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Abstract. It is shown that the axiom of choice follows in a weaker form than
the Zermelo - Fraenkel set theory from the assertion: every set of generators
G of a vector space V over the two element field includes a basis L for V. It
is also shown that: for every family A = {Ai : i ∈ k} of non empty sets there
exists a family F ={Fi : i ∈ k}of odd sized sets such that, for every i ∈ k,
Fi ⊆ A iff in every vector space B over the two-element field every subspace
V ⊆ B has a complementary subspace S iff every quotient group of an abelian
group each of whose elements has order 2 has a set of representatives.

Blass [1] proved, in ZF, that the axiom of choice, AC (if A is a pairwise disjoint
family of non empty sets, then there exists a set C which consists of one and only
one element from each element of A), is deducible from the assertion

Every vector space has a basis.(1)

It is an open question (see [1], p. 33]) whether (1) can be replaced by the weaker
statement

Every vector space over a specific field has a basis.(2)

Halpern [3], working in a weaker theory than ZF (called WZF in [1] and being ZF
with the axiom of regularity omitted and the axiom of extensionality weakened so
as to admit atoms), deduced AC from the following assertion:

In every vector space every generating set contains a basis.(3)

Thus, in analogy with (2), one may ask whether (3) can be replaced by the weaker
statement

In every vector space over the two-element field every
generating set contains a basis.

(4)

It is also an open question (see [2], Theorem 1) whether AC follows, in WZF, from
the statement:

In every vector space B over the two-element field, every
subspace V ⊆ B has a complementary subspace S.

(5)

The research in this paper is motivated by the above mentioned questions. We
show in Theorem 1 that, in WZF, AC follows from (4), and we show in Theorem 2
that, also in WZF, the odd axiom of choice, OAC, i.e., the statement:
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For every family A = {Ai : i ∈ k} of non empty sets there exists a
family F ={Fi : i ∈ k} of odd sized sets such that for every i ∈ k
Fi ⊆ A

is equivalent to (5). (OAC is actually equivalent to the statement MC 4(2) from
[5], p. 83, and it is due to M. N. Bleicher [2].)

In Theorem 3, we show, in WZF, that AC is equivalent to the combination of
the statements OAC and EAC, where EAC is the statement given by:

For every family A = {Ai : i ∈ k} of non empty sets with |Ai| > 1 there
exists a family F ={Fi : i ∈ k} of non empty even sized sets such that,
for every i ∈ k, Fi ⊆ Ai.

Finally, in Theorem 4 we show, in ZF, that AC is equivalent to the statement:

Every quotient group of an abelian group each of whose elements has
order 2 has a set of representatives.

Since AC is expressed in terms of sets, it is only natural to work with vector
spaces whose elements as well as scalars are sets, and, as expected, addition, ⊕,
and scalar multiplication, • , are symmetric difference and set-theoretic intersection,
respectively. Since the set of scalars has to be a field under the above mentioned
operations, we see that it must be the two-element field.

We are obliged to Professor Andreas Blass for several very useful and intriguing
remarks concerning Theorems 1 and 3.

Theorem 1. In WZF, AC is deducible from the assertion that in every vector space
B over the two-element field, every generating set contains a basis.

Proof. Fix A = {Ai : i ∈ k}, a family of non empty sets. Without loss of generality
we may assume that Ai ∩Aj = ∅ and Ai is infinite for all i 6= j, i, j ∈ k. For every
i ∈ k, define

Ai = {a ⊆ Ai : a or Ai\a is finite}.(6)

It is straightforward to see that (Ai,⊕),where⊕ denotes the operation of symmetric
difference, is an abelian group in which all elements satisfy

x⊕ x = 0.

As is well known, a vector space over the two-element field is the same thing as an
abelian group each of whose elements satisfies the equation

x+ x = 0.(7)

Thus, (Ai,⊕) is a vector space over the two-element field. From now on, we shall
treat vector spaces over the two-element field as abelian groups satisfying (7).

Let Ā denote the direct sum of the family {Ai : i ∈ k}. Then (Ā,⊕), where
⊕ : Ā× Ā→ Ā is given by

(ā⊕ b̄)(i) = ā(i)⊕ b̄(i),

is an abelian group satisfying (7).
Let G =

⋃
{Dja : j ∈ k, a ∈ Aj}, where

Dja = {ā ∈ Ā : ā(i) = ∅ if i 6= j and ā(i) ∈ {{a}, Ai\{a}} otherwise}.

It is straightforward to see that G is a set of generators for Ā. By the assertion of
the theorem, there exists a basis L ⊆ G for Ā.
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For every i ∈ k, let āi ∈ Ā be the element given by:

āi(j) = Ai if i = j and āi(j) = ∅ otherwise.

Claim 1. For every i ∈ k there is a unique yi ∈ Ai such that {yi}∗ ∈ L and
({yi}c)∗ ∈ L, where {yi}∗ and ({yi}c)∗ denote the elements of Ā which equal {yi}
and {yi}c (= the complement of {yi} with respect to Ai) at i and ∅ elsewhere,
respectively.

