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Baseline gene expression profiling determines long-term benefit
to programmed cell death protein 1 axis blockade
Ioannis A. Vathiotis 1,2,11✉, Leonidas Salichos3,4,5,11, Sandra Martinez-Morilla1,2, Niki Gavrielatou1,2, Thazin Nwe Aung 1,2,
Saba Shafi1,2, Pok Fai Wong1,2, Shlomit Jessel2,6, Harriet M. Kluger2,6, Konstantinos N. Syrigos7, Sarah Warren8,
Mark Gerstein 3,4,9,10 and David L. Rimm 1,2

Treatment with immune checkpoint inhibitors has altered the course of malignant melanoma, with approximately half of the
patients with advanced disease surviving for more than 5 years after diagnosis. Currently, there are no biomarker methods for
predicting outcome from immunotherapy. Here, we obtained transcriptomic information from a total of 105 baseline tumor
samples comprising two cohorts of patients with advanced melanoma treated with programmed cell death protein 1 (PD-1)-based
immunotherapies. Gene expression profiles were correlated with progression-free survival (PFS) within consecutive clinical benefit
intervals (i.e., 6, 12, 18, and 24 months). Elastic net binomial regression models with cross validation were utilized to compare the
predictive value of distinct genes across time. Lasso regression was used to generate a signature predicting long-term benefit (LTB),
defined as patients who remain alive and free of disease progression at 24 months post treatment initiation. We show that baseline
gene expression profiles were consistently able to predict long-term immunotherapy outcomes with high accuracy. The predictive
value of different genes fluctuated across consecutive clinical benefit intervals, with a distinct set of genes defining benefit at
24 months compared to earlier outcomes. A 12-gene signature was able to predict LTB following anti-PD-1 therapy with an area
under the curve (AUC) equal to 0.92 and 0.74 in the training and validation set, respectively. Evaluation of LTB, via a unique
signature may complement objective response classification and characterize the logistics of sustained antitumor immune
responses.
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INTRODUCTION
With incidence rates rising over the past 40 years, melanoma is
projected to cause about 100,000 new cases and 8000 deaths in
the United States in 20221–3. Development of monoclonal
antibodies targeting the cytotoxic T-lymphocyte antigen-4
(CTLA-4; ipilimumab, approved by the FDA in 2011) and
programmed cell death protein 1 (PD-1; nivolumab, pembrolizu-
mab, approved by the FDA in 2014) has dramatically improved
outcomes for patients with advanced disease; five-year survival
rates have climbed to 52% for previously untreated patients
receiving the combination of ipilimumab and nivolumab and
41–44% for those receiving anti-PD-1 monotherapy4,5. More
importantly, unlike classic chemotherapy or targeted therapies,
pivotal clinical trials for immune checkpoint inhibitors (ICIs) have
documented a plateau of durable responses apparent at the tail of
the survival curves. In the real world, a large fraction of long-term
survivors may be off-treatment and have no active disease, having
required only immune checkpoint inhibition and at some point,
local therapy for residual or oligometastatic disease6.
Currently, there are no FDA-approved biomarkers predictive of

response to ICIs in patients with melanoma. Baseline assessment
of programmed death-ligand 1 (PD-L1) expression by immuno-
histochemistry, tumor infiltration by CD8-positive T cells, evidence
of an inflamed tumor microenvironment (TME) driven by active
interferon gamma (IFNγ) signaling detected by gene expression

profiling, or high tumor mutational burden (TMB) have shown
limited predictive value when tested prospectively or have been
challenging to implement in the clinic7–15. Moreover, the
evaluation of objective response rate by standard radiographic
Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 system-
atically fails to capture certain patterns of response to immu-
notherapy and may underestimate therapeutic benefit from
ICIs16,17. For patients who improve with immune checkpoint
inhibition, categorical definition of benefit is critical. Determina-
tion of the optimal duration of treatment is also needed, with
implications to treatment-related toxicity, quality of life and health
economics; several studies have suggested that a limited rather
than continued course of treatment may be sufficient to produce
profound responses18. Conversely, for those who develop primary
or acquired resistance to ICIs, implementation of novel
approaches, including new immunotherapy combinations,
through clinical trials may prove valuable.
Here, we sought to determine whether long-term benefit (LTB)

