the form of frailty param-

eters were used to adjust for study site effects [31]. �e 

proportional hazard assumption was tested based on 

Schoenfeld residuals [32]. PC1/2, presence of a lag phase, 

duration of lag phase and presence of a tail were evalu-

ated as possible predictors of outcome, together with all 

other baseline clinical and treatment characteristics.

Covariates for the final regression models (for treat-

ment outcome and PC1/2) were selected on the basis of 

the likelihood ratio test and examination of residuals. 

Relationship between the independent variable and 

continuous covariates such as age and parasitaemia was 

examined using fractional polynomials. All statistical 

analyses were performed using Stata 13.0.

Results
Data summary

Data from 9318 patients enrolled from 1996 to 2013 in 

24 studies [3, 9–15, 26, 33–43] (Additional file  2: Table 

S2; Fig. 1) conducted at 61 study sites in 46 distinct loca-

tions (Fig. 2) in 18 countries (Bangladesh, Benin, Burkina 

Faso, Cambodia, Democratic Republic of Congo, Gabon, 

Ghana, India, Kenya, Laos, Mali, Mozambique, Myan-

mar, Nigeria, Tanzania, �ailand, Uganda, Vietnam), 

were available for analysis.

Among hyperparasitaemic patients (Study ID 1), 882 of 

3393 (26 %) patients were excluded from analysis because 

of one or more of the following: severe malaria (n = 108), 

slow parasite clearance and administration of rescue 

treatment with intravenous or intramuscular artesunate 

(n = 642), blood transfusion before clearance of parasites 

(n = 215), or incomplete treatment information (n = 19). 

Table  1 shows the demographic and clinical parameters 

of patients with uncomplicated Plasmodium falciparum 

malaria who were included in this analysis.

Patients were treated with (a) artesunate (AS) alone 

(n = 842); (b) AS alone in the first 3 days or longer fol-

lowed by a standard ACT: artemether-lumefantrine (AL); 

artesunate-amodiaquine (ASAQ); artesunate-meflo-

quine (ASMQ); or dihydroartemisinin-piperaquine (DP) 

(n = 2751); (c) AL (n = 2217); (d) DP (n = 55); (e) ASMQ, 

with the first dose of MQ administered at a median 

(range) of 46 (0–71) hours (n = 1343); or (f ) artesunate-

chlorproguanil-dapsone (n =  914). �ere were also 341 

hyperparasitaemic patients studied in �ailand (Study ID 

1) who received AS together with either doxycycline or 

clindamycin.

�e target daily dose of AS varied between 2 (n = 862, 

24 %), 4 (n = 2,544, 71 %), 6 (n = 119, 3 %), and 8 (n = 66, 

2  %) mg/kg, with patients in Cambodia receiving the 

higher doses of 6 or 8 mg/kg in one study. In two stud-

ies the initial dose of AS was higher than on subsequent 

days: in hyperparasitaemic patients in �ailand (Study 

ID 1: 4  mg/kg followed by 2  mg/kg, n  =  2509) and in 

patients in Mali (Study ID 14: 6 or 4 mg/kg followed by 

2 mg/kg, n = 100). Seven studies (Study IDs: 2, 6, 10, 11, 

13, 17, 24) at 14 locations randomized 1242 patients to 

either 2 mg/kg or 4 mg/kg daily doses of AS, alone or in 

combination with an ACT given at 72 h.

Estimates of parasite clearance

Among 8536 patients, 6975 (82 %) had sufficient parasite 

counts taken for PCE estimation of PC1/2. �e majority 
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Fig. 1 Study profile

Fig. 2 Map of study sites included in the parasite clearance data analysis
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of the excluded patients came from three studies with 

variable sampling schemes (59 %, Study IDs 4, 20, 21) and 

from the study with hyperparasitaemic patients (36  %, 

Study ID 1), which for 10 years routinely recorded parasi-

taemia every 6 h until clearance.