Proof of Claim 1. Fix i ∈ k. Let

āi = ¯̀
0 ⊕ ¯̀

1 ⊕ ...⊕ ¯̀
m(8)

be the unique expression of āi as a finite linear combination of elements from L.
Let

J ={v ≤ m: |¯̀v(i)| is infinite}.

Note that |J | cannot be an even number because the symmetric difference of { ¯̀v(i) :
v ∈ J} will be a finite set, and consequently Ai = āi(i) will be finite since the
remaining vectors will only contribute a finite set. If |J | is odd, then the symmetric
difference of

{ ¯̀v(i) : v ∈ J}

will have a finite complement, say c. Thus, for every element c ∈ c there must be
a u ≤ m and a w ∈ J with

¯̀
u(i) = {c} and ¯̀

w(i) = Ai\{c}.

(If c ∈ ¯̀
v(i) for all v ∈ J , then c ∈

⊕
v∈J

¯̀
v(i) because |J | is odd, but this

contradicts c ∈ c.) Thus, āi = ¯̀
u ⊕ ¯̀

w. This means that in (8) m must be equal to
1, and the conclusion of the claim now follows from the fact that L ⊆ G and L is
a basis (needed for the uniqueness part). On the basis of the claim we define

C = {yi : i ∈ k}.

Then C is a choice set for A, finishing the proof of Theorem 1.

Theorem 2. OAC iff (5).

Proof. (←) Fix A = {Ai : i ∈ k}, a family of non empty sets. Let Ā be as in
Theorem 1 and

V = {a ∈ Ā : |a(i)| = even natural number for every i ∈ k}.(9)

It is straightforward to see that V is a subspace of Ā. Let S be its complementary
subspace.

Claim 2. For every i ∈ k there is a unique element si ∈ S such that

|si(i)| = odd natural number and
|si(j)| = even natural number for all j ∈ k, j 6= i.

(10)
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Proof of Claim 2. Fix y ∈ Ā such that:

|y(i)| = odd natural number and y(j) = ∅ for all j ∈ k, j 6= i.

Since S and V are complementary subspaces, there exist elements s ∈ S and v ∈ V
such that

y = s⊕ v.

Since all coordinates of v are even sized sets, it can be readily verified that s satisfies
(10). We note that there can be no two distinct such s’s, for their non zero sum
would be a member of V . This finishes the proof of the claim.

Put

F = {Fi = si(i) : i ∈ k}.

Clearly F is as required.
(→) This is Theorem 6.37 from [5], p. 124.

The next theorem tells us how much is missing from the OAC in order to recover
AC.

Theorem 3. In WZF, AC is deducible from OAC + EAC.

Proof. Fix A = {Ai : i ∈ k}, a disjoint family of non empty sets. By OAC we may
assume that A is a family of odd sized sets. Let

E = {x ∈ P(∪A)\{∅} : x is even sized}

and

O = {x ∈ P(∪A) : |x| > 1, x is odd sized}.

Apply OAC and EAC to the sets E and O, respectively, to get functions G : E → O
and Q : O → E such that:

∀x ∈ E G(x) ⊂ x and ∀x ∈ O Q(x) ⊂ x.

For every i ∈ k we iterate G and Q alternately until we reach a singleton, say ci.
Then c = {ci : i ∈ k} is a choice set for A as required.

Next, we find another algebraic characterization of OAC. Let (G,+) be an
abelian group. We recall that a subgroup H of G partitions G into pairwise dis-
joint equivalence classes, the so-called cosets. Denoting the equivalence class of an
element g ∈ G by [g], we have:

[g] = {g + h : h ∈ H}.

g is called a representative of the coset [g]. We denote the set of all cosets by G/H.
We also recall that G/H is an abelian group if addition ⊕ is given by:

[g]⊕ [q] = [g + q] for every element g, q ∈ G.

(G/H,⊕) is called the quotient group of G modulo H.

Theorem 4. OAC iff every quotient group of an abelian group each of whose ele-
ments has order 2 has a set of representatives.
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Proof. (←) Fix A = {Ai : i ∈ k}, a disjoint family of non empty sets. Let G = Ā
where Ā is as in Theorem 1, and let H be the V of (9). For every i ∈ k put

Gi = {a ∈ G : |a ∩Ai| is an odd sized set and |a(j) ∩Aj |
is an even sized set for all j ∈ k, j 6= i}.(11)

Then Gi ∈ G/H. (A representative for Gi will be, for example, any a ∈ G such
that a(i) is a single element subset of Ai and a(j) = ∅ for all j ∈ k, j 6= i.) By the
hypothesis, there exists a set of representatives G ⊆ G such that G is the disjoint
union of their corresponding cosets. Let gi ∈ G denote the representative of the
coset Gi for all i ∈ k. We put

Fi = gi(i) ∩Ai.
Clearly Fi is an odd sized set for every i ∈ k, as required.

(→) To see this, fix G to be an abelian group each of whose elements has order
2 and let H be a subgroup of G. Let C = {Cj : j ∈ J} = G/H − {[0]} and
F = {Fj : j ∈ J} be the set which is guaranteed by OAC. Let gj denote the sum
of the elements of Fj . Since Fj is odd sized, we see that gj ∈ Cj , and consequently
G = {gj : j ∈ J} is the required set of representatives, finishing the proof of (→)
and of the theorem.
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