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Abstract

A technique entitled robust baseline estimation is introduced, which uses techniques of robust local
regression to estimate baselines in spectra that consist of sharp features superimposed upon a continuous,
slowly varying baseline. The technique is applied to synthetic spectra, to evaluate its capabilities, and to
laser-induced #uorescence spectra of OH (produced from the reaction of ozone with hydrogen atoms). The
latter example is a particularly challenging case for baseline estimation because the experimental noise varies
as a function of frequency. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The robust baseline estimation (RBE) technique that is introduced in this paper is a technique for
baseline removal; that is, in spectra that consist of sharp features superimposed upon a continuous,
slowly varying baseline, it is designed to permit the separation of the two components, spectrum
and baseline. There exist, of course, numerous techniques for baseline removal from spectra,
because the problem is ubiquitous within spectroscopy. In many cases, baselines are simply
removed `by eyea. There is nothing inherently wrong with such an approach, but we believe that,
even for a `mundanea task such as baseline removal, it is bene"cial to use numerical tools that
minimize the need for judgement calls and permit reproduction of the results by others. The ability
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to extract quantitative peak intensity and lineshape information from spectra can in many cases be
limited by the ability to remove an underlying continuous baseline, and in such cases numerical
techniques of baseline estimation are clearly necessary.

To our knowledge, there exists no review article on techniques for estimating baselines in spectra
and other signals. The available literature on the topic is scattered across many "elds of research,
including analytical chemistry/chemometrics [1}3], nuclear physics [4], X-ray spectroscopy [5}7],
NMR spectroscopy [8}11], and even medical research [12]. In addition, many of the baseline
estimation techniques discussed in the literature are tailored for speci"c data sets. A recent article
by Phillips and Hamilton [1], however, does provide a useful overview of several general
approaches to estimating baselines in spectra. One common approach involves automated peak
rejection algorithms [9,11], which in principle identify those regions of a spectrum that can be
accounted for solely by the baseline function; the baseline function in regions containing peaks can
then be estimated by interpolation. Other approaches to estimating include those that are based
upon digital "ltering [6,7]; in the simplest application, a `high-passa "lter can be used to suppress
a relatively slowly varying baseline, although often at a cost of distorting the remaining `sharpa
components of the spectrum. Other techniques for baseline estimation are based upon statistical
methods, including maximum entropy methods [1,5] and principal component analysis [13].

The RBE technique uses methods of robust local regression to estimate the baseline component
of a spectrum. Among the attributes of the RBE technique are that it

1. takes into account the measurement error in the data in a natural way;
2. can be applied to a wide variety of baseline subtraction problems; and
3. requires minimal human intervention.

No speci"c claims are made that the RBE technique is better, faster, or more accurate than other
techniques for baseline removal, but RBE does appear to provide a useful complement to the other
techniques with which we are familiar.

The details of the RBE technique will be discussed in detail in Sections 3 and 4 below. First,
however, we wish to make a few general comments on the use of statistical methods for baseline
estimation. It is important to realize from the outset that the question `what is the baseline in my
spectruma is, in the absence of further information, an ill-de"ned question* in general, there exist
an in"nity of possible models for the baseline that are consistent with the data. A more well-de"ned
question is, given a model family for the baseline function, which baseline function out of the model
family best "ts the data? However, the presence of peaks superimposed upon the baseline makes
answering even such a restrictively posed question di$cult. In essence, only some of the data is
useful for determining the baseline function; data points on top of peaks are generally useless for
determining the baseline. (A possible exception would occur if the line shapes and/or relative
intensities of the peaks were known a priori. In this paper, we will make no assumptions about the
lineshapes of the peaks contained in the spectra, other than that they must be su$ciently narrow
that the baseline can be interpolated across the width of the peak.) If it is possible to estimate the
baseline function at all, then the baseline must be assumed, at the very least, to be smooth and to
vary slowly, so that the baseline can be safely interpolated across the width of a peak. Congested
spectra (i.e., those in which a large fraction of resolution elements lie on peaks) present special
challenges for baseline estimation; if a baseline can be determined at all for such a spectrum, then it
is usually necessary to invoke stringent assumptions concerning the smoothness of the baseline.
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Given these caveats, we believe that techniques of robust estimation may be useful for estimating
the baselines present in many spectra. Robust or resistant estimation, in the simplest sense, refers to
techniques of estimation that are less sensitive to outliers (extreme observations) than the conven-
tional least-squares approach. It is not our intention to review techniques of robust estimation in
general, since there exists a vast literature on the subject; for an introduction to the subject, see, for
example, Chapters 1 and 8 of the text by Hampel et al. [14]. In estimating the baseline in
a spectrum, the points in the spectrum that lie on top of peaks can be considered outliers, and thus
one can imagine using a robust estimator to determine a baseline function by more-or-less ignoring
those points that lie on peaks.

