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BASIC ALGEBRO-GEOMETRIC CONCEPTS
IN THE STUDY OF

PLANAR POLYNOMIAL VECTOR FIELDS

Dana Schlomiuk

Abstract
In this work we show that basic algebro-geometric concepts such
as the concept of intersection multiplicity of projective curves at a
point in the complex projective plane, are needed in the study of
planar polynomial vector fields and in particular in summing up
the information supplied by bifurcation diagrams of global families
of polynomial systems. Algebro-geometric concepts are helpful in
organizing and unifying in more intrinsic ways this information.

1. Introduction and general discussion

In the first announcement of the November 1996 meeting on the qual-
itative theory of planar vector fields, in Lleida, Spain, two goals for this
meeting were mentioned: “On one hand to summarize the progress made
in this field and on the other to explore new directions.”

This article has two goals: first, to address some issues in response to
the statement in the announcement to the Lleida meeting, in particular
to appeal for more communication among specialists in this area and
specialists in related areas; secondly, to show how very basic algebro-
geometric concepts help in formulating results and in organizing the
classification of low degree polynomial systems. A unified characteriza-
tion of the bifurcation diagram of the quadratic Hamiltonian systems
with a center in terms of the global geometry of systems serves as an
illustration. The multiple singular cubic invariant curves as defined in
section 4, govern the bifurcation diagram of this family of systems. A
global affine invariant for this class is then used to compute the mul-
tiplicity of such curves. The article is addressed first to specialists on
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planar polynomial vector fields. Work by such specialists as well as by
specialists in the closely related areas, for example in the theory of fo-
liations, acting as interface between the two areas (a beautiful example
in this direction is given by C. Camacho in some of his work) as well
as works acting as interface between planar polynomial vector fields and
algebraic or analytic geometry, are of help in advancing the subject.

Planar polynomial vector fields appear often in applications and prob-
lems in this area can be stated in simple terms. However, progress has
been slow and the area could perhaps get the price for the highest num-
ber of errors in the published literature, some of these made by excellent
mathematicians. In view of this slippery ground (recently, in yet an-
other published work a “theorem” turned out to have a flawed proof),
we clearly need to pay great attention to rigour and repeat calculations
using alternative ways whenever possible. Also, viewing problems from
different angles and establishing connections with other areas of mathe-
matics can only be helpful.

Perhaps the best result in this area which was obtained in the past
ten years is the proof of the finiteness theorem. This theorem appeared
first in a paper published in 1923 by Dulac [10], who claimed to have
proved that any planar polynomial vector field has a finite number of
limit cycles. It took almost 60 years to realize that this proof is not
correct and more years to find a proof of this theorem. We now have two
proofs, one of Il’yashenko [17] and another one of Ecalle [13], and the
results are also applicable to analytic vector fields on the sphere. There
is at least one other theorem which was first put on paper as a theorem
but for which it took a long time to have a proof: this is Fermat’s last
theorem, which was stated by Fermat around 1637. After 357 years
since Fermat wrote in his margin of his copy of Gauss’ Disquisitiones
Arithmeticae that he has a proof which that margin was too small to
contain, in 1994, Andrew Wiles and Richard Taylor proved a theorem
on semi-stable elliptic curves which as Ribet showed, implies Fermat’s
last theorem.

Fermat’s problem and Hilbert’s 16th problem have something in com-
mon: they both appeal by their simplicity and clarity of statement. Due
to this, many people became aware of Fermat’s last theorem and when
Wiles proved it, the news made it to the front page of the New York
Times. As mathematicians we are even more interested in this proof.
Lots of articles appeared about in and lots of lectures were given. A
beautiful lecture was given in 1993 in Canada by Barry Mazur at a joint
meeting of the A.M.S. and C.M.S. and a videotape of this lecture [22]
was made.

We understand that the progress on Fermat’s theorem was achieved
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through a truly broad view and many deep mathematical connections.
The role of connections was expressed very well in an address of Armand
Borel [3]:

“In fact, I would rather schematize the structure of mathematics by a
complicated graph, where the vertices are the various parts of mathemat-
ics and the edges describe the connections between them. These connec-
tions sometimes go one way, sometimes both ways, and the vertices can
act both as sources and sinks. The development of the individual top-
ics is of course the life and blood of mathematics, but, in the same way
as a graph is more than the union of its vertices, mathematics is much
more than the sum of its parts. It is the presence of those numerous,
sometimes unexpected edges, which makes mathematics a coherent body
of knowledge, and testifies to its fundamental unity, in spite of its being
too vast to comprehend by one single mind.”

We may view planar or more generally surface vector fields as a vertex
and edges to and from this vertex play an important role.

In 1922, about the time when Dulac was putting his finishing touches
on his paper “Sur les cycles limites” which appeared in 1923, Mordell
stated the conjecture which bears his name (like Dulac’s conjecture this
is a finiteness conjecture): “any given curve of genus g ≥ 2 has only a
finite number of rational points. Mordell’s conjecture became Faltings’
theorem in 1983 and later Faltings received the Fields medal for his work,
a major achievement in diophantine geometry which had implications for
the proof of Fermat’s last theorem.

Elliptic curves played a crucial role in the proof of Fermat’s last theo-
rem. Andrew Wiles and Richard Taylor’s result is about elliptic curves:
“Every semistable elliptic curve is modular” but this result, as K. Ribet
showed, implies Fermat’s last theorem. This is made possible by con-
nections among the theory of elliptic curves, group representations, and
the theory of modular forms.

The story of Fermat’s last theorem is fascinating by the beautiful
mathematical ideas and the deep connections which link them together.
It pays off to have a wide viewpoint. In particular, if we now turn to our
problems on planar vector fields and more specifically to quadratic vector
fields and Hilbert’s 16th problem for this case, it could only be of help
if we were to have a broader viewpoint and to accompany our specific
calculations with explicit connections to related areas of mathematics.
This is done in the best works in the subject but is it the rule? The
two proofs of Il’yashenko [17] and Ecalle [13] of the finiteness theorem
are both securely linked with other areas of mathematics. Il’yashenko’s
proof is the one better understood because it is based in more familiar
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ground: on complex analysis and in particular the Phragmen-Lindelöf
principle. Ecalle’s proof has a very different flavour. Ecalle makes the
point that his proof is constructive. He insists on the broader scope of the
methods employed (the theory of resummation; he considers this proof
an exercise in “resummation”) and on the fact that they lead to a con-
structive approach. Ecalle’s proof is not yet completely understood by
the specialists. Nevertheless, its more constructive character and virtual
links with non-commutative geometry, make this proof very attractive
and interesting.

