COMPOSITIO MATHEMATICA

Bases for cluster algebras from surfaces

Gregg Musiker, Ralf Schiffler and Lauren Williams

Compositio Math. 149 (2013), 217-263.

```
doi:10.1112/S0010437X12000450
```


Bases for cluster algebras from surfaces

Gregg Musiker, Ralf Schiffler and Lauren Williams

Abstract

We construct two bases for each cluster algebra coming from a triangulated surface without punctures. We work in the context of a coefficient system coming from a fullrank exchange matrix, such as principal coefficients.

Contents

1 Introduction 218
2 Preliminaries and notation 221
2.1 Cluster algebras 221
2.2 Cluster algebras with principal coefficients 223
2.3 Cluster algebras arising from surfaces 224
2.4 Skein relations 227
2.5 Chebyshev polynomials 228
3 Definition of the two bases \mathcal{B}° and \mathcal{B} 230
3.1 Snake graphs and band graphs 230
3.2 Laurent polynomials associated to generalized arcs and closed loops 233
3.3 Bangles and bracelets 235
4 Proof of the main result 236
$4.1 \quad \mathcal{B}^{\circ}$ and \mathcal{B} are subsets of \mathcal{A} 236
$4.2 \quad \mathcal{B}^{\circ}$ and \mathcal{B} are spanning sets for \mathcal{A} 240
$4.3 \quad \mathcal{B}^{\circ}$ and \mathcal{B} are linearly independent sets 241
5 Lattice structure of the matchings of snake and band graphs 241
6 The g-vector map and linear independence of \mathcal{B}° and \mathcal{B} 245
6.1 Fans 247
6.2 Multicurves and leading terms 248
6.3 An inverse for the g-vector map 249
7 Coefficient systems coming from a full-rank exchange matrix 251
Acknowledgements 253
Appendix A Extending the results to surfaces with punctures 253
A. 1 Definition of \mathcal{B}° and \mathcal{B} 253
A. 2 Cluster algebra elements associated to generalized tagged arcs 254
A. 3 Cluster algebra elements associated to closed loops 255
A. $4 \quad \mathcal{B}^{\circ}$ and \mathcal{B} are spanning sets for \mathcal{A} 255

[^0]G. Musiker, R. Schiffler and L. Williams
A. $5 \quad \mathcal{B}^{\circ}$ and \mathcal{B} are linearly independent sets 259
A. $6 \quad \mathcal{B}^{\circ}$ and \mathcal{B} are subsets of \mathcal{A} 260
References 260

1. Introduction

Fomin and Zelevinsky introduced cluster algebras in [FZ02], in an attempt to create an algebraic framework for Lusztig's dual canonical bases and total positivity in semisimple groups [Lus90, Lus93, Lus94]. In particular, writing down explicitly the elements of the dual canonical basis is a very difficult problem; but Fomin and Zelevinsky conjectured that a large subset of these elements can be understood via the machinery of cluster algebras. More precisely, they conjectured that all monomials in the variables of any given cluster (the cluster monomials) belong to (the classical limit as $q \rightarrow 1$ of) the dual canonical basis [FZ02]. For recent progress in this direction, see [GLS11b, HL11, Lam11a, Lam11b].

Because of the conjectural connection between cluster algebras and dual canonical bases, it is natural to ask whether one can construct a 'good' (vector space) basis \mathcal{B} for each cluster algebra \mathcal{A}. In keeping with Fomin and Zelevinsky's conjecture, such a basis should include the cluster monomials. Additionally, since the dual canonical basis has striking positivity properties, a good basis of a cluster algebra should also have analogous positivity properties. In particular, if we define \mathcal{A}^{+}to be the set of elements of \mathcal{A} which expand positively with respect to every cluster, then one should require that every element $b \in \mathcal{B}$ also belong to \mathcal{A}^{+}. In the case where b is a cluster variable, this requirement is equivalent to the well-known positivity conjecture, one of the main open questions about cluster algebras.

The construction of bases for cluster algebras is a problem that has attracted a lot of attention recently. Caldero and Keller showed that for cluster algebras of finite type, the cluster monomials form a basis [CK08]. For cluster algebras which are not of finite type, the cluster monomials do not span the cluster algebra, but it follows from [CKLP12] (see also [DWZ10, Pla11b]) that they are linearly independent. Sherman and Zelevinsky constructed bases containing the cluster monomials for the cluster algebra of rank 2 affine types [SZ04, Zel07], and Cerulli-Irelli did so for rank 3 affine types [Cer09]. Dupont has used cluster categories to construct the so-called generic basis for the affine types [Dup08, Dup11]; see also [DXX09]. Geiss, Leclerc and Schröer constructed the generic basis in a much more general setting [GLS11a, GLS12], which includes, in particular, all acyclic cluster algebras. Plamondon [Pla11a, ch. 5] gives a convenient reparameterization of the Geiss-Leclerc-Schröer basis.

There is an important class of cluster algebras associated to surfaces with marked points [FG06, FG09, FST08, FT08, GSV05]. Such cluster algebras are of interest for several reasons. First, they have a topological interpretation: they may be viewed as coordinate rings of the corresponding decorated Teichmüller space [Pen87, Pen06]. Second, such cluster algebras constitute most of the mutation-finite cluster algebras [FST12], that is, the cluster algebras which have finitely many different exchange matrices. The (generalized) cluster category of a cluster algebra from a surface has been defined whenever the surface has a non-empty boundary [Ami09, ABCP10, BMRRT06, CL12, Lab09]. It has been described in geometric terms in [CCS06] for the disk, in [Sch08] for the disk with one puncture, and in [BZ10] for arbitrary surfaces without punctures.

Note that the aforementioned constructions do not yield bases in the case of cluster algebras from surfaces, in general.

The present paper was inspired by work of Fock and Goncharov [FG06] and Fomin, Shapiro and Thurston [Thu08]. In [FG06], Fock and Goncharov introduced a canonical basis for the cluster varieties related to SL_{2}. In particular, their construction gives a basis for the algebra of universally Laurent polynomials in the dual space, which coincides with the (coefficient-free) upper cluster algebra associated to the surface. (Note that, in general, the upper cluster algebra contains but is not equal to the cluster algebra.) Moreover, the elements of their bases have positive Laurent expansions in all of the clusters that they consider [FG06]. In a lecture series in 2008 [Thu08], Thurston announced a construction of two bases associated to a cluster algebra from a surface, based on joint work with Fomin and Shapiro, and inspired by [FG06]; note, however, that this work was not completed.

Both of these constructions are parameterized by the same collections \mathcal{C}° and \mathcal{C} of curves in a surface. Recall that an arc in a surface with marked points is (the isotopy class of) a curve connecting two marked points which has no self-crossings. A closed loop is a noncontractible closed curve which is disjoint from the boundary. A closed loop without selfcrossings is said to be essential. A multiset of k copies of the same essential loop is called a k-bangle, and a closed loop obtained by following an essential loop k times, thus creating $k-1$ self-crossings, is called a k-bracelet. Let \mathcal{C}° be the collection of multisets of arcs and essential loops which have no crossings, and let \mathcal{C} be obtained from \mathcal{C}° by replacing the maximal k-bangles by the corresponding k-bracelets. In [FG06], the authors associated a Laurent polynomial to each collection of curves by using (the upper right entry or trace of) an appropriate product of elements of SL_{2}. In [Thu08], the authors associated a cluster algebra element to a collection of curves by using the (normalized) lambda length of that collection. These two notions coincide.

In our previous work [MSW11], we gave combinatorial formulas for the cluster variables in the cluster algebra associated to any surface with marked points, building on earlier work in [MS10, Sch08, ST09, Sch10]. The formula for the cluster variable associated to an arc is a weighted sum over perfect matchings of a planar snake graph associated to the arc. (There are similar formulas for other cluster variables.) Since these formulas are manifestly positive, the positivity conjecture follows as a corollary.

In the present paper, we generalize our formulas from [MSW11] to associate a Laurent polynomial to each collection of curves in \mathcal{C}° and \mathcal{C} in an unpunctured surface (S, M) (i.e. all marked points lie on the boundary). Instead of using perfect matchings of a planar graph, the Laurent polynomial associated to a closed curve is a weighted sum over good matchings in a band graph on a Möbius strip or annulus. We work in the context of a cluster algebra \mathcal{A} associated to (S, M) whose coefficient system comes from a full-rank exchange matrix: for example, principal coefficients. In this way we construct bases \mathcal{B}° and \mathcal{B} for \mathcal{A} which are parameterized by the collections \mathcal{C}° and \mathcal{C}. Our bases are manifestly positive, in the sense that both \mathcal{B}° and \mathcal{B} are contained in \mathcal{A}^{+}. For surfaces with punctures, we still have a construction of sets \mathcal{B}° and \mathcal{B}, but not all of the proofs can be adapted to that case.

While not obvious, it is possible to show via the results of [MW11] that the bases we consider in this paper coincide with those considered in [Thu08], as well as (in the coefficient-free case) with those in [FG06].

Our main result is the following theorem.
Theorem 1.1. Let \mathcal{A} be a cluster algebra with principal coefficients from an unpunctured surface which has at least two marked points. Then \mathcal{B}° and \mathcal{B} are both bases of \mathcal{A}. Moreover, each element of \mathcal{B}° and \mathcal{B} has a positive Laurent expansion with respect to any cluster of \mathcal{A}.

G. Musiker, R. Schiffler and L. Williams

Corollary 1.2. Let \mathcal{A}_{*} be a cluster algebra from an unpunctured surface with at least two marked points, whose coefficient system comes from a full-rank exchange matrix. Then there are bases \mathbb{B}° and \mathbb{B} for \mathcal{A}_{*} whose elements have positive Laurent expansions with respect to every cluster of \mathcal{A}_{*}.

We are grateful to Goncharov (personal communication, October 2011) for pointing out that by using the results in [FG06] together with Theorem 1.1, one may deduce Corollary 1.3(a).

Corollary 1.3. Let \mathcal{A} be a coefficient-free cluster algebra from an unpunctured surface with at least two marked points.
(a) The upper cluster algebra coincides with the cluster algebra.
(b) \mathcal{B}° and \mathcal{B} are both bases of \mathcal{A}.

Besides the property that \mathcal{B}° and \mathcal{B} lie in \mathcal{A}^{+}, one might ask whether the structure constants for these bases are positive. In other words, is it the case that every product of basis elements, when expanded as a linear combination of basis elements, has all coefficients positive?

Conjecture 1.4 ([FG06, §12] and [Thu08]). Both bases \mathcal{B}° and \mathcal{B} have positive structure constants.

As a partial result in this direction, Cerulli-Irelli and Labardini [CL12] showed that for a surface with non-empty boundary, the elements of \mathcal{A}^{+}that lie in the span of the set of cluster monomials have positive structure constants.

Finally, one might ask whether either of these bases is atomic. We say that \mathcal{B} is an atomic basis for \mathcal{A} if $a \in \mathcal{A}^{+}$if and only if when we write $a=\sum_{b \in \mathcal{B}} \lambda_{b} b$, every coefficient λ_{b} is nonnegative. Sherman and Zelevinsky showed that the bases they constructed are atomic. They also showed that if an atomic basis exists, it is necessarily unique [SZ04].

In the case of finite-type cluster algebras, Cerulli-Irelli [Cer11] showed that the basis of cluster monomials is in fact atomic. Recently, Dupont and Thomas proved in [DT11] that the basis constructed by Dupont in [Dup10] for the affine $\tilde{\mathbb{A}}$ types is an atomic basis. That basis coincides with our basis \mathcal{B} in the case where the surface is an annulus and all coefficients are set to 1 . Their proof uses the surface model, and we expect that it can be generalized to arbitrary unpunctured surfaces.

Conjecture 1.5. The basis \mathcal{B} is an atomic basis.
To prove Theorem 1.1 we need to show that \mathcal{B}° and \mathcal{B} are contained in \mathcal{A}, that they form a spanning set, and that they are linearly independent. The positivity property follows by construction (elements are defined as sums over perfect matchings of certain graphs) together with [FZ07, Theorem 3.7]. We show that both \mathcal{B}° and \mathcal{B} are spanning sets by using skein relations with principal coefficients [MW11]. In order to show linear independence, we need to extend the notion of \mathbf{g}-vector, defined in [FZ07], to \mathcal{B}° and \mathcal{B}. Along the way, we prove that the set of monomials in the Laurent expansions of elements of \mathcal{B}° and \mathcal{B} have the structure of a distributive lattice. The following result, which may be interesting in its own right, then implies linear independence of both \mathcal{B}° and \mathcal{B}.

Theorem 1.6. Let \mathcal{A} be a cluster algebra with principal coefficients from an unpunctured surface which has at least two marked points. Then the \mathbf{g}-vector induces bijections $\mathcal{B}^{\circ} \rightarrow \mathbb{Z}^{n}$ and $\mathcal{B} \rightarrow \mathbb{Z}^{n}$.

Bases for cluster algebras from surfaces

The paper is organized as follows. After recalling some background on cluster algebras in § 2, we define the bases \mathcal{B}° and \mathcal{B} in $\S 3$. Sections $4-6$ are devoted to the proof of our main result, in the context of principal coefficients. Corollary 1.3 is proven at the end of $\S 4.2$. In $\S 7$, we explain how to construct bases for cluster algebras from surfaces in which the coefficient system comes from a full-rank exchange matrix. Finally, in Appendix A, we briefly sketch how to extend our result to surfaces with punctures, and explain which part of the proof does not generalize easily.

2. Preliminaries and notation

In this section, we review some notions from the theory of cluster algebras.

2.1 Cluster algebras

We begin by reviewing the definition of a cluster algebra, first introduced by Fomin and Zelevinsky in [FZ02]. Our definition follows the exposition in [FZ07]. Another good reference for cluster algebras is [GSV10].

To define a cluster algebra \mathcal{A}, we must first fix its ground ring. Let $(\mathbb{P}, \oplus, \cdot)$ be a semifield, i.e. an abelian multiplicative group endowed with a binary operation of (auxiliary) addition, \oplus, which is commutative, associative and distributive with respect to the multiplication in \mathbb{P}. The group ring $\mathbb{Z} \mathbb{P}$ will be used as a ground ring for \mathcal{A}. One important choice for \mathbb{P} is the tropical semifield; in this case, we say that the corresponding cluster algebra is of geometric type. Let $\operatorname{Trop}\left(u_{1}, \ldots, u_{m}\right)$ be an abelian group (written multiplicatively) freely generated by the u_{j}. We define \oplus in $\operatorname{Trop}\left(u_{1}, \ldots, u_{m}\right)$ by

$$
\begin{equation*}
\prod_{j} u_{j}^{a_{j}} \oplus \prod_{j} u_{j}^{b_{j}}=\prod_{j} u_{j}^{\min \left(a_{j}, b_{j}\right)} \tag{2.1}
\end{equation*}
$$

and call $\left(\operatorname{Trop}\left(u_{1}, \ldots, u_{m}\right), \oplus, \cdot\right)$ a tropical semifield. Note that the group ring of $\operatorname{Trop}\left(u_{1}, \ldots, u_{m}\right)$ is the ring of Laurent polynomials in the variables u_{j}.

As an ambient field for \mathcal{A}, we take a field \mathcal{F} isomorphic to the field of rational functions in n independent variables (here n is the rank of \mathcal{A}) with coefficients in $\mathbb{Q P}$. Note that the definition of \mathcal{F} does not involve the auxiliary addition in \mathbb{P}.

Definition 2.1. A labeled seed in \mathcal{F} is a triple $(\mathbf{x}, \mathbf{y}, B)$ where:
$-\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an n-tuple from \mathcal{F} forming a free generating set over $\mathbb{Q P}$;
$-\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ is an n-tuple from \mathbb{P};

- $B=\left(b_{i j}\right)$ is an $n \times n$ integer matrix which is skew-symmetrizable.

That is, x_{1}, \ldots, x_{n} are algebraically independent over $\mathbb{Q P}$, and $\mathcal{F}=\mathbb{Q P}\left(x_{1}, \ldots, x_{n}\right)$. We refer to \mathbf{x} as the (labeled) cluster of a labeled seed $(\mathbf{x}, \mathbf{y}, B)$, to the tuple \mathbf{y} as the coefficient tuple, and to the matrix B as the exchange matrix.

We obtain (unlabeled) seeds from labeled seeds by identifying labeled seeds that differ from each other via simultaneous permutations of the components in \mathbf{x} and \mathbf{y} and of the rows and columns of B.

G. Musiker, R. Schiffler and L. Williams

We use the notation $[x]_{+}=\max (x, 0),[1, n]=\{1, \ldots, n\}$, and

$$
\operatorname{sgn}(x)= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Definition 2.2. Let $(\mathbf{x}, \mathbf{y}, B)$ be a labeled seed in \mathcal{F}, and let $k \in[1, n]$. The seed mutation μ_{k} in direction k transforms ($\mathbf{x}, \mathbf{y}, B)$ into the labeled seed $\mu_{k}(\mathbf{x}, \mathbf{y}, B)=\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}, B^{\prime}\right)$ defined as follows.

- The entries of $B^{\prime}=\left(b_{i j}^{\prime}\right)$ are given by

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & \text { if } i=k \text { or } j=k, \tag{2.2}\\ b_{i j}+\operatorname{sgn}\left(b_{i k}\right)\left[b_{i k} b_{k j}\right]_{+} & \text {otherwise. }\end{cases}
$$

- The coefficient tuple $\mathbf{y}^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ is given by

$$
y_{j}^{\prime}= \begin{cases}y_{k}^{-1} & \text { if } j=k, \tag{2.3}\\ y_{j} y_{k}^{\left.\left[b_{k j}\right]\right]_{+}}\left(y_{k} \oplus 1\right)^{-b_{k j}} & \text { if } j \neq k .\end{cases}
$$

- The cluster $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ is given by $x_{j}^{\prime}=x_{j}$ for $j \neq k$, whereas $x_{k}^{\prime} \in \mathcal{F}$ is determined by the exchange relation

$$
\begin{equation*}
x_{k}^{\prime}=\frac{y_{k} \prod x_{i}^{\left[b_{i k}\right]_{+}}+\prod x_{i}^{\left[-b_{i k}\right]+}}{\left(y_{k} \oplus 1\right) x_{k}} . \tag{2.4}
\end{equation*}
$$

We say that two exchange matrices B and B^{\prime} are mutation-equivalent if one can get from B to B^{\prime} by a sequence of mutations.

