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Abstract

Many deep learning architectures have

been proposed to model the composition-

ality in text sequences, requiring a sub-

stantial number of parameters and ex-

pensive computations. However, there

has not been a rigorous evaluation re-

garding the added value of sophisticated

compositional functions. In this paper,

we conduct a point-by-point comparative

study between Simple Word-Embedding-

based Models (SWEMs), consisting of

parameter-free pooling operations, rela-

tive to word-embedding-based RNN/CNN

models. Surprisingly, SWEMs exhibit

comparable or even superior performance

in the majority of cases considered. Based

upon this understanding, we propose two

additional pooling strategies over learned

word embeddings: (i) a max-pooling

operation for improved interpretability;

and (ii) a hierarchical pooling operation,

which preserves spatial (n-gram) informa-

tion within text sequences. We present

experiments on 17 datasets encompassing

three tasks: (i) (long) document classifi-

cation; (ii) text sequence matching; and

(iii) short text tasks, including classifica-

tion and tagging.

1 Introduction

Word embeddings, learned from massive unstruc-

tured text data, are widely-adopted building blocks

for Natural Language Processing (NLP). By rep-

resenting each word as a fixed-length vector,

these embeddings can group semantically simi-

lar words, while implicitly encoding rich linguis-

tic regularities and patterns (Bengio et al., 2003;

Mikolov et al., 2013; Pennington et al., 2014).

Leveraging the word-embedding construct, many

deep architectures have been proposed to model

the compositionality in variable-length text se-

quences. These methods range from simple op-

erations like addition (Mitchell and Lapata, 2010;

Iyyer et al., 2015), to more sophisticated compo-

sitional functions such as Recurrent Neural Net-

works (RNNs) (Tai et al., 2015; Sutskever et al.,

2014), Convolutional Neural Networks (CNNs)

(Kalchbrenner et al., 2014; Kim, 2014; Zhang

et al., 2017a) and Recursive Neural Networks

(Socher et al., 2011a).

Models with more expressive compositional

functions, e.g., RNNs or CNNs, have demon-

strated impressive results; however, they are typ-

ically computationally expensive, due to the need

to estimate hundreds of thousands, if not millions,

of parameters (Parikh et al., 2016). In contrast,

models with simple compositional functions often

compute a sentence or document embedding by

simply adding, or averaging, over the word em-

bedding of each sequence element obtained via,

e.g., word2vec (Mikolov et al., 2013), or GloVe

(Pennington et al., 2014). Generally, such a Sim-

ple Word-Embedding-based Model (SWEM) does

not explicitly account for spatial, word-order in-

formation within a text sequence. However, they

possess the desirable property of having signif-

icantly fewer parameters, enjoying much faster

training, relative to RNN- or CNN-based models.

Hence, there is a computation-vs.-expressiveness

tradeoff regarding how to model the composition-

ality of a text sequence.

In this paper, we conduct an extensive experi-

mental investigation to understand when, and why,

simple pooling strategies, operated over word em-

beddings alone, already carry sufficient informa-

tion for natural language understanding. To ac-

count for the distinct nature of various NLP tasks

that may require different semantic features, we
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compare SWEM-based models with existing re-

current and convolutional networks in a point-

by-point manner. Specifically, we consider 17

datasets, including three distinct NLP tasks: doc-

ument classification (Yahoo news, Yelp reviews,

etc.), natural language sequence matching (SNLI,

WikiQA, etc.) and (short) sentence classifica-

tion/tagging (Stanford sentiment treebank, TREC,

etc.). Surprisingly, SWEMs exhibit comparable or

even superior performance in the majority of cases

considered.

In order to validate our experimental findings,

we conduct additional investigations to understand

to what extent the word-order information is uti-

lized/required to make predictions on different

tasks. We observe that in text representation tasks,

many words (e.g., stop words, or words that are

not related to sentiment or topic) do not meaning-

fully contribute to the final predictions (e.g., sen-

timent label). Based upon this understanding, we

propose to leverage a max-pooling operation di-

rectly over the word embedding matrix of a given

sequence, to select its most salient features. This

strategy is demonstrated to extract complementary

features relative to the standard averaging opera-

tion, while resulting in a more interpretable model.