Only two positive parasite counts were used to estimate 

PC1/2 in 878 patients, either because only two positive 

measurements were available (n = 844) or measurements 

were excluded as being part of the lag or tail phases 

(n = 34). For these profiles with only two positive para-

site counts available, the PCE replaces the first zero count 

with the detection limit [7] and the resulting PC1/2 esti-

mate clearly overestimates the true PC1/2. However, the 

estimated PC1/2 was still considered informative as 25 % 

(214/844) of these profiles had estimated values  <2  h 

and 73  % (618/844) had estimated values  <3  h, indicat-

ing that parasite clearance in these patients was rapid 

and thus provided no evidence for artemisinin resist-

ance. Of the remaining patients, 73 % (165/226) with an 

estimated PC1/2 >3 h had an initial parasitaemia <10,000 

parasites/µL and 77  % (175/226) had parasite counts 

measured using one of the twice-daily schemes. For 21 % 

(1489/6975) of profiles, a non-zero lag phase was esti-

mated with median (range) duration of 6 (1.5–60) hours, 

with 6 % (90/1489) having a lag phase duration >12 h.

�e median (range) goodness of fit statistic, pseudo-

R2, was 0.938 (−198 to 0.999), with 89 % (6197/6975) of 

profiles having a pseudo-R2  >0.8. Only 0.9  % (65/6975) 

of profiles had a negative pseudo-R2, indicating that the 

model was not a good representation of the data.

�e 95 % confidence interval (CI) for the estimated PC1/2 

was wide for 11 % (740/6975) of profiles; the 95 % CI either 

included negative values or the upper limit was greater than 

twice the PC1/2 estimate. Of these, 70 % (519/740) were for 

patients with only two positive parasite counts available.

For the distribution of PC1/2 by location, treatment 

and study year see Additional file 3. See Additional file 4: 

Table S3 for summaries of PC1/2 and other parasitological 

measures by location and treatment and Additional file 5: 

Table S4 for proportion of profiles with PC1/2 longer than 

3, 4, 5 and 6 h.

Areas with slow parasite clearance

Delayed parasite clearance was observed at sites in Cam-

bodia, �ailand, Myanmar, and Vietnam. For all treat-

ments and locations, the longest PC1/2 were observed in 

three western Cambodian sites: Pailin, Tasanh and Pursat 

where data from 2007 to 2012 were available; study median 

PC1/2 ranged from 5.6 to 6.7  h, and the proportion of 

PC1/2 >5 h ranged from 61 to 80 %. Importantly, no signifi-

cant trend of increasing PC1/2 was observed at these sites 

over that time interval. At the two other Cambodian sites, 

Ratanakiri and Preah Vihear, parasite clearance was signifi-

cantly faster (p < 0.001; median PC1/2 of 3.0 and 3.8 h, and 

proportion of PC1/2 >5 h of 4 and 22 %, respectively) and 

also different between these two sites (p = 0.011).

In contrast, a disproportionate increase in PC1/2 was 

observed in western �ailand after 2003 (p < 0.001, frac-

tional polynomials), with an average increase in PC1/2 of 

7.1 % (95 % CI 5.7–8.6) per year after 2005. �e PC1/2 val-

ues (p = 0.247) and changes in PC1/2 over time (p = 0.628) 

were similar in hyperparasitaemic and uncomplicated fal-

ciparum malaria patients from 2008 to 2011 (Additional 

file  3: Figure S2). Overall, the proportion of PC1/2  <3  h 

decreased from 67 % (n = 169) in 2003 to 11 % (n = 75) in 

2012, and the proportion of PC1/2 >5 h increased from 6 to 

55 % during this time period (Additional file 4: Table S4).

Areas with rapid parasite clearance

Among studies in areas with artemisinin-sensitive para-

sites (n = 3208), patients who received AS 2 mg/kg (with 

or without partner drugs) or the standard six-dose AL 

regimen had longer PC1/2 values compared to patients 

who received AS 4 mg/kg (with or without partner drugs) 

by 7.3 % (95 % CI 1.9–12.9, p = 0.007) and 7.4 % (95 % CI 

3.8–11.2, p < 0.001), respectively (Fig. 3). �ese compari-

sons are adjusted for study site and study design charac-

teristics which affect PC1/2 estimates: (a) patients with 

twice-daily sampling (Study IDs 4, 13, 20, 21) had 16.2 % 

(95 % CI 7.6–25.6) longer PC1/2 compared to those with 

more frequent schedules (p  <  0.001); (b) patients with 

insufficient number of data points to estimate lag phases 

had 31 % (95 % CI 26–37) longer PC1/2 than those with 

sufficient data (p  <  0.001). Since patients with very low 

initial parasitaemias and short PC1/2 are excluded from 

Table 1 Baseline characteristics of patients included in the 

analysis

a De�ned according to WHO guidelines [23]. For studies where only haematocrit 

was measured, the following relationship was used to estimate haemoglobin 

concentration: Haematocrit = 5.62 + 2.60 × Haemoglobin [24]

b De�ned as axillary temperature >37.5 °C

Parameter Median (range) [n or n/N]