Definition 2.3. Consider the n-regular tree \mathbb{T}_{n} whose edges are labeled by the numbers $1, \ldots, n$, so that the n edges emanating from each vertex receive different labels. A cluster pattern is an assignment of a labeled seed $\Sigma_{t}=\left(\mathbf{x}_{t}, \mathbf{y}_{t}, B_{t}\right)$ to every vertex $t \in \mathbb{T}_{n}$ such that the seeds assigned to the endpoints of any edge $t \stackrel{k}{-} t^{\prime}$ are obtained from each other by the seed mutation in direction k. The components of Σ_{t} are written as

$$
\begin{equation*}
\mathbf{x}_{t}=\left(x_{1 ; t}, \ldots, x_{n ; t}\right), \quad \mathbf{y}_{t}=\left(y_{1 ; t}, \ldots, y_{n ; t}\right), \quad B_{t}=\left(b_{i j}^{t}\right) \tag{2.5}
\end{equation*}
$$

Clearly, a cluster pattern is uniquely determined by an arbitrary seed.
Definition 2.4. Given a cluster pattern, we let

$$
\begin{equation*}
\mathcal{X}=\bigcup_{t \in \mathbb{T}_{n}} \mathbf{x}_{t}=\left\{x_{i, t} \mid t \in \mathbb{T}_{n}, 1 \leqslant i \leqslant n\right\} \tag{2.6}
\end{equation*}
$$

the union of clusters of all the seeds in the pattern. The elements $x_{i, t} \in \mathcal{X}$ are called cluster variables. The cluster algebra \mathcal{A} associated with a given pattern is the $\mathbb{Z P}$-subalgebra of the ambient field \mathcal{F} generated by all cluster variables: $\mathcal{A}=\mathbb{Z} \mathbb{P}[\mathcal{X}]$. We write $\mathcal{A}=\mathcal{A}(\mathbf{x}, \mathbf{y}, B)$, where $(\mathbf{x}, \mathbf{y}, B)$ is any seed in the underlying cluster pattern.

The remarkable Laurent phenomenon asserts the following.
Theorem 2.5 [FZ02, Theorem 3.1]. The cluster algebra \mathcal{A} associated with a seed $(\mathbf{x}, \mathbf{y}, B)$ is contained in the Laurent polynomial ring $\mathbb{Z} \mathbb{P}\left[\mathbf{x}^{ \pm 1}\right]$; that is, every element of \mathcal{A} is a Laurent polynomial over $\mathbb{Z P}$ in the cluster variables from $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

Remark 2.6. In cluster algebras with ground ring $\operatorname{Trop}\left(u_{1}, \ldots, u_{m}\right)$ (the tropical semifield), it is convenient to replace the matrix B by an $(n+m) \times n$ matrix $\tilde{B}=\left(b_{i j}\right)$ whose upper part is the $n \times n$ matrix B and whose lower part is an $m \times n$ matrix that encodes the coefficient tuple via

$$
\begin{equation*}
y_{k}=\prod_{i=1}^{m} u_{i}^{b_{(n+i) k}} . \tag{2.7}
\end{equation*}
$$

Then the mutation of the coefficient tuple in (2.3) is determined by the mutation of the matrix \tilde{B} in (2.2) and the formula (2.7), and the exchange relation (2.4) becomes

$$
\begin{equation*}
x_{k}^{\prime}=x_{k}^{-1}\left(\prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}} \prod_{i=1}^{m} u_{i}^{\left[b_{(n+i) k}\right]_{+}}+\prod_{i=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}} \prod_{i=1}^{m} u_{i}^{\left[-b_{(n+i) k}\right]_{+}}\right) . \tag{2.8}
\end{equation*}
$$

2.2 Cluster algebras with principal coefficients

Fomin and Zelevinsky introduced in [FZO7] a special type of coefficients, called principal coefficients.

Definition 2.7. We say that a cluster pattern $t \mapsto\left(\mathbf{x}_{t}, \mathbf{y}_{t}, B_{t}\right)$ on \mathbb{T}_{n} (or the corresponding cluster algebra \mathcal{A}) has principal coefficients at a vertex t_{0} if $\mathbb{P}=\operatorname{Trop}\left(y_{1}, \ldots, y_{n}\right)$ and $\mathbf{y}_{t_{0}}=$ $\left(y_{1}, \ldots, y_{n}\right)$. In this case, we write $\mathcal{A}=\mathcal{A}_{\bullet}\left(B_{t_{0}}\right)$.
Remark 2.8. Definition 2.7 can be rephrased as follows: a cluster algebra \mathcal{A} has principal coefficients at a vertex t_{0} if \mathcal{A} is of geometric type and is associated with the matrix $\tilde{B}_{t_{0}}$ of order $2 n \times n$ whose upper part is $B_{t_{0}}$ and whose complementary (i.e. bottom) part is the $n \times n$ identity matrix (cf. [FZ02, Corollary 5.9]).
Definition 2.9. Let \mathcal{A} be the cluster algebra with principal coefficients at t_{0}, defined by the initial seed $\Sigma_{t_{0}}=\left(\mathbf{x}_{t_{0}}, \mathbf{y}_{t_{0}}, B_{t_{0}}\right)$ with

$$
\begin{equation*}
\mathbf{x}_{t_{0}}=\left(x_{1}, \ldots, x_{n}\right), \quad \mathbf{y}_{t_{0}}=\left(y_{1}, \ldots, y_{n}\right), \quad B_{t_{0}}=B^{0}=\left(b_{i j}^{0}\right) . \tag{2.9}
\end{equation*}
$$

By the Laurent phenomenon, we can express every cluster variable $x_{\ell ; t}$ as a (unique) Laurent polynomial in $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$; we denote this by

$$
\begin{equation*}
X_{\ell ; t}=X_{\ell ; t}^{B^{0} ; t_{0}} . \tag{2.10}
\end{equation*}
$$

Let $F_{\ell ; t}=F_{\ell ; t}^{B^{0} ; t_{0}}$ denote the Laurent polynomial obtained from $X_{\ell ; t}$ by

$$
\begin{equation*}
F_{\ell ; t}\left(y_{1}, \ldots, y_{n}\right)=X_{\ell ; t}\left(1, \ldots, 1 ; y_{1}, \ldots, y_{n}\right) ; \tag{2.11}
\end{equation*}
$$

then $F_{\ell ; t}\left(y_{1}, \ldots, y_{n}\right)$ turns out to be a polynomial [FZ07] and is called an F-polynomial.
Proposition 2.10 [FZ07, Corollary 6.2]. Consider any rank n cluster algebra defined by an $n \times n$ exchange matrix B, and consider the \mathbf{g}-vector grading given by $\operatorname{deg}\left(x_{i}\right)=\mathbf{e}_{i}$ and $\operatorname{deg}\left(y_{j}\right)=$ $-\mathbf{b}_{j}$, where $\mathbf{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{Z}^{n}$ with 1 at position i and $\mathbf{b}_{j}=\sum_{i} b_{i j} \mathbf{e}_{i}$ is the j th column of B. Then the Laurent expansion of any cluster variable with respect to the seed $(\mathbf{x}, \mathbf{y}, B)$ is homogeneous with respect to this grading.
Definition 2.11. The \mathbf{g}-vector $\mathbf{g}\left(x_{\gamma}\right)$ of a cluster variable x_{γ}, with respect to the seed $(\mathbf{x}, \mathbf{y}, B)$, is the multidegree of the Laurent expansion of x_{γ} with respect to ($\mathbf{x}, \mathbf{y}, B$), using the \mathbf{g}-vector grading of Proposition 2.10.

Remark 2.12. It follows from Proposition 2.10 that the monomial in the x_{i} 's and y_{j} 's whose exponent vector is the column $\tilde{\mathbf{b}}_{j}$ of the extended $2 n \times n$ matrix \widetilde{B} has degree 0 .

G. Musiker, R. Schiffler and L. Williams

Proposition 2.13. Let \widetilde{B} be an $m \times n$ extended exchange matrix with linearly independent columns, and let $\mathcal{A}=\mathcal{A}(\widetilde{B})$ be the associated cluster algebra, with initial seed $\left(\left\{x_{1}, \ldots, x_{n}\right\}, \widetilde{B}\right)$ and coefficient variables x_{n+1}, \ldots, x_{m}. Let U be a set of elements in $\mathcal{A}(\widetilde{B})$ whose Laurent expansions with respect to the initial seed all have the form

$$
\mathbf{x}^{g}+\sum_{h} \lambda_{h} \mathbf{x}^{g+h},
$$

where \mathbf{x}^{a} denotes $x_{1}^{a_{1}} \ldots x_{m}^{a_{m}}, \lambda_{h}$ is a scalar, and each h is a non-negative linear combination of columns of \widetilde{B}. Suppose, moreover, that the vectors g and g^{\prime} associated to two different elements of U differ in at least one of the first n coordinates. Then the elements of U are linearly independent over the ground ring of \mathcal{A}.

The proof below comes from the arguments of [FZ07, Remark 7.11].
Proof. Because the columns of \widetilde{B} are linearly independent, we can define a partial order on \mathbb{Z}^{m} by $u \leqslant v$ if and only if v can be obtained from u by adding a non-negative linear combination of columns of \widetilde{B}. Applying this partial order to Laurent monomials in $\left\{x_{1}, \ldots, x_{m}\right\}$, it follows that each element $\mathbf{x}^{g}+\sum_{h} \lambda_{h} \mathbf{x}^{g+h}$ of U has leading term \mathbf{x}^{g}. Moreover, all leading terms have pairwise distinct exponent vectors, and even if we multiply each element of U by an arbitrary monomial in the coefficient variables x_{n+1}, \ldots, x_{m}, the leading terms will still have pairwise distinct exponent vectors. Therefore any linear combination of elements of U which sums to 0 must necessarily have all coefficients equal to 0 .

2.3 Cluster algebras arising from surfaces

We follow the work of Fock and Goncharov [FG06, FG09], Gekhtman, Shapiro and Vainshtein [GSV05] and Fomin, Shapiro and Thurston [FST08], who associated a cluster algebra to any bordered surface with marked points. In this subsection we will recall that construction in the special case of surfaces without punctures.

Definition 2.14. Let S be a connected oriented 2-dimensional Riemann surface with non-empty boundary, and let M be a non-empty finite subset of the boundary of S such that each boundary component of S contains at least one point of M. The elements of M are called marked points. The pair (S, M) is called a bordered surface with marked points.

For technical reasons, we require that (S, M) not be a disk with one, two or three marked points.

Definition 2.15. An arc γ in (S, M) is a curve in S, considered up to isotopy, such that:
(a) the endpoints of γ are in M;
(b) γ does not cross itself, except that its endpoints may coincide;
(c) except for the endpoints, γ is disjoint from the boundary of S; and
(d) γ does not cut out a monogon or a bigon.

Curves that connect two marked points and lie entirely on the boundary of S without passing through a third marked point are boundary segments. Note that boundary segments are not arcs.

Definition 2.16 (Crossing numbers and compatibility of ordinary arcs). For any two arcs γ and γ^{\prime} in S, let $e\left(\gamma, \gamma^{\prime}\right)$ be the minimal number of crossings of arcs α and α^{\prime}, where α and α^{\prime} range over all arcs isotopic to γ and γ^{\prime}, respectively. We say that the arcs γ and γ^{\prime} are compatible if $e\left(\gamma, \gamma^{\prime}\right)=0$.

Bases for cluster algebras from surfaces

Figure 1. Exchange relation and shear coordinates.

Definition 2.17. A triangulation is a maximal collection of pairwise compatible arcs (together with all boundary segments).

Definition 2.18. Triangulations are connected to each other by sequences of flips. Each flip replaces a single arc γ in a triangulation T by a (unique) arc $\gamma^{\prime} \neq \gamma$ that, together with the remaining arcs in T, forms a new triangulation.

Definition 2.19. Choose any triangulation T of (S, M), and let $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ be the n arcs of T. For any triangle Δ in T, we define a matrix $B^{\Delta}=\left(b_{i j}^{\Delta}\right)_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n}$ as follows:
$-b_{i j}^{\Delta}=1$ and $b_{j i}^{\Delta}=-1$ if τ_{i} and τ_{j} are sides of Δ with τ_{j} following τ_{i} in the clockwise order;
$-b_{i j}^{\Delta}=0$ otherwise.
Then define the matrix $B_{T}=\left(b_{i j}\right)_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n}$ by $b_{i j}=\sum_{\Delta} b_{i j}^{\Delta}$, where the sum is taken over all triangles in T.

Note that B_{T} is skew-symmetric and each entry $b_{i j}$ is either $0, \pm 1$ or ± 2, since every arc τ is in at most two triangles.

Theorem 2.20 ([FST08, Theorem 7.11] and [FT08, Theorem 5.1]). Fix a bordered surface (S, M) and let \mathcal{A} be the cluster algebra associated to the signed adjacency matrix of a triangulation. Then the (unlabeled) seeds Σ_{T} of \mathcal{A} are in bijection with the triangulations T of (S, M), and the cluster variables are in bijection with the arcs of (S, M) (so we can denote each by x_{γ} where γ is an arc). Moreover, each seed in \mathcal{A} is uniquely determined by its cluster. Furthermore, if a triangulation T^{\prime} is obtained from another triangulation T by flipping an arc $\gamma \in T$ and obtaining γ^{\prime}, then $\Sigma_{T^{\prime}}$ is obtained from Σ_{T} by the seed mutation replacing x_{γ} by $x_{\gamma^{\prime}}$.

The exchange relation corresponding to a flip in a triangulation is called a generalized Ptolemy relation. It can be described as follows.

Proposition 2.21 [FT08]. Let α, β, γ and δ be arcs or boundary segments of (S, M) which cut out a quadrilateral; we assume that the sides of the quadrilateral, listed in cyclic order, are $\alpha, \beta, \gamma, \delta$. Let η and θ be the two diagonals of this quadrilateral; see the leftmost diagram in Figure 1. Then

$$
\begin{equation*}
x_{\eta} x_{\theta}=Y x_{\alpha} x_{\gamma}+Y^{\prime} x_{\beta} x_{\delta} \tag{2.12}
\end{equation*}
$$

for some coefficients Y and Y^{\prime}.

Proof. This follows from the interpretation of cluster variables as lambda lengths and the Ptolemy relations for lambda lengths [FT08, Theorem 7.5 and Proposition 6.5].

G. Musiker, R. Schiffler and L. Williams

Figure 2. Elementary lamination L_{γ} corresponding to γ.
2.3.1 Keeping track of coefficients using laminations. So far we have not addressed the topic of coefficients for cluster algebras arising from bordered surfaces. It turns out that Thurston's theory of measured laminations [Thu88] gives a concrete way to think about coefficients, as described in [FT08, $\S \S$ 11-12] (see also [FG07]).
Definition 2.22. A lamination on a bordered surface (S, M) is a finite collection of non-selfintersecting and pairwise non-intersecting curves in S, modulo isotopy relative to M, subject to the following restrictions. Each curve must be one of the following:

- a closed curve;
- a curve connecting two unmarked points on the boundary of S.

Also, we forbid curves with two endpoints on the boundary of S which are isotopic to a piece of boundary containing zero or one marked point.
Definition 2.23. Let L be a lamination, and let T be a triangulation. For each $\operatorname{arc} \gamma \in T$, the corresponding shear coordinate of L with respect to T, denoted by $b_{\gamma}(T, L)$, is defined as a sum of contributions from all intersections of curves in L with γ. Specifically, such an intersection contributes +1 (respectively, -1) to $b_{\gamma}(T, L)$ if the corresponding segment of a curve in L cuts through the quadrilateral surrounding γ as shown in the middle (respectively, rightmost) diagram of Figure 1.
Definition 2.24. A multi-lamination is a finite family of laminations. For any multi-lamination $\mathbf{L}=\left(L_{n+1}, \ldots, L_{n+m}\right)$ and any triangulation T of (S, M), define the matrix $\tilde{B}=\tilde{B}_{T, \mathbf{L}}=\left(b_{i j}\right)$ as follows. The top $n \times n$ part of \tilde{B} is the signed adjacency matrix B_{T}, with rows and columns indexed by arcs $\gamma \in T$. The bottom m rows are formed by the shear coordinates of the laminations L_{i} with respect to T :

$$
b_{n+i, \gamma}=b_{\gamma}\left(T, L_{n+i}\right) \quad \text { if } 1 \leqslant i \leqslant m .
$$

By [FT08, Theorem 11.6], the matrices $\tilde{B}_{T, L}$ transform compatibly with mutation.
Definition 2.25. Let γ be an arc in (S, M). Denote by L_{γ} a lamination consisting of a single curve defined as follows. The curve L_{γ} runs along γ within a small neighborhood of it. If γ has an endpoint a on a (circular) component C of the boundary of S, then L_{γ} begins at a point $a^{\prime} \in C$ located near a in the counterclockwise direction, and proceeds along γ as shown in Figure 2. If T is a triangulation, we let $L_{T}=\left(L_{\gamma}\right)_{\gamma \in T}$ be the multi-lamination consisting of elementary laminations associated with the arcs in T, and we call it the multi-lamination associated with T.

The following result comes from [FT08, Proposition 16.3].
Proposition 2.26. Let T be a triangulation with signed adjacency matrix B_{T}. Let $L_{T}=$ $\left(L_{\gamma}\right)_{\gamma \in T}$ be the multi-lamination associated with T. Then $\mathcal{A}\left(\tilde{B}_{T, L_{T}}\right)$ is isomorphic to the cluster algebra with principal coefficients with respect to the matrix B_{T}; that is, $\mathcal{A}_{\bullet}\left(B_{T}\right) \cong \mathcal{A}\left(\tilde{B}_{T, L_{T}}\right)$.

2.4 Skein relations

In this subsection we review some results from [MW11].
Definition 2.27. A generalized arc in (S, M) is a curve γ in S such that:
(a) the endpoints of γ are in M;
(b) except for the endpoints, γ is disjoint from the boundary of S; and
(c) γ does not cut out a monogon or a bigon.

Note that we allow a generalized arc to cross itself a finite number of times. We consider generalized arcs up to isotopy (of immersed arcs). In particular, an isotopy cannot remove a contractible kink from a generalized arc.

Definition 2.28. A closed loop in (S, M) is a closed curve γ in S which is disjoint from the boundary of S. We allow a closed loop to have a finite number of self-crossings. As in Definition 2.27, we consider closed loops up to isotopy.

Definition 2.29. A closed loop in (S, M) is said to be essential if it is not contractible and does not have self-crossings.

Definition 2.30 (Multicurve). We define a multicurve to be a finite multiset of generalized arcs and closed loops such that there are only a finite number of pairwise crossings among the collection. We say that a multicurve is simple if there are no pairwise crossings among the collection and no self-crossings.

If a multicurve is not simple, then there are two ways to resolve a crossing to obtain a multicurve that no longer contains this crossing and has no additional crossings. This process is known as smoothing.

Definition 2.31 (Smoothing). Let γ, γ_{1} and γ_{2} be generalized arcs or closed loops such that we have one of the following two cases:
(i) γ_{1} crosses γ_{2} at a point x;
(ii) γ has a self-crossing at a point x.

Then we let C be the multicurve $\left\{\gamma_{1}, \gamma_{2}\right\}$ or $\{\gamma\}$, depending on which of the two cases we are in. We define the smoothing of C at the point x to be the pair of multicurves $C_{+}=\left\{\alpha_{1}, \alpha_{2}\right\}$ (respectively, $\{\alpha\}$) and $C_{-}=\left\{\beta_{1}, \beta_{2}\right\}$ (respectively, $\{\beta\}$).

Here, the multicurve C_{+}(respectively, C_{-}) is the same as C except for the local change that replaces the crossing \times with the pair of segments \cup (respectively, $\supset \subset$).

See Figures 3 and 4 for the first case, and Figure 5 for the second case.
Since a multicurve may contain only a finite number of crossings, by repeatedly applying smoothings we can associate to any multicurve a collection of simple multicurves. We call this resulting multiset of multicurves the smooth resolution of the multicurve C.

Theorem 2.32 [MW11, Propositions 6.4, 6.5, 6.6]. Let C, C_{+}and C_{-}be as in Definition 2.31. Then we have the following identity in $\mathcal{A}_{\bullet}\left(B_{T}\right)$:

$$
x_{C}= \pm Y_{1} x_{C_{+}} \pm Y_{2} x_{C-}
$$

G. Musiker, R. Schiffler and L. Williams

Figure 3. Smoothing of two generalized arcs.