to immunotherapy represents a biologically distinct entity
compared with objective response or short-term outcomes. To
do so, we acquired baseline transcriptomic information from two
cohorts of patients with melanoma treated with PD-1-based
immunotherapies. Instead of objective response classification per
RECIST 1.1, we utilized progression-free survival (PFS) exclusively
to separate patients who benefit from immune therapy, from
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those who do not. We provide proof of concept that different
gene expression profiles are associated with outcome at
subsequent timepoints post treatment initiation. We further
develop and validate a signature that can accurately predict the
benefit from immunotherapy at 24 months, characterizing a
subgroup of long-term survivors that reside in the tail of the
survival curves. Such patients are essentially candidates for
functional cure and should probably be managed in a different
manner from those who show a response by RECIST 1.1.

RESULTS
Cohort characteristics
A total of 105 patients were included in the analysis (Fig. 1). Median
age of study participants was 63 years, ranging from 16 to 88 years.
Sixty patients were males and 45 were females. Activating BRAF and
NRAS mutations were present in 32 (31%) and 18 (17%), respectively.
All patients received PD-1-based immunotherapies in the advanced
setting. Fifty-eight patients (55%) received anti-PD-1 monotherapy,
including 32 treated with pembrolizumab and 26 treated with
nivolumab, and 47 patients (45%) received combination immunother-
apy with anti-CTLA-4 plus anti-PD-1 (ipilimumab plus nivolumab). It
should be noted that 22 patients (21%) had received ipilimumab
monotherapy in a previous line of treatment. ORR was 43%. Disease
progression at data cutoff was documented in 67 patients (64%).
Median PFS for the study cohort was 7.4 months. STB was observed in
42 patients (40%); LTB, calculated at 24 months, was observed in 22
patients (21%). Forty-three patients (41%) survived until data cutoff
and median overall survival (OS) for the study cohort was 20.1 months.
Detailed cohort characteristics can be seen in Table 1.

Baseline gene expression profiles are consistently able to
predict LTB to PD-1 axis blockade
To predict clinical benefit from ICIs at different timepoints (i.e., 6,
12, 18, and 24 months post treatment initiation) based on gene
expression, we first tested a series of elastic net binomial models
with α ∊ [0,1] with increments of 0.1 (α equals ‘0 ‘for ridge and ‘1’
for lasso regression; Fig. 2). In general, α= 0.8 appeared to provide
consistent AUC values at all four timepoints as well as highest
performance for the model predicting STB. Alpha values close to
‘1’ approach a lasso regression model, which reduces the number
of genes to avoid overfitting. Overall, our models showed the
highest accuracy for predicting clinical benefit at 24 months (LTB),
with AUC values consistently over 0.8. These results suggested
that different genes account for the prediction of PFS across time.

Fig. 1 Study workflow. Development of gene signatures that predict LTB to programmed cell death protein 1-based immunotherapies in
patients with melanoma. Created with BioRender.com. FFPE formalin-fixed paraffin-embedded, ORR objective response rate, STB short-term
benefit, LTB long-term benefit.

Table 1. Patient characteristics.

Characteristic Discovery cohort
(2011–2017)

Validation cohort
(2017–2020)

Total

N (%) N (%) N (%)

Overall 59 (100) 46 (100) 105 (100)

Age

Median (range) 62 (16–88) 66 (31–88) 63 (16–88)

Sex

Male 33 (56) 27 (59) 60 (57)

Female 26 (44) 19 (41) 45 (43)

Stage

II 0 (0) 2 (4) 2 (2)

III 1 (2) 5 (11) 6 (6)

IV 58 (98) 39 (85) 97 (92)

Mutation status

BRAF 18 (31) 14 (30) 32 (31)

NRAS 8 (14) 10 (22) 18 (17)

None 32 (54) 20 (43) 52 (50)

Prior immune checkpoint blockade

Yes 16 (27) 6 (13) 22 (21)

No 43 (73) 40 (87) 83 (79)

Treatment

Pembrolizumab 23 (39) 9 (20) 32 (31)

Nivolumab 11 (19) 14 (30) 25 (24)

Ipilimumab
plus nivolumab

25 (42) 23 (50) 48 (46)

Best overall response

Complete
response

10 (17) 11 (24) 21 (20)

Partial response 16 (27) 8 (17) 24 (23)