Inspired by a case study on sentiment analysis

tasks, we further propose a hierarchical pooling

strategy to abstract and preserve the spatial infor-

mation in the final representations. This strategy

is demonstrated to exhibit comparable empirical

results to LSTM and CNN on tasks that are sensi-

tive to word-order features, while maintaining the

favorable properties of not having compositional

parameters, thus fast training.

Our work presents a simple yet strong base-

line for text representation learning that is widely

ignored in benchmarks, and highlights the gen-

eral computation-vs.-expressiveness tradeoff asso-

ciated with appropriately selecting compositional

functions for distinct NLP problems. Furthermore,

we quantitatively show that the word-embedding-

based text classification tasks can have the similar

level of difficulty regardless of the employed mod-

els, using the subspace training (Li et al., 2018) to

constrain the trainable parameters. Thus, accord-

ing to Occam’s razor, simple models are preferred.

2 Related Work

A fundamental goal in NLP is to develop expres-

sive, yet computationally efficient compositional

functions that can capture the linguistic structure

of natural language sequences. Recently, several

studies have suggested that on certain NLP ap-

plications, much simpler word-embedding-based

architectures exhibit comparable or even superior

performance, compared with more-sophisticated

models using recurrence or convolutions (Parikh

et al., 2016; Vaswani et al., 2017). Although

complex compositional functions are avoided in

these models, additional modules, such as atten-

tion layers, are employed on top of the word em-

bedding layer. As a result, the specific role that

the word embedding plays in these models is not

emphasized (or explicit), which distracts from un-

derstanding how important the word embeddings

alone are to the observed superior performance.

Moreover, several recent studies have shown em-

pirically that the advantages of distinct composi-

tional functions are highly dependent on the spe-

cific task (Mitchell and Lapata, 2010; Iyyer et al.,

2015; Zhang et al., 2015a; Wieting et al., 2015;

Arora et al., 2016). Therefore, it is of interest to

study the practical value of the additional expres-

siveness, on a wide variety of NLP problems.

SWEMs bear close resemblance to Deep Aver-

aging Network (DAN) (Iyyer et al., 2015) or fast-

Text (Joulin et al., 2016), where they show that

average pooling achieves promising results on cer-

tain NLP tasks. However, there exist several key

differences that make our work unique. First, we

explore a series of pooling operations, rather than

only average-pooling. Specifically, a hierarchi-

cal pooling operation is introduced to incorporate

spatial information, which demonstrates superior

results on sentiment analysis, relative to average

pooling. Second, our work not only explores when

simple pooling operations are enough, but also in-

vestigates the underlying reasons, i.e., what se-

mantic features are required for distinct NLP prob-

lems. Third, DAN and fastText only focused on

one or two problems at a time, thus a compre-

hensive study regarding the effectiveness of vari-

ous compositional functions on distinct NLP tasks,

e.g., categorizing short sentence/long documents,

matching natural language sentences, has hereto-

fore been absent. In response, our work seeks

to perform a comprehensive comparison with re-

spect to simple-vs.-complex compositional func-

tions, across a wide range of NLP problems, and

reveals some general rules for rationally selecting

models to tackle different tasks.
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3 Models & training

Consider a text sequence represented as X (ei-

ther a sentence or a document), composed of a se-

quence of words: {w1, w2, ...., wL}, where L is

the number of tokens, i.e., the sentence/document

length. Let {v1, v2, ...., vL} denote the respective

word embeddings for each token, where vl ∈ R
K .

The compositional function, X → z, aims to

combine word embeddings into a fixed-length sen-

tence/document representation z. These represen-

tations are then used to make predictions about se-

quence X . Below, we describe different types of

functions considered in this work.

3.1 Recurrent Sequence Encoder

A widely adopted compositional function is de-

fined in a recurrent manner: the model succes-

sively takes word vector vt at position t, along

with the hidden unit ht−1 from the last position

t − 1, to update the current hidden unit via ht =
f(vt, ht−1), where f(·) is the transition function.

To address the issue of learning long-term de-

pendencies, f(·) is often defined as Long Short-

Term Memory (LSTM) (Hochreiter and Schmid-

huber, 1997), which employs gates to control the

flow of information abstracted from a sequence.

We omit the details of the LSTM and refer the in-

terested readers to the work by Graves et al. (2013)

for further explanation. Intuitively, the LSTM en-

codes a text sequence considering its word-order

information, but yields additional compositional

parameters that must be learned.