Figure 4. Smoothing of two curves where at least one is a loop.

Figure 5. Smoothing of a self-intersection.
where Y_{1} and Y_{2} are monomials in the variables $y_{\tau_{i}}$. The monomials Y_{1} and Y_{2} can be expressed using the intersection numbers of the elementary laminations (associated to the triangulation T) with the curves in C, C_{+}and C_{-}.

2.5 Chebyshev polynomials

Chebyshev polynomials will play an important role in the proof of our main result. In this subsection, we recall some basic facts.

Definition 2.33. Let T_{k} denote the k th normalized Chebyshev polynomial with coefficients defined by

$$
T_{k}\left(t+\frac{Y}{t}\right)=t^{k}+\frac{Y^{k}}{t^{k}}
$$

Proposition 2.34. The normalized Chebyshev polynomials $T_{k}(x)$ defined above can also be uniquely determined by the initial conditions $T_{0}(x)=2, T_{1}(x)=x$ and the recurrence relation

$$
T_{k}(x)=x T_{k-1}(x)-Y T_{k-2}(x) .
$$

If Y is set to be 1 , then the $T_{k}(x)$'s can also be written as $2 \operatorname{Cheb}_{k}(x / 2)$, where $\operatorname{Cheb}_{k}(x)$ denotes the usual Chebyshev polynomial of the first kind, which satisfies $\operatorname{Cheb}_{k}(\cos x)=\cos (k x)$.

Proof. It is easy to check that the unique one-parameter family of polynomials $T_{k}(x)$ defined by the property $T_{k}(t+Y / t)=t^{k}+Y^{k} / t^{k}$ satisfies the initial conditions $T_{0}(x)=2$ and $T_{1}(x)=x$. To see that this family also satisfies the desired recurrence relation, we note that

$$
\left(t+\frac{Y}{t}\right)\left(t^{k-1}+\frac{Y^{k-1}}{t^{k-1}}\right)=t^{k}+Y t^{k-2}+\frac{Y^{k-1}}{t^{k-2}}+\frac{Y^{k}}{t^{k}},
$$

Table 1. The normalized Chebyshev polynomials (with coefficients) $T_{k}(x)$ for small k.

$$
\begin{aligned}
& T_{0}(x)=2 \\
& T_{1}(x)=x \\
& T_{2}(x)=x^{2}-2 Y \\
& T_{3}(x)=x^{3}-3 x Y \\
& T_{4}(x)=x^{4}-4 x^{2} Y+2 Y^{2} \\
& T_{5}(x)=x^{5}-5 x^{3} Y+5 x Y^{2} \\
& T_{6}(x)=x^{6}-6 x^{4} Y+9 x^{2} Y^{2}-2 Y^{3} \\
& \hline
\end{aligned}
$$

and thus, letting $x=t+Y / t$, we obtain

$$
x T_{k-1}(x)=T_{k}(x)+Y T_{k-2}(x) .
$$

Since the usual Chebyshev polynomials satisfy the initial conditions $\operatorname{Cheb}_{0}(x)=1, \operatorname{Cheb}_{1}(x)=x$ and the recurrence relation

$$
\operatorname{Cheb}_{k}(x)=2 x \operatorname{Cheb}_{k-1}(x)-\operatorname{Cheb}_{k-2}(x),
$$

the last remark follows as well.

We record here one more property of the normalized Chebyshev polynomials that we will need later.

Proposition 2.35. For all $k \geqslant 1$, the monomial x^{k} can be written as a positive linear combination of the normalized Chebyshev polynomials $T_{k}=T_{k}(x)$. In particular,

$$
\begin{equation*}
x^{k}=T_{k}+\binom{k}{1} Y T_{k-2}+\cdots+\binom{k}{(k-1) / 2} Y^{(k-2) / 2} T_{1} \quad \text { if } k \text { is odd } \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{k}=T_{k}+\binom{k}{1} Y T_{k-2}+\cdots+\binom{k}{(k-2) / 2} Y^{(k-2) / 2} T_{2}+\binom{k}{k / 2} Y^{k / 2} \quad \text { if } k \text { is even. } \tag{2.14}
\end{equation*}
$$

Proof. We prove both of these identities together by induction on k. The base cases for $k=1$ or 2 are easy to verify. If $k \geqslant 3$ is odd, then by induction and equation (2.14) we obtain

$$
\begin{aligned}
x^{k} & =x\left(x^{k-1}\right) \\
& =x\left[T_{k-1}+\binom{k-1}{1} Y T_{k-3}+\cdots+\binom{k-1}{(k-3) / 2} Y^{(k-3) / 2} T_{2}+\binom{k-1}{(k-1) / 2} Y^{(k-1) / 2}\right] .
\end{aligned}
$$

The Chebyshev recurrence can be rewritten as $x T_{k-1}=T_{k}+Y T_{k-2}$. Thus x^{k} equals

$$
\begin{aligned}
{\left[T_{k}\right.} & \left.+\binom{k-1}{1} Y T_{k-2}+\binom{k-1}{2} Y^{2} T_{k-4}+\cdots+\binom{k-1}{(k-3) / 2} Y^{(k-3) / 2} T_{3}\right] \\
& +\binom{k-1}{(k-1) / 2} Y^{(k-1) / 2} x \\
& +Y\left[T_{k-2}+\binom{k-1}{1} Y T_{k-4}+\binom{k-1}{2} Y^{2} T_{k-6}+\cdots+\binom{k-1}{(k-3) / 2} Y^{(k-3) / 2} T_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & T_{k}+\binom{k}{1} Y T_{k-2}+\binom{k}{2} Y^{2} T_{k-4}+\cdots+\binom{k}{(k-3) / 2} Y^{(k-3) / 2} T_{3} \\
& +\binom{k}{(k-1) / 2} Y^{(k-1) / 2} T_{1}
\end{aligned}
$$

where the last equality uses the fact that $x=T_{1}$.
A similar technique proves the identity for the case of even k, where we need to use the facts that $T_{0}=2$ and $2\binom{k-1}{(k-2) / 2}=\binom{k}{k / 2}$. Using these and (2.13), the monomial $x^{k}=x\left(x^{k-1}\right)$ equals

$$
\begin{aligned}
& {\left[T_{k}+\binom{k-1}{1} Y T_{k-2}+\binom{k-1}{2} Y^{2} T_{k-4}+\cdots+\binom{k-1}{(k-4) / 2} Y^{(k-4) / 2} T_{4}\right.} \\
& \left.\quad+\binom{k-1}{(k-2) / 2} Y^{(k-2) / 2} T_{2}\right]+Y\left[T_{k-2}+\binom{k-1}{1} Y T_{k-4}\right. \\
& \left.\quad+\binom{k-1}{2} Y^{2} T_{k-6}+\cdots+\binom{k-1}{(k-4) / 2} Y^{(k-4) / 2} T_{2}+\binom{k-1}{(k-2) / 2} Y^{(k-2) / 2} T_{0}\right] \\
& =
\end{aligned}
$$

3. Definition of the two bases \mathcal{B}° and \mathcal{B}

Throughout $\S \S 3-7$ of this paper, we fix an unpunctured marked surface (S, M) and a triangulation T, and consider the corresponding cluster algebra $\mathcal{A}=\mathcal{A}_{\bullet}\left(B_{T}\right)$, with principal coefficients with respect to T. Recall that the cluster variables of \mathcal{A} are in bijection with the arcs in (S, M). In this paper we will associate elements of \mathcal{A} to any generalized arc (where selfintersections are allowed) and to any closed loop. In particular, we will define two sets $\mathcal{C}^{\circ}(S, M)$ and $\mathcal{C}(S, M)$ of collections of loops and arcs in (S, M), and will associate a cluster algebra element to each element of $\mathcal{C}^{\circ}(S, M)$ and $\mathcal{C}(S, M)$.

3.1 Snake graphs and band graphs

Recall from [MSW11] that we have a positive combinatorial formula for the Laurent expansion of any cluster variable in a cluster algebra arising from a surface. Each such cluster variable corresponds to an arc in the surface, so our formula associates a cluster algebra element to every arc. We will generalize this construction and associate cluster algebra elements to generalized arcs as well as to closed loops (with or without self-crossings).

Let γ be an arc in (S, M) which is not in T. Choose an orientation on γ, let $s \in M$ be its starting point, and let $t \in M$ be its endpoint. We denote by $s=p_{0}, p_{1}, p_{2}, \ldots, p_{d+1}=t$ the points of intersection of γ and T in order. Let $\tau_{i_{j}}$ be the arc of T containing p_{j}, and let Δ_{j-1} and Δ_{j} be the two triangles in T on either side of $\tau_{i_{j}}$. Note that each of these triangles has three distinct sides but not necessarily three distinct vertices; see Figure 6.

Let G_{j} be the graph with four vertices and five edges, having the shape of a square with a diagonal, such that there is a bijection between the edges of G_{j} and the five arcs in the two triangles Δ_{j-1} and Δ_{j} which preserves the signed adjacency of the arcs up to sign and is such that the diagonal in G_{j} corresponds to the arc $\tau_{i_{j}}$ containing the crossing point p_{j}. We call the graph G_{j} a tile. Thus the tile G_{j} is given by the quadrilateral in the triangulation T whose diagonal is $\tau_{i_{j}}$.

Bases for cluster algebras from surfaces

Figure 6. On the left: a triangle with two vertices. On the right: the tile G_{j} where $i_{j}=2$.

Figure 7. Gluing tiles \tilde{G}_{j} and \tilde{G}_{j+1} along the edge labeled $\tau_{\left[\gamma_{j}\right]}$.

Definition 3.1. Given a planar embedding \tilde{G}_{j} of a tile G_{j}, we define the relative orientation $\operatorname{rel}\left(\tilde{G}_{j}, T\right)$ of \tilde{G}_{j} with respect to T to be ± 1, based on whether its triangles agree or disagree in orientation with those of T.

For example, in Figure 6, the tile G_{j} has relative orientation +1 .
Using the notation above, the arcs $\tau_{i_{j}}$ and $\tau_{i_{j+1}}$ form two edges of a triangle Δ_{j} in T. Define $\tau_{\left[\gamma_{j}\right]}$ to be the third arc in this triangle.

We now recursively glue together the tiles G_{1}, \ldots, G_{d} in order from 1 to d, so that for two adjacent tiles we glue G_{j+1} to \tilde{G}_{j} along the edge labeled $\tau_{\left[\gamma_{j}\right]}$, choosing a planar embedding \tilde{G}_{j+1} for G_{j+1} such that $\operatorname{rel}\left(\tilde{G}_{j+1}, T\right) \neq \operatorname{rel}\left(\tilde{G}_{j}, T\right)$. See Figure 7 .

After gluing together the d tiles, we obtain a graph (embedded in the plane), which we denote by \bar{G}_{γ}.
Definition 3.2. The snake graph G_{γ} associated to γ is obtained from \bar{G}_{γ} by removing the diagonal in each tile.

In Figure 8, we give an example of an arc γ and the corresponding snake graph G_{γ}. Since γ intersects T five times, G_{γ} has five tiles.

Remark 3.3. Even if γ is a generalized arc, thus allowing self-crossings, we can still define G_{γ} in the same way.

Now we associate a similar graph to closed loops. Let ζ be a closed loop in (S, M), which may or may not have self-intersections, that is not contractible and has no contractible kinks. Choose an orientation for ζ, and choose a triangle Δ which is crossed by γ. Let p be a point in the interior of Δ which lies on γ, and let b and c be the two sides of the triangle crossed by γ

Figure 8. On the left: an arc γ in a triangulated annulus. On the right: the corresponding snake graph G_{γ}; the tiles labeled 1 or 3 have positive relative orientation, while the tiles labeled 2 or 4 have negative relative orientation.

Figure 9. On the left: triangle containing p along the closed loop ζ. On the right: the corresponding band graph (with $x \sim x^{\prime}$ and $y \sim y^{\prime}$), depending on whether γ crosses an odd or even number of arcs; the + and - symbols indicate the relative orientation of each tile.
immediately before and following its travel through the point p. Let a be the third side of Δ. We let $\tilde{\gamma}$ denote the arc from p back to itself that exactly follows the closed loop γ. See the leftmost diagram of Figure 9.

We start by building the snake graph $G_{\tilde{\gamma}}$ as defined above. In the first tile of $G_{\tilde{\gamma}}$, let x denote the vertex at the corner of the edge labeled a and the edge labeled b, and let y denote the vertex at the other end of the edge labeled a. Similarly, in the last tile of $G_{\tilde{\gamma}}$, let x^{\prime} denote the vertex at the corner of the edge labeled a and the edge labeled c, and let y^{\prime} denote the vertex at the other end of the edge labeled a. See the right part of Figure 9.
Definition 3.4. The band graph \widetilde{G}_{ζ} associated to the loop ζ is the graph obtained from $G_{\tilde{\zeta}}$ by identifying the edges labeled a in the first and last tiles so that the vertices x and x^{\prime} and the vertices y and y^{\prime} are glued together. We refer to the two vertices obtained by identification as x

Bases for cluster algebras from surfaces

and y, and to the edge obtained by identification as the cut edge. The resulting graph lies on an annulus or a Möbius strip.

3.2 Laurent polynomials associated to generalized arcs and closed loops

Recall that if τ is a boundary segment, then $x_{\tau}=1$,
Definition 3.5. If γ is a generalized arc or closed loop and $\tau_{i_{1}}, \tau_{i_{2}}, \ldots, \tau_{i_{d}}$ is the sequence of arcs in T which γ crosses, we define the crossing monomial of γ with respect to T to be

$$
\operatorname{cross}(T, \gamma)=\prod_{j=1}^{d} x_{\tau_{i_{j}}}
$$

Definition 3.6. A perfect matching of a graph G is a subset P of the edges of G such that each vertex of G is incident to exactly one edge of P. If G is a snake graph or band graph, and if the edges of a perfect matching P of G are labeled $\tau_{j_{1}}, \ldots, \tau_{j_{r}}$, then we define the weight $x(P)$ of P to be $x_{\tau_{j_{1}}}, \ldots, x_{\tau_{j_{r}}}$.

Definition 3.7. Let γ be a generalized arc. It is easy to see that the snake graph G_{γ} has precisely two perfect matchings, which we call the minimal matching $P_{-}=P_{-}\left(G_{\gamma}\right)$ and the maximal matching $P_{+}=P_{+}\left(G_{\gamma}\right)$, that contain only boundary edges. To distinguish them, if $\operatorname{rel}\left(\tilde{G}_{1}, T\right)=1$ (respectively, $\operatorname{rel}\left(\tilde{G}_{1}, T\right)=-1$), we define e_{1} and e_{2} to be the two edges of \bar{G}_{γ} which lie in the counterclockwise (respectively, clockwise) direction from the diagonal of \tilde{G}_{1}. Then P_{-}is defined as the unique matching which contains only boundary edges and does not contain edges e_{1} or e_{2}, while P_{+}is the other matching with only boundary edges.

In the example of Figure 8, the minimal matching P_{-}contains the bottom edge of the first tile labeled 4.

Definition 3.8. Let ζ be a closed loop. A perfect matching P of the band graph \widetilde{G}_{ζ} is called a good matching if either x and y are matched to each other (i.e. $P(x)=y$ and $P(y)=x)$ or both edges $(x, P(x))$ and $(y, P(y))$ lie on one side of the cut edge.

Remark 3.9. Let \widetilde{G}_{ζ} be a band graph obtained by identifying two edges of the snake graph $G_{\tilde{\zeta}}$. The good matchings of \widetilde{G}_{ζ} can be identified with a subset of the perfect matchings of $G_{\tilde{\zeta}}$. Let \widetilde{P} be a good matching of \widetilde{G}_{ζ}. Thinking of \widetilde{P} as a subset of edges of $G_{\tilde{\zeta}}$, by the definition of 'good' we can add to it either the edge (x, y) or the edge $\left(x^{\prime}, y^{\prime}\right)$ to get a perfect matching P of $G_{\tilde{\zeta}}$. In this case, we say that the perfect matching P of $G_{\tilde{\zeta}}$ descends to a good matching \widetilde{P} of \widetilde{G}_{ζ}. In particular, the minimal matching P_{-}of $G_{\tilde{\zeta}}$ descends to a good matching of \widetilde{G}_{ζ}, which we will also refer to as minimal. (To see this, just consider the cases of $G_{\tilde{\zeta}}$ having an odd or even number of tiles, and observe that the minimal matching of $G_{\tilde{\zeta}}$ always uses one of the edges (x, y) and $\left(x^{\prime}, y^{\prime}\right)$.)

For an arbitrary perfect matching P of a snake graph G_{γ}, we let $P_{-} \ominus P$ denote the symmetric difference, defined as $P_{-} \ominus P=\left(P_{-} \cup P\right) \backslash\left(P_{-} \cap P\right)$.

Lemma 3.10 [MS10, Theorem 5.1]. The set $P_{-} \ominus P$ is the set of boundary edges of a (possibly disconnected) subgraph G_{P} of G_{γ} which is a union of cycles. These cycles enclose a set of tiles $\bigcup_{j \in J} G_{j}$, where J is a finite index set.

G. Musiker, R. Schiffler and L. Williams

We use this decomposition to define height monomials for perfect matchings. Note that the exponents in the height monomials defined below coincide with the definition of height functions given in [Pro02] for perfect matchings of bipartite graphs, based on earlier work of [CL90, EKLP92, Thu90] for domino tilings.
Definition 3.11. With the notation of Lemma 3.10, we define the height monomial $y(P)$ of a perfect matching P of a snake graph G_{γ} by

$$
y(P)=\prod_{j \in J} y_{\tau_{i_{j}}} .
$$

The height monomial $y(\tilde{P})$ of a good matching \tilde{P} of a band graph \widetilde{G}_{ζ} is defined to be the height monomial of the corresponding matching on the snake graph $G_{\tilde{\zeta}}$.

For each generalized arc γ, we now define a Laurent polynomial x_{γ}, as well as a polynomial F_{γ}^{T} obtained from x_{γ} by specialization.
Definition 3.12. Let γ be a generalized arc, and let G_{γ} be its snake graph.
(i) If γ has a contractible kink, let $\bar{\gamma}$ denote the corresponding generalized arc with this kink removed, and define $x_{\gamma}=(-1) x_{\bar{\gamma}}$.
(ii) Otherwise, define

$$
x_{\gamma}=\frac{1}{\operatorname{cross}(T, \gamma)} \sum_{P} x(P) y(P),
$$

where the sum is over all perfect matchings P of G_{γ}.
Define F_{γ}^{T} to be the polynomial obtained from x_{γ} by specializing all the $x_{\tau_{i}}$ to 1 .
If γ is a curve that cuts out a contractible monogon, then we define $x_{\gamma}=0$.
Theorem 3.13 [MSW11, Theorem 4.9]. If γ is an arc, then x_{γ} is the Laurent expansion with respect to the seed Σ_{T} of the cluster variable in \mathcal{A} corresponding to the arc γ, and F_{γ}^{T} is its F-polynomial.

For every closed loop ζ, we now define a Laurent polynomial x_{ζ}, as well as a polynomial F_{ζ}^{T} obtained from x_{ζ} by specialization.