Stable disease 17 (29) 8 (17) 25 (24)

Progressive
disease

16 (27) 18 (39) 34 (32)

Long-term benefit

Yes 13 (22) 9 (20) 22 (21)

No 37 (63) 27 (59) 64 (61)

CR complete response, PR partial response, SD stable disease, PD
progressive disease.
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The predictive value of distinct genes fluctuates across time
To examine the potential variability in the predictive value of
distinct genes across consecutive clinical benefit intervals, we
trained four different elastic net binomial models with α= 0.8, one
for each of the four clinical benefit subcategories. Then, for every
model we calculated gene importance using variant important
scores. Finally, we compared each gene’s importance across all
four clinical benefit intervals by fitting a linear curve and testing
for positive or negative association. Overall, our results indicated
the inclusion or exclusion of different genes as PFS increases
(Fig. 3). Indicatively, PVR and MMP7 showed the highest
correlation coefficient (R= 0.94) with benefit at 24 months, while
GPSM3 showed the lowest (R=−0.93), indicating minor impor-
tance in the prediction of benefit at 24 months. Despite the small
number of timepoints sampled, PVR and MMP7 had p-values of
0.05 and 0.06, respectively. Similarly, genes such as STAT1 or
APOL6, had very large positive linear coefficients (based on linear

fit models) indicating a potential inclusion, while genes like CCL8
and COL11A1 the most negative.

A 12-gene signature predicts LTB to PD-1 axis blockade in
patients with melanoma
To identify a final prediction model with a reduced number of
genes that can potentially provide us with a future gene signature
for LTB, we utilized the discovery cohort (n= 59) to apply a Lasso
binomial regression in our set of 58 genes (α= 1; Fig. 4A). We
optimized parameter lambda (λ= 0.0207) using cross validation
and AUC from 1000 runs. Overall, our model identified coefficients
for 12 genes (CXCL8, DEFB134, ERBB2, HLA.DQA2, IDO1, INHBA,
MMP7, MYD88, NRDE2, P4HA2, PIK3CA, and PSMB10; Supplemen-
tary Table 2), with a maximum AUC equal to 0.92 (95% confidence
intervals [CI], 0.85–0.99; Fig. 4A). Notably, our LTB signature
performed significantly better than the already published Tumor
Inflammation Signature (TIS; AUC, 0.67; 95% CI, 0.54–0.82; Fig. 4B)

Fig. 2 Baseline gene expression profiling is accurate at predicting long-term immunotherapy outcomes. Comparison of elastic net
binomial models designed for the prediction of PFS at consecutive 6-month intervals across α values ranging from 0 to 1; α equals “0” for
ridge and “1” for lasso regression. Models designed for the prediction of PFS at 24 months perform consistently better in comparison with
models designed for the prediction of PFS at 6, 12, and 18 months. The error bars correspond to the 95% confidence intervals. PFS
progression-free survival.

Fig. 3 Variability in the predictive value of genes across consecutive clinical benefit intervals. Heatmap of gene importance across time.
The predictive value of certain genes varies in respect of time. A distinct set of genes appears to “switch on” at 24 months post treatment
initiation.
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in the discovery cohort10,19,20. Moreover, our optimized model for
the prediction of STB had an AUC of 0.75 (95% CI, 0.63–0.87); of
the genes included in the LTB model, only CXCL8 and HLA.DQA2
accounted for the prediction of STB. Our LTB model had an
accuracy of 0.86, sensitivity of 1, specificity of 0.46, PPV of 0.84,
and NPV of 1. The p-value for accuracy versus non-informative rate
(NIR) was 0.03. In addition, based on the Youden’s index, we
identified the optimal cutoff for our LTB scoring (LTB score= 0.32;
Fig. 4C, D). Our LTB model performed poorly in the TCGA
melanoma dataset (patients not treated with immunotherapy),
suggesting lack of prognostic value and immunotherapy specifi-
city (Supplementary Fig. 1).
The 12-gene signature was validated with a second indepen-

dent immunotherapy-treated melanoma cohort (validation
cohort), where it predicted LTB with an AUC of 0.74 (95% CI,
0.52–0.95; Fig. 5A). On the same cohort, the TIS and STB model
exhibited an AUC of 0.57 (95% CI, 0.39–0.75) and 0.60 (95% CI,
0.42–0.80), respectively (Fig. 5B). Using the optimal cutoff, patients
with high LTB score had significantly prolonged PFS compared
with patients with low LTB score in the validation cohort (log rank

test; p= 0.012; Fig. 5C, D). Furthermore, our set of 11 genes
(excluding HLA.DQA2) was highly predictive of LTB in a third
external validation cohort (Gide et al.) with an AUC of 0.87 (95% CI,
0.82–0.92; Supplementary Fig. 2).