Age (years) 10 (0.1–70) [6970]

Parasitaemia (/µL) 70,336 (1000–2,285,920) [6966]

Temperature (°C) 38.0 (34.1–41.5) [3266]

Haemoglobin (g/dL) 12.4 (2.1–19.9) [1812]

Haematocrit (%) 35.0 (11.3–50) [3251]

Anaemiaa

 None 59 [2359/3966]

 Moderate 36 [1422/3966]

 Severe 5 [185/3966]

Feverb 66 [2164/3266]

Gametocytaemia 32 [1610/5045]

Female 35 [2417/6876]
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the analysis because of insufficient data, this creates a 

negative association between the initial parasitaemia and 

PC1/2 (Fig. 4). Mean PC1/2 was estimated to decrease by 

16 % (95 %CI 15–18) per tenfold increase in parasitaemia.

In artemisinin-sensitive areas, profiles with a lag phase 

had 6.4  % (95  % CI 3.6–9.1) shorter PC1/2 compared to 

profiles without a lag phase (p < 0.001, adjusted for all the 

above factors). No association was observed between the 

duration of the lag phase and PC1/2 among 687 patients 

with a non-zero lag phase (p  =  0.220, adjusted for the 

above factors).

Initial parasitaemia

Studies differed in their admission parasitaemia inclusion 

criteria. It was assumed that the log-transformed initial 

parasitaemias followed a truncated normal distribution 

with lower and upper truncation consistent with the 

inclusion criteria. In all but five studies, there was no 

evidence against this assumption of truncated normality 

(p values ranged from 0.17 to 0.98); the exceptions were 

four multi-centre and/or multi-country studies (Study 

IDs 4, 21, 22, 23) and a study with two distinct age groups 

(Study ID 20; young children weighing 12–20  kg and 

older children weighing 20–40 kg). For these five studies, 

there was clear evidence of a multimodal distribution of 

initial parasitaemias.

Parasite clearance and clinical covariates

Areas with rapid parasite clearance

In artemisinin-sensitive areas (all countries in Africa, 

Laos, Bangladesh, �ailand before year 2000, Ratanakiri 

in Cambodia; n = 3208), after adjusting for study design 

factors, patient age and treatment were associated inde-

pendently with PC1/2. Adjusting for age changed the 

treatment effect very little. Patients who received 2 mg/

kg AS or AL had 7.2 % (95 % CI 1.8–12.8) and 7.3 % (3.7–

11.0) longer PC1/2, respectively, compared to patients 

who received 4 mg/kg AS (p  ≤  0.008). Young children 

cleared parasites more slowly than older patients: PC1/2 

was 11.3 % (95 % CI 2.6–20.8, p = 0.010) longer in infants 

aged  <1  year and 9.4  % (95  % CI 3.5–15.7, p  =  0.002) 

longer in children aged 1–4  years compared to older 

patients (Fig.  5a, b). �ere was no significant difference 

in PC1/2 between children aged 5–14  years and adults 

(p  =  0.129). �e relationship between patient age and 

PC1/2 was examined further in the multivariate model 

(Fig.  5c). After adjusting for age and treatment, higher 

parasitaemia remained associated with lower estimates 

of PC1/2 (by a 17 % (95 % CI 15–18) per tenfold increase 

in parasitaemia). Other factors, examined on a subset of 

patients with available data, were independently associ-

ated with longer PC1/2: fever (7.0  %, 95  % CI 3.2–10.8, 

p  <  0.001, n  =  1636); severe anaemia (13.5  %, 95  % CI 

6.4–21.1, p  <  0.001, n  =  2043) and moderate anaemia 

defined as haemoglobin level from 7 to 9  g/dL (4.3  %, 

95 % CI 1.0–7.7, p =  0.010, n =  2043). No associations 

between PC1/2 and gametocyte carriage, transmission 

intensity or nutritional status of children were observed. 