Definition 3.14. Let ζ be a closed loop.
(i) If ζ is a contractible loop, then let $x_{\zeta}=-2$.
(ii) If ζ has a contractible kink, let $\bar{\zeta}$ denote the corresponding closed loop with this kink removed, and define $x_{\zeta}=(-1) x_{\bar{\zeta}}$.
(iii) Otherwise, let

$$
x_{\zeta}=\frac{1}{\operatorname{cross}(T, \gamma)} \sum_{P} x(P) y(P),
$$

where the sum is over all good matchings P of the band graph \widetilde{G}_{ζ}.
Define F_{ζ}^{T} to be the Laurent polynomial obtained from x_{ζ} by specializing all the $x_{\tau_{i}}$ to 1 .
Remark 3.15. Note that x_{γ} depends on the triangulation T and the surface (S, M), and it lies in (the fraction field of) $\mathcal{A}_{\bullet}\left(B_{T}\right)$. If we want to emphasize the dependence on T, we will use the notation X_{γ}^{T} instead of x_{γ}; similarly for X_{ζ}^{T} and x_{ζ}.

Figure 10. A bangle $\mathrm{Bang}_{3} \zeta$ (left) and a bracelet $\mathrm{Brac}_{3} \zeta$ (right).

3.3 Bangles and bracelets

Definition 3.16. Let ζ be an essential loop in (S, M). We define the bangle $\mathrm{Bang}_{k} \zeta$ to be the union of k loops isotopic to ζ. (Note that $\mathrm{Bang}_{k} \zeta$ has no self-crossings.) We define the bracelet $\mathrm{Brac}_{k} \zeta$ to be the closed loop obtained by concatenating ζ exactly k times; see Figure 10. (Note that $\mathrm{Brac}_{k} \zeta$ will have $k-1$ self-crossings.)

Note that $\operatorname{Bang}_{1} \zeta=\operatorname{Brac}_{1} \zeta=\zeta$.
Definition 3.17. A collection C of arcs and essential loops is said to be \mathcal{C}°-compatible if no two elements of C cross each other. We define $\mathcal{C}^{\circ}(S, M)$ to be the set of all \mathcal{C}°-compatible collections in (S, M).

Definition 3.18. A collection C of arcs and bracelets is said to be \mathcal{C}-compatible if:

- no two elements of C cross each other, except for the self-crossings of a bracelet; and
- given an essential loop ζ in (S, M), there is at most one $k \geqslant 1$ such that the k th bracelet $\mathrm{Brac}_{k} \zeta$ lies in C, and, moreover, there is at most one copy of this bracelet $\mathrm{Brac}_{k} \zeta$ in C.
We define $\mathcal{C}(S, M)$ to be the set of all \mathcal{C}-compatible collections in (S, M).
Note that a \mathcal{C}°-compatible collection may contain bangles $\mathrm{Bang}_{k} \zeta$ for $k \geqslant 1$, but it will not contain bracelets $\operatorname{Brac}_{k} \zeta$ except when $k=1$. Also, a \mathcal{C}-compatible collection may contain bracelets but will never contain a bangle $\operatorname{Bang}_{k} \zeta$ except when $k=1$.
Definition 3.19. Given an arc or a closed loop c, let x_{c} denote the corresponding Laurent polynomial defined in $\S 3.2$. We define \mathcal{B}° to be the set of all cluster algebra elements in $\mathcal{A}=\mathcal{A}_{\bullet}\left(B_{T}\right)$ corresponding to the set $C^{\circ}(S, M)$; that is,

$$
\mathcal{B}^{\circ}=\left\{\prod_{c \in C} x_{c} \mid C \in \mathcal{C}^{\circ}(S, M)\right\} .
$$

Similarly, we define

$$
\mathcal{B}=\left\{\prod_{c \in C} x_{c} \mid C \in \mathcal{C}(S, M)\right\} .
$$

Remark 3.20. Both \mathcal{B}° and \mathcal{B} contain the cluster monomials of \mathcal{A}.
Remark 3.21. The notation \mathcal{C}° is meant to remind the reader that this collection includes bangles. We chose to use the unadorned notation \mathcal{C} for the other collection of arcs and loops, because the corresponding set \mathcal{B} of cluster algebra elements is believed to have better positivity properties than does the set \mathcal{B}°.

G. Musiker, R. Schiffler and L. Williams

4. Proof of the main result

The goal of this section is to prove that both sets \mathcal{B}° and \mathcal{B} are bases for the cluster algebra \mathcal{A}. More specifically, we will prove the following theorem.

Theorem 4.1. If the surface has no punctures and at least two marked points, then the sets \mathcal{B}° and \mathcal{B} are bases of the cluster algebra \mathcal{A}.

We subdivide the proof into the following three steps.
(i) \mathcal{B}° and \mathcal{B} are subsets of \mathcal{A}.
(ii) \mathcal{B}° and \mathcal{B} are spanning sets for \mathcal{A}.
(iii) \mathcal{B}° and \mathcal{B} are linearly independent.

$4.1 \mathcal{B}^{\circ}$ and \mathcal{B} are subsets of \mathcal{A}

We start by describing the relation between bangles and bracelets, which involves the Chebyshev polynomials.

If τ and ζ are arcs or closed loops and L is a lamination, we let $e(\tau, \zeta)$ (respectively, $e(\tau, L)$) denote the number of crossings between τ and ζ (respectively, τ and L).
Proposition 4.2. Let ζ be an essential loop, and let $Y_{\zeta}=\prod_{\tau \in T} y_{\tau}^{e(\zeta, \tau)}$. Then we have

$$
x_{\operatorname{Brac}_{k} \zeta}=T_{k}\left(x_{\zeta}\right),
$$

where T_{k} denotes the k th normalized Chebyshev polynomial (with coefficients) defined in § 2.5.
Proof. We prove the statement by induction on k. Smoothing $\operatorname{Brac}_{k+1} \zeta$ at one point of selfcrossing produces the multicurves $\left\{\zeta, \operatorname{Brac}_{k} \zeta\right\}$ and $\{\gamma\}$, where γ is the curve $\operatorname{Brac}_{k-1}$ with a contractible kink. It follows from Theorem 2.32 that

$$
x_{\operatorname{Brac}_{k+1} \zeta}= \pm x_{\zeta} x_{\operatorname{Brac}_{k} \zeta} \prod_{i=1}^{n} y_{i}^{\left(c_{i}-a_{i}\right) / 2} \pm x_{\operatorname{Brac}_{k-1}} \zeta \prod_{i=1}^{n} y_{i}^{\left(c_{i}-b_{i}\right) / 2}
$$

where $c_{i}=e\left(\operatorname{Brac}_{k+1} \zeta, L_{i}\right), a_{i}=e\left(\operatorname{Brac}_{k} \zeta, L_{i}\right)+e\left(\zeta, L_{i}\right)$ and $b_{i}=e\left(\operatorname{Brac}_{k-1} \zeta, L_{i}\right)$. From the definition of bracelets, it follows that $c_{i}=a_{i}$ and that $c_{i}=b_{i}+2 e\left(\zeta, \tau_{i}\right)$. Thus

$$
x_{\operatorname{Brac}_{k+1} \zeta}= \pm x_{\zeta} x_{\operatorname{Brac}_{k} \zeta} \pm x_{\operatorname{Brac}_{k-1} \zeta} Y_{\zeta} .
$$

It remains to show that the first sign is + and the second is - .
Since $k \geqslant 1$, each of $x_{\zeta}, x_{\operatorname{Brac}_{k} \zeta}$ and $x_{\operatorname{Brac}_{k+1} \zeta}$ is a Laurent polynomial given by a band graph formula. So, in particular, each is in $\mathbb{Z}\left[x_{i}^{ \pm 1}, y_{i}\right]$, has all signs positive, and has a unique term without any coefficients y_{i}, corresponding to the minimal matching. On the other hand, Y_{ζ} is a monomial in the y_{i} 's which is not equal to 1 . If we set all the x_{i} 's equal to 1 and all the y_{i} 's equal to 0 , then we get $1= \pm 1 \pm 0$, which shows that the first sign must be + .

To see that the second sign is -, we use Definition 3.14 and the specialization $x_{i}=1$ and $y_{i}=1$ for all i. Letting $\operatorname{Good}(G)$ denote the set of good matchings of G and using $\tilde{G}_{m \zeta}$ as a shorthand for the band graph $\tilde{G}_{\text {Brac }_{m} \zeta}$, our equation becomes

$$
\left|\operatorname{Good}\left(\tilde{G}_{(k+1) \zeta}\right)\right|=+\left|\operatorname{Good}\left(\tilde{G}_{\zeta}\right)\right| \cdot\left|\operatorname{Good}\left(\tilde{G}_{k \zeta}\right)\right| \pm\left|\operatorname{Good}\left(\tilde{G}_{(k-1) \zeta}\right)\right| .
$$

Thus it suffices to show that

$$
\left|\operatorname{Good}\left(\tilde{G}_{(k+1) \zeta}\right)\right|<\left|\operatorname{Good}\left(\tilde{G}_{\zeta}\right)\right| \cdot\left|\operatorname{Good}\left(\tilde{G}_{k \zeta}\right)\right| .
$$

For $d \geqslant 2$, we let $\bullet_{y^{\prime}} \bullet_{x^{\prime}}$ denote the edge of the snake graph $G_{d \zeta}$ or the band graph $\tilde{G}_{d \zeta}$ succeeding the last tile of the subgraph G_{ζ}. We will exhibit an injective map ψ : $\operatorname{Good}\left(\tilde{G}_{(k+1) \zeta}\right) \longrightarrow \operatorname{Good}\left(\tilde{G}_{\zeta}\right) \times \operatorname{Good}\left(\tilde{G}_{k \zeta}\right)$. In particular, given $\tilde{P} \in \operatorname{Good}\left(\tilde{G}_{(k+1) \zeta}\right)$, we define $\psi(\tilde{P})=\left(\tilde{Q}_{1}, \tilde{Q}_{2}\right)$ as follows.
$-\operatorname{Lift} \tilde{P}$ to P, a perfect matching of the snake graph $G_{(k+1) \zeta}$.

- Split P along the edge $\bullet_{y^{\prime}}$ • x^{\prime} into perfect matchings P_{1} and P_{2} of the snake graphs G_{ζ} and $G_{k \zeta}$, respectively. Note that there are two cases here. If the edge $\bullet{ }_{y^{\prime}} \quad \bullet \bullet_{x^{\prime}}$ is in P, we copy it, and include it as a distinguished edge in both P_{1} and P_{2}. Otherwise, either P_{1} or P_{2} is missing one edge to be a perfect matching, and we adjoin the edge $\bullet_{y^{\prime}}$ to that perfect matching.
- Swap. Consider the symmetric difference $P_{1} \ominus P_{2}$, which, by Lemma 3.10, consists of a union of cycles. Let C be the cycle which encloses the tile G_{1}, if such a cycle exists, and let C be empty otherwise. We then define the first segment of both P_{1} and P_{2} to be the matching on the induced subgraph formed by the tiles enclosed by the cycle C. Swap the first segments of P_{1} and P_{2} to obtain new perfect matchings of G_{ζ} and $G_{k \zeta}$, which we denote by Q_{1} and Q_{2}.
- Descend Q_{1} and Q_{2} down to good matchings \tilde{Q}_{1} and \tilde{Q}_{2} of the band graphs \tilde{G}_{ζ} and $\tilde{G}_{k \zeta}$.

A straightforward analysis of nine possible cases (contingent on how the perfect matching P looks locally around edges $\bullet_{x — —} \bullet_{y}$ and $\bullet_{y^{\prime}}$ has a left-inverse. In particular, swapping the first segments of P_{1} and P_{2} turns the condition that \tilde{P} is a good matching of the band graph $\tilde{G}_{(k+1) \zeta}$ into the condition that \tilde{Q}_{1} and \tilde{Q}_{2} are good matchings of the band graphs \tilde{G}_{ζ} and $\tilde{G}_{k \zeta}$.

Remark 4.3. In the special case where the cluster algebra \mathcal{A} has trivial coefficients, a similar formula can be found in [FG00].

Remark 4.4. In the special case where the surface is an annulus, Chebyshev polynomials were used in [Dup10, DT11] to construct an atomic basis for the cluster algebra.

Next, we show that the sets \mathcal{B}° and \mathcal{B} are subsets of the cluster algebra, using our assumption that the number of marked points is at least two. We do not know whether the result is true for surfaces with exactly one marked point.

Proposition 4.5. If the surface has at least two marked points, then the sets \mathcal{B}° and \mathcal{B} are subsets of \mathcal{A}.

Proof. First, recall that if γ is an arc, then x_{γ} is a cluster variable by [MSW11]. Thus, if C is a multicurve consisting of non-crossing arcs, then x_{C} is a monomial of cluster variables, and hence $x_{C} \in \mathcal{A}$.

Next, suppose that ζ is an essential loop. Suppose first that there exists one boundary component which contains at least two marked points m_{1} and m_{2}. Let γ be the arc obtained by attaching the loop ζ to the point m_{1}; more precisely, γ is the isotopy class of the curve $\gamma_{1} \zeta \gamma_{1}^{-1}$, where γ_{1} is a curve from m_{1} to the starting point of ζ; see Figure 11. Let γ^{\prime} be the unique arc that crosses γ twice, connects the two immediate neighbors m_{1}^{-}and m_{1}^{+}of m_{1} on the boundary, and is homotopic to the part of the boundary component between m_{1}^{-}and m_{1}^{+}. Note that m_{1}^{-} and m_{1}^{+}coincide if this boundary component contains exactly two marked points. The multicurve $C=\left\{\gamma, \gamma^{\prime}\right\}$ smoothes to the four simple multicurves shown in Figure 12, and it follows from

G. Musiker, R. Schiffler and L. Williams

Figure 11. Two arcs γ and γ^{\prime} associated to the essential loop ζ. The smoothing of the multicurve $\left\{\gamma, \gamma^{\prime}\right\}$ is shown in Figure 12.

Figure 12. Smoothing of the multicurve $\left\{\gamma, \gamma^{\prime}\right\}$ of Figure 11.

Figure 13. Two arcs γ and γ^{\prime} associated to the essential loop ζ. The smoothing of the multicurve $\left\{\gamma, \gamma^{\prime}\right\}$ is shown in Figure 14.

Theorem 2.32 that

$$
x_{\gamma} x_{\gamma^{\prime}}=0 \pm y(\alpha: C) x_{\alpha} \pm y(\beta: C) x_{\beta} \pm y(\zeta: C) x_{\zeta}
$$

for some coefficients $y(\alpha: C), y(\beta: C)$ and $y(\gamma: C)$. Solving for x_{ζ}, we get

$$
x_{\zeta}=\left(x_{\gamma} x_{\gamma^{\prime}} \pm y(\alpha: C) x_{\alpha} \pm y(\beta: C) x_{\beta}\right) / y(\zeta: C),
$$

which shows that $x_{\zeta} \in \mathcal{A}$.
Now suppose that each boundary component contains exactly one marked point. Then, by our assumption, there exist at least two such boundary components D_{1} and D_{2}. Let m_{i} denote the marked point on D_{i}. Choose two distinct points p_{1} and p_{2} on the loop ζ, fix an orientation of ζ, and denote by ζ_{1} the segment of ζ from p_{1} to p_{2} and by ζ_{2} the segment of ζ from p_{2} to p_{1}. Let γ_{1} be a curve from m_{1} to p_{1} and γ_{2} a curve from m_{2} to p_{2}. Define γ to be the arc homotopic to the concatenation $\gamma_{1} \zeta_{1} \gamma_{2}^{-1}$; see Figure 13.

To define γ^{\prime}, we start with the arc from m_{1} to m_{2} given by $\gamma_{1} \zeta_{2}^{-1} \gamma_{2}^{-1}$ and add to it a complete lap around each of the boundary components D_{1} and D_{2} in the directions that create crossings with γ. In Figure 13, γ^{\prime} corresponds to the concatenation $\delta_{1} \gamma_{1} \zeta_{2}^{-1} \gamma_{2}^{-1} \delta_{2}$, where δ_{i} is a curve that starts and ends at m_{i} and goes around the boundary component D_{i} exactly once.

Then the multicurve $C=\left\{\gamma, \gamma^{\prime}\right\}$ smoothes to the four simple multicurves shown in Figure 14, and again it follows from Theorem 2.32 that

$$
x_{\gamma} x_{\gamma^{\prime}}= \pm y(\zeta: C) x_{\zeta} \pm y(\alpha: C) x_{\alpha} \pm y(\beta: C) x_{\beta} \pm y(\{\sigma, \rho\}: C) x_{\sigma} x_{\rho}
$$

Again, solving for x_{ζ} shows that $x_{\zeta} \in \mathcal{A}$.
Thus, for every essential loop ζ the element x_{ζ} is in the cluster algebra. The element $x_{\operatorname{Bang}_{k} \zeta}$ is a power of x_{ζ}, which shows that it also lies in the cluster algebra. This shows that $\mathcal{B}^{\circ} \subset \mathcal{A}$. Now Proposition 4.2 implies that $\mathcal{B} \subset \mathcal{A}$.

Corollary 4.6. If the surface has genus zero, then \mathcal{B}° and \mathcal{B} are subsets of \mathcal{A}.

G. Musiker, R. Schiffler and L. Williams

Figure 14. Smoothing of the multicurve $\left\{\gamma, \gamma^{\prime}\right\}$ of Figure 13.

$4.2 \mathcal{B}^{\circ}$ and \mathcal{B} are spanning sets for \mathcal{A}

Lemma 4.7. The sets \mathcal{B}° and \mathcal{B} are both spanning sets for the cluster algebra \mathcal{A}.
Proof. We start by showing the result for \mathcal{B}°. Since the elements of the cluster algebra are polynomials in the cluster variables, it suffices to show that any finite product of cluster variables can be written as a linear combination of elements of \mathcal{B}°.

We will prove the more general statement that for any multicurve C, the element $x_{C}=$ $\prod_{c \in C} x_{c}$ can be written as a linear combination of elements of \mathcal{B}°. If there are no crossings between the elements of C, then $x_{C} \in \mathcal{B}^{\circ}$ and we are done. Suppose, therefore, that there are exactly d crossings between the elements of C. Using Theorem 2.32 , we can write

$$
x_{C}= \pm Y_{+} x_{C_{+}} \pm Y_{-} x_{C_{-}}
$$

where Y_{+}and Y_{-}are coefficient monomials while C_{+}and C_{-}are multicurves, each having at most $d-1$ crossings between its elements. The statement for \mathcal{B}° now follows by induction.

To show the statement for \mathcal{B}, we use Propositions 2.35 and 4.2 , which show that for each bangle $\mathrm{Bang}_{k} \zeta$, we can write $x_{\mathrm{Bang}_{k} \zeta}$ as a positive integer linear combination of elements of \mathcal{B}. Since \mathcal{B}° is a spanning set, it follows that \mathcal{B} is too.

Remark 4.8. While \mathcal{B} is expected to be an atomic basis, \mathcal{B}° is definitely not atomic. In particular, $x_{\operatorname{Brac}_{k} \zeta}$ is in \mathcal{A}^{+}(it expands positively in terms of every cluster), but its expansion in the basis \mathcal{B}° uses the polynomial $T_{k}(x)$, which has negative coefficients.

By comparing our construction of the basis \mathcal{B} with that of Fock and Goncharov, we obtain the following result.