DISCUSSION
In this proof-of-concept study, we used a simple, sensitive, and
quantitative approach, compatible with tissue-limiting FFPE tumor
specimens routinely obtained in the clinic, to capture transcrip-
tomic information portraying the complex interplay between the
tumor and the TME. We observed that baseline immune gene
expression profiling was more accurate at predicting long-term
immunotherapy outcomes (at 24 months post treatment initia-
tion) compared with short-term (<24 months post treatment
initiation). Next, we documented a switch in the predictive value
of single genes when evaluated at consecutive timepoints; while
certain genes are associated with response early in the course of
treatment, others appear to dominate for patients with LTB at
24 months. Finally, through a rigorous multistep process, we

Fig. 4 Development of the 12-gene signature that predicts LTB from programmed cell death protein 1-based immunotherapies in
patients with advanced or metastatic melanoma. A Receiver operating characteristic curves for LTB and STB signatures in the discovery set.
B Receiver operating characteristic curves for the TIS signature in the discovery set. C Violin plot showing the distribution of scores according
to LTB outcome in the discovery set. D Kaplan–Meier curve for PFS for patients ranked high according to the 12-gene LTB signature score in
the discovery set. For the training set the low subgroup has a minimum score of 0.0007, 1st quantile of 0.045, median of 0.11, mean of 0.18,
3rd quartile of 0.28 and maximum score of 0.54; the high subgroup has a minimum score of 0.25, 1st quartile of 0.41, median of 0.53, mean of
0.53, 3rd quartile of 0.63 and maximum value of 0.89. The error bars correspond to the 95% confidence intervals. LTB long-term benefit, STB
short-term benefit, AUC area under the curve, PFS progression-free survival.
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developed a 12-gene signature that predicted LTB to PD-1-based
immunotherapies in patients with melanoma.
The role of TIS in predicting objective response to immunother-

apy has been established previously. In their study, Cristescu et al.
used two clinical trial cohorts (KEYNOTE-001, KEYNOTE-006)
comprising a total of 89 patients with advanced melanoma that
were treated with pembrolizumab20. They found that TIS was able
to predict objective response with an AUC of 0.64. In our study, we
used 2 real-world cohorts comprising a total of 105 patients with
advanced melanoma that were treated with either of the three
FDA-approved regimens for advanced disease (nivolumab, pem-
brolizumab, nivolumab plus ipilimumab). We showed that TIS was
able to predict objective response with an AUC of 0.67 in the
discovery cohort (n= 59) and an AUC of 0.57 in the validation
cohort (n= 46). Despite any differences in treatment regimens,
the combined AUC of both our cohorts would be extremely close
to that of Cristescu et al. and this is in support of our findings.
To evaluate benefit following treatment with ICIs we show that

conventional objective response classification based on radio-
graphic RECIST 1.1 may be less valuable in thinking about patient

gain. Bidimensional tumor shrinkage typically characterizes tumor
cell death as a result of cytotoxic chemotherapy or targeted
therapies21. However, classic RECIST 1.1 do not capture atypical
patterns of response, such as mixed response or pseudoprogres-
sion, occasionally seen in patients receiving ICIs17. In addition,
radiographic assessment of response does not always correlate
with time to progression6. Although complete eradication of
tumor lesions may predict prolonged PFS, documentation of a
partial response or even stable disease does not preclude
sustained antitumor responses22. We alternately assessed treat-
ment benefit as a binary variable (i.e., yes, no) for patients who
remained progression-free over successive 6-month intervals.
While classic chemotherapy might perform comparably, or even
better than immunotherapy during the first six months of
treatment, immune therapies produce a plateau or flattening at
the tail of the survival curves, conferring durable survival benefit in
a subset of patients23,24. In fact, matching-adjusted indirect
comparisons of dual immune checkpoint blockade with ipilimu-
mab and nivolumab versus combined BRAF and MEK inhibition in
patients with melanoma show that tentative benefits from