Several nontrivial issues must be faced before this simple idea can be implemented. The "rst is
the choice of a functional form for the baseline to "t to the spectrum. In rare cases, a reasonable
functional form may be known a priori, but a more general strategy is to estimate the baseline
locally (i.e., over a su$ciently small section of the spectrum) by a low order polynomial (usually
a line). Thus, the strategy for baseline estimation that we adopt is robust local regression
estimation. In Section 2, we brie#y review statistical concepts that are relevant to robust local
regression estimation. The RBE technique itself is introduced in Section 3, and applied to synthetic
data sets to illustrate its properties. Finally, in Section 4, RBE is applied to real experimental data,
which are laser-induced #uorescence spectra of the OH radical. These spectra represent a parti-
cularly challenging application for baseline estimation because the measurement error varies
discontinuously across the spectrum.

2. Robust local regression estimation

In this section, the concepts of local estimation and robust estimation are introduced, and
di!erentiated from the usual least-squares approach to "tting data. We focus in particular on the
LOcally WEighted Scatter plot Smoother (LOWESS) introduced by Cleveland [15], to which the
RBE technique is closely related.

For a given data set (x
i
,>

i
), i"1,2, n, where>

i
is the response and x

i
is the predictor variable,

one may "t a regression curve g through the data to establish the relationship between the response
and predictor. Discrepancies between the regression curve and the data are often treated as noise.
In other words, the data are regarded as deviations from the model

>
i
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i
)#E

i
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i

is an unknown error. Often, one can assume that the errors E
i

are independent and
identically distributed, with mean zero and variance p2. We will refer to p as a scale parameter,
because it is the natural unit with which to measure the size of deviations from the model.

If the form of the regression curve is known, up to unknown parameters h"(h
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p
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(superscript T means transposed), as for example in simple linear regression modelling
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approach:
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In many situations, however, it is not possible to choose in advance an appropriate functional form
for the the regression curve g in Eq. (1). If we can assume that g is smooth, then an alternate method
for estimating the regression curve g is to apply linear regression modelling locally. That is, the
regression curve g(x) can be approximated as linear in a su$ciently small neighborhood around
any given point x

0
. One can simply apply the least-squares technique to a fraction of the data

around x
0
, or alternatively, one can incorporate a weight scheme into the local least-squares

problem that decreases the in#uence of data points in proportion to their distance from x
0
. That is,

hK (x
0
)"argmin

h

n
+
i/1

KA
x
i
!x

0
h BMyi![h

0
#h

1
(x

i
!x

0
)]N2, (3)

where K[(x
i
!x

0
)/h] is a weight function (also called a kernel weight) for the point i. The function

K is a unimodal symmetric nonnegative function that is (nearly) zero outside the neighborhood of
x
0
, which is de"ned by x

0
$h. Note, in particular, that the estimated parameters hK "(hK

0
, hK

1
)T

depend on x
0
. Thus, hK

0
(x

0
) is an estimate of g(x) at x

0
and is more appropriately named g( (x

0
).

The precise choice of the weight function K is not very important for the performance of
the resulting estimators, both theoretically and empirically (see, e.g., Ref. [16, pp. 45, 72, 73], or
Ref. [17, Section 3.2.6]). Thus, the functional form for K is chosen based upon other issues such as
ease of computation. LOWESS uses the tricube kernel

K(u)"[max(1!DuD3, 0)]3, (4)

which descends smoothly to zero and is zero outside the neighborhood de"ned by h (as opposed to
a Gaussian function, for example, which has in"nitely long `tailsawhere the function is close to, but
not precisely, zero).