Corollary 4.9. For a coefficient-free cluster algebra \mathcal{A} from an unpunctured surface with at least two marked points, the upper cluster algebra and the cluster algebra coincide. Moreover, the sets \mathcal{B} and \mathcal{B}° are both bases of \mathcal{A}.

Proof. It follows from [MW11, Theorem 4.11 and Proposition 4.12] that the set \mathcal{B} coincides with the basis of the upper cluster algebra constructed in [FG06]. Proposition 4.5 ensures that \mathcal{B} is a subset of the cluster algebra rather than simply the upper cluster algebra. Therefore \mathcal{B} is a basis for the cluster algebra and for the upper cluster algebra, and the two algebras coincide.

$4.3 \mathcal{B}^{\circ}$ and \mathcal{B} are linearly independent sets

It remains to show the linear independence of the sets \mathcal{B}° and \mathcal{B}. This is done in $\S \S 5$ and 6 .

5. Lattice structure of the matchings of snake and band graphs

In this section, we describe the structure of the set of perfect matchings of a snake graph and the set of good matchings of a band graph. The main application of our analysis of matchings is the proof of Theorem 5.1 below. In $\S 6$, we will use this theorem to extend the definition of g -vector to all elements of \mathcal{B} and \mathcal{B}°.
Theorem 5.1. Any element z of \mathcal{B}° or \mathcal{B} contains a unique term \mathbf{x}^{g} not divisible by any coefficient variable, and the exponent vector of each other term is obtained from g by adding a non-negative linear combination of columns of $\widetilde{B_{T}}$. The same is true if we replace z by any product of elements in \mathcal{B}° or \mathcal{B}.

Let G be a snake or band graph with tiles G_{1}, \ldots, G_{n}. Let P_{-}denote the minimal matching of G. Given an arbitrary matching P of G, its height function or height monomial is the monomial $\prod_{G_{i}} w_{i}$ where G_{i} ranges over all tiles enclosed by $P \cup P_{-}$. We define a twist of a matching P to be a local move that affects precisely one tile T of G, replacing the two horizontal edges of T with the two vertical edges, or vice versa.

The following theorem is a consequence of [Pro02, Theorem 2]. See Figure 15.
Theorem 5.2. Consider the set of all perfect matchings of a snake graph G with tiles G_{1}, \ldots, G_{n}. Construct a graph $L(G)$ whose vertices are labeled by these matchings and whose edges connect two vertices if and only if the two matchings are related by a twist. This graph is the Hasse diagram of a distributive lattice whose minimal element is P_{-}. The lattice is graded by the degree of each height monomial.

We now prove some more properties of $L(G)$. We describe how to read off from G a poset Q_{G} whose lattice of order ideals $J\left(Q_{G}\right)$ is equal to $L(G)$.

Given a snake graph G, we define a straight subgraph of G to be a subgraph H formed by consecutive tiles which all lie in a row or in a column. We define a zigzag subgraph H of G to be a subgraph formed by consecutive tiles such that no three consecutive tiles in H lie in a row or in a column.

G. Musiker, R. Schiffler and L. Williams

Figure 15. Lattice of perfect matchings of a snake graph.

Definition 5.3. Let G be a snake graph with tiles G_{1}, \ldots, G_{n} (labeled from southwest to northeast). Group the tiles of G into overlapping connected subsets of tiles S_{1}, \ldots, S_{k}, where each S_{i} is either a maximal-by-inclusion straight or zigzag subgraph and the S_{i} alternate between straight and zigzag subgraphs. We associate to G (the Hasse diagram of) a poset $Q=Q_{G}$ as follows (see Figure 15). The elements of the poset are labeled P_{1}, \ldots, P_{n}, and there is an edge in the Hasse diagram of Q between i and $i+1$. Suppose that S_{i} consists of tiles $G_{r}, G_{r+1}, \ldots, G_{s}$. If S_{i} is a zigzag subgraph, then the edges of the Hasse diagram between r and $r+1, r+1$ and $r+2$, up to $s-1$ and s, are either all oriented northeast or all oriented southeast. If S_{i} is a straight subgraph, then the edges of the Hasse diagram between i_{1}, \ldots, i_{r} alternate between northeast and southeast orientations. If the tile G_{2} is to the right of (respectively, above) the tile G_{1}, then the edge from 1 and 2 is oriented northeast (respectively, southeast).

Note that the snake graph in Figure 15 is made up of a straight subgraph S_{1} consisting of tiles G_{1}, \ldots, G_{3} and a zigzag subgraph S_{2} consisting of tiles G_{2}, \ldots, G_{5}.

Theorem 5.4. Let G be a snake graph with tiles G_{1}, \ldots, G_{n}. We assume that the tile G_{1} is chosen to have positive relative orientation (see Definition 3.1). Then $L(G)$ is the lattice of order ideals $J\left(Q_{G}\right)$ of the poset Q_{G} from Definition 5.3; the support of the height monomial of a matching in $L(G)$ consists precisely of the elements in the corresponding order ideal. Moreover, the twist-parity condition is satisfied: if i is odd (respectively, even), a twist on tile G_{i} going up in the poset replaces the horizontal edges in G_{i} with the vertical edges (respectively, the vertical edges with the horizontal edges).

Proof. We use induction on the number of tiles. If G is composed of tiles G_{1}, \ldots, G_{n}, there are two cases: either G_{n} is to the right of G_{n-1}, or it is directly above tile G_{n-1}. We consider the first case here (the second case is similar, so we omit it). Let H_{1} be the subgraph of G consisting of tiles G_{1}, \ldots, G_{n-1}. Note that each perfect matching of H_{1} can be extended uniquely to a perfect matching of G by adding the rightmost vertical edge of G_{n}; we call such extended matchings type 1 matchings of G. Now, consider perfect matchings of G which use the two horizontal edges

Bases for cluster algebras from surfaces

of G_{n}; these we call type 2 matchings. Recall the decomposition of G as a union of subgraphs S_{1}, \ldots, S_{k} from Definition 5.3. Suppose that S_{k} consists of tiles $G_{r}, G_{r+1}, \ldots, G_{n}$. If S_{k} is a zigzag subgraph, then type 2 perfect matchings will be forced to include every other edge of the boundary of $G_{r+1} \cup \cdots \cup G_{n}$ and, indeed, will be in bijection with perfect matchings of the subgraph H_{2} of G consisting of tiles G_{1}, \ldots, G_{r-1}. If S_{k} is a straight subgraph, then type 2 perfect matchings will be in bijection with perfect matchings of the subgraph H_{2} of G composed of tiles G_{1}, \ldots, G_{n-2}.

In Figure 15, there are two type 2 perfect matchings, P_{1} and the minimal element in the poset. These perfect matchings are in bijection with matchings of H_{2}, which in this case consists of just tile G_{1}. The other perfect matchings are of type 1 .

The set of type 1 matchings forms a sublattice L_{1} of $L(G)$ (isomorphic to $L\left(H_{1}\right)$), and the set of type 2 matchings forms a sublattice L_{2} of $L(G)$ (isomorphic to $L\left(H_{2}\right)$). By induction, within L_{1} and L_{2}, the twist-parity condition is satisfied (note that within L_{1} and L_{2} there are no twists involving tile G_{n}). The lattice $L(G)$ is equal to the disjoint union of L_{1} and L_{2} together with some edges connecting them, which correspond to twists on tile G_{n}. If n is odd (respectively, even), then the minimal matching P_{-}of G uses one or both of the horizontal (respectively, vertical) edges of G_{n}. Therefore, when n is odd (respectively, even), if P is a matching of G which uses both horizontal (respectively, vertical) edges of G_{n}, then performing a twist will increase the height function. This proves the twist-parity condition.

To prove that $L(G) \cong J\left(Q_{G}\right)$, we use the decomposition $G=S_{1} \cup \cdots \cup S_{k}$. First, suppose that S_{k} is a straight subgraph. If n is even, then the type 1 matchings do not contain w_{n} in their height monomial, and by induction they are in bijection with order ideals in $Q_{H_{1}}$, i.e. order ideals of Q_{G} that do not use n. The type 2 matchings do contain w_{n} and also w_{n-1} in their height monomial, because S_{k} is straight and k is even. By induction, they are in bijection with order ideals in $Q_{H_{2}}$, which in turn are in bijection with order ideals of Q_{G} that involve n and $n-1$. Together, this gives a decomposition of the order ideals of Q_{G} as a disjoint union of the type 1 and type 2 matchings, proving that $L(G) \cong J\left(Q_{G}\right)$. When n is odd the argument is similar, but this time it is the type 1 matchings whose height monomial contains w_{n}.

Now suppose that S_{k} is a zigzag subgraph. Write $S_{k}=G_{r} \cup G_{r+1} \cup \cdots \cup G_{n}$. If n is even, then the type 1 matchings do not contain w_{n} in their height monomial, and by induction they are in bijection with order ideals in $Q_{H_{1}}$, which in turn are in bijection with order ideals of Q_{G} that do not use n. The type 2 matchings must contain $w_{r}, w_{r+1}, \ldots, w_{n}$ in their height monomials and, by induction, are in bijection with order ideals in $Q_{H_{2}}$, which in turn are in bijection with order ideals of Q_{G} that involve n (and hence $n-1, n-2, \ldots, r$). Together, this gives a decomposition of the order ideals of Q_{G} as a disjoint union of the type 1 and type 2 matchings, which proves that $L(G)$ is isomorphic to $J\left(Q_{G}\right)$. When n is odd the argument is similar, but this time the height monomials of the type 1 matchings contain w_{n}, and the height monomials of the type 2 matchings do not contain any of $w_{r}, w_{r+1}, \ldots, w_{n}$.

Remark 5.5. If \mathcal{Q}_{T} is the quiver of the triangulation T, then each generalized arc γ defines a string module $M(\gamma)$ over the corresponding Jacobian algebra; see [BZ10]. The string of $M(\gamma)$ is precisely the poset Q, and the lattice $L(G)$ is the lattice of string submodules of $M(\gamma)$.

We now consider the good matchings of a band graph \widetilde{G}, where \widetilde{G} is obtained from a snake graph G by identifying two edges. By Remark 3.9, we can identify the good matchings of \widetilde{G} with a subset of the perfect matchings of G, so, in particular, we can consider the subgraph $L(\widetilde{G})$ of $L(G)$ which is obtained from $L(G)$ by restricting to the good matchings. As we now

Figure 16. Illustration of the proof of Theorem 5.7.
explain, $L(\widetilde{G})$ has the structure of a distributive lattice, that is, we can identify it with the lattice of order ideals of a certain poset.
Definition 5.6. Let \widetilde{G} be a band graph obtained from a snake graph G with tiles G_{1}, \ldots, G_{n}. There are four different cases, based on the geometry of how x and y sit in the first and last tiles of \widetilde{G}; see Figure 9. Let $Q=Q_{G}$ be the poset associated to G by Definition 5.3. We now let $\widetilde{Q}=\widetilde{Q}_{G}$ be the poset obtained from the poset $Q=Q_{G}$ by imposing one more relation: in Cases 1 and 2 , we impose the relation $1>n$; in Cases 3 and 4 , we impose the relation $1<n$. (It is straightforward to verify that \widetilde{Q} is still a well-defined poset.)

We have the following analogue of Theorem 5.4 for band graphs.
Theorem 5.7. Let \widetilde{G} be a band graph obtained from the snake graph G with tiles G_{1}, \ldots, G_{n}. We assume that tile G_{1} is chosen to have positive relative orientation. Then $L(\widetilde{G})$ is the lattice of order ideals $J\left(\widetilde{Q}_{G}\right)$ of the poset \widetilde{Q}_{G} from Definition 5.6; the support of the height monomial of a matching in $L(\widetilde{G})$ consists precisely of the elements in the corresponding order ideal. Since $L(\widetilde{G})$ is a subgraph of $L(G)$, the twist-parity condition is satisfied.

Proof. While there are four cases to consider, the proofs in all cases are essentially the same, so we just give the proof in Case 1, where G and \widetilde{G} are as in the left diagram of Figure 16 (so, in particular, G has an odd number of tiles). Then the minimal matching of G contains the edge between x and y and does not use the edge between x^{\prime} and y^{\prime}; see the middle picture in Figure 16. Every perfect matching of G descends to a good matching of \widetilde{G}, except for those which do not use either the edge between x and y or the edge between x^{\prime} and y^{\prime}; see the picture on the right in Figure 16. Therefore the perfect matchings of G which do not descend to good matchings of \widetilde{G} are precisely those whose height monomial contains w_{1} but not w_{n}. Using the identification of perfect matchings of G with order ideals of Q_{G}, we see that the height monomials of good matchings of \widetilde{G} can be identified with the order ideals of Q_{G} which use the element n whenever they use element 1 . These are precisely the order ideals of \widetilde{Q}_{G}.

See Figure 17 for the lattice of good matchings of a band graph \widetilde{G} obtained from the snake graph G from Figure 15 by identifying the vertices x with x^{\prime} and y with y^{\prime}.

Remark 5.8. If \mathcal{Q}_{T} is the quiver of the triangulation T, then each essential loop ζ defines a family of band modules $M_{\lambda, k}(\zeta), \lambda \in \mathbb{P}^{1}$ and $k \geqslant 1$, over the corresponding Jacobian algebra; see [BZ10]. The band is precisely the poset Q, and the lattice $L(G)$ is the lattice of string submodules of $M_{\lambda, 1}(\zeta)$ together with $M_{\lambda, 1}(\zeta)$.

The bangle $\operatorname{Bang}_{k}(\zeta)$ corresponds to the direct sum of k copies of $M_{\lambda, 1}(\zeta)$. If the surface is a disk or an annulus, then the basis \mathcal{B}° corresponds to the generic basis in [Dup11, GLS11a].

Bases for cluster algebras from surfaces

Figure 17. Lattice of good matchings of a band graph.

On the other hand, the bracelet $\operatorname{Brac}_{k}(\zeta)$ does not have a module interpretation; it does not correspond to the band module $M_{\lambda, k}(\zeta)$.

Finally, we turn to the proof of Theorem 5.1.
Proof. Let $\widetilde{B}=\widetilde{B_{T}}$ be the extended exchange matrix. Note that if any two cluster algebra elements z_{1} and z_{2} satisfy the conditions of Theorem 5.1 , then so does $z_{1} z_{2}$. Therefore, it suffices to prove Theorem 5.1 for cluster variables and the cluster algebra elements associated to essential loops and bracelets. Theorem 5.1 for cluster variables follows from Proposition 2.10 and the fact that the F-polynomials of cluster variables from surfaces have constant term 1 (see [MSW11, §13.1]).

By Definition 3.14, each cluster algebra element associated to a closed loop is a generating function for the good matchings of a band graph. By Theorem 5.7, there is a sequence of twists from the minimal matching P_{-}to any other good matching P of a band graph, where every twist is a cover relation going up in the poset. Moreover, the twist-parity condition holds: along this path, each twist on a tile of positive (respectively, negative) relative orientation will replace horizontal edges by vertical ones (respectively, vertical edges by horizontal ones). Finally, suppose that P_{2} is a good matching obtained from P_{1} by such a twist on tile G_{i}. Then it follows from our construction of band graphs that the exponent vector of $x\left(P_{2}\right) y\left(P_{2}\right)$ is equal to the exponent vector of $x\left(P_{1}\right) y\left(P_{1}\right)$ plus the i th column of \widetilde{B}.

Note that similar arguments, together with Theorem 5.4, give a new proof of Theorem 5.1 for cluster variables associated to arcs.

6. The g-vector map and linear independence of \mathcal{B}° and \mathcal{B}

By Theorem 5.1 and Remark 2.12, each element of \mathcal{B} and \mathcal{B}^{0} is homogeneous with respect to the \mathbf{g}-vector grading. The same is true for any product of elements from \mathcal{B} and \mathcal{B}^{0}. This allows us to extend the definition of \mathbf{g}-vector to all elements of \mathcal{B} and \mathcal{B}^{0} (and to all products of such elements).

G. Musiker, R. Schiffler and L. Williams

Definition 6.1. The \mathbf{g}-vector of any element x_{C} of \mathcal{B} or \mathcal{B}^{0}, with respect to the seed T, is the multidegree of x_{C}, using the \mathbf{g}-vector grading. Additionally, for every collection $x_{j}, j \in J$, of elements of \mathcal{B} (or \mathcal{B}^{0}), we define $\mathbf{g}\left(\prod_{j} x_{j}\right)=\sum_{j} \mathbf{g}\left(x_{j}\right)$.

In Theorem 5.1, we have shown that every element of \mathcal{B}° and \mathcal{B} has a unique leading term. For arcs and essential loops, this leading term is given by the minimal matching P_{-}of the corresponding snake graph. Therefore, we can compute its \mathbf{g}-vector as follows.

Proposition 6.2. Let γ be an arc or an essential loop. Then x_{γ} has a unique Laurent monomial $x\left(P_{-}\right) / \operatorname{cross}(T, \gamma)$ which is not divisible by any coefficient variable $y_{\tau_{i}}$. Moreover,

$$
\mathbf{g}\left(x_{\gamma}\right)=\operatorname{deg}\left(\frac{x\left(P_{-}\right)}{\operatorname{cross}(T, \gamma)}\right)
$$

where P_{-}is the minimal matching of the snake or band graph associated to γ and T, and $\operatorname{cross}(T, \gamma)$ is the corresponding crossing monomial.

Lemma 6.3. Let c_{1} and c_{2} be arcs or essential loops, and consider the skein relation in \mathcal{A} which writes $x_{c_{1}} x_{c_{2}}=\sum_{i} Y_{i} M_{i}$, where the M_{i} 's are elements of \mathcal{B}° and the Y_{i} 's are monomials in coefficient variables $y_{\tau_{j}}$. Then there is a unique j such that $Y_{j}=1$. As a consequence, for each $i \neq j$, the exponent vector of M_{i} is obtained from the exponent vector of M_{j} by adding a non-negative linear combination of columns of $\widetilde{B_{T}}$. We call the element M_{j} the leading term in the skein relation $x_{c_{1}} x_{c_{2}}=\sum_{i} Y_{i} M_{i}$.
Proof. The key to the proof is the observation that every skein relation which expresses a product of crossing arcs or loops in terms of arcs and loops that do not cross has a unique term on the right-hand-side with no coefficient variables. Once we have proved this observation, the existence and uniqueness of j follow. The relationship between $\mathbf{g}\left(M_{i}\right)$ and $\mathbf{g}\left(M_{j}\right)$ is then a consequence of the fact that elements of \mathcal{B}° are homogeneous with respect to the \mathbf{g}-vector grading (see Theorem 5.1), which implies that every term in the equation $x_{c_{1}} x_{c_{2}}=\sum_{i} Y_{i} M_{i}$ must have the same \mathbf{g}-vector.

It remains to verify the observation above. Theorem 2.32 implies that the skein relations have the form

$$
H_{1}= \pm Y_{2} H_{2} \pm Y_{3} H_{3},
$$

where Y_{2} and Y_{3} are monomials in the coefficient variables and each H_{i} represents the product of one or two cluster algebra elements, with those elements given by our snake and band graph formulas. In particular, each H_{i} is in $\mathbb{Z}\left[x_{i}^{ \pm 1}, y_{i}\right]$, has all coefficients positive, and has a unique term that is not divisible by any of the y_{i}.