A lag phase was detected more frequently in patients 

receiving AL (OR =  2.14, 95  % CI 1.29–3.59 compared 

to other treatments, p  =  0.004), high initial parasitae-

mia (OR = 1.77, 95 % CI 1.28–2.45 per tenfold increase, 

p = 0.001) or fever (OR = 1.63, 95 % CI 1.21–2.21 com-

pared to patients presenting without fever, p  =  0.001). 

Among 1297 patients treated with AL [median (range) 

daily artemether dose 2 (0.9–4) mg/kg], no significant 

association was found between PC1/2 and artemether 

dose. In contrast, none of the patient covariates or treat-

ments were associated with a risk of PC1/2 being >5 h.
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Areas with slow parasite clearance

In areas with previously documented slow parasite clear-

ance rates, no significant association between PC1/2 and 

patient age was observed. After adjusting for study design 

factors, admission gametocytaemia was associated with 

an 11.1 % (95 % CI 5.5–16.9, p < 0.001, n = 3574) increase 

in PC1/2, and temperature >37.5 °C was associated with a 

7.3 % (95 % CI 1.3–13.8, p =  0.017, n =  1491) increase 

in PC1/2. �e relationship between PC1/2 and initial par-

asitaemia was the opposite of that in the artemisinin-

sensitive population: a tenfold increase in parasitaemia 

was associated with a 5.2 % (95 % CI 0.7–9.9, p = 0.024, 

n = 3574) increase in PC1/2 when adjusted for study site.

Artemisinin dose and PC1/2

Six studies at 15 locations had randomized AS treatment 

arms of 2 and 4 mg/kg. �e higher dose was associated 

with an 8.1 % (95 % CI 3.2–12.6, p = 0.001) decrease in 

PC1/2 in sites with geometric mean PC1/2  <4  h (in AS 

2  mg/kg dose arm), whereas there was no significant 

(p = 0.455) difference in PC1/2 in the remaining sites with 

geometric mean PC1/2  ≥4  h. Overall change was esti-

mated as −5.5 % (95 % CI −9.7 to −1.2, p = 0.013) (test 

for heterogeneity between groups, p = 0.031) (Fig. 6).

Treatment outcome

Among 3328 patients with defined outcome, 93 (2.8  %) 

had PCR-confirmed recrudescences by day 63. After 

adjusting for study design factors in a multivariate 

model, longer PC1/2 was associated with an increased 

risk of recrudescence: HR = 2.91, 95 % CI 1.92–4.31, for 

a doubling of PC1/2, p < 0.001). Patients with high initial 

parasitaemia also had a higher risk of recrudescence: 

HR  =  2.23, 95  % CI 1.44–3.46, for a tenfold increase 

in parasitaemia, p  <  0.001. No significant interaction 

between PC1/2 and initial parasitaemia was detected. 

After adjusting for the initial parasitaemia, PC1/2 and 

parasite sensitivity status, the recrudescence rates varied 

Fig. 5 Relationship between patient age and PC1/2 in patients in areas with artemisinin-sensitive parasites. (1) Observed data in Africa (a) and Asia 

(b) with red line showing locally weighted scatter-plot smoothing estimator (LOWESS); only patients with 6-h sampling and enough data points for 

the full Parasite Clearance Estimator model to be fitted are presented; (2) predicted relationship from multivariate model using fractional polynomi-

als (c); adjusted for treatment group, region, initial parasitaemia, presence of lag phase and study design characteristics
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between regimens with different partner drugs or time of 

their administration. Recrudescence rates were signifi-

cantly higher in patients receiving artesunate-chlorpro-

guanil-dapsone than any other ACT (HR = 3.62, 95 %CI 

1.74–7.52, p =  0.001) Recrudescence rates were signifi-

cantly lower in patients receiving AS for 3 days followed 

by a standard ACT at 72  h (HR =  0.28, 95  % CI 0.11–

0.74, p = 0.010) than in all other patients. Other baseline 

covariates, as well as the presence or duration of lag and 

tail phases in the parasite clearance curve, were not asso-

ciated with treatment outcome.