A more critical issue for local estimation is how wide the local neighborhood should be (i.e., the
value of h). If we choose a very small h, the approximation error will be small. However, since the
number of data points in the local neighborhood is also small, the variance of the estimated values
g( (x

0
) will be large. On the other hand, the bandwidth h should not be made so large that the local

linear approximation is no longer valid, which would create a large approximation error. Put in
di!erent words, when the bandwidth h is very small, the resultant estimate essentially interpolates
the data points, whereas when h is very large, the solution is identical to the global linear regression
solution. The choice of bandwidth for baseline estimation problems is discussed in Section 3.

The local linear regression estimate in Eq. (3), being based upon least-squares estimation, is
sensitive to extreme observations (outliers) in the response variable in much the same way that
ordinary least-squares estimates (Eq. (2)) are. When gross outliers may be present in a data set, an
estimation procedure is needed that is more resistant to the extreme observations. It is important,
however, to recognize that it is more di$cult to identify unambiguously a point as an outlier when
performing a local regression than it is when "tting a parametric (global) model. That is, the
inherent #exibility of the local linear estimation approach makes it di$cult to distinguish between
systematic outliers that occur in patches and intrinsic features of the data such as jumps or peaks in
the regression curve g.

Given these caveats, it is nonetheless possible to specify a robust local estimation procedure. One
possible approach is to use Eq. (3) (i.e., local least-squares) to estimate g(x) initially, but then use the
residuals of this "t to assign `robustness weightsa w

3
(x

i
) to each point (x

i
,>

i
), such that points with

large residuals receive small robustness weights and vice versa. The regression curve g(x) is then
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re"ned by performing a weighted least-squares "t, according to
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This "t can then be repeated iteratively to convergence, with the robustness weights w
3
(x

i
) always

being determined from the previous iteration of the "t. A more detailed discussion of robustly
weighted least-squares local regression, and in particular, the choice of the functional form for w

3
,

can be found in the appendix.
In the LOWESS procedure, the robustness weights w

3
are determined using Tukey's bisquare

weights

w
r
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i
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i
/b)2, 0]N2, (6)

where r
i
"[y

i
!g( (x

i
)]/p. The parameter b determines the `robustnessa of the procedure (i.e., how

strongly the "t is in#uenced by outliers), and its choice involves a trade-o! between losing too much
information at the `gooda data points and controlling the in#uence of `bada data points. Cleveland
[15] chose a tuning constant of b"4.05; we use a slightly di!erent value for the RBE procedure,
the choice of which is discussed in Section 3. Note that the use of the robustness weights in Eq. (6)
for the robust local regression procedure (Eq. (5)) can result in multiple local minima. In the
appendix, it is demonstrated that other choices of robustness weights result in a unique solution.
However, for purposes of baseline estimation, it is critical to choose robustness weights, such as
those in Eq. (6), which disregard distant outliers totally, and these necessarily lead to the possibility
of multiple minima in the "t. In practice, however, our implementation of the RBE technique
(Section 3) appears to converge to a reasonable solution for most baseline estimation problems of
interest.

In order to implement the LOWESS procedure, one "nal parameter that needs to be speci"ed is
the scale parameter p (i.e., the experimental noise). In certain cases, p can be estimated a priori.
When this is not the case, however, it can be estimated using the (standardized) median of absolute
values (MAV) of the (unstandardized) residuals

p(
MAV

"median(Dy
i
!g( (x

i
)D)/0.6745. (7)

Note that the denominator is required in order to make the estimate of the scale parameter
consistent with the standard deviation of a Gaussian distribution.

To summarize, the LOWESS algorithm, to which the RBE is closely related, proceeds as follows:

1. For each point i, compute g( (x
i
) by using the local regression estimator (Eq. (3)) with the kernel

weights de"ned by Eq. (4).
2. Use Eq. (7) to estimate the scale parameter, and calculate the robustness weights w

3
(x

i
) by

applying Eq. (6).
3. For each point i compute a new "tted value g( (x

i
) by using the robust local regression estimator

(Eq. (5)) with kernel weights de"ned by Eq. (4).
4. Repeat steps 2 and 3 until convergence is achieved, which generally only requires 3}5 iterations.