3.2 Convolutional Sequence Encoder

The Convolutional Neural Network (CNN) archi-

tecture (Kim, 2014; Collobert et al., 2011; Gan

et al., 2017; Zhang et al., 2017b; Shen et al.,

2018) is another strategy extensively employed

as the compositional function to encode text se-

quences. The convolution operation considers

windows of n consecutive words within the se-

quence, where a set of filters (to be learned) are

applied to these word windows to generate corre-

sponding feature maps. Subsequently, an aggre-

gation operation (such as max-pooling) is used on

top of the feature maps to abstract the most salient

semantic features, resulting in the final representa-

tion. For most experiments, we consider a single-

layer CNN text model. However, Deep CNN text

models have also been developed (Conneau et al.,

2016), and are considered in a few of our experi-

ments.

3.3 Simple Word-Embedding Model

(SWEM)

To investigate the raw modeling capacity of word

embeddings, we consider a class of models with

no additional compositional parameters to en-

code natural language sequences, termed SWEMs.

Among them, the simplest strategy is to compute

the element-wise average over word vectors for a

given sequence (Wieting et al., 2015; Adi et al.,

2016):

z =
1

L

LX

i=1

vi . (1)

The model in (1) can be seen as an average pool-

ing operation, which takes the mean over each of

the K dimensions for all word embeddings, result-

ing in a representation z with the same dimension

as the embedding itself, termed here SWEM-aver.

Intuitively, z takes the information of every se-

quence element into account via the addition op-

eration.

Max Pooling Motivated by the observation that,

in general, only a small number of key words con-

tribute to final predictions, we propose another

SWEM variant, that extracts the most salient fea-

tures from every word-embedding dimension, by

taking the maximum value along each dimension

of the word vectors. This strategy is similar to the

max-over-time pooling operation in convolutional

neural networks (Collobert et al., 2011):

z = Max-pooling(v1, v2, ..., vL) . (2)

We denote this model variant as SWEM-max.

Here the j-th component of z is the maximum

element in the set {v1j , . . . , vLj}, where v1j is,

for example, the j-th component of v1. With this

pooling operation, those words that are unimpor-

tant or unrelated to the corresponding tasks will

be ignored in the encoding process (as the com-

ponents of the embedding vectors will have small

amplitude), unlike SWEM-aver where every word

contributes equally to the representation.

Considering that SWEM-aver and SWEM-max

are complementary, in the sense of accounting for

different types of information from text sequences,

we also propose a third SWEM variant, where the

two abstracted features are concatenated together

to form the sentence embeddings, denoted here

as SWEM-concat. For all SWEM variants, there

are no additional compositional parameters to be
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Model Parameters Complexity Sequential Ops

CNN n ·K · d O(n · L ·K · d) O(1)
LSTM 4 · d · (K + d) O(L · d2 + L ·K · d) O(L)
SWEM 0 O(L ·K) O(1)

Table 1: Comparisons of CNN, LSTM and SWEM

architectures. Columns correspond to the number

of compositional parameters, computational com-

plexity and sequential operations, respectively.

learned. As a result, the models only exploit intrin-

sic word embedding information for predictions.

Hierarchical Pooling Both SWEM-aver and

SWEM-max do not take word-order or spatial in-

formation into consideration, which could be use-

ful for certain NLP applications. So motivated, we

further propose a hierarchical pooling layer. Let

vi:i+n−1 refer to the local window consisting of

n consecutive words words, vi, vi+1, ..., vi+n−1.

First, an average-pooling is performed on each

local window, vi:i+n−1. The extracted features

from all windows are further down-sampled with

a global max-pooling operation on top of the rep-

resentations for every window. We call this ap-

proach SWEM-hier due to its layered pooling.

This strategy preserves the local spatial infor-

mation of a text sequence in the sense that it keeps

track of how the sentence/document is constructed

from individual word windows, i.e., n-grams. This

formulation is related to bag-of-n-grams method

(Zhang et al., 2015b). However, SWEM-hier

learns fixed-length representations for the n-grams

that appear in the corpus, rather than just capturing

their occurrences via count features, which may

potentially advantageous for prediction purposes.

3.4 Parameters & Computation Comparison

We compare CNN, LSTM and SWEM wrt their

parameters and computational speed. K denotes

the dimension of word embeddings, as above. For

the CNN, we use n to denote the filter width (as-

sumed constant for all filters, for simplicity of

analysis, but in practice variable n is commonly

used). We define d as the dimension of the final

sequence representation. Specifically, d represents

the dimension of hidden units or the number of fil-

ters in LSTM or CNN, respectively.