Let us now focus our attention on planar polynomial systems and in
particular on quadratic or cubic ones. There are numerous articles on
planar quadratic or cubic vector fields. Some of these deal with perturba-
tions of singular cycles of such systems. In two interesting articles [11],
[12], the authors describe a method for solving the finiteness part (which
the authors call “the existential part”) of Hilbert’s 16th problem for
quadratic systems and which we state as follows: Prove that H(n) is fi-
nite where by H(n) it is meant the lowest cardinal number which bounds
the number of limit cycles for any polynomial vector field of degree n.
Hilbert’s 16th problem is to find H(n) as well as to establish the relative
positions of limit cycles. In the first one of these articles it is shown
that to solve the finiteness part of Hilbert’s 16th problem one needs to
prove the finite cyclicity of 121 cases of singular cycles. While a number
of these cases are done, many still remain open and the program could
well take years to accomplish. Considering that in the past 97 years no
examples could be found for which more than four limit cycles could be
proven to exist, not only is it conjectured that H(2) < ∞ but actually
that H(2) = 4. If one is interested in structure, even complete proofs
of finite cyclicity for all the 121 cases of graphic cycles are not enough
help but the program outlined in [11], [12] is interesting because of the
specific study of the return maps involved. However, attempting to get
a global understanding for larger and larger classes of quadratic systems
in an organized way would lead to more information about these systems
and eventually to exact bounds for these classes. Since the bifurcation
diagram of the quadratic systems must have a very large number of dis-
tinct phase portraits, conceptual unifying themes or guiding principles
through this labyrinth are essential. Looking for intrinsic ways of char-
acterizing the bifurcation locus whenever possible without constantly
refering to coordinates is a legitimate goal.

The parameter space where these bifurcation diagrams sit is R
12 but on

the space acts the group of affine coordinate transformations and positive
time rescaling. Thus, the parameter space is actually five dimensional.
Some of the hypersurfaces of the bifurcation locus are algebraic, others
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are analytic and still others are not even be analytic.

In a short, very nice article [8] on quadratic systems written in 1966,
W. A. Coppel wrote:

“Ideally one might hope to characterize the phase portraits of quad-
ratic systems by means of algebraic inequalities on the coefficients. How-
ever, attempts in this direction have met with limited success. . . ”

Now, more than 30 years later, it is known that algebraic inequalities
would not suffice. Analytic as well as non-analytic ones are necessary.
Even if all these inequalities are included, more intrinsic means for clas-
sifying systems would need to be developped for the classification to be
more illuminating. In classifying mathematical objects, simpler math-
ematical objects or concepts are used: topological spaces are classified
by their homotopy or homology groups, algebraic curves are birationally
classified by their genus, C∗-algebras by their K-theory groups, etc.

Dynamical systems are a mixed breed, having both geometric and
analytic features. In view of the thousands phase portraits and of their
associated inequalities it is perhaps not completely idle to try to find
better ways of classifying systems or of encoding information. We do
have ways of attaching invariants to systems. The whole theory of normal
forms attempts to attach invariants to systems. To piece together the
local and nonlocal informations into global ones is a lot more difficult
because the analysis of the Poincaré return map for families of systems
is so hard to perform.

Works on classifying systems, in particular on quadratic or cubic ones,
may benefit by use of some knowledge in algebraic geometry. The very
powerful methods used in this field benefitted the theory of partial dif-
ferential equations as one could see for example on the works on the
KdV equation. Algebraic geometry has many concepts which can be
used in this area and furthermore it has method which may be of help in
inspiring better organization in classification works than what is avail-
able in the literature.

In this work we show how very basic algebro-geometrical concepts can
be used for problems on planar polynomial vector fields. The paper is
organized as follows: section 2 includes some problems and results on
polynomial vector fields which have a clear algebro-geometric character.
This section is by no means intended as a quick survey but only as an il-
lustration of such problems. The literature contains works of this nature
and the section refers to some of them. In section 3 we discuss a very
basic concept of algebraic geometry, the concept of intersection multi-
plicity of projective curves and introduce several multiplicities for planar
polynomial vector fields expressed in terms of this concept. In section 4
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we show how the concepts introduced in the previous section can be used
for encoding in an intrinsic and compact way, informations about some
families of planar polynomial systems. As an illustration we consider the
family of quadratic Hamiltonian systems with a center, example which
is chosen because of its simplicity. This family is algebraically integrable
with cubic polynomial first integrals but an analogous discussion can
be carried out when we treat other families of planar quadratic systems
when classifying their singularities, regardless if these families are inte-
grable or not. Such a discussion must be based on numerous calculations
and other examples such as for the class of quadratic vector fields with
a weak focus (work for this class is in progress [25]), or of other classes
of nonintegrable systems will be given elsewhere. We also show on an
example how statements of results can gain in clarity and in geometric
meaning by using the concepts introduced in section 3. Some questions
for future work are raised.

2. Problems on polynomial vector fields
which have a clear algebro-geometric content

Let v(x, y) = P (x, y)∂/∂x +Q(x, y)∂/∂y be a real polynomial vector
field and consider the associated differential systems:

(2.1)
dx/dt = P (x, y),
dy/dt = Q(x, y).

A curve f(x, y) = 0 with f a polynomial with complex coefficients is
an invariant algebraic curve for v(x, y) or for a system given by equa-
tion (2.1), if for some polynomial K with complex coefficients we have
vf = fK. If f is an irreducible polynomial over C we say that the curve
is an algebraic solution of the system. We say that the real (respectively
complex) system given by equation (2.1) is algebraically integrable if and
only if there exists a rational function R(x, y) = p1(x, y)/p2(x, y), pi a
polynomial with real (respectively complex) coefficients, i = 1, 2, which is
a first integral of the system. We say that the systems has a Darboux [9]
first integral (resp. Darboux integrating factor) if the system has a first
integral (resp. integrating factor) of the form fλ1

1 fλ2
2 , . . . , fλn

n where fi

are algebraic solutions of the system and λi are complex numbers [29].