The "nal "tted values yield the estimated curve g( (x
i
).

For further implementation details of LOWESS, see Ref. [15].
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LOWESS is a well-known speci"c implementation of a smoothing technique based on the local
(polynomial) regression technique. Smoothing techniques have become an important tool in data
analysis and subsequently there is a vast literature. Two of the more recent books are those of
Simono! [16] and Fan and Gijbels [17]. The latter is a book-length treatment of local polynomial
estimation, whereas the former gives an introduction to many aspects of smoothing. Both books
discuss the LOWESS procedure and explain robust smoothing brie#y. For a more general account
of robust estimation see, e.g., the book by Rousseeuw and Leroy [18] or the references given in the
appendix. A challenging application for robust estimation in molecular spectroscopy is described
in Ref. [19].

3. Baseline subtraction

We consider a spectrum to be de"ned by

>(x
i
)"g(x

i
)#m(x

i
)#E

i
, (8)

where >(x
i
) is the observed signal, g(x

i
) is the baseline drift, m(x

i
) is the desired (baseline-free)

spectroscopic signal at x
i
, and E

i
represents the measurement errors, which we again assume to be

independent and Gaussian-distributed (mean 0, variance p2). Separating the three components in Eq.
(8) is an ill-posed problem without additional information. It is possible to estimate the baseline drift
g(x

i
) at x

i
if the spectral signal m(x

i
) in the neighborhood of x

i
is minimal by using, for example, the

LOWESS procedure that is discussed in Section 2. Otherwise, it is impossible in general to estimate
g(x

i
). However, if we can assume that the baseline is su$ciently smooth, then we can interpolate the

baseline at the positions x
i
at which non-negligible spectral signals m(x

i
) exist (i.e., interpolate the

baseline across peaks in the spectrum). Here we will only consider linear interpolation across peaks,
which is reasonable if the baseline varies slowly relative to the peak widths.

The RBE technique is a robust local regression procedure that is closely related to LOWESS,
which was described in Section 2. The basic idea of the RBE procedure is to regard spectral points
i as outliers if Dm(x

i
)D<p (this condition is only ful"lled for points that lie on peaks in the spectrum).

In most spectra, all of the peaks point in the same direction. Without loss of generality, we assume
that m(x

i
)50, and thus we can consider the baseline to be asymmetrically `contaminateda by the

peaks in the spectrum. In such a case, robust estimators that use weight functions w
3

that are
symmetric with respect to the residuals r

i
will generate biased estimates. To counteract the bias, we

can use asymmetric robustness weights such as

w
3
(x

i
)"G

1 if r
i
(0,

[maxM1!(r
i
/b)2, 0N]2 otherwise,

(9)

where r
i
"[y

i
!g( (x

i
)]/p. Although such an estimator can reduce the bias created by the asymmet-

ric contamination of the baseline by the peaks, it should be kept in mind that it can also
over-correct in some cases as well as introduce bias when there is no spectral signal m in the
neighborhood. One could imagine using a robust estimator with asymmetric robustness weights in
neighborhoods with signi"cant spectral signal, and a symmetric robust estimator otherwise.
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However, the baseline estimate in regions with no spectral signal is usually of little consequence to
the analysis of the data. In addition, in numerical tests we have found that the bias created by the
asymmetric robust weight functions is minor, even when there are no peaks. For most problems of
interest, the bias inherent to the data (i.e., unidirectional peaks) is a greater concern. Finally, it
should be noted that the use of asymmetric robust weights helps to ensure that the "t converges to
an acceptable solution.