We first examine the number of compositional

parameters for each model. As shown in Table 1,

both the CNN and LSTM have a large number of

parameters, to model the semantic compositional-

ity of text sequences, whereas SWEM has no such

parameters. Similar to Vaswani et al. (2017), we

then consider the computational complexity and

the minimum number of sequential operations re-

quired for each model. SWEM tends to be more

efficient than CNN and LSTM in terms of compu-

tation complexity. For example, considering the

case where K = d, SWEM is faster than CNN or

LSTM by a factor of nd or d, respectively. Further,

the computations in SWEM are highly paralleliz-

able, unlike LSTM that requires O(L) sequential

steps.

4 Experiments

We evaluate different compositional functions on

a wide variety of supervised tasks, including

document categorization, text sequence matching

(given a sentence pair, X1, X2, predict their re-

lationship, y) as well as (short) sentence classifi-

cation. We experiment on 17 datasets concerning

natural language understanding, with correspond-

ing data statistics summarized in the Supplemen-

tary Material. Our code will be released to encour-

age future research.

We use GloVe word embeddings with K = 300
(Pennington et al., 2014) as initialization for all

our models. Out-Of-Vocabulary (OOV) words are

initialized from a uniform distribution with range

[−0.01, 0.01]. The GloVe embeddings are em-

ployed in two ways to learn refined word em-

beddings: (i) directly updating each word em-

bedding during training; and (ii) training a 300-

dimensional Multilayer Perceptron (MLP) layer

with ReLU activation, with GloVe embeddings as

input to the MLP and with output defining the re-

fined word embeddings. The latter approach cor-

responds to learning an MLP model that adapts

GloVe embeddings to the dataset and task of in-

terest. The advantages of these two methods dif-

fer from dataset to dataset. We choose the bet-

ter strategy based on their corresponding perfor-

mances on the validation set. The final classifier is

implemented as an MLP layer with dimension se-

lected from the set [100, 300, 500, 1000], followed

by a sigmoid or softmax function, depending on

the specific task.

Adam (Kingma and Ba, 2014) is used to opti-

mize all models, with learning rate selected from

the set [1 × 10−3, 3 × 10−4, 2 × 10−4, 1 × 10−5]
(with cross-validation used to select the appro-

priate parameter for a given dataset and task).

Dropout regularization (Srivastava et al., 2014) is
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Model Yahoo! Ans. AG News Yelp P. Yelp F. DBpedia

Bag-of-means∗ 60.55 83.09 87.33 53.54 90.45
Small word CNN∗ 69.98 89.13 94.46 58.59 98.15
Large word CNN∗ 70.94 91.45 95.11 59.48 98.28

LSTM∗ 70.84 86.06 94.74 58.17 98.55

Deep CNN (29 layer)† 73.43 91.27 95.72 64.26 98.71

fastText ‡ 72.0 91.5 93.8 60.4 98.1

fastText (bigram)‡ 72.3 92.5 95.7 63.9 98.6

SWEM-aver 73.14 91.71 93.59 60.66 98.42
SWEM-max 72.66 91.79 93.25 59.63 98.24

SWEM-concat 73.53 92.66 93.76 61.11 98.57

SWEM-hier 73.48 92.48 95.81 63.79 98.54

Table 2: Test accuracy on (long) document classification tasks, in percentage. Results marked with ∗ are

reported in Zhang et al. (2015b), with † are reported in Conneau et al. (2016), and with ‡ are reported in

Joulin et al. (2016).

Politics Science Computer Sports Chemistry Finance Geoscience

philipdru coulomb system32 billups sio2 (SiO2) proprietorship fossil

justices differentiable cobol midfield nonmetal ameritrade zoos

impeached paranormal agp sportblogs pka retailing farming

impeachment converge dhcp mickelson chemistry mlm volcanic

neocons antimatter win98 juventus quarks budgeting ecosystem

Table 3: Top five words with the largest values in a given word-embedding dimension (each column

corresponds to a dimension). The first row shows the (manually assigned) topic for words in each column.

employed on the word embedding layer and final

MLP layer, with dropout rate selected from the

set [0.2, 0.5, 0.7]. The batch size is selected from

[2, 8, 32, 128, 512].