Theorem 2.1 (Darboux [9] and Jouanolou [18]). For a system
given by equation (2.1) with P , Q ∈ C[x, y] such that m =
max(deg(P ),deg(Q)) and such that fi = 0, i = 1, . . . , q are distinct
algebraic solutions for the system, with q ≥ m(m+1)/2 we either have a
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Darboux first integral or a Darboux integrating factor. Furthermore we
have:

1) If q ≥ m(m+ 1)/2 + 1, the system has a Darboux first integral.
2) If q ≥ m(m + 1)2 + 2, the system has a first integral which is a

rational function over C.

Poincaré’s problem on algebraic integrability [27], [28] is to recog-
nize when a polynomial system given by equation (2.1) is algebraically
integrable.

Related to the above problem is the following one:

Give a bound for the degree of an invariant algebraic curve which a
system given by equation (2.1) could have.

Painlevé’s problem [23], [24] is the problem of recognizing if a system
given by equation (2.1) has a general integral

p1(x, y)−Kp2(x, y) = 0,

where K is a constant and pi are polynomials over C, which is an alge-
braic curve of a given genus.

Clearly all of these problems as well as the problem of determining
when systems have invariant algebraic curves have an algebro-geometric
content and the literature contains works dealing with problems on foli-
ations or on systems given by equation (2.1) which have a clear algebro-
geometric content [4], [6], [7], [9], [15] and [18].

Other problems like the one of distinguishing between a center and
a focus turn out to have some algebro-geometric components. In the
quadratic case the conditions for the center turned out to have a complete
algebro-geometric content [31], but the situation is more complex in the
case of higher degree vector fields.

3. Multiplicity of intersection of projective curves
and other concepts as basic tools

in studying planar polynomial vector fields

The singularities of polynomial vector fields P∂/∂x + Q∂/∂y are the
common points of the curves P (x, y) = 0 and Q(x, y) = 0. Count-
ing these points with their respective multiplicities adds information.
For these multiplicities, the full projective completions P ∗(X,Y, Z) = 0,
Q∗(X,Y, Z) = 0 (here P ∗(X,Y, Z) = ZnP (X/Z, Y/Z), Q∗(X,Y, Z) =
ZnQ(X/Z, Y/Z), if n = deg(P ) = deg(Q)) of the curves P = 0 and
Q = 0 are needed. For example, whenever the projective completions
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P ∗ = 0 and Q∗ = 0 of these curves have a point in common at infin-
ity, the systems will have fewer singular points in the finite plane. If
the curves have a higher contact at infinity, this will be reflected in the
number of points in the finite plane which will be fewer. It is important
to count these points over C. Roughly speaking the intersection mul-
tiplicity of two algebraic curves at a point indicates how many points
the curves have in common at that point. For example the line y = 0
and the parabola y − x2 = 0 intersect at the origin with intersection
multiplicity two, and the line y = 0 and the cubic y − x3 = 0 intersect
at the origin with intersection multiplicity three, the three intersection
points coinciding in this case at (0, 0).

We have several ways of defining the concept of multiplicity of intersec-
tion of algebraic curves: via resultants [19] of homogeneous polynomials
in three variables over C, via the local rings [14], axiomatically, etc.

Using resultants of polynomials in three variables [19], we can define
multiplicity of intersection at a point p = [a: b: c] of two projective curves
given by the equations F (X,Y, Z) = 0 and G(X,Y, Z) = 0, where F
and G are homogeneous polynomials over C, without common nontrivial
factors as follows: Assume these curves to be placed in general position
with respect to Z for example, i.e. the degree of F (resp. G) equals the
degree of the highest order term containing only Z in F (resp. G), then
we can eliminate Z by considering the resultant R(X,Y ) [19] of the
polynomials F , G, with respect to Z. Since F and G have no nontrivial
common factors, R(X,Y ) is a nontrivial homogeneous polynomial [14] in
X, Y of degree n.m where n = deg(F ), m = deg(G) and hence R(X,Y )
splits into n.m linear factors over C, perhaps not all of them distinct. If
p = [a: b: c] is a point of intersection of F = 0 with G = 0, then (a, b) is
a solution of R(X,Y ) = 0 and c is a common solution of the equations
F (a, b, Z) = 0 and G(a, b, Z) = 0. We say that the point [a: b: c] is a
multiple point of intersection of F = 0 with G = 0 of multiplicity k if
(a, b) is a solution of one of the linear factors in R(X,Y ) appearing there
with the multiplicity k.

A definition which generalizes easily for intersection multiplicity of
several curves at a point is via the local rings [14]:

Definition 3.1. The intersection multiplicity Ip(F1, F2) at a point p
of the algebraic curves C1, C2 in C

2 where Ci : Fi(x, y) = 0 is defined
as being zero if the curves do not intersect, infinity if the curves have a
common component and otherwise we use the definition

(3.1) Ip(F1, F2) = dimC Op/(F1, F2)

where Op is the local ring of the affine complex plane A2(C) = C
2 at p,
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i.e. Op is the ring of germs of rational functions q(x, y)/r(x, y) which are
defined at p, i.e. such that r(p) �= 0.

We are interested in planar polynomial vector fields

(3.2) v(x, y) = P (x, y)∂/∂x+Q(x, y)∂/∂y

and their associated differential systems

(3.3)
dx/dt = P (x, y),
dy/dt = Q(x, y)

where P (x, y), Q(x, y) are polynomials with real coefficients.
When studying such systems, the compactification of the systems on

the sphere is usually used. We may consider the plane x, y as being
Z = 1 in the space R

3 and project the plane via the central projection
onto the sphere. This compactifies the plane to the upper hemisphere
completed by the equator. The central projection of the vector field
yields an analytic vector field on the sphere [16].