To utilize the RBE procedure, we must select an appropriate bandwidth h to de"ne the local
neighborhood, and tuning constant b to specify the robustness of the procedure. We choose as the
tuning constant b"3, which corresponds to choosing a more robust estimator than Cleveland's
original proposal of b"4.05 for the LOWESS procedure. This choice is not arbitrary but rather
resulted from optimizing the value of b against the two synthetic examples that are presented in this
section (i.e., what value of b gives a baseline estimate that is closest to the true baseline?). In both
synthetic examples, b"3.0 was nearly optimal, and because the two synthetic examples are quite
di!erent, we expect this value to be appropriate for many baseline subtraction problems, although
it should be kept in mind that other values may be appropriate for speci"c problems. From
a qualitative standpoint, a highly robust estimator is needed for baseline estimation problems so
that small peaks (and the `wingsa of large peaks) do not bias the estimate (the points on top of large
peaks are not a concern because they receive nearly zero weight functions according to Eq. (6)). See
the appendix for further discussion of the choice of robustness weights and the trade-o! between
e$ciency and robustness.

With respect to the bandwidth h, from a practical standpoint, most spectra consist of evenly
spaced points x

i
, so that the bandwidth can be conveniently de"ned by the number of points d in

the local neighborhood that ranges from x
0
!h to x

0
#h. Whether de"ned by d or by h,

bandwidth selection is critical to the success of robust local estimation. A number of suggestions
have been advanced (see, e.g., Ref. [16, Section 5.3], or Ref. [17, Chapter 4]) for automatically
determining an appropriate bandwidth from the data, but these approaches would lead to
reasonable bandwidths for estimating the `totala signal g(x

i
)#m(x

i
) (baseline plus peaks), which is

not our goal.
A more general consideration is the following: if, in a local neighborhood of x

0
consisting of

d data points, at least d/2 of them are seriously a!ected by the spectral signal m, then the robust
local regression estimator is more likely to estimate g(x

0
)#m(x

0
) than g(x

0
). To avoid such

a failure, we can require that d be large enough such that, at the very least, less than half of the
points in the local neighborhood for any x have signi"cant spectral signal m. The smallest possible
value of d we refer to as d" ; in a spectrum where all of the peaks are well-resolved, d" would be
roughly twice the linewidth of the widest peak. As a general recommendation, a value of d of 2.5
times the linewidth of the widest peak is reasonable and should not oversmooth the data, as long as
the baseline varies slowly relative to the peak widths.

As an additional safeguard against the local neighborhood being too small, we also omit those
values x

i
for which w

3
(x

i
)"0 (i.e., those with substantial signal content m) when determining the

local neighborhood. That is, since the outliers appear in patches (peaks), the bandwidth h can be
enlarged in such regions to make sure that there is su$cient unperturbed information to determine
the baseline. In a technical sense, the bandwidth h" at x

0
is de"ned by the the dth smallest value

among Dx
i
!x

0
D, for those values of i for which w

3
(x

i
)O0. Note that this de"nition implies that the

bandwidth varies as a function of spectral position.
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Fig. 1. Simple synthetic spectrum used to illustrate the properties of the RBE technique. The dashed line represents the
true baseline and the solid line is the "tted baseline, using the tuning parameters b"3 and d"500. In the right panel, the
true baseline has been subtracted from the spectrum and the "tted result, so that the true baseline is represented by the
horizontal line at zero. The y-axis (`intensitya) also has a restricted range so that the minor discrepancies between the true
and "tted baselines can be examined.

To illustrate the properties of the RBE procedure, we consider two synthetic spectra, where the
components g(x

i
) and m(x

i
), and the standard deviation of the error p (scale parameter), are known.

In the case of the synthetic spectrum in Fig. 1 we chose a value of d"500 for the bandwidth, and as
a "rst test, we assumed that the scale parameter was known (p"1.0), and did not attempt to
determine it from the data itself. Both the top and bottom panels of Fig. 1 show the solution
obtained by RBE, which is quite satisfactory given that the error in the baseline estimate is within
p of the true baseline over most of the spectrum.

The largest discrepancies occur at the end of the spectrum and at the edges of the peaks, where
the RBE procedure has some di$culty discriminating between `gooda and `bada data points.
Relatively poor performance of the RBE near the "rst or last point of a spectrum is likely
unavoidable, because the local neighborhood is by necessity asymmetrically positioned with
respect to these points. The baseline estimate at the ends of the spectrum is generally irrelevant,
however. A greater concern is the bias of the baseline estimate in the middle of the peaks. This bias
can be observed to correlate with the second derivative of the true baseline g; the bias is positive
when gA'0 and negative when gA(0, a result that is consistent with theoretical considerations
of the bias of the local regression procedure (see Refs. [16, Section 5.2.2] or Fan and Gijbels
[17, Section 3.2.1]). In any case, this bias is always less than 1p for this example (less than
the measurement error), which would be quite acceptable for most applications.