Discussion
�e rate at which asexual P. falciparum parasites are 

cleared from the blood following treatment is the best 

measure of the anti-malarial effect of artemisinin and its 

derivatives. �is is assessed from the linear component of 

the log-linear decline in parasite densities and is expressed 

conveniently as PC1/2 [1]. Resistance to artemisinins 

results in prolongation of the PC1/2. �is pooled analysis 

combines the largest set of data, collected in 24 studies 

over 18  years, from nearly 7000 patients with uncompli-

cated falciparum malaria in whom frequent measurements 

of parasitaemia were made. �e reference PC1/2 estimates 

provided for 46 locations across Africa and Asia are essen-

tial comparators for the early recognition of emerging 

resistance, and so will be updated continuously as others 

join the WWARN [44] collaborative effort and provide rel-

evant data sets. An important output of this analysis is that 

there was no evidence for worsening of artemisinin resist-

ance in western Cambodia. �ere is substantial concern 

that failure to eliminate falciparum malaria in this area, the 

‘cradle of antimalarial drug resistance’, will lead to higher 

levels of artemisinin resistance, rendering ACTs progres-

sively less effective. While further worsening of the degree 

of artemisinin resistance fortunately has not happened, at 

least until 2012, continued monitoring is vital.

�is large dataset allowed estimation of the additional 

contributions of patient characteristics and study design 

to parasite clearance estimates, information that is cru-

cial in interpreting and monitoring changes in these 

estimates, and attributing them to true artemisinin 

resistance rather than the effects of partner drugs, study 

design or patient characteristics. �e recent discovery 

[4] and validation [15] of the molecular marker kelch13 

in the Greater Mekong area and the development of suit-

able in  vitro sensitivity tests [6, 45] provide important 

information. Data from in vitro ring-stage survival assays 

do reflect artemisinin resistance in vivo, but their use is 

likely to be limited to few resourced laboratories and thus 

unlikely to provide comprehensive surveillance infor-

mation across endemic countries. Mutations in kelch13 

Fig. 6 Meta-analysis of dose effect in randomized studies with artesunate alone in the first 72 h. 1geometric mean of PC1/2 in 2 mg/kg treatment 

arm
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above position 440 correlate with slow parasite clearance 

rates in the Greater Mekong area, but have not yet been 

associated with slow rates elsewhere, and cannot yet sub-

stitute for PC1/2 values as definite measures of clinical 

artemisinin resistance.

Estimation of PC1/2 requires sufficient quality-assured 

serial parasite blood counts for analysis. In this very 

large series, the most common problem encountered 

(13  %) was that only two positive counts were available 

because of rapid parasite clearance and low initial para-

sitaemias. Other problems encountered (10  %) were a 

very long lag phase, large variations in parasite counts 

resulting in poor fits or large confidence intervals around 

the estimate. �ese were most likely a consequence of 

inaccurate microscopy counts. �e initial parasitae-

mia and frequency of sampling had the greatest effects 

on the PC1/2 estimates, which accords with results of a 

previously reported simulation study [18]. Ideally, only 

patients with initial parasitaemia  >10,000 parasites/µL 

should be included in PC1/2 assessments. In patients with 

only two positive parasite counts, estimated PC1/2 should 

be interpreted with caution as it is likely to be overesti-

mated. �is is because the lag phase cannot be evaluated 

and the first recorded zero parasitaemia is treated as a 

parasite density at the detection limit (so the worst case 

scenario is assumed). Profiles for which the lag or tail 

phases were identified, and after their exclusion only two 

data points were left for the PC1/2 estimation, should be 

excluded from analysis as they likely represent limitations 

in microscopy-based parasite counting.

A lag phase was detected more frequently in patients 

presenting with fever, possibly because of the association 

of fever with synchronous schizont rupture. �e more 

frequent lag phase with AL treatment may result from the 

initial lower dose and slower absorption and conversion 

to DHA of oral artemether compared to oral artesunate 

[46]. Patients with profiles beginning with a lag phase 

may have had more rapid clearance in the log-linear part 

of the parasitaemia-time curve (lower PC1/2); however, 

the difference was rather small (6.4 %, 95 % CI 3.6–9.1). 