To the vector field given by equation (3.2) there is an associated di-
rection field on R

2 and a differential equation P dy −Qdx = 0.
Let us suppose that P and Q have no nonconstant common factor. We

consider the associated differential 1-form ω1 = Q(x, y) dx − P (x, y) dy
and the differential equation ω1 = 0. The affine plane R

2 (respectively
C

2) is compactified to the real (resp. complex) projective space RP (2) =
(R3−{0})/ ∼, (resp. CP (2) = (C3−{0})/ ∼), where (x, y, z) ∼ (x′, y′, z′)
if and only if (x′, y′, z′) = u(x, y, z) for some u �= 0, u real (resp. com-
plex). Let [X:Y :Z] be the equivalence class of (X,Y, Z). Clearly the
restriction of the equation ω1 = 0 on nonsingular points of the equation
P dy − Qdx = 0, defines a foliation on this submanifold of C

2. Thus
a foliation with singularities on C

2 is obtained. This foliation can be
extended to a singular foliation on CP (2) and the one-form ω1 can be
extended to a meromorphic one-form on CP (2) [5]. Analogously to the
way we can describe a plane projective curve by a single homogeneous
equation in x, y, z we can describe this meromorphic one-form by a single
one-form A∗(X,Y, Z) dX+B∗(X,Y, Z) dY +C∗(X,Y, Z) dZ with homo-
geneous polynomial coefficients. Indeed, let us suppose that P and Q
have no common nontrivial factors and max(deg(P ),deg(Q)) = n > 0
and consider the application r : C

3\{(X,Y, Z)|z = 0} → C
2 given by

r(X,Y, Z) = (X/Z, Y/Z). From the relations x = X/Z, y = Y/Z it
follows that dx = (Z dX − X dZ)/Z2, dy = (Z dY − Y dZ)/Z2. The
differential form ω̃ = r∗(ω1) has poles at Z = 0 and the equation ω1 = 0
can be written in coordinates X,Y, Z as follows:

ω̃ = Q(X/Z, Y/Z)(Z dX −X dZ)/Z2

− P (X/Z, Y/Z)(Z dY − Y dZ)/Z2 = 0.
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Then ω = Zn+2ω̃ has polynomial coefficients of degree n + 1 and for
Z �= 0, the equations ω = 0 and ω̃ = 0 have the same solutions. The
differential equation ω = 0 is:

ZnQ(X/Z, Y/Z)(Z dX −X dZ)− ZnP (X/Z, Y/Z)(Z dY − Y dZ) = 0.

Hence, regrouping the terms in dX, dY , dZ respectively, we have:

ω = ZQ∗(X,Y, Z) dX − ZP ∗(X,Y, Z) dY
+ (Y P ∗(X,Y, Z)−XQ∗(X,Y, Z)) dZ

where

(3.4)
P ∗(X,Y, Z) = ZnP (X/Z, Y/Z),
Q∗(X,Y, Z) = ZnQ(X/Z, Y/Z).

We have thus obtained a polynomial one-form

(3.5) ω = A∗(X,Y, Z) dX +B∗(X,Y, Z) dY + C∗(X,Y, Z) dZ

with

(3.6)
A∗ = ZQ∗,

B∗ = −ZP ∗,

C∗ = Y P ∗ −XQ∗

hence A∗, B∗, C∗ are homogeneous polynomials of degree n + 1 in the
variables X, Y , Z. The form ω yields an equation ω = 0 on C

3. Just
as planar projective curves are described by using one chart in C

3 and
one homogeneous polynomial equation in three variables, we can use
homogeneous coordinates [X:Y :Z] and just one differential equation

L(X,Y, Z) dX +M(X,Y, Z) dY +N(X,Y, Z) dZ = 0

with homogeneous polynomials in (X,Y, Z) of the same degree as coeffi-
cients, to obtain a differential equation on CP (2) provided the condition
LX + MY + NZ = 0 is satisfied [9]. In particular for the equation
ω = 0 to yield an equation on CP (2) we need to verify the condition
A∗X +B∗Y + C∗Z = 0. This condition clearly holds.

The singularities of the foliation induced by ω1 on CP (2) are the in-
tersection points of the curves A∗ = 0, B∗ = 0, C∗ = 0 and these points
need to be counted with multiplicities of intersection. The concept of in-
tersection multiplicity above extends to that of intersection multiplicity
of several curves at a point of the projective plane.
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Definition 3.2. The intersection multiplicity Ip(f1, f2, . . . , fn) at
a point p of the algebraic curves C1, C2, . . . , Cn in C

2 where
Ci : fi(x, y) = 0 is defined as being zero if the curves do not inter-
sect, infinity if the curves have a common component and otherwise we
use the definition

Ip(f1, f2, . . . , fn) = dimC Op/(f1, f2, . . . , fn).

In particular we shall be interested in the way the curves A∗ = 0, B∗ = 0
and C∗ = 0 intersect and hence in the values of Ip(A∗, B∗, C∗) for p in
the projective plane.

Notation 3.1.

(3.7) m(p) = Ip(A∗, B∗, C∗).

This multiplicity is computed by using an appropiate chart and the Def-
inition 3.2. The value of m(p) is independent of the particular chart.

We have the canonical imbedding of the affine plane A2(R) = R
2

(resp. A2(C) = C
2) into the real (resp. complex) projective plane

i : A2(R) −→ RP (2), (i(x, y) = [x: y: 1]).

We shall identify a point p in the affine plane with its image i(p) in the
projective plane. Vector fields on A2(R) (resp. A2(C)) yield Pfaff forms
and foliations on RP (2) (resp. CP (2)).

Proposition 3.1. If p is a finite or infinite singular point of a polyno-
mial system (3.2) and A∗, B∗, C∗ are as defined before in equation (3.6),
we have:

(3.8) Ip(A∗, B∗, C∗) = Ip(Z, Y P ∗ −XQ∗) + Ip(P ∗, Q∗).

(3.9) m(p) =
{
Ip(P ∗, Q∗)(= Ip(P,Q)) if p is finite
Ip(Z, Y P ∗ −XQ∗) + Ip(P ∗, Q∗) if p is infinite.

The proof follows easily from the fact that Z is a common factor of
A∗ and B∗ and from basic properties of intersection multiplicities [19].

Corollary 3.1. Ip(A∗, B∗, C∗) ≥ Ip(P ∗, Q∗), Ip(Z, Y P ∗ −XQ∗).

Ip(A∗, B∗, C∗) > Ip(P ∗, Q∗)←→ p ∈ {[X:Y :Z]|Y P ∗ −XQ∗ = 0 = Z}
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and if p is a point at infinity, then we have:

Ip(A∗, B∗, C∗) > Ip(Z, Y P ∗ −XQ∗)←→ Ip(P ∗, Q∗) ≥ 1.

Notation 3.2.

(3.9) m∞(p) = Ip(Z, Y P ∗ −XQ∗).

m(p) indicates the number of singular points finite or infinite which can
bifurcate from p in a quadratic perturbation, Ip(P ∗, Q∗) indicates the
number of finite singular points which can bifurcate from p under a
quadratic perturbation and m∞(p) indicates the total number of infinite
singular points, which can bifurcate from p.

Definition 3.3. We call global finite multiplicity mf the number

(3.10) mf =
∑

p∈A2

(Ip(P,Q)).