It follows from [Thu, Lemma 7] and Theorem 2.32 that at least one of Y_{2} and Y_{3} is equal to 1. For the sake of contradiction, suppose that both of them are equal to 1 . In that case, we have

$$
H_{1}= \pm H_{2} \pm H_{3} .
$$

It is impossible to have two negative signs on the right-hand side, but we may have one negative sign. So either $H_{1}=H_{2}+H_{3}$ or $H_{1}+H_{2}=H_{3}$. The two cases are equivalent after permuting indices, so let us suppose without loss of generality that $H_{1}+H_{2}=H_{3}$. Then, if we set all the cluster variables equal to 1 and all the coefficient variables equal to 0 , we get $1=1+1$, which is a contradiction.

Proposition 6.4. Let γ be an essential loop in (S, M). Then $\operatorname{Brac}_{k}(\gamma)$ and $\operatorname{Bang}_{k}(\gamma)$ have the same g-vector.

Bases for cluster algebras from surfaces

Figure 18. The $\operatorname{arc} \bar{\tau}_{i}$.

Proof. On one hand, we have

$$
\mathbf{g}\left(\operatorname{Bang}_{k} \gamma\right)=\mathbf{g}\left(x_{\gamma}^{k}\right)=k \mathbf{g}\left(x_{\gamma}\right)
$$

On the other hand, $\mathbf{g}\left(\operatorname{Brac}_{k}(\gamma)\right)=\mathbf{g}\left(T_{k}\left(x_{\gamma}\right)\right)$ by Proposition 4.2, and the result follows from Proposition 2.35.

Let e_{i} denote the element of \mathbb{Z}^{n} with a 1 in the i th place and zeros elsewhere. Let $\left(\tau_{1}, \ldots, \tau_{n}\right)$ denote the elements of the initial triangulation T. By the definition of \mathbf{g}-vectors, $\mathbf{g}\left(x_{\tau_{i}}\right)=e_{i}$ for all i. We now construct an element of \mathcal{A} whose \mathbf{g}-vector is $-e_{i}$, for each $1 \leqslant i \leqslant n$.
Proposition 6.5. Let i be an integer between 1 and n. Then there exists an arc $\bar{\tau}_{i}$ of (S, M) such that $\mathbf{g}\left(x_{\bar{\tau}_{i}}\right)=-e_{i}$. The arc $\bar{\tau}_{i}$ is constructed as follows. Suppose that τ_{i} is an arc between two marked points x and y, and let d_{1} and d_{2} denote the boundary segments such that d_{1} is incident to x and is in the clockwise direction from τ_{i}, while d_{2} is incident to y and is in the clockwise direction from τ_{i}. Let x^{\prime} and y^{\prime} be the other endpoints of d_{1} and d_{2} besides x and y. Let $\bar{\tau}_{i}$ be the arc of (S, M) between points x^{\prime} and y^{\prime}, which is homotopic to the concatenation of d_{2}, τ_{i} and d_{1}. See Figure 18.

Proof. Let r and s be the arcs in (S, M) from x to y^{\prime} and from x^{\prime} to y, respectively, obtained by resolving the crossing between $\bar{\tau}_{i}$ and τ_{i}. Then we have the exchange relation $x_{\tau_{i}} x_{\bar{\tau}_{i}}=Y x_{r} x_{s}+1$, where Y is a monomial in the $y_{\tau_{j}}$. Note that the term 1 comes from the two boundary segments obtained by resolving the crossing between $\bar{\tau}_{i}$ and τ_{i} in the other direction. Since cluster variables are homogeneous elements with respect to the \mathbf{g}-vector grading, it follows that $\mathbf{g}\left(x_{\tau_{i}} x_{\bar{\tau}_{i}}\right)=0$. It then follows that $\mathbf{g}\left(x_{\bar{\tau}_{i}}\right)=-\mathbf{g}\left(x_{\tau_{i}}\right)=-e_{i}$, as desired.

Remark 6.6. In the corresponding cluster category, the arc $\bar{\tau}_{i}$ corresponds to the AuslanderReiten translate of the arc τ_{i}; see [BZ10].

6.1 Fans

Let T be a triangulation and let γ be an arc or a closed loop. Let Δ be a triangle in T with sides β_{1}, β_{2} and τ that is crossed by γ in the following way: γ crosses β_{1} at the point p_{1} and crosses β_{2} at the point p_{2}, and the segment of γ from p_{1} to p_{2} lies entirely in Δ; see the left diagram in Figure 19. Then there exist a unique vertex v of the triangle Δ and a unique contractible closed curve ϵ, given as the homotopy class of a curve starting at the point v, then following β_{1} until the point p_{1}, then following γ until the point p_{2}, and then following β_{2} until v. We will use the following notation to describe this definition:

$$
\epsilon=v \stackrel{\beta_{1}}{ } p_{1} \xrightarrow{\gamma} p_{2} \xrightarrow{\beta_{2}} v .
$$

Definition 6.7. $\mathrm{A}(T, \gamma)$-fan with vertex v is a collection of $\operatorname{arcs} \beta_{0}, \beta_{1}, \ldots, \beta_{k}$, where $\beta_{i} \in T$ and $k \geqslant 0$, having the following properties (see the diagram on the right in Figure 19).

G. Musiker, R. Schiffler and L. Williams

Figure 19. Left diagram: construction of (T, γ)-fans. Right diagram: the fan $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{2}$ cannot be extended to the right, because the configuration $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{2}, \tau_{1}$ does not satisfy condition (iii) of Definition 6.7.
(i) γ crosses $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ in order at the points $p_{0}, p_{1}, \ldots, p_{k}$, such that p_{i} is a crossing point of γ and β_{i} and the segment of γ from p_{0} to p_{k} does not have any other crossing points with T.
(ii) Each β_{i} is incident to v.
(iii) For each $i<k$, let ϵ_{i} be the unique contractible closed curve given by

$$
v \stackrel{\beta_{i}}{-} p_{i} \stackrel{\gamma}{-} p_{i+1} \stackrel{\beta_{i+1}}{ } v ;
$$

then, for each $i<k-1$, the concatenation of the curves $\epsilon_{i} \epsilon_{i+1}$ is homotopic to

$$
v \stackrel{\beta_{i}}{i} p_{i} \xrightarrow{\gamma} p_{i+1} \xrightarrow{\gamma} p_{i+2} \stackrel{\beta_{i+2}}{ } v .
$$

Property (iii) in the above definition is equivalent to the condition that

$$
v \stackrel{\beta_{i}}{-} p_{i} \stackrel{\gamma}{-} p_{i+2} \stackrel{\beta_{i+2}}{ } v
$$

is contractible.
Definition 6.8. A (T, γ)-fan $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ is said to be maximal if there is no arc $\alpha \in T$ such that $\beta_{0}, \beta_{1}, \ldots, \beta_{k}, \alpha$ or $\alpha, \beta_{0}, \beta_{1}, \ldots, \beta_{k}$ is a (T, γ)-fan.

Every (T, γ)-fan $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ defines a triangle with simply connected interior whose vertices are v, p_{0}, p_{k} and whose boundary is the contractible curve

$$
v \stackrel{\beta_{0}}{-} p_{0} \xrightarrow{\gamma} p_{k} \stackrel{\beta_{k}}{\leftrightharpoons} v .
$$

The orientation of the surface S induces an orientation on this triangle, and we say that β_{0} is the initial arc and β_{k} is the terminal arc of the fan, if going around the boundary of the triangle along the curve $v \stackrel{\beta_{0}}{-} p_{0} \xrightarrow{\gamma} p_{k} \xrightarrow{\beta_{k}} v$ is in the clockwise direction. In the fan $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{2}$ of the example given in the right-hand diagram of Figure 19, the initial arc is τ_{2} and the terminal arc is τ_{1}.

6.2 Multicurves and leading terms

Recall from $\S 4.2$ that given any multicurve $\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$, we can always apply a series of smoothings to replace it with a union of simple multicurves, called the smooth resolution of $\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$. In the cluster algebra, taking the resolution of the multicurve $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}\right\}$
corresponds to applying skein relations to the product $x_{\gamma_{1}} x_{\gamma_{2}} \cdots x_{\gamma_{t}}$ until the result is a linear combination of elements of \mathcal{B}°. Also recall that, by Lemma 6.3 , if we write the product $x_{\gamma_{1}} x_{\gamma_{2}} \cdots x_{\gamma_{t}}$ as a linear combination of elements of \mathcal{B}°, then there is a unique term with trivial coefficient, say $x_{\alpha_{1}} x_{\alpha_{2}} \cdots x_{\alpha_{s}}$, which is called the leading term. We say that the multicurve $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$ is equivalent to the leading term of the resolution of $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}\right\}$. Note that any boundary segment b which appears during the process is not included in the multicurves, since the corresponding element x_{b} in the cluster algebra is equal to 1 .

6.3 An inverse for the g-vector map

In this subsection, we use the (T, γ)-fans to prove that the \mathbf{g}-vector map is a bijection between \mathcal{B}° and \mathbb{Z}^{n}. We will define a map $f: \mathbb{Z}^{n} \rightarrow \mathcal{B}^{\circ}$ and show that it is the inverse of the \mathbf{g}-vector map. Recall that for an arc τ_{i}, we denote by $\bar{\tau}_{i}$ the unique arc whose \mathbf{g}-vector is $-e_{i}$.

Definition 6.9. Let $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}$, and write it uniquely as $v=\sum_{i} r_{i} e_{i}+\sum_{j} s_{j}\left(-e_{j}\right)$, where i ranges over all coordinates of v with $v_{i}>0$ and j ranges over all coordinates of v with $v_{j}<0$. So $r_{i}=v_{i}>0$ and $s_{j}=-v_{j}>0$. Then use the skein relations to write $\prod_{i}\left(x_{\tau_{i}}\right)^{r_{i}} \prod_{j}\left(x_{\bar{\tau}_{i}}\right)^{s_{i}}$ as a linear combination of elements in \mathcal{B}°. Define $f(v)$ to be the leading monomial in this sum, as defined by Lemma 6.3.

Lemma 6.10. The composition $\mathbf{g} \circ f$ is the identity map from \mathbb{Z}^{n} to itself, and so \mathbf{g} is surjective and f is injective.

Proof. For $v \in \mathbb{Z}^{n}$, we have $\mathbf{g}(f(v))=\mathbf{g}\left(\prod_{i}\left(x_{\tau_{i}}\right)^{r_{i}} \prod_{j}\left(x_{\bar{\tau}_{i}}\right)^{s_{i}}\right)$; thus, by Definition 6.1, $\mathbf{g}(f(v))=v$.
Lemma 6.11. Let γ be an arc. Choose an orientation of γ, and let s be its starting point and t its ending point. Denote by δ_{s} the arc that is clockwise from s in the first triangle of T that γ meets, and denote by δ_{t} the arc that is clockwise from t in the last triangle that γ meets. Let F_{1}, \ldots, F_{ℓ} be the maximal (T, γ)-fans ordered by the orientation of γ, and let σ_{i} be the initial arc of F_{i} and τ_{i} the terminal arc of F_{i}.
(i) If γ crosses the initial arc of F_{1} first, then γ is equivalent to the leading term in the resolution of the multicurve

$$
\left\{\delta_{s}, \delta_{t}, \bar{\sigma}_{i}, \tau_{i}, \bar{\sigma}_{\ell} \mid i \text { is an odd integer with } 1 \leqslant i<\ell\right\} .
$$

(ii) If γ crosses the terminal arc of F_{1} first, then γ is equivalent to the leading term in the resolution of the multicurve

$$
\left\{\delta_{s}, \delta_{t}, \bar{\sigma}_{i}, \tau_{i}, \bar{\sigma}_{\ell} \mid i \text { is an even integer with } 2 \leqslant i<\ell\right\} .
$$

Proof. We may assume without loss of generality that γ crosses the initial arc of F_{1} first. Note first that $\sigma_{i}=\sigma_{i+1}$ for all even $i<\ell$ and that $\tau_{i}=\tau_{i+1}$ for all odd $i<\ell$. We proceed by induction on ℓ. Suppose first that $\ell=1$. Then $\left\{\delta_{s}, \delta_{t}, \bar{\sigma}_{1}\right\}$ is the multicurve shown on the left of Figure 20, where boundary segments are labeled b.

The leading term of the resolution of this multicurve is shown on the right of Figure 20, and we see that it is equivalent to γ.

Now suppose that $\ell>1$. The smoothing at the first crossing point p_{1} of γ and σ_{1} has the leading term $\left\{\delta_{s}, \gamma^{\prime}\right\}$, where γ^{\prime} is the arc starting at the vertex s^{\prime} of the first fan F_{1}, following σ_{1} up to the point p_{1} and then following γ until the endpoint t; see Figure 21. Note that γ^{\prime} is avoiding all the crossings with the fan F_{1}. Thus the maximal $\left(T, \gamma^{\prime}\right)$-fans $F_{2}^{\prime}, F_{3}^{\prime}, \ldots, F_{\ell}^{\prime}$ are given

G. Musiker, R. Schiffler and L. Williams

Figure 20. Proof of Lemma 6.11 for $\ell=1$.

Figure 21. Proof of Lemma 6.11 for $\ell>1$.
by $F_{i}^{\prime}=F_{i}$, for $i>2$, and F_{2}^{\prime} is obtained from F_{2} by removing the terminal arc τ_{2}. By induction, we know that γ^{\prime} is equivalent to the leading term of the resolution of the multicurve

$$
\left\{\tau_{1}=\delta_{s^{\prime}}, \delta_{t}, \bar{\sigma}_{i}, \tau_{i}, \bar{\sigma}_{\ell} \mid i \text { is an odd integer with } 3 \leqslant i<\ell\right\} .
$$

On the other hand, the leading term of the resolution of $\left\{\delta_{s}, \bar{\sigma}_{1}, \gamma^{\prime}\right\}$ is equivalent to γ, and the result follows.

Lemma 6.12. Let γ be a closed loop. Let F_{1}, \ldots, F_{ℓ} be the maximal (T, γ)-fans ordered by the orientation of γ, and let σ_{i} be the initial arc of F_{i} and τ_{i} the terminal arc of F_{i}. Then γ is equivalent to the leading term in the resolution of the multicurve

$$
\left\{\bar{\sigma}_{i}, \tau_{i} \mid i \text { is an odd integer with } 1 \leqslant i \leqslant \ell-1\right\},
$$

which is the same as

$$
\left\{\bar{\sigma}_{i}, \tau_{i} \mid i \text { is an even integer with } 2 \leqslant i \leqslant \ell\right\} .
$$

Proof. First, note that since γ is a closed loop, the number of maximal fans whose vertex lies in the interior of γ must be equal to the number of maximal fans whose vertex lies in the exterior of γ; thus ℓ is even. Choose a starting point p and an orientation for γ such that the first arc that γ crosses is the terminal arc τ_{1} of the fan F_{1} in the point x, and then γ crosses the fan F_{1}. Note that $\tau_{\ell}=\tau_{1}$, since γ is a closed loop. Upon smoothing the multicurve $\left\{\tau_{\ell}, \gamma\right\}$, we get a leading term γ^{\prime} that is an arc starting at a point s, following τ_{ℓ} up to the point x, then following γ one time around up to the point x again, and then following τ_{ℓ} until its endpoint, which we label t.

Lemma 6.11 implies that γ^{\prime} is equivalent to the leading term of the resolution of the multicurve

$$
\left\{\delta_{s}, \delta_{t}, \bar{\sigma}_{i}, \tau_{i}, \bar{\sigma}_{\ell} \mid i \text { is an even integer with } 2 \leqslant i<\ell\right\} .
$$

Note that $\delta_{s}=\delta_{t}=\tau_{\ell}$. On the other hand, γ is equivalent to the leading term of the resolution of the multicurve $\left\{\gamma^{\prime},\left(-\tau_{\ell}\right)\right\}$, and the result follows since the leading term of $\left\{\left(-\tau_{\ell}\right), \tau_{\ell}\right\}$ is equivalent to a union of boundary segments.

Theorem 6.13. The \mathbf{g}-vector maps $\mathbf{g}: \mathcal{B}^{\circ} \rightarrow \mathbb{Z}^{n}$ and $\mathbf{g}: \mathcal{B} \rightarrow \mathbb{Z}^{n}$ are both bijections.

Proof. By Proposition 6.4, it suffices to show that $\mathbf{g}: \mathcal{B}^{\circ} \rightarrow \mathbb{Z}^{n}$ is a bijection. Lemmas 6.11 and 6.12 imply that each arc and each closed loop lies in the image of f, which allows us to conclude that f is surjective. We have shown in Lemma 6.10 that $\mathbf{g} \circ f$ is the identity on \mathbb{Z}^{n}, which shows that f is a bijection and $\mathbf{g}=f^{-1}$.

Corollary 6.14. The sets \mathcal{B}° and \mathcal{B} are both linearly independent.
Proof. Clearly, the extended $2 n \times n$ exchange matrix $\widetilde{B_{T}}$ associated to T, whose bottom $n \times n$ submatrix consists of the identity matrix, has linearly independent columns. Let x_{1}, \ldots, x_{n} denote the cluster variables $x_{\tau_{1}}, \ldots, x_{\tau_{n}}$, and let $x_{n+1}, \ldots, x_{2 n}$ denote the coefficient variables $y_{\tau_{1}}, \ldots, y_{\tau_{n}}$.

Proposition 6.2 implies that if γ is any arc, essential loop or bracelet, then x_{γ} has a unique term x_{M} which is a Laurent monomial in x_{1}, \ldots, x_{n} and which is not divisible by any coefficient variable $y_{\tau_{i}}$. Proposition 2.10 and Theorem 5.1 imply that the exponent vector of every other Laurent monomial in the expansion of x_{γ} can be obtained from the exponent vector of x_{M} by adding a non-negative linear combination of columns of $\widetilde{B_{T}}$. This means that x_{M} is the leading term of each Laurent expansion. Finally, Theorem 6.13 implies that the exponent vectors of the leading terms of all elements of \mathcal{B}° are pairwise distinct. Proposition 2.13 now implies that elements of \mathcal{B}° are linearly independent. The same proof works for \mathcal{B}.

For completeness, we include the following result on the computation of \mathbf{g}-vectors.
Corollary 6.15. (i) The \mathbf{g}-vector of an arc is equal to $e_{\delta_{s}}+e_{\delta_{t}}-e_{\sigma_{\ell}}+\sum\left(e_{\tau_{i}}-e_{\sigma_{i}}\right)$, where σ_{i} and τ_{i} are, respectively, the initial and terminal arcs of the i th fan, and the sum is taken over all maximal T-fans F_{i} of the arc, with odd (respectively, even) index i if the arc crosses an initial (respectively, terminal) arc first.
(ii) The \mathbf{g}-vector of a closed loop is equal to $\sum\left(e_{\tau_{i}}-e_{\sigma_{i}}\right)$, where the sum is taken over all odd maximal T-fans of the loop, and σ_{i} and τ_{i} are, respectively, the initial and terminal arcs of the i th fan.

Proof. This follows from Theorem 6.13 and Lemmas 6.11 and 6.12.

7. Coefficient systems coming from a full-rank exchange matrix

In this section we will prove Corollary 1.2 , which extends the results of this paper to a cluster algebra from a surface with a coefficient system coming from a full-rank exchange matrix.