4.1 Document Categorization

We begin with the task of categorizing documents

(with approximately 100 words in average per

document). We follow the data split in Zhang et al.

(2015b) for comparability. These datasets can

be generally categorized into three types: topic

categorization (represented by Yahoo! Answer

and AG news), sentiment analysis (represented by

Yelp Polarity and Yelp Full) and ontology clas-

sification (represented by DBpedia). Results are

shown in Table 2. Surprisingly, on topic prediction

tasks, our SWEM model exhibits stronger perfor-

mances, relative to both LSTM and CNN compo-

sitional architectures, this by leveraging both the

average and max-pooling features from word em-

beddings. Specifically, our SWEM-concat model

even outperforms a 29-layer deep CNN model

(Conneau et al., 2016), when predicting topics.

On the ontology classification problem (DBpedia

dataset), we observe the same trend, that SWEM

exhibits comparable or even superior results, rela-

tive to CNN or LSTM models.

Since there are no compositional parameters

in SWEM, our models have an order of mag-

nitude fewer parameters (excluding embeddings)

than LSTM or CNN, and are considerably more

computationally efficient. As illustrated in Ta-

ble 4, SWEM-concat achieves better results on

Yahoo! Answer than CNN/LSTM, with only 61K

parameters (one-tenth the number of LSTM pa-

rameters, or one-third the number of CNN param-

eters), while taking a fraction of the training time

relative to the CNN or LSTM.

Model Parameters Speed

CNN 541K 171s
LSTM 1.8M 598s
SWEM 61K 63s

Table 4: Speed & Parameters on Yahoo! Answer

dataset.

Interestingly, for the sentiment analysis tasks,

both CNN and LSTM compositional functions

perform better than SWEM, suggesting that word-

order information may be required for analyzing

sentiment orientations. This finding is consis-

tent with Pang et al. (2002), where they hypoth-

esize that the positional information of a word in

text sequences may be beneficial to predict sen-

timent. This is intuitively reasonable since, for

instance, the phrase “not really good” and “re-

ally not good” convey different levels of nega-

tive sentiment, while being different only by their

word orderings. Contrary to SWEM, CNN and
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LSTM models can both capture this type of infor-

mation via convolutional filters or recurrent transi-

tion functions. However, as suggested above, such

word-order patterns may be much less useful for

predicting the topic of a document. This may be

attributed to the fact that word embeddings alone

already provide sufficient topic information of a

document, at least when the text sequences con-

sidered are relatively long.

4.1.1 Interpreting model predictions

Although the proposed SWEM-max variant gener-

ally performs a slightly worse than SWEM-aver,

it extracts complementary features from SWEM-

aver, and hence in most cases SWEM-concat ex-

hibits the best performance among all SWEM

variants. More importantly, we found that the

word embeddings learned from SWEM-max tend

to be sparse. We trained our SWEM-max model

on the Yahoo datasets (randomly initialized). With

the learned embeddings, we plot the values for

each of the word embedding dimensions, for the

entire vocabulary. As shown in Figure 1, most

of the values are highly concentrated around zero,

indicating that the word embeddings learned are

very sparse. On the contrary, the GloVe word

embeddings, for the same vocabulary, are consid-

erably denser than the embeddings learned from

SWEM-max. This suggests that the model may

only depend on a few key words, among the en-

tire vocabulary, for predictions (since most words

do not contribute to the max-pooling operation in

SWEM-max). Through the embedding, the model

learns the important words for a given task (those

words with non-zero embedding components).

Figure 1: Histograms for learned word em-

beddings (randomly initialized) of SWEM-max

and GloVe embeddings for the same vocabulary,

trained on the Yahoo! Answer dataset.

In this regard, the nature of max-pooling pro-

cess gives rise to a more interpretable model. For

a document, only the word with largest value in

each embedding dimension is employed for the fi-

nal representation. Thus, we suspect that semanti-

cally similar words may have large values in some

shared dimensions. So motivated, after training

the SWEM-max model on the Yahoo dataset, we

selected five words with the largest values, among

the entire vocabulary, for each word embedding

dimension (these words are selected preferentially

in the corresponding dimension, by the max op-

eration). As shown in Table 3, the words chosen

wrt each embedding dimension are indeed highly

relevant and correspond to a common topic (the

topics are inferred from words). For example, the

words in the first column of Table 3 are all po-

litical terms, which could be assigned to the Pol-

itics & Government topic. Note that our model

can even learn locally interpretable structure that

is not explicitly indicated by the label informa-

tion. For instance, all words in the fifth column

are Chemistry-related. However, we do not have a

chemistry label in the dataset, and regardless they

should belong to the Science topic.