Fig. 5 Validation of the 12-gene signature that predicts LTB from programmed cell death protein 1-based immunotherapies in patients
with advanced or metastatic melanoma. A Receiver operating characteristic curves for LTB and STB signatures in the validation set.
B Receiver operating characteristic curves for the TIS signature in the validation set. C Violin plot showing the distribution of scores according
to LTB outcome in the validation set. D Kaplan–Meier curve for PFS for patients ranked high according to the 12-gene LTB signature score in
the validation set. For the validation set the low subgroup has a minimum score of 0.0001396, 1st quartile of 0.018, median of 0.09, mean of
0.12, 3rd quartile of 0.18 and maximum score of 0.39; the high subgroup has a minimum score of 0.1880, 1st quartile of 0.32, median of 0.7,
mean of 0.57, 3rd quartile of 0.74 and maximum score of 0.84. The error bars correspond to the 95% confidence intervals. LTB long-term
benefit, STB short-term benefit, AUC area under the curve, PFS progression-free survival.
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immunotherapy emerge after the first 12 months of treatment25.
In CheckMate 067, PFS curves begin to flatten after ~24 months,
irrespective of immunotherapy agent administered; unconfined
by the effect of subsequent anticancer therapies, the flattening of
the PFS curve at 24 months appears quite stable thereafter
representing a useful surrogate for long-term immunotherapy
outcomes (i.e., PFS at five years post treatment initiation,
OS)4,26–28.
The fact that the predictive value of certain genes fluctuates

based on the timepoint at which PFS is assessed is the most
notable finding from the study. Our data indicate a potential
positive switch for CD274 at 24 months post treatment initiation.
Although PD-L1 positivity by IHC has limited predictive value for
objective response classification in patients with melanoma,
elevated levels of CD274 mRNA at baseline might explain, to
some degree, durable responses to PD-1-based
immunotherapies29.
Multigene signatures represent an effective approach to

characterize the dynamics between the tumor and the TME. In
fact, they can simultaneously outline and quantify multiple
aspects of the latter that are linked with response to therapy.
Using a lasso regression model and stepwise cross validation to
minimize the risk of overfitting, we identified a set of genes that
can accurately select patients who will experience stable tumor
regression. Our final 12-gene LTB signature encompassed two
major components of the tumor/TME interaction. The first
component pertains to the hallmarks of cancer including
relentless proliferation, evasion of growth suppression, resistance
to apoptosis, and activation of invasion and metastasis. To this
regard, increased baseline PIK3CA expression showed a high-
positive association with LTB. Preclinical data support that PD-L1
expression levels are not influenced by oncogenic events in the
phosphatidylinositol 3-kinase (PI3K) signaling pathway30. How-
ever, increased PI3K/AKT pathway activation, as documented in
patients with melanoma harboring BRAF V600K mutations,
correlated with high tumor mutational load and improved
immunotherapy outcomes31. The second component appears to
relate to the immune response towards the primary tumor.
Current literature has linked objective response to immunother-
apy with increased local IFNγ production10. Our findings clearly
suggest a role for preexisting IFNγ signaling as well as enhanced
antigen presentation in LTB from PD-1-based immunotherapies.
As a matter of fact, IDO1 and PSMB10 that have been implicated in
the prediction of objective response by Ayers et al. also take part
in the prediction of LTB in our model; interestingly, both genes
appear to gain importance over time.
Previous efforts from our group led to the generation of a mixed

RNA and protein model (YMMM) for the prediction of best overall
response (BOR) to immune checkpoint inhibition in patients with
melanoma32. Notably, only NRDE2 contributed to the prediction of
both BOR and LTB. Nuclear RNAi-defective 2 (NRDE2) is an
evolutionarily conserved protein involved in RNA splicing; NRDE2
is responsible for suppressing intron retention with a tropism for
pre-mRNAs with short, weak, GC-rich introns33,34. In addition, loss
of NRDE2 results in severe genomic instability with accumulation
of double-strand breaks35. In our models, NRDE2 demonstrated an
inverse correlation with outcome. Hence NRDE2-dependent
genomic events might lead to the aggregation of neoantigens
rendering melanoma tumors susceptible to PD-1-based
immunotherapies.
From a clinical standpoint, baseline computation of LTB, with