Let (S, M) be a surface without punctures and having at least two marked points, and let $T=\left(\tau_{1}, \ldots, \tau_{n}\right)$ be a triangulation of (S, M). Let B be a full-rank $m \times n$ exchange matrix whose top $n \times n$ part B_{T} comes from the triangulation T. Let $\mathcal{A}_{*}=\mathcal{A}(B) \subset \mathbb{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{m}\right)$; here $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right)$ is the set of initial cluster variables. We will construct two bases \mathbb{B}° and \mathbb{B} for \mathcal{A}_{*} using the corresponding bases \mathcal{B}° and \mathcal{B} for \mathcal{A}, where \mathcal{A} is the cluster algebra associated to (S, M) with principal coefficients with respect to the seed T.

In order to define \mathbb{B}° and \mathbb{B}, we need to recall the separation formulas from [FZ07]. We will apply them here to the case of the cluster algebra of geometric type, $\mathcal{A}_{*}=\mathcal{A}(B)$. First, we need some notation.

G. Musiker, R. Schiffler and L. Williams

If $P\left(u_{1}, \ldots, u_{n}\right)$ is a Laurent polynomial, we define $\operatorname{Trop}(P)$ by setting

$$
\operatorname{Trop}\left(\prod_{j} u_{j}^{a_{j}}+\prod_{j} u_{j}^{b_{j}}\right)=\prod_{j} u_{j}^{\min \left(a_{j}, b_{j}\right)}
$$

and extending linearly. In particular, $\operatorname{Trop}(P)$ is always a Laurent monomial.
Let $\Sigma_{t_{0}}=\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; B_{T}\right)$ be the initial seed of the cluster algebra with principal coefficients \mathcal{A}. For each $1 \leqslant j \leqslant n$, we define

$$
\mathrm{y}_{j}=\prod_{i=n+1}^{m} \mathrm{x}_{i}^{b_{i j}} \quad \text { and } \quad \hat{\mathrm{y}}_{j}=\prod_{i=1}^{m} \mathrm{x}_{i}^{b_{i j}} .
$$

Then [FZ07, Theorem 3.7] and [FZ07, Corollary 6.3] express the cluster variable x_{γ} of \mathcal{A}_{*} in the following equivalent forms. Recall that X_{γ}^{T} and F_{γ}^{T} denote the quantities defined in Definitions 3.12 and 3.14; see also Remark 3.15.

Proposition 7.1. Let γ be an arc in (S, M). Then the cluster variable x_{γ} of \mathcal{A}_{*} can be expressed as

$$
x_{\gamma}=\frac{X_{\gamma}^{T}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} ; \mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)}{\operatorname{Trop}\left(F_{\gamma}^{T}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)\right)}=\frac{F_{\gamma}^{T}\left(\hat{\mathrm{y}}_{1}, \ldots, \hat{\mathrm{y}}_{n}\right)}{\operatorname{Trop}\left(F_{\gamma}^{T}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)\right)} \cdot \mathrm{x}_{1}^{g_{1}} \ldots \mathrm{x}_{n}^{g_{n}}
$$

where $\left(g_{1}, \ldots, g_{n}\right)$ is the \mathbf{g}-vector of X_{γ}^{T}.
By analogy, if ζ is a closed loop in (S, M), we define the cluster algebra element x_{ζ} in \mathcal{A}_{*} as follows.

Definition 7.2. Let ζ be a closed loop in (S, M). Then the cluster algebra element x_{ζ} in \mathcal{A}_{*} is defined to be

$$
x_{\zeta}=\frac{X_{\zeta}^{T}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} ; \mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)}{\operatorname{Trop}\left(F_{\zeta}^{T}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)\right)}=\frac{F_{\zeta}^{T}\left(\hat{\mathrm{y}}_{1}, \ldots, \hat{\mathrm{y}}_{n}\right)}{\operatorname{Trop}\left(F_{\zeta}^{T}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)\right)} \cdot \mathrm{x}_{1}^{g_{1}} \ldots \mathrm{x}_{n}^{g_{n}}
$$

where $\left(g_{1}, \ldots, g_{n}\right)$ is the \mathbf{g}-vector of X_{ζ}^{T} (see Definition 6.1).
Note that it is easy to check that the second and third expressions above are equivalent, following the proof of [FZ07, Corollary 6.3].

Now that we have defined elements of \mathcal{A}_{*} associated to each arc and closed loop, we may define the collections of elements which will constitute our bases:

$$
\mathbb{B}^{\circ}=\left\{\prod_{c \in C} x_{c} \mid C \in \mathcal{C}^{\circ}(S, M)\right\} \quad \text { and } \quad \mathbb{B}=\left\{\prod_{c \in C} x_{c} \mid C \in \mathcal{C}(S, M)\right\} .
$$

As before, $\mathcal{C}^{\circ}(S, M)$ and $\mathcal{C}(S, M)$ denote the \mathcal{C}°-compatible and \mathcal{C}-compatible collections of arcs and loops.

Theorem 7.3. \mathbb{B}° is a basis for \mathcal{A}_{*} and, similarly, \mathbb{B} is a basis for \mathcal{A}_{*}.
Proof. First, we show that \mathbb{B}° and \mathbb{B} are subsets of \mathcal{A}_{*}. We define a homomorphism of algebras $\phi: \mathcal{A} \rightarrow \mathcal{A}_{*}$ which sends each cluster variable X_{γ}^{T} to $X_{\gamma}^{T}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} ; \mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)$. This is just a specialization of variables, so in particular it is a homomorphism. Using this notation,

$$
\begin{equation*}
x_{\zeta}=\frac{\phi\left(X_{\gamma}^{T}\right)}{\operatorname{Trop}\left(F_{\zeta}^{T}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)\right)}, \tag{7.1}
\end{equation*}
$$

where the denominator is a Laurent monomial in coefficient variables. Therefore, whenever X_{ζ}^{T} lies in \mathcal{A}, i.e. whenever X_{ζ}^{T} can be written as a polynomial in cluster variables, x_{ζ} can also be written as a polynomial in cluster variables and hence is in \mathcal{A}_{*}. Since we have shown that \mathcal{B}° and \mathcal{B} are subsets of \mathcal{A}, it follows that \mathbb{B}° and \mathbb{B} are subsets of \mathcal{A}_{*}.

Next, we show that \mathbb{B}° and \mathbb{B} are spanning sets for \mathcal{A}_{*}. As before, each k-bracelet $x_{\text {Brac }_{k}}(\zeta)$ can be written as a Chebyshev polynomial in x_{ζ}, so it suffices to show that \mathbb{B}° spans \mathcal{A}_{*}. By the arguments of the previous paragraph and (7.1), every skein relation in \mathcal{A} gives rise to a skein relation in \mathcal{A}_{*}. It follows that we can write every polynomial in cluster variables in terms of the elements of \mathbb{B}°.

Finally, we show that the elements of \mathbb{B}° (respectively, \mathbb{B}) are linearly independent. Every F-polynomial F_{γ}^{T} and F_{ζ}^{T} has constant term 1. Therefore it follows from Proposition 7.1 and Definition 7.2 that the Laurent expansion of any element x_{γ} (respectively, x_{ζ}) contains a Laurent monomial $x_{1}^{g_{1}} \ldots x_{n}^{g_{n}} x_{n+1}^{g_{n+1}} \ldots x_{m}^{g_{m}}$ where $\left(g_{1}, \ldots, g_{n}\right)$ is the \mathbf{g}-vector of x_{γ} (respectively, of x_{ζ}), and the exponent vector of any other Laurent monomial in the same expansion is obtained from $\left(g_{1}, \ldots, g_{m}\right)$ by adding some non-negative integer linear combination of the columns of B. The same property holds for monomials in the variables x_{γ} and x_{ζ}. Therefore, by Theorem 1.6 (which shows that the \mathbf{g}-vectors are all distinct) and Proposition 2.13, the elements of \mathbb{B}° are linearly independent. A similar argument holds for \mathbb{B}.

Acknowledgements

We thank Grégoire Dupont, Sergey Fomin, Sasha Goncharov, Bernard Leclerc, Hugh Thomas, Dylan Thurston and Andrei Zelevinsky for interesting discussions. We are particularly grateful to Dylan Thurston for his inspiring lectures in Morelia, Mexico.

Appendix A. Extending the results to surfaces with punctures

In this appendix we explain how the results and proofs in this paper need to be modified when dealing with a marked surface (S, M) which has punctures, i.e. marked points in the interior of S. In the presence of punctures, cluster variables are in bijection with tagged arcs, which generalize ordinary arcs, and clusters are in bijection with tagged triangulations. In this appendix we will assume that the reader is familiar with tagged arcs; see [FST08, § 7] for details. If γ is an arc (without notches) with an endpoint at puncture p, we denote the corresponding tagged arc which is notched at p by $\gamma^{(p)}$. If γ is an arc (without notches) with endpoints at punctures p and q, we denote the corresponding tagged arc which is notched at both these punctures by $\gamma^{(p q)}$.

We believe that the results of the present paper may be extended to the case of marked surfaces (S, M) which have punctures. The main obstacle lies in proving the appropriate skein relations for tagged arcs, using principal coefficients, and extending Lemma 6.3 to this setting. We will present several approaches to doing so at the end of \S A.4. We believe that the second approach described there is the most feasible; the drawback is that it involves giving separate proofs for all fifteen cases of the new tagged skein relations.

A. 1 Definition of \mathcal{B}° and \mathcal{B}

Our definitions of the conjectural bases are just a slight generalization of the corresponding definitions from §3.3.

G. Musiker, R. Schiffler and L. Williams

Definition A.1. A closed loop in (S, M) is said to be essential if it is not contractible nor contractible onto a single puncture and it does not have self-crossings.

Definition A.2. A collection C of tagged arcs and essential loops is said to be \mathcal{C}°-compatible if the tagged arcs in C are pairwise compatible and no two elements of C cross each other. We define $\mathcal{C}^{\circ}(S, M)$ to be the set of all \mathcal{C}°-compatible collections in (S, M).

A collection C of tagged arcs and bracelets is said to be \mathcal{C}-compatible if:

- the tagged arcs in C are pairwise compatible;
- no two elements of C cross each other except for the self-crossings of a bracelet; and
- given an essential loop γ in (S, M), there is at most one $k \geqslant 1$ such that the k th bracelet $\mathrm{Brac}_{k} \gamma$ lies in C, and, moreover, there is at most one copy of this bracelet $\mathrm{Brac}_{k} \gamma$ in C.

We define $\mathcal{C}(S, M)$ to be the set of all \mathcal{C}-compatible collections in (S, M).
Definition A.3. We define \mathcal{B}° to be the set of all cluster algebra elements in $\mathcal{A}=\mathcal{A} \bullet\left(B_{T}\right)$ corresponding to the set $C^{\circ}(S, M)$, that is,

$$
\mathcal{B}^{\circ}=\left\{\prod_{c \in C} x_{c} \mid C \in \mathcal{C}^{\circ}(S, M)\right\} .
$$

Similarly, we define

$$
\mathcal{B}=\left\{\prod_{c \in C} x_{c} \mid C \in \mathcal{C}(S, M)\right\} .
$$

A. 2 Cluster algebra elements associated to generalized tagged arcs

In order to prove that \mathcal{B}° and \mathcal{B} are spanning sets, we need to prove skein relations involving tagged arcs. As in the unpunctured case, the skein relation involving tagged arcs should have a simple pictorial description in terms of resolving a crossing. However, when one resolves two (tagged) arcs that cross each other more than once, one may get a generalized (tagged) arc, i.e. a (tagged) arc with a self-crossing; see Figure A.1. For this reason, we need to make sense of the element of the (fraction field of the) cluster algebra associated to a generalized tagged arc. As in [MSW11], in order to deduce the positivity of such elements with respect to all clusters, it suffices to consider cluster algebras of the form $\mathcal{A}_{\bullet}\left(B_{T}\right)$ where T is an ideal triangulation of (S, M). (Note that the snake graph or band graph corresponding to an arc can be defined even if it crosses through self-folded triangles.)

There are several options for how to define the elements $x_{\gamma^{(p)}}$ and $x_{\gamma^{(p q)}}$ when $\gamma^{(p)}$ and $\gamma^{(p q)}$ are generalized tagged arcs. All three options should be equivalent.
(i) Algebraic definition. If γ is an arc (without self-crossings) with one end incident to a puncture p, then $x_{\ell}=x_{\gamma} x_{\gamma^{(p)}}$ where ℓ is the arc cutting out a once-punctured monogon enclosing p and γ. If γ is an arc (without self-crossings) between two punctures p and q, then there is a more complicated identity (see [MSW11, Theorem 12.9]) that expresses $x_{\gamma^{(p q)}}$ in terms of x_{γ}, $x_{\gamma^{(p)}}$ and $x_{\gamma^{(q)}}$. By analogy, if γ is a generalized arc (with self-crossings allowed), then one could define $x_{\gamma^{(p)}}$ and $x_{\gamma^{(p q)}}$ using the above algebraic identities.
(ii) Combinatorial definition. In [MSW11, Theorems 4.16 and 4.20], we proved that the cluster algebra elements associated to singly and doubly notched arcs $x_{\gamma^{(p)}}$ and $x_{\gamma^{(p q)}}$ have Laurent expansions which are given as sums over γ-symmetric matchings and γ-compatible pairs of matchings, respectively. By analogy, when γ is a generalized arc with self-intersections, one

Figure A.1. Smoothing two arcs may produce a generalized arc with a self-crossing.
could define $x_{\gamma^{(p)}}$ and $x_{\gamma^{(p q)}}$ combinatorially, in terms of γ-symmetric matchings and γ-compatible pairs of matchings. The proofs of [MSW11, §12] should carry over and show that the above algebraic and combinatorial definitions of $x_{\gamma^{(p)}}$ and $x_{\gamma^{(p q)}}$ are equivalent.
(iii) Definition using the separation formula. The separation formula [FZ07, Theorem 3.7] expresses the cluster variables of a cluster algebra over an arbitrary semifield, with a seed at t_{0}, using the cluster variables and F-polynomials of the corresponding cluster algebra with principal coefficients at t_{0}. By using the separation formula together with the fact that the B-matrix of a tagged triangulation equals the B-matrix of a corresponding ideal triangulation (obtained by changing the tagging around a collection of punctures), one obtains a formula for cluster variables associated to ordinary arcs, in cluster algebras $\mathcal{A}_{\bullet}\left(B_{T}\right)$ where T is an arbitrary tagged triangulation. One can then combine this formula with [MSW11, Proposition 3.15] to obtain a formula for cluster variables associated to tagged arcs, in cluster algebras $\mathcal{A}_{\bullet}\left(B_{T}\right)$ where T is an arbitrary ideal triangulation. By analogy, when γ is a generalized arc, one could define $x_{\gamma^{(p)}}$ and $x_{\gamma^{(p q)}}$ by extending the above formula from tagged arcs to generalized tagged arcs.

A. 3 Cluster algebra elements associated to closed loops

A closed loop is not incident to any marked points, so there is no such thing as a tagged closed loop. We therefore define $X_{\zeta}^{T}=x_{\zeta}$ when ζ is a closed curve via good matchings in a band graph, just as before (in Definition 3.14) but with one exception. If ζ is a closed loop without selfintersections enclosing a single puncture p, then $X_{\zeta}^{T}=1+y_{\tau} / y_{\tau}^{(p)}$ or $1+\prod_{\tau \in T} y_{\tau}^{e_{p}(\tau)}$, depending on whether or not T contains a self-folded triangle enclosing p. Here, $e_{p}(\tau)$ denotes the number of ends of τ incident to p.

A. $4 \mathcal{B}^{\circ}$ and \mathcal{B} are spanning sets for \mathcal{A}

In order to prove that both \mathcal{B}° and \mathcal{B} span $\mathcal{A} \cdot(S, M)$, one must prove skein relations involving tagged arcs. Note that two tagged arcs are incompatible if they cross each other or if they have an incompatible tagging at a puncture, as in the left-hand diagram of Figure A.2.

G. Musiker, R. Schiffler and L. Williams

Figure A.2. Resolving an incompatibility at a puncture.

In particular, one must prove skein relations involving:
(i) an ordinary arc and a singly notched arc which cross each other;
(ii) an ordinary arc and a doubly notched arc which cross each other;
(iii) two singly notched arcs which cross each other;
(iv) a singly notched arc and a doubly notched arc which cross each other;
(v) two doubly notched arcs which cross each other;
(vi) an ordinary arc and a singly notched arc which have an incompatible tagging at a puncture;
(vii) an ordinary arc and a doubly notched arc which have one incompatible tagging at a puncture;
(viii) an ordinary arc and a doubly notched arc which have two incompatible taggings at a puncture;
(ix) two singly notched arcs which have one incompatible tagging at a puncture;
(x) two singly notched arcs which have two incompatible taggings at a puncture;
(xi) a singly notched arc and a doubly notched arc which have an incompatible tagging at a puncture;
(xii) a singly notched arc and a loop;
(xiii) a doubly notched arc and a loop;
(xiv) a singly notched generalized arc with a self-crossing;
(xv) a doubly notched generalized arc with a self-crossing.

In the coefficient-free case, proving skein relations is straightforward. One can use the fact that given a puncture p in M, the map Ψ_{p} which sends an arc γ to either $\gamma^{(p)}$ or γ (depending on whether or not γ has an endpoint at p) induces an automorphism on the cluster algebra $\mathcal{A}\left(B_{T}\right)=\mathcal{A}(S, M)$. This automorphism maps the cluster corresponding to the triangulation T to the cluster corresponding to the triangulation T^{\prime} obtained from T by changing the tags at the puncture p, and it is easy to show that it commutes with the mutations at these clusters; note that this is a cluster automorphism in the sense of [ASS12]. This reduces all of the tagged skein relations involving a crossing to the untagged skein relations that we have already proved.

Figure A.3. Illustration of Example A.4.

Furthermore, it is straightforward to prove the skein relation from Figure A. 2 involving an ordinary arc and a singly notched arc with an incompatible tagging at a puncture, by using the identity $x_{\gamma} x_{\gamma^{(p)}}=x_{\ell}$ together with an ordinary skein relation (and the same proof works with principal coefficients as well). Similar proofs should work for all other skein relations involving an incompatible tagging at a puncture, at least in the coefficient-free case. Note that Fock and Goncharov proved (see $[F G 06, \S 12.6]$) that \mathcal{B} is a basis of the upper cluster algebra in the coefficient-free case, even in the presence of punctures, by utilizing the monodromy around punctures.

However, in the presence of principal coefficients, the map Ψ_{p} is not a cluster automorphism on $\mathcal{A}_{\bullet}\left(B_{T}\right)$; it acts non-trivially on the coefficients. Therefore it is not possible, as above, to use this map to reduce the tagged skein relations involving a crossing to the corresponding untagged skein relations.

Additionally, we do not know a good analogue of the matrix formulas in [MW11] for cluster variables associated to arcs with notches. If one had such matrix formulas, one might hope to prove the corresponding skein relations via matrix identities, as in [MW11].

There are several alternative approaches that one might use. A first approach is to use the formulas and definitions of \S A.2(iii) (the separation formula) to prove the tagged skein relations. This approach allows us to express the cluster algebra elements associated to tagged arcs and tagged generalized arcs in terms of the cluster variables and F-polynomials associated to untagged arcs and generalized arcs. From such formulas, one could obtain some 'skein relations' immediately. However, using this approach, it is not at all clear how to prove the analogue of Lemma 6.3.