4.2 Text Sequence Matching

To gain a deeper understanding regarding the mod-

eling capacity of word embeddings, we further in-

vestigate the problem of sentence matching, in-

cluding natural language inference, answer sen-

tence selection and paraphrase identification. The

corresponding performance metrics are shown in

Table 5. Surprisingly, on most of the datasets con-

sidered (except WikiQA), SWEM demonstrates

the best results compared with those with CNN

or the LSTM encoder. Notably, on SNLI dataset,

we observe that SWEM-max performs the best

among all SWEM variants, consistent with the

findings in Nie and Bansal (2017); Conneau et al.

(2017), that max-pooling over BiLSTM hidden

units outperforms average pooling operation on

SNLI dataset. As a result, with only 120K param-

eters, our SWEM-max achieves a test accuracy of

83.8%, which is very competitive among state-of-

the-art sentence encoding-based models (in terms

of both performance and number of parameters)1.

The strong results of the SWEM approach on

these tasks may stem from the fact that when

matching natural language sentences, it is suffi-

cient in most cases to simply model the word-level

1See leaderboard at https://nlp.stanford.edu/
projects/snli/ for details.

https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/


446

MultiNLI
Model SNLI Matched Mismatched WikiQA Quora MSRP

Acc. Acc. Acc. MAP MRR Acc. Acc. F1

CNN 82.1 65.0 65.3 0.6752 0.6890 79.60 69.9 80.9
LSTM 80.6 66.9∗ 66.9∗ 0.6820 0.6988 82.58 70.6 80.5

SWEM-aver 82.3 66.5 66.2 0.6808 0.6922 82.68 71.0 81.1
SWEM-max 83.8 68.2 67.7 0.6613 0.6717 82.20 70.6 80.8

SWEM-concat 83.3 67.9 67.6 0.6788 0.6908 83.03 71.5 81.3

Table 5: Performance of different models on matching natural language sentences. Results with ∗ are

for Bidirectional LSTM, reported in Williams et al. (2017). Our reported results on MultiNLI are only

trained MultiNLI training set (without training data from SNLI). For MSRP dataset, we follow the setup

in Hu et al. (2014) and do not use any additional features.

alignments between two sequences (Parikh et al.,

2016). From this perspective, word-order informa-

tion becomes much less useful for predicting rela-

tionship between sentences. Moreover, consider-

ing the simpler model architecture of SWEM, they

could be much easier to be optimized than LSTM

or CNN-based models, and thus give rise to better

empirical results.

4.2.1 Importance of word-order information

One possible disadvantage of SWEM is that it ig-

nores the word-order information within a text se-

quence, which could be potentially captured by

CNN- or LSTM-based models. However, we em-

pirically found that except for sentiment analysis,

SWEM exhibits similar or even superior perfor-

mance as the CNN or LSTM on a variety of tasks.

In this regard, one natural question would be: how

important are word-order features for these tasks?

To this end, we randomly shuffle the words for

every sentence in the training set, while keeping

the original word order for samples in the test set.

The motivation here is to remove the word-order

features from the training set and examine how

sensitive the performance on different tasks are

to word-order information. We use LSTM as the

model for this purpose since it can captures word-

order information from the original training set.

Datasets Yahoo Yelp P. SNLI

Original 72.78 95.11 78.02

Shuffled 72.89 93.49 77.68

Table 6: Test accuracy for LSTM model trained on

original/shuffled training set.

The results on three distinct tasks are shown in

Table 6. Somewhat surprisingly, for Yahoo and

SNLI datasets, the LSTM model trained on shuf-

fled training set shows comparable accuracies to

those trained on the original dataset, indicating

Negative: Friendly staff and nice selection of vegetar-

ian options. Food is just okay, not great.

Makes me wonder why everyone likes

food fight so much.

Positive: The store is small, but it carries specialties

that are difficult to find in Pittsburgh. I was

particularly excited to find middle eastern

chili sauce and chocolate covered turkish

delights.