The multiplicities Ip(P,Q), Ip(P ∗, Q∗) and m∞(p), m(p), mf are basic
tools in classifying planar polynomial systems (3.2).

Clearly we have:
For a nonlinear polynomial system given by equation (3.2) with

max(deg(P ),deg(Q)) = n and with P , Q, without common nontrivial
factors, in view of Bézout’s theorem [14], [19], we clearly have:

(3.11) Ip(P ∗, Q∗), Ip(P,Q) ≤ n2, m∞(p) ≤ n+ 1,

and hence m(p) ≤ n2 + n+ 1. We also have:

Proposition 3.2 (Darboux [9]). For a polynomial system given by
equation (3.2) with deg(P ) = deg(Q) = n > 0 and with P , Q without
nontrivial common factors and A∗, B∗, C∗ as in equation (3.6) and
(3.5), we have:

(3.12)
∑

p∈CP (2)

Ip(A∗, B∗, C∗) = n2 + n+ 1.

Just as the points at infinity of affine curves gain equal status with
points in the finite plane by their inclusion in the projective plane where
all lines are treated equally, the singularities at infinity of the vector
fields gain equality of status when viewed as points of the projective
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plane, forgetting when it is convenient for unifying purposes their special
status as points on the invariant line at infinity.

The intersection multiplicity of projective curves comes in handy when
studying families of planar quadratic vector fields. For example, the
various multiplicities defined before are useful when classifying families
of polynomial systems which are algebraically integrables, when dealing
with systems which have invariant algebraic curves or when classifying
singularities in any family of either integrable or not integrable systems.
Some of their bifurcation surfaces are given in terms of these concepts.

4. Applications

We are interested in global properties of polynomial systems of a given
degree n and more specifically in quadratic systems. The group of affine
transformations acts on such a class. Ideally we would like to have a
complete set of global invariants for this class of systems. This is of
course a far shot as this class has a very large numver of phase portraits.
We start here with a very simple subclass: the class of quadratic Hamil-
tonian systems with a center. This is an algebraic class (all systems have
a cubic polynomial as first integral) and we may regard it as “trivial”.
Still, this is the place to start our search. Indeed, if we look up the liter-
ature on classifying quadratic systems, we see a mass of phase portraits
and sometimes, though not always, bifurcation diagrams. Apart from
performing calculations of phase portraits and of writing up directories
of inequalities, an effort needs to be made to “sum up” these calculations
and for this it is absolutely necessary to merge knowledge from several
areas of mathematics: bifurcation theory, foliation theory, some alge-
braic geometry, etc. It seems to us that an effort to piece together global
informations for quadratic systems with the help of local invariants or of
the work done by specialists on the theory of foliations is necessary. We
mentioned in the introduction that polynomial vector fields constitute a
slippery research subject. We do want to move on solid ground and to
start this initial work with an important nonintegrable class, having a
very large number of phase portraits before attempting the study of one
of the simplest classes was not recommendable.

However, work is now in progress along these lines for the (generi-
cally nonintegrable) class of quadratic systems with a weak focus and
results will appear elsewhere. Our analysis of the quadratic Hamiltonian
systems with a center shows us that at all the points of the bifurca-
tion locus the same type of global phenomenon occurs, regardless of the
specific local or nonlocal type of bifurcation (of singularities at infinity,
of singularities in the finite plane or of saddle to saddle connections):
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the presence in the systems of multiple (in a sense to be defined below)
invariant algebraic curves or equivalently, the presence of curves with
multiplicity indices with respect to the systems greater than one. This
shows that it is possible to piece together in a unified way the various
bifurcations phenomena into something which is global and stimulates
us to look for analogous results in more general, non integrable situa-
tions. We shall first introduce an affine invariant for systems S given by
equations (3.3) which posses an invariant algebraic curve C : f(x, y) = 0.
We shall denote such a structured dynamical system by (S, f).

Definition 4.1. Let us suppose that for a real system S given by
equations (3.3), P and Q have no nonconstant common factors and the
system has an algebraic invariant curve C : f(x, y) = 0. We consider the
divisor D(S, f) of the curve C, defined as follows:

D(S, f) =
∑

p∈Sing(ω)

p∈C̃

Ip(P ∗, Q∗)p

where P ∗, Q∗ are the polynomials defining the projective completions of
the curves P = 0, Q = 0, C̃ is the projective completion of the curve C
and ω is defined as before in equation (3.5), (3.6).

We define a multiplicity of the invariant curve C with respect to a
system S (or a vector field v) given by equation (3.3) and denote it by
µ(C, S) the degree of this divisor i.e.:

(4.1) µ(C, S) =
∑

p∈Sing(ω)

p∈C̃

Ip(P ∗, Q∗).

Sometimes the shorthand µ(C) will be used for µ(C, S).

Proposition 4.1. µ(C, S) is an affine invariant of the structured dy-
namical system (S, f).
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Proof: Let us consider a real affine transformation T (x′, y′) = (x, y)
given by a two by two real invertible matrix A = ((aij)) and column
vector B = ((bi)), i = 1, 2:

(4.2)
(
x
y

)
= A

(
x′

y′

)
+B.

We also consider the corresponding projective transformation
T ′(X ′, Y ′, Z ′) = (X,Y, Z)

(4.3)


X
Y
Z


 = A


X ′

Y ′

Z ′




where

(4.4) A′ =


 a11 a12 b1
a21 a22 b2
0 0 1


 .

Then we have:(
x′

y′

)
= A−1

(
PT

QT

)
= (1/d)

(
a22P

T − a12Q
T

−a21P
T + a11Q

T

)

where PT (x′, y′) = P (a11x
′+a12y

′, a21x
′+a22y

′), QT (x′, y′) = P (a11x
′+

a12y
′, a21x

′ + a22y
′) and d = det(A). Let P ′ = (1/d)(a22P

T − a12Q
T ),

Q′ = (1/d)(−a11P
T + a21Q

T ). We denote by P
′∗, Q

′∗ the homogeneous
polynomials in x′, y′, z′ obtained from P ′, Q′. Let p′ be such that
T ′(p′) = p. We have:

Ip′(P
′∗, Q

′∗) = Ip′((a22P
∗ − a12Q

∗
22)

T ′
, (−a11P

∗ + a21Q
∗)T ′

).

In view of the projective invariance of the intersection multiplicity [14]
we have:

Ip′((a22P
∗ − a12Q

∗
22)

T ′
, (−a11P

∗ + a21Q
∗)T ′

)
= Ip((a22P

∗ − a12Q
∗
22), (−a11P

∗ + a21Q
∗)).