further validation, could be a valuable complement to current
companion diagnostic tests that focus on objective response
classification. It incorporates follow-up information spanning a
period of two years and enables simultaneous evaluation of
immunotherapy outcomes at a second time point. Thus, assess-
ment of LTB could increase confidence in the point estimate of
objective response and, with a maximum sensitivity, identify false

negative cases. Also, it may mark candidates for “functional cure”,
with implications to treatment discontinuation, and others in need
of more intensive or alternative treatment approaches36. Finally,
evaluation of LTB may provide useful insights into the evolving
interactions between cancer cells and the host immune system
that allow tumors evade recognition according to the immunoe-
diting theory37.
This study is subject to several limitations. First, the study

cohorts were collected retrospectively. Second, patients received
either single agent or combination immunotherapy. The fact that
the development of the 12-gene signature was based on previous
selection of 770 genes contained in the nCounter PanCancer IO
360™ Panel represents an additional limitation of our study
compared to an unbiased examination of the transcriptome. The
prognostic value of the genes that comprise the 12-gene
signature requires prospective evaluation in randomized trials
(versus a “no treatment” arm), which would be challenging or
impossible from an ethical perspective. Finally, this is a proof-of-
concept study and further analyses are pending to standardize the
12-gene LTB signature for different normalization methods used in
RNA sequencing versus NanoString-obtained datasets and thus,
ensure wide applicability across centers.
In conclusion, assessment of LTB allows for the evaluation of

benefit at 24 months and provides deeper understanding of the
biology relating to treatment with ICIs. Added to the assessment
of objective response, it may evolve into a biomarker approach
that is tailor-made to immune therapies, representing a paradigm
shift in biomarker design.

METHODS
Patient cohorts
The study cohorts are retrospective collections of melanoma
patients with available tissue, treated with PD-1-based immu-
notherapies in the advanced setting from 2011 to 2017 (discovery
cohort) and from 2017 to 2020 (validation cohort) at Yale Cancer
Center (New Haven, CT). Patients with uveal melanoma were
excluded. Pretreatment formalin-fixed, paraffin-embedded (FFPE)
specimens from Yale Pathology archives were reviewed by a
board-certified pathologist. Clinicopathological data were col-
lected from clinical records and pathology reports; the data cutoff
date was September 1, 2020. RECIST 1.1 were used to classify best
overall response as complete response (CR), partial response (PR),
stable disease (SD), or progressive disease (PD), and to determine
the objective response rate (ORR)16. PFS was utilized to generate
successive, 6-month clinical benefit intervals; short-term benefit
(STB) was defined for patients who were alive and free of disease
progression within 6 months from treatment initiation and long-
term benefit (LTB) for those who were alive and free of disease
progression within 24 months from treatment initiation. Patients
whose follow-up was shorter than the prespecified intervals were
excluded from the analysis. All patients provided written informed
consent. The study was approved by the Yale Human Investigation
Committee protocol #9505008219 and conducted in accordance
with the Declaration of Helsinki.
Clinical data were also downloaded from the Genomic Data

Commons (GDC) data portal from The Cancer Genome Atlas
(TCGA) Research Network: https://cancergenome.nih.gov. Overall
survival (OS) annotation was provided by TCGA for 470 patients
with primary melanoma not treated with immunotherapy (TCGA-
SKCM).
Finally, publicly available RNA sequencing information from

pretreatment samples of patients with advanced melanoma
treated with immune checkpoint inhibitors were downloaded to
obtain external validation of our LTB gene signature38. Given that
this dataset used TPM normalization for gene expression (rather
than gene count normalization based on a set of core genes from
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the NanoString nCounter platform), and that HLA.DQA2 gene was
absent, we reworked our model’s weights to test the predictive
value of the remaining 11 genes for LTB.

Quality assessment of FFPE tissue specimens
Similar to previous studies, one cut section from each tissue block was
routinely stained with hematoxylin and eosin and coverslipped for
assessment of sample quality. Each hematoxylin and eosin-stained
slide was reviewed by a board-certified pathologist to evaluate the
adequacy of tumor cells, the quality of tissue preservation, and
whether significant artifacts relating to fixation, processing, or
prefixation tissue handling were present. Specimens containing no
or minimal tumor tissue were excluded from the analysis10.