Table 7: Test samples from Yelp Polarity dataset

for which LSTM gives wrong predictions with

shuffled training data, but predicts correctly with

the original training set.

that word-order information does not contribute

significantly on these two problems, i.e., topic cat-

egorization and textual entailment. However, on

the Yelp polarity dataset, the results drop notice-

ably, further suggesting that word-order does mat-

ter for sentiment analysis (as indicated above from

a different perspective).

Notably, the performance of LSTM on the Yelp

dataset with a shuffled training set is very close to

our results with SWEM, indicating that the main

difference between LSTM and SWEM may be due

to the ability of the former to capture word-order

features. Both observations are in consistent with

our experimental results in the previous section.

Case Study To understand what type of sen-

tences are sensitive to word-order information, we

further show those samples that are wrongly pre-

dicted because of the shuffling of training data in

Table 7. Taking the first sentence as an example,

several words in the review are generally positive,

i.e. friendly, nice, okay, great and likes. However,

the most vital features for predicting the sentiment

of this sentence could be the phrase/sentence ‘is

just okay’, ‘not great’ or ‘makes me wonder why

everyone likes’, which cannot be captured without
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Model MR SST-1 SST-2 Subj TREC

RAE (Socher et al., 2011b) 77.7 43.2 82.4 – –
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 – –

LSTM (Tai et al., 2015) – 46.4 84.9 – –
RNN (Zhao et al., 2015) 77.2 – – 93.7 90.2

Constituency Tree-LSTM (Tai et al., 2015) - 51.0 88.0 - -
Dynamic CNN (Kalchbrenner et al., 2014) – 48.5 86.8 – 93.0

CNN (Kim, 2014) 81.5 48.0 88.1 93.4 93.6
DAN-ROOT (Iyyer et al., 2015) - 46.9 85.7 - -

SWEM-aver 77.6 45.2 83.9 92.5 92.2
SWEM-max 76.9 44.1 83.6 91.2 89.0

SWEM-concat 78.2 46.1 84.3 93.0 91.8

Table 8: Test accuracies with different compositional functions on (short) sentence classifications.

considering word-order features. It is worth noting

the hints for predictions in this case are actually n-

gram phrases from the input document.

4.3 SWEM-hier for sentiment analysis

As demonstrated in Section 4.2.1, word-order in-

formation plays a vital role for sentiment analysis

tasks. However, according to the case study above,

the most important features for sentiment predic-

tion may be some key n-gram phrase/words from

the input document. We hypothesize that incor-

porating information about the local word-order,

i.e., n-gram features, is likely to largely mitigate

the limitations of the above three SWEM variants.

Inspired by this observation, we propose using an-

other simple pooling operation termed as hierar-

chical (SWEM-hier), as detailed in Section 3.3.

We evaluate this method on the two document-

level sentiment analysis tasks and the results are

shown in the last row of Table 2.

SWEM-hier greatly outperforms the other three

SWEM variants, and the corresponding accuracies

are comparable to the results of CNN or LSTM

(Table 2). This indicates that the proposed hi-

erarchical pooling operation manages to abstract

spatial (word-order) information from the input

sequence, which is beneficial for performance in

sentiment analysis tasks.

4.4 Short Sentence Processing

We now consider sentence-classification tasks

(with approximately 20 words on average).

We experiment on three sentiment classification

datasets, i.e., MR, SST-1, SST-2, as well as subjec-

tivity classification (Subj) and question classifica-

tion (TREC). The corresponding results are shown

in Table 8. Compared with CNN/LSTM com-

positional functions, SWEM yields inferior accu-

racies on sentiment analysis datasets, consistent

with our observation in the case of document cat-

egorization. However, SWEM exhibits compara-

ble performance on the other two tasks, again with

much less parameters and faster training. Further,

we investigate two sequence tagging tasks: the

standard CoNLL2000 chunking and CoNLL2003

NER datasets. Results are shown in the Supple-

mentary Material, where LSTM and CNN again

perform better than SWEMs. Generally, SWEM

is less effective at extracting representations from

short sentences than from long documents. This

may be due to the fact that for a shorter text se-

quence, word-order features tend to be more im-

portant since the semantic information provided

by word embeddings alone is relatively limited.

Moreover, we note that the results on these rela-

tively small datasets are highly sensitive to model

regularization techniques due to the overfitting is-

sues. In this regard, one interesting future di-

rection may be to develop specific regularization

strategies for the SWEM framework, and thus

make them work better on small sentence classi-

fication datasets.