Since the equations φ = a22P
∗ − a12Q

∗
22, ψ = −a11P

∗ + a21Q
∗ can

be solved for P ∗, Q∗ we have Ip′(P
′∗, Q

′∗) = Ip(P ∗, Q∗) and the result
follows.
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4.1. A first application.
In our first application we consider the family of quadratic Hamiltonian

systems with a center. This family was studied in the literature [1],
[2], [26], [35]. Since the systems are Hamiltonian, there are no limit
cycles and the bifurcation diagram is made up of bifurcation points of
singularities and bifurcation of saddle to saddle connections. We give
below the proof of a unified characterization (a part of this result was
stated in [32] but given there without proof) of the bifurcation locus
for this family. The changes in the phase portraits are governed by the
changes in the singular invariant cubics. These curves are of two types:
simple and multiple, according to the definitions given below:

Definition 4.2. Let us consider a structured system (S, f) where
S is given by equations (3.3) and C is an invariant algebraic curve
C : f = 0. We say that this curve is a simple singular invariant curve
if it is irreducible, all its singularities are ordinary double points located
in the finite plane and the curve is transversal to the line at infinity.

Definition 4.3. A singular invariant algebraic curve C0 of a family F
of systems Sλ of degree n given by equations (3.3), depending contin-
uously on the multiparameter value λ ∈ R

s, which corresponds to the
value λ0 ∈ R

s of the parameter, is a multiple invariant algebraic curve
of multiplicity m for the family, if and only if in for any ε > 0 there is a
neighborhood V of Singωλ0 ∩ C̃0 such that for λ with |λ0 − λ| < ε there
are systems Sλ which have exactly m simple invariant algebraic curves
Cλ,1, Cλ,2, . . . , Cλ,m, with V ⊃ (Singωλ ∩ C̃λ,i) and no such system Sλ

has more than m such curves.

Notation 4.1. We denote the multiplicity of a multiple singular in-
variant cubic curve C of a family F of systems S given by equation (3.3)
by m(C,F ) and when the meaning is clear we use the shorthand m(C).

The bifurcation diagram of the family of quadratic Hamiltonian sys-
tems with a center is determined by the multiple singular invariant cubic
curves. To see this we place the center at the origin and use affine linear
transformations on x, y and positive time rescaling to bring the systems
to the following canonical form:

(QHC)
dx/dt = −y + kx2 + ny2,

dy/dt = x+ ax2 − 2kxy.

We have the following Hamiltonian:

(4.5) Hλ(x, y) = −(ax3 − ny3)/3 + kx2y − (x2 + y2)/2
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where λ = (a, k, n). Since we are interested only in nonlinear systems,
we must have (a, k, n) �= 0 and hence the systems can be rescaled using
homotheties of the axes. Thus the parameter space is actually the real
projective plane RP (2). This condenses the bifurcation diagram on a
disk with the identification of opposite points on the circumference. We
may place n = 0 as the line at infinity of R

2, i.e. the circumference of
the disk. We observe that the following identity holds for the systems
(QHC):

(4.6) H(−a,k,n)(x, y) = H(a,k,n)(−x, y).

Thus discussing the systems (QHC) in a semidisk corresponding to a ≤ 0
is sufficient.

The systems (QHC) are Hamiltonian, hence they do not have any limit
cycles and the bifurcations of the family are of just of two types: bifur-
cations of singularities and bifurcations of saddle to saddle connections.
Bifurcations in the number of singularities occur when one or more sin-
gularities coalesce in the finite plane or at infinity or when singularities
in the finite plane disappear at infinity.

Notation 4.2. Let N(λ) be the number of singular points in the finite
plane of the system (QHC) for the parameter value λ.

The singularities of the system (QHC) are the common zeroes of the
curves:

(4.7)
P (x, y) = −y + kx2 + ny2 = 0,

Q(x, y) = x+ ax2 − 2kxy = 0.

We denote by P ∗ and Q∗ the polynomials defining the projective com-
pletions of these curves i.e.:

(4.8)
P ∗(x, y, z) = −yz + kx2 + ny2 = 0,

Q∗(x, y, z) = xz + ax2 − 2kxy = 0.

If the curves P ∗ = 0 and Q∗ = 0 intersect at infinity, we have fewer
singularities in the finite plane so in this case N(λ) ≤ 3. This also
happens when the curves intersect in the finite plane with multiplicity
greater than one. Since the second curves in (4.7) and (4.8) are reducible,
we easily obtain the conditions for this to happen. We have the two finite
singularities (0, 0), (0, 1/n) if n �= 0 and the two other singularities must
satisfy 1 + ax − 2ky = 0 and −y + kx2 + ny2 = 0. If a �= 0, replacing
x = (2ky− 1)/a in the second equation and we obtain the equation in y:

(4.9) (na2 + 4k3)y2 − (a2 + 4k2)y + k = 0.
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If a = 0 �= k, replacing y = 1/(2k) in the first equation of (4.5) we get
the equation

(4.10) kx2 + (n− 2k)/(4k2) = 0.

Notation 4.3.

(4.11)
δ = a2 − 4kn+ 8k2,

C = na2 + 4k3.

The discriminant of the equation (4.9) is a2δ. If nCδ(n − 2k) �= 0 and
if a �= 0 we can solve the equation (4.9) for y while if a = 0 �= k and
we can solve the equation (4.10) for x to obtaining the two remain-
ing singularities. Equation (4.9) has two distinct real solutions if and
only if δ > 0. Equation (4.10) applies in case a = 0 in which case
δ = −4k(n − 2k). So (4.9) (or (4.10)) has two distinct real solutions if
and only if δ > 0. Thus all nonlinear systems (QHC) have at least two
singularities and we have:

N(λ) =




4 iff nCδ(n− 2k) �= 0 and δ > 0.

3 iff one and only one of the equations
n = 0, δ = 0, C = 0, n− 2k = 0 is satisfied.

2 iff two distinct equations
n = 0, δ = 0, C = 0, n− 2k = 0 are satisfied or δ < 0.