We have also estimated the baseline for the example in Fig. 1 assuming that the standard
deviation p of the measurement error is not known. However, the scale estimator in Eq. (7), which
was the original proposal used by LOWESS, however, yields a value of 1.48 for the "nal RBE
solution in Fig. 1 (i.e., nearly 50% larger than the known value). Clearly, the scale estimator in
Eq. (7) is in#uenced to an unacceptable degree by the spectral signal m. A simple re"nement is to
calculate the scale estimator using only those observations for which the residuals
r
i
">(x

i
)!g( (x

i
) are smaller than bp(

MAV
(that is, as with the determination of the bandwidth, we

exclude those points for which w
3
(x

i
)"0). We call this estimator p( (

MAV
, and for the synthetic

example of Fig. 1, we obtain a value of 1.04 for the scale parameter using this re"ned estimator,
which is quite close to the true value of 1.00.
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The real experimental spectra discussed in Section 4 are more complicated than the synthetic
example shown in Fig. 1. The second synthetic example that we consider in this section is designed
to mimic the real examples, including the approximate signal to noise, resolution, and peak density.
Most importantly, it mimics the property of the experimental spectra that the standard deviation of
the measurement error is not constant, but rather is given by

var[>(x
i
)]"p2/w

4
(x

i
), (10)

where w
4
(x

i
)'0 speci"es how the measurement error varies across the spectrum. The variation of

the scale parameter with respect to x is known in the real experimental data, and thus we assume it
to be known here as well. To incorporate this additional information in the RBE procedure we
include w

4
(x

i
) as an additional weight component in the robust locally weighted regression

estimator:
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The robustness weights w
3
(x

i
) must of course also be adjusted to account for the nonconstant p.

Instead of using r
i
"[y

i
!g( (x

i
)]/p( in Eq. (6), we now use r

i
"Jw

4
(x

i
) [y

i
!g( (x

i
)]/p( . Similar

changes must be made for estimating the scale parameter p, so that the estimator in Eq. (7) is
replaced by

p(
8MAV

"medianMJw
4
(x

i
) Dy

i
!g( (x

i
)DN/0.6745. (12)

Fig. 2 depicts the second synthetic spectrum, along with the true baseline (dashed line) and the
solutions of the RBE procedure with b"3 and d"125 (solid line). The error in the baseline
estimate is well within the measurement error Mvar[>(x

i
)]N1@2 across the entire spectrum. The

estimated value for p is 0.132, which is only 6% higher than the true value of 0.125.

4. Real examples

In this section we apply the RBE technique to real experimental spectra that present a substan-
tial challenge for baseline estimation. The spectra in Figs. 3 and 4 were obtained using pulsed
laser-induced #uorescence (LIF) detection of gas-phase hydroxyl (OH) vibration}rotation popula-
tions created by the reaction of hydrogen atoms with ozone (H#O

3
POH#O

2
) [20]. The OH

product is excited near 308 nm via optically allowed AQX transitions, and the resultant resonant
#uorescence is detected using a photomultiplier tube "tted with a broad bandpass optical "lter.
The observed lines can all be identi"ed with transitions that originate from rovibrational levels
with v"0 or 1.

The information that is desired to be extracted from these spectra is the OH quantum state
population distribution, which is directly related to the intensities of the observed transitions.
However, the baseline drift that can be clearly observed in Figs. 3 and 4, if uncorrected, would
compromise the accuracy of the derived OH populations, particularly for the smaller peaks, for
which the baseline variation could lead to factor-of-two errors or worse. Attempts to model the
baseline drift based on, e.g., modest changes in the experimental pressure or temperature were
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Fig. 2. Synthetic spectrum that is designed to mimic several key properties of the real experimental spectra in Section IV,
including a known variation in the measurement error across the spectrum, which is represented in the second panel. The
baseline estimate obtained by RBE, with b"3 and d"125 is depicted as a solid line in the top and bottom panels, and
the true baseline is represented by a dashed line. In the bottom panel, the true baseline has been subtracted from both the
"tted baseline and the spectrum, and the y-axis has been expanded.

unsuccessful, and thus the RBE technique was applied to numerically estimate and remove the
baseline.