RNA isolation and gene expression analysis
Total RNA was isolated from 5 μm-thick pretreatment FFPE
sections of tumors fixed on positively charged slides using the
High Pure FFPET RNA Isolation Kit (Roche) following the
manufacturer’s protocols. RNA was quantified using the NanoDrop
ND1000 spectrophotometer (Thermo Fisher Scientific). Gene
expression analysis was conducted on the NanoString nCounter
platform (NanoString Technologies). The nCounter PanCancer IO
360™ Panel containing 770 genes related to the tumor, its
microenvironment and the antitumor immune response was used.
Per sample, 250 ng of total RNA in a final volume of 5 μl was mixed
with a 3′ biotinylated capture probe and a 5′ reporter probe and
tagged with a fluorescent barcode from the custom gene
expression code set. Probes and target transcripts were hybridized
at 67 °C for 16–24 h per the manufacturer’s recommendations.
Hybridized samples were run on the NanoString nCounter
preparation station using the high-sensitivity protocol, in which
excess capture and reporter probes were removed and transcript-
specific ternary complexes were immobilized on a streptavidin-
coated cartridge. The cartridge was scanned at maximum scan
resolution on the nCounter Digital Analyzer10.

Normalization
Raw data counts were normalized using the geomean of 10
housekeeping genes included in the nCounter PanCancer IO 360™
Panel and each gene was adjusted based on the average of 2
panel standards across all data. Then, the housekeeper- and panel
standard-normalized data were log2 transformed.

Statistical analysis
Our initial dataset consisted of 770 genes. To reduce the initial
number of genes, we first implemented a correlation analysis
between each gene’s expression and clinical benefit at subse-
quent timepoints (6, 12, 18, and 24 months post treatment
initiation) in our cohort. For each gene correlation, we collected
the resulting non-adjusted p-value. Then, we selected those with a
non-adjusted p-value of < 0.05 for each timepoint and pooled
them together. This resulted in a final list of 58 genes, containing
those associated with clinical benefit in at least one timepoint
(Supplementary Table 1). Elastic net binomial regression models
were inferred using (glmnet) package. Cross validation was
performed using (cv.glmnet). For every model we optimized the
lambda parameter (λ; nlamda= 1000) using an 8-fold cross
validation and maximum AUC. To determine the best AUC across
different alpha values (α from 0 to 1 with 0.1 increments) we used
100 replicates. Across all α values, we selected α= 0.8 for our
elastic net models since all four models exhibited solid
performance (AUC > 0.75), and the performance of the STB model
(PFS at 6 months) was highest. To determine model coefficients
for α= 0.8 (elastic net) we used 1000 replicates. Gene importance
and variable importance plots were inferred using the variable
importance plots (vip) package39. To determine whether there is a

change in gene importance over time, we calculated each gene’s
importance for every optimized elastic net binomial regression
model with α= 0.8, respectively. Then we fitted a linear curve to
every gene’s importance trajectory across the four clinical benefit
intervals. High positive coefficients (slope) and correlation
coefficients (Pearson r) indicated inclusion of a gene in the
signature for clinical benefit over subsequent intervals. Heatmap
plots were inferred using (gplots) and (RColorBrewer) packages40.
For our final prediction Lasso models (at 6 and 24 months with
independent training and validation) we also used 1000 replicates
to obtain the best model. Specificity, sensitivity, positive predictive
value (PPV), negative predictive value (NPV), accuracy, and p-value
were calculated using the confusion matrix from (caret) package,
while ROC curves were drawn using the (ROCR) package41,42.
Finally, we used the Youden’s index to calculate the optimal cutoff
and separate patients into high and low risk subgroups. Kaplan-
Meier curves and log rank test were implemented using (survival)
and (survminer) packages43,44. The entire analysis was performed
using R 4.1.2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study have been deposited in NCBI’s Gene
Expression Omnibus and are accessible through GEO Series accession number
GSE215868. The TCGA-SKCM can be accessed at https://cancergenome.nih.gov. The
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through the corresponding publication38.

CODE AVAILABILITY
For replicating stochasticity, we used “set.seed(14752)”. For the cv.glmnet function
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