A second approach is to use the algebraic identities that the cluster algebra elements associated to tagged arcs satisfy. For example, if one wants to prove the skein relation involving an ordinary arc $x_{\gamma_{1}}$ and a singly notched arc $x_{\gamma_{2}^{(p)}}$ which cross each other, one could use the identity $x_{\gamma_{2}} x_{\gamma_{2}^{(p)}}=x_{\ell_{0}}$. By considering the skein relation involving $x_{\gamma_{1}}$ and $x_{\ell_{0}}$, and keeping careful track of the coefficients using the lamination corresponding to the initial triangulation T, it is possible to write down the skein relation that expresses $x_{\gamma_{1}} x_{\gamma_{2}^{(p)}}$.

Example A. 4 (Case (i) of the skein relations). Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} be the four arcs obtained by smoothing at the intersection point of γ_{1} and γ_{2}, as shown in Figure A.3. Then there are monomials in the coefficient variables Z_{1} and Z_{2} such that

$$
\begin{equation*}
x_{\gamma_{1}} x_{\gamma_{2}^{(p)}}=Z_{1} x_{\alpha_{1}^{(p)}} x_{\alpha_{2}}+Z_{2} x_{\alpha_{3}} x_{\alpha_{4}^{(p)}} \tag{A.1}
\end{equation*}
$$

and precisely one of them equals 1.
Proof. To show this, we will show that $Z_{1}=Y_{0} Y_{2 a}$ and $Z_{2}=Y_{1} Y_{3 b}$, where $Y_{0}, Y_{1}, Y_{2 a}$ and $Y_{3 b}$ are monomials in coefficient variables representing contributions from the laminations whose local

G. Musiker, R. Schiffler and L. Williams

Figure A.4. Left-hand side of (A.1).

Figure A.5. First term on the right-hand side of (A.1).
configurations are as shown by the dotted curves in Figure A.3. Note that we use the subscript ' a ' (respectively, ' b ') to indicate a contribution from laminations spiraling counterclockwise (respectively, clockwise) into the puncture.

We multiply both sides of (A.1) by $x_{\gamma_{2}}$ and verify the resulting equation. Applying skein relations to $x_{\gamma_{2}}$ times the left-hand-side of (A.1), i.e. to $x_{\gamma_{2}} x_{\gamma_{1}} x_{\gamma_{2}^{(p)}}=x_{\gamma_{1}} x_{\ell_{0}}$, we get

$$
\begin{align*}
x_{\gamma_{1}} x_{\ell_{0}} & =Y_{1} x_{\alpha_{3}} x_{\beta_{0}}+Y_{2 a} Y_{2 b} Y_{0} x_{\beta_{1}} x_{\alpha_{2}} \tag{A.2}\\
& =Y_{1} Y_{3 a} Y_{3 b} x_{\alpha_{3}} x_{\beta_{2}}+Y_{0} Y_{1} Y_{4} x_{\alpha_{2}} x_{\alpha_{3}} x_{\omega}+Y_{0} Y_{2 a} Y_{2 b} x_{\alpha_{2}} x_{\beta_{1}}, \tag{A.3}
\end{align*}
$$

where the (generalized) arcs β_{0}, β_{1} and β_{2} and the closed loop ω are as in Figure A.4. Also, $Y_{2 a}, Y_{2 b}, Y_{3 a}, Y_{3 b}$ and Y_{4} are monomials in coefficient variables representing contributions from laminations whose local configurations are as shown by the dotted curves in Figure A.4.

On the right-hand side of (A.1), after multiplying through by $x_{\gamma_{2}}$ we obtain

$$
\begin{aligned}
x_{\gamma_{2}} x_{\alpha_{1}^{(p)}} x_{\alpha_{2}} & =x_{\ell_{1}} x_{\beta} x_{\alpha_{2}}\left(x_{\alpha_{1}}\right)^{-1} \\
& =\left(Y_{2 b} x_{\alpha_{1}} x_{\alpha_{2}} x_{\beta_{1}}+Y_{1} Y_{3 a} Y_{4} Y_{5 a} x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}}\right)\left(x_{\alpha_{1}}\right)^{-1} \\
& =Y_{2 b} x_{\alpha_{2}} x_{\beta_{1}}+Y_{1} Y_{4} Y_{3 a} Y_{5 a} x_{\alpha_{2}} x_{\alpha_{3}} ;
\end{aligned}
$$

see Figure A.5. Here $Y_{5 a}$ represents the contribution from all leaves spiraling counterclockwise into p which are not already included in $Y_{2 a}$ or $Y_{3 a}$.

Similarly, using the notation of Figure A.6, we get

$$
x_{\gamma_{2}} x_{\alpha_{3}} x_{\alpha_{4}^{(p)}}=x_{\gamma_{2}} x_{\alpha_{3}} x_{\ell_{2}}\left(x_{\alpha_{4}}\right)^{-1}=Y_{3 a} x_{\alpha_{3}} x_{\beta_{2}}+Y_{0} Y_{4} Y_{2 b} Y_{5 b} x_{\alpha_{3}} x_{\alpha_{2}} .
$$

Therefore, $x_{\gamma_{2}}$ times the right-hand-side of (A.1) is equal to

$$
\begin{equation*}
Z_{1} Y_{2 b} x_{\beta_{1}} x_{\alpha_{2}}+Z_{2} Y_{3 a} x_{\alpha_{3}} x_{\beta_{2}}+\left(Z_{1} Y_{1} Y_{4} Y_{3 a} Y_{5 a}+Z_{2} Y_{0} Y_{4} Y_{2 b} Y_{5 b}\right) x_{\alpha_{2}} x_{\alpha_{3}} \tag{A.4}
\end{equation*}
$$

We need to show that the expressions (A.4) and (A.3) are equivalent.

Bases for cluster algebras from surfaces

Figure A.6. Second term on the right-hand side of (A.1).

Setting $Z_{1}=Y_{0} Y_{2 a}$ and $Z_{2}=Y_{1} Y_{3 b}$ makes two terms in each of the above expressions coincide, so we have reduced the proof of (A.1) to showing that $Y_{0} Y_{2 a} Y_{1} Y_{4} Y_{3 a} Y_{5 a}+Y_{1} Y_{3 b} Y_{0} Y_{4} Y_{2 b} Y_{5 b}=$ $Y_{0} Y_{1} Y_{4} x_{\omega}$ or, equivalently,

$$
\begin{equation*}
Y_{2 a} Y_{3 a} Y_{5 a}+Y_{3 b} Y_{2 b} Y_{5 b}=x_{\omega} . \tag{A.5}
\end{equation*}
$$

There are two cases, based on whether or not T contains a self-folded triangle enclosing the puncture p. If not, then all leaves of the lamination spiral counterclockwise into p, and so $Y_{2 b} Y_{3 b} Y_{5 b}=1$. In this case, it follows from the definition that $x_{\omega}=1+Y_{2 b} Y_{3 b} Y_{5 b}$ (since the second monomial represents the product of all coefficient variables indexed by arcs of T incident to p). This proves (A.5).

If T does contain a self-folded triangle enclosing the puncture p, then let us denote the radius incident to p by r. In this case, there are exactly two leaves of the lamination spiraling into p, L_{r} and $L_{r^{p}}$, which spiral counterclockwise and clockwise, respectively. The left-hand-side of (A.5) then equals $y_{r}+y_{r(p)}$. But this agrees with the definition of x_{ω}. Either way, we have now shown (A.1).

Now, we claim that at least one of Y_{0} and Y_{1} is not equal to 1 . If both were 1 , then any laminations cutting across the quadrilateral formed by the endpoints of γ_{1} and γ_{2} would have to cut across corners of the quadrilateral. But such a lamination could not have come from a triangle. Now note that if $Y_{1} \neq 1$, then Y_{0} and $Y_{2 a}$ must equal 1 , since the leaves of a lamination cannot intersect each other. Similarly, if $Y_{0} \neq 1$, then Y_{1} and $Y_{3 b}$ must equal 1.

We have shown how to prove the first of fifteen skein relations, as well as how to prove the analogue of Lemma 6.3 for this case. In theory, one could use a similar argument on a case-by-case basis for the remaining fourteen types of skein relations above. We believe that this approach would successfully generalize the results of the present paper to the case of general surfaces (S, M), with or without punctures.

A. $5 \mathcal{B}^{\circ}$ and \mathcal{B} are linearly independent sets

If one could extend Lemma 6.3 to the case of tagged arcs, then it would be possible to prove that the sets \mathcal{B}° and \mathcal{B} are linearly independent.

Indeed, one can extend Proposition 6.5 to define a tagged arc $\bar{\tau}_{i}$ of (S, M) such that $\mathbf{g}\left(x_{\bar{\tau}_{i}}\right)=-e_{i}$ for each $1 \leqslant i \leqslant n$. This could be called the anti-arc construction.

- If τ_{i} is an arc between two marked points which are both on a boundary component, then the definition of $\bar{\tau}_{i}$ is the same as in Proposition 6.5.
- Suppose that τ_{i} is an arc between two marked points x and p, where x lies on a boundary

G. Musiker, R. Schiffler and L. Williams

component and p is a puncture. Let d_{1} denote the boundary segment such that d_{1} is incident to x and is in the clockwise direction from τ_{i}; let x^{\prime} denote the other endpoint of d_{1}. Let $\bar{\tau}_{i}$ be the tagged arc of (S, M) between the points x^{\prime} and p, tagged plain at x^{\prime} and notched at p, such that its untagged version is homotopic to the concatenation of d_{1} and τ_{i}.

- Suppose that τ_{i} is an arc between two punctures p and q. Let $\bar{\tau}_{i}$ be the tagged arc of (S, M) which is obtained from τ_{i} by notching both ends.

In order to prove that $\mathbf{g}\left(x_{\bar{\tau}_{i}}\right)=-e_{i}$, one uses the tagged skein relations.
It is then straightforward to extend the arguments of $\S 6.3$ to show that in almost all cases, the \mathbf{g}-vector maps $\mathbf{g}: \mathcal{B}^{\circ} \rightarrow \mathbb{Z}^{n}$ and $\mathbf{g}: \mathcal{B} \rightarrow \mathbb{Z}^{n}$ are bijections. A main tool here is the generalization of Lemma 6.3. The only situation in which the \mathbf{g}-vector map is not a bijection to \mathbb{Z}^{n} is the case where (S, M) is a once-punctured closed surface. In this case, \mathbf{g} is an injection but not a surjection. (This is because the anti-arc construction for such a surface always gives a doubly tagged arc which is in the tagged arc complex but not the cluster complex, when (S, M) is a once-punctured closed surface.) However, injectivity suffices to show linear independence: by the proof of Corollary 6.14, it is enough to know that the g -vectors of the basis elements are all distinct.

A. $6 \mathcal{B}^{\circ}$ and \mathcal{B} are subsets of \mathcal{A}

One can show that the bases \mathcal{B}° and \mathcal{B} are subsets of \mathcal{A}_{\bullet} if S has a non-empty boundary and at least two of its marked points are on the boundary, or if S has genus zero. It suffices to show that the cluster algebra elements corresponding to essential loops lie in $\mathcal{A}_{\mathbf{0}}$.

The proof of Proposition 4.5 (which treats the case where at least two marked points are on the boundary) goes through without changes in the presence of punctures.

However, when (S, M) has punctures, a new argument is required in order to prove Corollary 4.6 (which treats the case where S has genus zero). Let ζ be an essential loop that cuts out a disk with at least two punctures m_{1} and m_{2} inside it. If S is a sphere, then ζ cuts out two disks, and we choose the one with the smaller number of punctures inside it. One can then prove Corollary 4.6 by induction on the number of punctures inside ζ. The idea is to consider an appropriate skein relation involving an unnotched arc between m_{1} and m_{2} and a doubly notched arc between m_{1} and m_{2}.

References

Ami09 C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier 59 (2009), 2525-2590.
ABCP10 I. Assem, T. Brüstle, G. Charbonneau-Jodoin and P. G. Plamondon, Gentle algebras arising from surface triangulations, Algebra Number Theory 4 (2010), 201-229.
ASS12 I. Assem, R. Schiffler and V. Shramchenko, Cluster automorphisms, Proc. Lond. Math. Soc. 104 (2012), 1271-1302.
BZ10 T. Brüstle and J. Zhang, On the cluster category of a marked surface, Algebra Number Theory, to appear, arXiv:1005.2422.
BMRRT06 A. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-612.
CCS06 P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (A_{n} case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364.

Bases for cluster algebras from surfaces

CK08	P. Caldero and B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211.
Cer09	G. Cerulli Irelli, Cluster algebras of type $A_{2}^{(1)}$, Algebr. Represent. Theory, to appear, arXiv:0904.2543.
Cer11	G. Cerulli Irelli, Positivity in skew-symmetric cluster algebras of finite type, Preprint (2011), arXiv:1102.3050.
CL12	G. Cerulli Irelli and D. Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Part III: tagged triangulations and cluster monomials, Compositio Math. 148 (2012), 1833-1866.
CKLP12	G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso and P.-G. Plamondon, Linear independence of cluster monomials for skew-symmetric cluster algebras, Preprint (2012), arXiv:1203:1307.
CL90	J. Conway and J. Lagarias, Tiling with polyominoes and combinatorial group theory, J. Combin. Theory Ser. A 53 (1990), 183-208.
DWZ10	H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749-790.
DXX09	M. Ding, J. Xiao and F. Xu, Integral bases of cluster algebras and representations of tame quivers, Preprint (2009), arXiv:0901.1937.
Dup08	G. Dupont, Generic variables in acyclic cluster algebras and bases in affine cluster algebras, Preprint (2008), arXiv:0811.2909.
Dup10	G. Dupont, Transverse quiver Grassmannians and bases in affine cluster algebras, Algebra Number Theory 4 (2010), 599-624.
Dup11	G. Dupont, Generic variables in acyclic cluster algebras, J. Pure Appl. Algebra 215 (2011), 628-641.
DT11	G. Dupont and H. Thomas, Atomic bases in cluster algebras of types A and \widetilde{A}, Preprint, (2011), arXiv:1106.3758.
EKLP92	N. Elkies, G. Kuperberg, M. Larsen and J. Propp, Alternating-sign matrices and domino tilings I, J. Algebraic Combin. 1 (1992), 111-132.
FST12	A. Felikson, M. Shapiro and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. 14 (2012), 1135-1180.
FG06	V. Fock and A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211.
FG07	V. Fock and A. Goncharov, Dual Teichmüller and lamination spaces, in Handbook of Teichmüller theory. Volume I, IRMA Lectures in Mathematics and Theoretical Physics, vol. 11 (European Mathematical Society, Zürich, 2007), 647-684.
FG09	V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930.
FST08	S. Fomin, M. Shapiro and D. Thurston, Cluster algebras and triangulated surfaces. Part I: cluster complexes, Acta Math. 201 (2008), 83-146.
FT08	S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: lambda lengths, Preprint (2008), http://www.math.lsa.umich.edu/~fomin/Papers/cats2.ps.
FZ02	S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
FZ07	S. Fomin and A. Zelevinsky, Cluster algebras IV: coefficients, Compositio Math. 143 (2007), 112-164.
FG00	C. Frohman and R. Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000), 4877-4888.
GLS11a	C. Geiss, B. Leclerc and J. Schröer, Kac-Moody groups and cluster algebras, Adv. Math. 228 (2011), 329-433.

G. Musiker, R. Schiffler and L. Williams

GLS11b C. Geiss, B. Leclerc and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math., to appear, arXiv:1104.0531.
GLS12 C. Geiss, B. Leclerc and J. Schröer, Generic bases for cluster algebras and the Chamber Ansatz, J. Amer. Math. Soc. 25 (2012), 21-76.
GSV05 M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311.
GSV10 M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167 (American Mathematical Society, Providence, RI, 2010).
HL11 D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, Preprint (2011), arXiv:1109.0862.
Lab09 D. Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3) 98 (2009), 797-839.
Lam11a P. Lampe, A quantum cluster algebra of Kronecker type and the dual canonical basis, Int. Math. Res. Not. 2011 (2011), 2970-3005.
Lam11b P. Lampe, Quantum cluster algebras of type A and the dual canonical basis, Preprint (2011), arXiv:1101.0580.
Lus90 Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc $\mathbf{3}$ (1990), 447-498.

Lus93 Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110 (Birkhäuser, Basel, 1993).
Lus94 Lusztig, Total positivity in reductive groups, in Lie theory and geometry: in honor of Bertram Kostant, Progress in Mathematics, vol. 123 (Birkhäuser, Basel, 1994).
MS10 G. Musiker and R. Schiffler, Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), 187-209.
MSW11 G. Musiker, R. Schiffler and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308.
MW11 G. Musiker and L. Williams, Matrix formulae and skein relations for cluster algebras from surfaces, Int. Math. Res. Not., to appear, arXiv:1108.3382.
Pen87 R. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), 299-339.

Pen06 R. Penner, Lambda lengths, Preprint (2006), http://www.ctqm.au.dk/research/MCS/lambdalengths.pdf.
Pla11a P. G. Plamondon, Catégories amassées aux espaces de morphismes de dimension infinie, applications, PhD thesis, Université Paris Diderot (2011). http://people.math.jussieu.fr/~plamondon/plamondonthese.pdf.
Pla11b P. G. Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, Compositio Math. 147 (2011), 1921-1934.
Pro02 J. Propp, Lattice structure for orientations of graphs, Preprint (2002), arXiv:math/0209005.
Sch08 R. Schiffler, A geometric model for cluster categories of type D_{n}, J. Algebraic Combin. 27 (2008), 1-21.

Sch08 R. Schiffler, A cluster expansion formula (A_{n} case), Electron. J. Combin. 15 (2008), \#R64.
Sch10 R. Schiffler, On cluster algebras arising from unpunctured surfaces II, Adv. Math. 223 (2010), 1885-1923.
ST09 R. Schiffler and H. Thomas, On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. 2009 (2009), 3160-3189.
SZ04 P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (2004), 947-974, 982.

Thu D. Thurston, Geometric intersection of curves in surfaces, Preprint, http://www.math.columbia.edu/~dpt/DehnCoordinates.ps.
Thu88 W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431.
Thu90 W. Thurston, Conway's tiling groups, Amer. Math. Monthly 97 (1990), 757-773.
Thu08 D. Thurston, Lectures at the International Conference on Cluster Algebras and Related Topics, Mexico, December 8-20, 2008, based on joint work with Sergey Fomin and Michael Shapiro.
Zel07 A. Zelevinsky, Semicanonical basis generators of the cluster algebra of type $A_{1}^{(1)}$, Electron. J. Combin. 14 (2007), \#N4.

Gregg Musiker musiker@math.umn.edu
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Ralf Schiffler schiffler@math.uconn.edu
Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA

Lauren Williams williams@math.berkeley.edu
Department of Mathematics, University of California, Berkeley, CA 94720, USA

[^0]: Received 19 October 2011, accepted in final form 8 May 2012, published online 7 December 2012.
 2010 Mathematics Subject Classification 13F60 (primary), 05C70, 05E15 (secondary).
 Keywords: cluster algebra, basis, triangulated surfaces.
 The first author was partially supported by the NSF grant DMS-1067183. The second author was partially supported by the NSF grant DMS-1001637. The third author was partially supported by the NSF grant DMS0854432 and an NSF CAREER award.
 This journal is © Foundation Compositio Mathematica 2012.