The solid line in Fig. 3 is the baseline estimate for the spectrum obtained by RBE, using the
parameters b"3 and d"750. In contrast to the synthetic spectra in Section 3, the true baseline is
of course unknown, and it is not possible to judge the accuracy of the "tted baseline. However, the
solution obtained by RBE certainly appears to be reasonable. The estimated standard deviation
of the measurement error (scale parameter) is p("0.0276.

The spectrum in Fig. 4 di!ers from the spectrum in Fig. 3 in that the measurement error in
Fig. 4 varies as a function of frequency due to the way in which the data was recorded. The spectral
data acquisition process is quite time-consuming, and much of the time spent scanning occurs in
spectral regions where there is no signal. To increase the e$ciency of data collection, the scan rate
can be increased in regions of no signal and decreased near OH transitions (particularly weak
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Fig. 3. Experimental laser-induced #uorescence spectrum of OH formed by reaction of hydrogen atoms with ozone. The
baseline determined by RBE, with b"3 and d"125, is represented as a solid line.

ones), to improve the signal to noise. For the spectrum in Fig. 4, 16}64 laser shots were averaged for
each data point near weak OH transitions; otherwise, only 8 shots were averaged.

As discussed in Section 3, we can include this extra information in the RBE procedure
by incorporating the additional weights w

4
(x

i
). These weights account for the variation in the

scale parameter across the spectrum, but the absolute variance p2 must still be determined from
the data. We arbitrarily choose to de"ne p2 as the variance in the experimental spectrum for those
data points (the majority) for which 8 laser shots were averaged. This choice corresponds to
de"ning

w
4
(x

i
)"s

i
/8 (i"1,2, n), (13)

where s
i
is the number of laser shots averaged for each point.

The baseline estimate obtained by RBE is depicted as a solid line in Fig. 4, using b"3 and
d"200. Once again, the solution appears to be reasonable, but no quantitative assessment of its
accuracy is possible. Although the baseline drift is less severe in this example than in Fig. 3,
accurate baseline estimation is nonetheless critical for accurate quantitative analysis. At the scan
rate of 8 laser shots per data point, the estimated scale parameter is p("0.350.

5. Summary

Robust local regression provides a simple but powerful approach for estimating baseline
functions in spectra. The only requirement of the RBE technique is that the baseline must be
smooth and vary slowly with respect to the peak widths. This procedure has two crucial parameters
that must be speci"ed by the user: the bandwidth d, and the tuning constant b for the robustness
weights. We have provided recommendations for values of these parameters that we believe will be
appropriate for many baseline subtraction problems (b"3, and d is chosen to be at least 2.5 times
the linewidth of the widest peak). It should be kept in mind, however, that these recommendations
are not unique, and other choices could be useful for speci"c baseline estimation problems.
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Fig. 4. Experimental laser-induced #uorescence spectrum of OH formed by reaction of hydrogen atoms with ozone. This
spectrum di!ers from the one in Fig. 3 in that the measurement error varies across the spectrum due to a deliberately
nonconstant scan rate, which is represented in the middle panel (number of laser shots averaged per point in the
spectrum). The baseline determined by RBE, with b"3 and d"200 is represented as a solid line in the top and bottom
(magni"ed view) panels.
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Appendix. Deriving robustness weights

In this appendix, we provide a brief discussion of how to choose appropriate robustness weights
for a speci"c estimation problem. The basis for robust estimation is that, when the quadratic
function in least squares estimation (see Eq. (3)) is replaced by a function o(r) that goes to in"nity at
a slower rate as DrD approaches in"nity, the "t will show a more stable behavior when extreme
observations are present. The robust optimization problem is de"ned by

hK (x
0
)"argmin

ho

n
+
i/1

KA
x
i
!x

0
h BoG

y
i
![h

0
#h

1
(x

i
!x

0
)]

p H. (A.1)

The e!ect of extreme observations on a given estimator can be described by the so-called in#uence
function (IF): if g( (x