The function N is discontinuous at all points of the curve

C1 : nCδ(n− 2k) = 0

and hence this is a bifurcation curve of singularities.
The systems (QHC) also have bifurcation of saddle to saddle connec-

tions. It is clear from the equations (QHC) that if a = 0 �= k, 1−2ky = 0
is an invariant line and on this line lie two singularities of the systems
which are real if δ > 0. Hence the set of points on a = 0 < δ is part of
the bifurcation set of saddle to saddle connections. If a �= 0, to have a
saddle to saddle connection, two singular points of the systems must be
on the same level curve H(x, y) = K where K is a constant. These must
also be singular points of this curve, so this curve is reducible and hence
the system must have an invariant straight line which clearly cannot pass
through the origin which is a center. We may assume that this line is of
the form: f(x, y) = rx+ sy + 1/n = 0, for n �= 0. We must have:
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(4.12) P∂f/∂x+Q∂f/∂y = (rx+ sy + 1/n)(r′x+ s′y + t′).

(4.13)
r(−y + kx2 + ny2) + s(x+ ax2 − 2kxy)

= (rx+ sy + 1/n)(r′x+ s′y + t′).

Identifying coefficients we get t′ = 0, r′ = sn, s′ = −rn and replacing in
the remaining equations we get s = −1, r = a/(k + n), (if k + n �= 0)
yielding the invariant line: (a/(n+ k))x− y+1/n = 0 and the condition
the parameters must satisfy:

(4.14) a2n+ (k + n)2(2k − n) = 0.

We note that the line f = 0 passes through the singularity (0, 1/n).
Thus the bifurcation points of saddle to saddle connections are situated

on the curve:

(4.15) C2 : a[an− (n+ k)(n− 2k)] = 0

and in case a = 0 for δ > 0. Except for points on the curve

(4.16) C : nCδ(n− 2k)a[an− (n+ k)(n− 2k)] = 0

there are no other bifurcation points [26]. We shall denote by Sing(C)
the set of the real singular points of the algebraic curve C.

Phase portraits do not change on each one of the components of
C\Sing(C) as one could see in the bifurcation diagram [26] given in Fig-
ure 1. We call these points, codimension one bifurcation points of the
family. All points λ on Sing(C) are bifurcation points on any smooth
curve (in the parameter space) passing through λ. We call these codi-
mension two bifurcation points of the family. λ is a bifurcation point of
singularities of the family (QHC) if and only if it belongs to C1.

The bifurcation locus is thus described as the union of bifurcation
points of singularities in the finite plane ((n − k)δ = 0), of bifurcation
points of singularities at infinity (nC = 0) and of bifurcation of saddle to
saddle connections (C2\{δ < 0}). We give below a unified characteriza-
tion of the bifurcation locus C\{δ < 0} in terms of the multiple singular
invariant curves for the family of systems (cf. Definition 4.3):
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Theorem 4.1. λ is a bifurcation point of the family of quadratic
Hamiltonian systems with a center if and only if the vector field
vλ = Pλ∂/∂x + Qλ∂/∂y in this family has a multiple invariant cubic
curve Cλ and in this case we have 2 ≤ m(Cλ) ≤ 3. λ is a codimen-
sion one bifurcation point of the family (QHC) if and only if m(Cλ) = 2
and there is no cubic curve with m(Cλ) = 3. λ is a codimension two
bifurcation point of the family if and only if there is a curve Cλ with
m(Cλ) = 3. Furthermore, the multiplicity m(Cλ) of the above curves
within the family coincides with µ(Cλ) and we thus have:

(4.17) m(Cλ) = µ(Cλ) =
∑

p∈Sing(ωλ)

p∈C̃λ

Ip(P ∗
λ , Q

∗
λ).

Proof: We may restrict ourselves to the family (QHC). If a bifurcation
value λ0 of the parameter belongs to C2\{δ < 0}, it is a saddle to saddle
connection and then we have a reducible invariant cubic which is clearly
not simple. For all bifurcation points of saddle to saddle connections
which are not in Sing(C), we have four singular points in the finite plane,
all hyperbolic and two of these are saddles located on the reducible cubic.
In any neighborhood of λ0 we have points for which we no longer have
a saddle to saddle connection and since the singular points are stable
by perturbation, each perturbed saddle points sits on a simple singular
cubic in the perturbed system. So the statement holds for all such λ0.
If λ0 is on nC = 0, the system has an invariant curve which is tangent
to the line at infinity. Indeed, on n = 0, the curves P ∗ = 0 and Q∗ = 0
intersect at z = 0 = x. The invariant cubic curves are given by the
equation: −ax3/3 + kx2y − (x2 + y2)z/2 = Kz3. All these curves are
tangent to the line at infinity and among them we have two nodal cubics
with real tangents. Let Cλ be one of these. Since I[0,1,0](P ∗

λ , Q
∗
λ) = 1

we have µ(Cλ) = 2. In a neighborhood of λ0 there are values λ for
which P ∗

λ = 0, Q∗
λ = 0 no longer intersect at infinity. The point [0, 1, 0]

produces in a general quadratic perturbation an additional singular point
in the finite plane (a center, yielding a simple singular invariant cubic).
So m(Cλ) = 2. If C = 0, replacing this in the equation (4.9) we obtain

(4.17) −(a2 + 4k2)y + k = 0

and hence y = k/(a2 + 4k2) and x = (2ky − 1)/a yielding a singular
point (x, y) = (−(a2 +2k2)/(a2 +4k2), k/(a2 +4k2)). The cubic passing
through this point is singular and it is tangent to the line at infinity and
we have an analogous situation to the case n = 0.

If for λ0 we have δ(n−2k) = 0 and λ0 /∈ Sing(C) then the systems have
a cusp. Indeed, if n− 2k = 0, this cusp is located at (0, 1/n), the curve
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H(x, y) = H(0, 1/n) being a cubic with identical tangents at this point
hence a multiple cubic for the family. In a quadratic perturbation this
singular point splits into two singularities yielding two simple invariant
cubics in the perturbation so m(Cλ0) = 2. At the same time we have
µ(Cλ0) = 2, the only singular point of the system which is located on
both P ∗

λ0
= 0, Q∗

λ0
= 0 being (0, 1/n) and I(0,1/n)(P ∗

λ0
, Q∗

λ0
) = 2. Hence

µ(Cλ0) = 2. An analogous situation occurs on δ = 0 where we have
an invariant cubic with a finite cusp: (a(k − n)/C, (4k2 + a2)/C). This
cuspidal cubic splits in a general quadratic perturbation in two nodal
cubics. To obtain the second part of the proof we first observe that

(4.18) Sing(C)={[0: 1: 0], [0: 1: 2], [1: 0: 0], [0: 0: 1], [0: 1:−1], [±
√

2: 1:−2]}.