�is is an artefact of the way the model is fitted—as the 

lag phase is defined only if the initial clearance is slower 

and the ratio of the clearance rates between this initial 

period and the rest of the parasitaemia profile reaches a 

pre-specified cut-off. Some of the observed differences in 

slopes are caused by random variation of the microscopy 

measurement. Excluding this randomly occurring slower 

(but not faster) part of the profile will result in the over-

estimation of PC1/2 in profiles with a detected lag phase. 

�is phenomenon was observed in 3–10 % of simulated 

parasite profiles (using previously described methodol-

ogy [18]), from distributions of PC1/2 with mean of two 

to 6 h and standard deviation (log scale) from 0.05 to 0.3.

�e treatment, clinical and demographic variables 

studied had modest effects on PC1/2 estimates, all result-

ing in less than 20  % change in PC1/2, and none associ-

ating with an increased risk of PC1/2 being  >5  h in the 

rapid-clearing parasite populations.

In areas with artemisinin-sensitive parasite popula-

tions, parasite clearance was faster in patients receiving 

the 4 mg/kg dose of AS than in those receiving the 2 mg/

kg dose, which was a robust finding confirmed in meta-

analysis performed in a subset of randomized studies as 

well as in a multivariate analysis of studies with either of 

the doses administered. It is therefore expected that there 

will be marked differences between the various currently 

available ACTs, including AL, ASAQ, DHA-PQP and 

ASMQ, depending on the dose of artemisinin deriva-

tive. However, after adjusting for the sampling scheme, 

the proportions of patients with PC1/2 estimates  >5  h 

were not significantly different between treatments in 

this study and ranged from 0 to 10 % for studies with six-

hourly sampling, and from 0 to 7 % after exclusion of pro-

files with pseudo R2 statistic <0.8.

�erapeutic responses in malaria are enhanced by 

immunity [1]. As expected from previous work [47, 48], 

young children had slower parasite clearance rates com-

pared to older patients. However, this was observed only 

in artemisinin-sensitive parasite populations, with most 

data coming from Africa. Resistant parasite populations, 

present only in Southeast Asia, did not demonstrate an 

age effect. �e lack of an age effect on PC1/2 could be 

due to one or more of the following factors: lower back-

ground immunity in those patients from low transmis-

sion settings, different age distributions studied with 70 % 

of patients being older than 12 years, nonlinear negative 

age effect on PC1/2 (Fig. 5), or a qualitative pharmacody-

namic difference in that whereas most of the clearance 

of artemisinin-sensitive parasites results from clearance 

of ring-stage parasites in low transmission settings, in 

artemisinin-resistant infections cytoadherence becomes 

a more important contributor to the initial decline in 

parasitaemia (as it is following quinine treatment) [1]. In 

both populations, the presence of fever on admission was 

associated with longer PC1/2. �is has also been reported 

in other studies from Kenya [49] and Uganda [47] and 

may be a surrogate marker of a less effective host immune 

response. Also, fever in malaria is thought to be caused 

partly by TNF and other pyrogenic cytokines released as 

part of the human immune response to products of schi-

zont rupture [50, 51].

�e relationship between PC1/2 and parasitaemia was 

different between the sensitive and resistant parasite pop-

ulations. In sensitive areas, high parasitaemia was associ-

ated with shorter PC1/2 largely because patients with low 

initial parasitaemias and rapid clearance are not included 
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in the analysis. In resistant populations with longer PC1/2, 

high parasitaemias were associated with slightly longer 

PC1/2 (by 5.2 % per tenfold increase).

�e main limitation of this analysis is the heterogene-

ity in study designs and treatments which did not per-

mit a more detailed examination of treatment and dose 

effects, as they were confounded by the exclusion of 

patients with relatively low initial parasitaemias, differ-

ent partner drugs, and different timings and frequencies 

of sampling.

Conclusion
�is pooled analysis showed that the main factor affect-

ing estimates of parasite clearance is the study design—

relatively low initial parasitaemia resulting in too few 

data points to estimate the clearance accurately, and too 

infrequent sampling. Additionally, in artemisinin-sensi-

tive parasite populations, PC1/2 is affected by artemisinin 

dose, patient age and the presence of fever as likely surro-

gates of acquired immunity. �erefore, it is important to 

consider these factors in early surveillance of changes in 

parasite sensitivity. �is pooled analysis provides critical 

baseline information to monitor future evolution of PC1/2 

in malaria endemic countries.
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