5 Discussion

5.1 Comparison via subspace training

We use subspace training (Li et al., 2018) to mea-

sure the model complexity in text classification

problems. It constrains the optimization of the

trainable parameters in a subspace of low dimen-

sion d, the intrinsic dimension dint defines the

minimum d that yield a good solution. Two mod-

els are studied: the SWEM-max variant, and the

CNN model including a convolutional layer fol-

lowed by a FC layer. We consider two settings:

(1) The word embeddings are randomly intial-

ized, and optimized jointly with the model param-

eters. We show the performance of direct and sub-

space training on AG News dataset in Figure 2

(a)(b). The two models trained via direct method

share almost identical perfomrnace on training and
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Figure 2: Performance of subspace training. Word

embeddings are optimized in (a)(b), and frozen in

(c)(d).

testing. The subspace training yields similar ac-

curacy with direct training for very small d, even

when model parameters are not trained at all (d =
0). This is because the word embeddings have

the full degrees of freedom to adjust to achieve

good solutions, regardless of the employed mod-

els. SWEM seems to have an easier loss landspace

than CNN for word embeddings to find the best so-

lutions. According to Occam’s razor, simple mod-

els are preferred, if all else are the same.

(2) The pre-trained GloVe are frozen for the

word embeddings, and only the model parameters

are optimized. The results on testing datasets of

AG News and Yelp P. are shown in Figure 2 (c)(d),

respectively. SWEM shows significantly higher

accuracy than CNN for a large range of low sub-

space dimension, indicating that SWEM is more

parameter-efficient to get a decent solution. In

Figure 2(c), if we set the performance threshold

as 80% testing accuracy, SWEM exhibits a lower

dint than CNN on AG News dataset. However,

in Figure 2(d), CNN can leverage more trainable

parameters to achieve higher accuracy when d is

large.

5.2 Linear classifiers

To further investigate the quality of representa-

tions learned from SWEMs, we employ a linear

classifier on top of the representations for pre-

diction, instead of a non-linear MLP layer as in

the previous section. It turned out that utiliz-

ing a linear classifier only leads to a very small

performance drop for both Yahoo! Ans. (from

73.53% to 73.18%) and Yelp P. datasets (from

93.76% to 93.66%) . This observation highlights

that SWEMs are able to extract robust and infor-

mative sentence representations despite their sim-

plicity.

5.3 Extension to other languages

We have also tried our SWEM-concat and SWEM-

hier models on Sogou news corpus (with the

same experimental setup as (Zhang et al., 2015b)),

which is a Chinese dataset represented by Pinyin

(a phonetic romanization of Chinese). SWEM-

concat yields an accuracy of 91.3%, while

SWEM-hier (with a local window size of 5) ob-

tains an accuracy of 96.2% on the test set. Notably,

the performance of SWEM-hier is comparable to

the best accuracies of CNN (95.6%) and LSTM

(95.2%), as reported in (Zhang et al., 2015b). This

indicates that hierarchical pooling is more suitable

than average/max pooling for Chinese text classifi-

cation, by taking spatial information into account.

It also implies that Chinese is more sensitive to lo-

cal word-order features than English.

6 Conclusions

We have performed a comparative study between

SWEM (with parameter-free pooling operations)

and CNN or LSTM-based models, to represent

text sequences on 17 NLP datasets. We further

validated our experimental findings through ad-

ditional exploration, and revealed some general

rules for rationally selecting compositional func-

tions for distinct problems. Our findings regard-

ing when (and why) simple pooling operations are

enough for text sequence representations are sum-

marized as follows:

• Simple pooling operations are surprisingly ef-

fective at representing longer documents (with

hundreds of words), while recurrent/convolutional

compositional functions are most effective when

constructing representations for short sentences.

• Sentiment analysis tasks are more sensitive

to word-order features than topic categorization

tasks. However, a simple hierarchical pooling

layer proposed here achieves comparable results

to LSTM/CNN on sentiment analysis tasks.

• To match natural language sentences, e.g., tex-

tual entailment, answer sentence selection, etc.,

simple pooling operations already exhibit similar

or even superior results, compared to CNN and

LSTM.

• In SWEM with max-pooling operation, each in-

dividual dimension of the word embeddings con-

tains interpretable semantic patterns, and groups

together words with a common theme or topic.



449

References

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. ICLR.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.
A simple but tough-to-beat baseline for sentence em-
beddings. In ICLR.
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