If the parameter λ is one of the three points [0: 0: 1], [0: 1: 2], [1: 0: 0]
we have the same phase portraits. In all three cases we have two fi-
nite singularities, in the first two cases they are the origin and (0, 1/n)
and in the third case the origin and (−1/a, 0). The curves H(x, y) =
H(0, 1/n) in the first two cases are of multiplicity three for the family
because these curves pass through the point at infinity y = 0 = z and
because I[1,0,0](P ∗, Q∗) = 2. Hence in a perturbation the curve
H(x, y) = H(0, 1/n) splits into three curves, two passing through the
two points which bifurcate in the finite plane from the point at infin-
ity y = 0 = z and one passing through the point (0, 1/n) which exists
for the entire family when n �= 0. We clearly have µ(Cλ0) = 3 since
I[1,0,0](P ∗, Q∗) = 2 and I[0,1/n](P ∗, Q∗) = 1. Thus m(Cλ) = µ(Cλ) = 3
in this case. Analogous arguments hold for the point [1, 0, 0]. The cases
λ = [0: 1: 0] and λ = [±

√
2: 1:−2] are analogous and we shall only con-

sider the first case. In this case the system has two hyperbolic saddles:
(1/ ±

√
2, 1/2) lying on the invariant line 1 − 2y = 0 and an invariant

parabola whose point at infinity is x = 0 = z. For this point we have
I[0,1,0](P ∗, Q∗) = 1 and hence in a perturbation of the systems this point
produces a finite hyperbolic singularity and we have in such a perturba-
tion three simple singular cubic curves H(x, y) = K with singularities
in the neighborhood of the reducible cubic whose components are the
invariant line and the parabola. We again have m(Cλ) = µ(Cλ) = 3.

Remark 4.1. The result above characterizes the bifurcation locus in
terms of multiplicity of singular invariant cubics only. This is a unified
way of treating the bifurcation points of singularities, be they finite or
infinite and bifurcations of saddle-to-saddle connection by using global
properties of the systems, in this case the existence of a multiple invariant
singular cubic curves for the family.
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Concluding comments and problems. In the above application
the bifurcation points are classified by the number m(C) (= µ(C)) of
simple singular invariant curves which can bifurcate from an invariant
multiple curve C in a quadratic perturbation. Although this result is
a very limited one, being done for a very particular class of systems, it
does however tell us in a sort of a bird’s eye view, what happens globally
to the systems on the bifurcation diagram, without any need of coordi-
nates. This raises the problem of attempting to go from just drawing
bifurcation diagrams and directories of inequalities with corresponding
phase portraits to an effort to sum up informations in bifurcation dia-
grams for nonintegrable systems. The analysis of singularities for such
classes is much more complex but the same kind of analysis must be per-
formed, to have a clear algebro-geometric synthesis, for example for the
class of quadratic systems with a focus, the class involved in Hilbert’s
16th problem. Of course, for the bifurcation diagram to be complete
we need to handle the more difficult problem of limit cycles. While this
problem will essentially involve tools of analysis, we suspect that the role
of algebro-geometric concepts is not yet over.

Finally we consider the following two problems:

In the above application, at bifurcation points some global “accidents”
occur. In analogous fashion we may try to define “global accidents”
(specific local and nonlodal accidents would enter into the description
of such global accidents) for quadratic systems and to assign a global
measure to them (like m(Cλ, F ) = µ(Cλ, Sλ) in the above application).
For this to be done, the geometry of the parameter space of the quadratic
systems as well as of the bifurcation hypersurfaces must play a role as it
does in this work. With few exceptions (such as this one or [26]) this has
not been done as the reader may easily see by consulting the literature
(for example [1], [35], etc.).

Another question is the problem of generalizing the above result for
families of systems with a polynomial first integral of a given degree
or to families of systems which are algebraically integrable with generic
invariant algebraic curves of a certain degree.

4.2. A second application.
Our second application concerns more geometrical formulations of the-

orems by using concepts introduced in the preceding section. We give
but one example: a theorem about Darboux integrability of planar sys-
tems proved by Christopher and Kooij [20] which the author state as
follows:

Theorem 4.2 (Kooij and Christopher [20]). Consider a poly-
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nomial system given by equation (3.3) where max(deg(P ),deg(Q)) = n.
Assume this system has k algebraic invariant algebraic curves
Ci : fi(x, y) = 0, i = 1, . . . , k, (fi(x, y) polynomials with complex coeffi-
cients). We assume that the curves Ci satisfy the following conditions:

i) All curves Ci are irreducible and such that their highest terms
have no repeated factors,

ii) no more than two curves meet at any point in the finite plane and
are not tangent at these points,

iii) no two curves have a common factor in their highest order terms,
iv) the sum of the degrees of the curves is n+ 1.

Then the system has an integrating factor of the form 1/(f1f2 . . . fk) and
a Darboux first integral of the form fλ1

1 fλ2
2 . . . fλk

k where λi are complex
constants.

Remark 4.2. We note that two of the hypotheses are stated using
the expression “no repeated factor” and the statement of the theorem
separates the finite intersections from the infinite ones.

To restate the theorem in more geometric terms, we shall use the
following definition:

Definition 4.4. Two projective curves F = 0 and G = 0 in CP (2)
intersect transversely at a point p in CP (2) if and only if Ip(F,G) = 1.

Theorem 4.3 (restated using intersection multiplicities).
Consider a polynomial system given by equation (3.3) where
max(deg(P ),deg(Q)) = n. Assume this system has k algebraic invari-
ant algebraic curves Ci : fi(x, y) = 0, i = 1, . . . , k. We assume that the
curves Ci satisfy the following conditions:

i) All curves Ci are irreducible.
ii) Let C∗

1 , C
∗
2 , . . . , C

∗
k be the projection completions in CP (2) of the

curves Ci. Then two distinct curves of the curves C∗
1 , C

∗
2 , . . . , C

∗
k ,

Z = 0, intersect transversely and three distinct such curves do not
have a common point.

iii) The sum of the degrees of the curves is n+ 1.

Then the system has an integrating factor of the form 1/(f1f2 . . . fk) and
a Darboux first integral of the form fλ1

1 fλ2
2 . . . fλk

k where λi are complex
constants.

Clearly the Theorem 4.3 as stated above, gained more clarity, unity
and transparence of geometrical meaning.
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darrera versió rebuda el 21 de Març de 1997