0
)
`*x,y+

denotes the estimator of g at x
0
based on the sample augmented by a pair

of data [x, y], then

n[g( (x
0
)
`*x,y+

!g( (x
0
)]+IF(x, y)
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0
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1
(x!x

0
)]
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#M

1
(x!x

0
)] KA

x!x
0

h B (A.2)

in which

t(r)"
L
Lr

o(r), (A.3)

n is the sample size, and M
0

and M
1

are suitable constants.
To bound the in#uence of extreme values on the estimator g( (x

0
), we must put a bound on the

in#uence function. The in#uence function is a product of two factors, namely the inyuence of
residuals

tG
y![h

0
#h

1
(x!x

0
)]

p H (A.4)

and the inyuence of position

[M
0
#M

1
(x!x

0
)]KA

x!x
0

h B. (A.5)

The in#uence of position is bounded because the kernel weight function K is chosen to go to zero
much faster than Dx!x

0
D goes to in"nity. The in#uence of residuals, on the other hand, may be

bounded or unbounded depending on the choice of the function o(r). The least-squares estimator
has the t-function t(r)"r [see Fig. 5(a)] and consequently, the in#uence of residuals is un-
bounded. To bound the (total) in#uence IF(x, y) it is su$cient to put a bound on t as, for example,
in Huber's famous proposal

t(r)"min[max(r,!c), c] (A.6)

[Fig. 5(b)], where c is a tuning constant, the choice of which is somewhat arbitrary. A standard
procedure is to calibrate the tuning constant at the Gaussian distribution such that the e$ciency
loss with respect to the optimal estimator assuming Gaussian error is not too large. The value of
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Fig. 5. t-functions of ordinary least squares (a), Huber's M-estimator with tuning constant 1.345 (b), and Tukey's
bisquare M-estimator with tuning constant 3.0 (c). Since the t-function is proportional to the in#uence function, the
in#uence of (distant) outliers in the response on the estimator can be inferred from these graphs.

c"1.345 leads to an asymptotic e$ciency of 0.95 relative to the most optimal procedure at the
standard Gaussian distribution.

If there are very severe outliers, one often wants to disregard them altogether as is the case in
baseline subtraction where the outliers are peaks that perturb the baseline signal. Using Huber's
proposal, severe outliers still have some in#uence on the estimator g( (x

0
). We can achieve better

performance when severe outliers are present by using a redescending t-function such as Tukey's
bisquare t-function:

t(r)"rMmax[1!(r/b)2, 0]N2. (A.7)

Fig. 5(c) shows that distant outliers have no e!ect at all on this estimator. When calculating this
estimator one must, however, proceed with caution since there might be local minima. Using the
same argument as with Huber's proposal a standard choice of the tuning constant b is 4.685. When
introducing the LOWESS procedure, Cleveland opted for a more robust estimator (b"4.05) at the
expense of some loss in e$ciency with respect to the most optimal estimator. We have chosen an
even more robust estimator for baseline estimation (b"3.0), because in typical spectra a relatively
large fraction of the spectral points lie on peaks, and are thus outliers from the standpoint of
estimating the baseline.

The relationship between the in#uence function and the t-function allows us to design suitable
robustness procedures for speci"c problems. Since Eq. (A.1) cannot be solved explicitly, an iterative
procedure must be applied at any x

0
. A simpler and more e$cient approach is to determine

robustness weights w
3
(x

i
) globally and solve a weighted least-squares problem locally with weights

w
3
(x

i
)KA

x
i
!x

0
h B, (A.8)

where the robustness weights w
3
(x

i
) are computed from

w
3
(x

i
)"t(r

i
)/r

i
, (A.9)

with r
i
"[y

i
!g( (x

i
)]/p. The estimates g( (x

i
) are determined from the previous iteration. Hence we

can solve the least-squares problem at x
0
explicitly but repeat the smoothing a few times, adjusting

the robustness weights at each iteration.
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More detailed discussions of robustness are given, e.g., in Refs. [14,21,22] or [18]. Outliers are
not the only source of deviations from a parametric model. See Chapters 1 and 8 of Hampel et al.
[14] for a more detailed discussion.
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