# BASIC CHARACTERS OF THE UNITRIANGULAR GROUP (FOR ARBITRARY PRIMES) 

CARLOS A. M. ANDRÉ

(Communicated by Stephen D. Smith)


#### Abstract

Let $U_{n}(q)$ denote the (upper) unitriangular group of degree $n$ over the finite field $\mathbb{F}_{q}$ with $q$ elements. In this paper we consider the basic (complex) characters of $U_{n}(q)$ and we prove that every irreducible (complex) character of $U_{n}(q)$ is a constituent of a unique basic character. This result extends a previous result which was proved by the author under the assumption $p \geq n$, where $p$ is the characteristic of the field $\mathbb{F}_{q}$.


Let $p$ be a prime number, let $q=p^{e}(e \geq 1)$ be a power of $p$ and let $\mathbb{F}_{q}$ denote the finite field with $q$ elements. Throughout this paper, $U_{n}(q)$ will denote the unitriangular group of degree $n$ over $\mathbb{F}_{q}$. This group consists of all unipotent uppertriangular $n \times n$ matrices with coefficients in $\mathbb{F}_{q}$. We clearly have

$$
U_{n}(q)=1+\mathfrak{u}_{n}(q)=\left\{1+a: a \in \mathfrak{u}_{n}(q)\right\}
$$

where $\mathfrak{u}_{n}(q)$ is the $\mathbb{F}_{q}$-space consisting of all nilpotent uppertriangular $n \times n$ matrices over $\mathbb{F}_{q}$. Since $\mathfrak{u}_{n}(q)$ is the Jacobson radical of the finite dimensional $\mathbb{F}_{q}$-algebra $\mathbb{F}_{q} \cdot 1+\mathfrak{u}_{n}(q)$, the $p$-group $U_{n}(q)$ is an $\mathbb{F}_{q}$-algebra group (in the sense of [10]; see also [8]). Moreover, let $\mathfrak{u}_{n}(q)^{*}$ denote the dual $\mathbb{F}_{q}$-space of $\mathfrak{u}_{n}(q)$.

For simplicity, we write $\Phi(n)=\{(i, j): 1 \leq i<j \leq n\}$ and we refer to an element of $\Phi(n)$ as a root (this abbreviates the standard expression "positive root"). For any root $(i, j) \in \Phi(n)$, let $e_{i j}$ be the $(i, j)$-th root vector of $\mathfrak{u}_{n}(q)$; by definition, $e_{i j} \in \mathfrak{u}_{n}(q)$ is the $n \times n$ matrix $e_{i j}=\left(\delta_{a i} \delta_{b j}\right)_{1 \leq a, b \leq n}$ where $\delta$ denotes the usual Kronecker symbol. Then $\left(e_{i j}:(i, j) \in \Phi(n)\right)$ is an $\mathbb{F}_{q}$-basis of $\mathfrak{u}_{n}(q)$. On the other hand, for each root $(i, j) \in \Phi(n)$, let $e_{i j}^{*} \in \mathfrak{u}_{n}(q)^{*}$ be defined by $e_{i j}^{*}(a)=a_{i j}$ for all $a \in \mathfrak{u}_{n}(q)$ (for an arbitrary matrix $x$, we will denote by $x_{i j}$ the $(i, j)$-th coefficient of $x)$. Then $\left(e_{i j}^{*}:(i, j) \in \Phi(n)\right)$ is an $\mathbb{F}_{q}$-basis of $\mathfrak{u}_{n}(q)^{*}$, dual to the basis $\left(e_{i j}:(i, j) \in \Phi(n)\right)$ of $\mathfrak{u}_{n}(q)$.

Let $\psi: \mathbb{F}_{q}^{+} \rightarrow \mathbb{C}$ be an arbitrary non-trivial (complex) character of the additive group $\mathbb{F}_{q}^{+}$of the field $\mathbb{F}_{q}$ (this character will be kept fixed throughout the paper). For any element $f \in \mathfrak{u}_{n}(q)^{*}$, let $\psi_{f}: \mathfrak{u}_{n}(q) \rightarrow \mathbb{C}$ be the function defined by $\psi_{f}(a)=$ $\psi(f(a))$ for all $a \in \mathfrak{u}_{n}(q)$; it is clear that this function is a (linear) character of the additive group $\mathfrak{u}_{n}(q)^{+}$of $\mathfrak{u}_{n}(q)$ and that the mapping $f \mapsto \psi_{f}$ defines a one-to-one

[^0]correspondence between $\mathfrak{u}_{n}(q)^{*}$ and the set of all irreducible characters of $\mathfrak{u}_{n}(q)^{+}$. (Throughout the article, all characters are taken over the complex field.)

The group $U_{n}(q)$ acts on $\mathfrak{u}_{n}(q)^{*}$ via the coadjoint representation; by definition, for any $x \in U_{n}(q)$ and any $f \in \mathfrak{u}_{n}(q)^{*}$, the (linear) map $x \cdot f \in \mathfrak{u}_{n}(q)^{*}$ is defined by $(x \cdot f)(a)=f\left(x^{-1} a x\right)$ for all $a \in \mathfrak{u}_{n}(q)$. Let $\Omega_{n}(q)$ denote the set of all $U_{n}(q)$-orbits of $\mathfrak{u}_{n}(q)^{*}$ and let $\mathcal{O} \in \Omega_{n}(q)$ be arbitrary. We claim that the cardinality $|\mathcal{O}|$ of $\mathcal{O}$ is a power of $q^{2}$. To see this, we consider an arbitrary finite dimensional $\mathbb{F}_{q}$-algebra $A$ (with an identity element), we let $J=J(A)$ be the Jacobson radical of $A$ and we consider the $\mathbb{F}_{q}$-algebra group $G=1+J$ which is associated with $J$ (see [10]; see also [8]). Moreover, let $J^{*}=\operatorname{hom}_{\mathbb{F}_{q}}\left(J, \mathbb{F}_{q}\right)$ be the dual $\mathbb{F}_{q}$-space of $J$ and, for any $f \in J^{*}$, let $\psi_{f}: J \rightarrow \mathbb{C}$ be the map defined by $\psi_{f}(a)=\psi(f(a))$ for all $a \in J$. As in the case where $G=U_{n}(q)$, the $\mathbb{F}_{q}$-algebra group $G=1+J$ acts on $J^{*}$ via the coadjoint representation: $(x \cdot f)(a)=f\left(x^{-1} a x\right)$ for all $x \in G$, all $f \in J^{*}$ and all $a \in J$. Let $f \in J^{*}$ be arbitrary and define $B_{f}: J \times J \rightarrow \mathbb{F}_{q}$ by $B_{f}(a, b)=f([a, b])$ for all $a, b \in J$ (here $[\cdot, \cdot]$ denotes the standard Lie bracket operation). Then $B_{f}$ is a skew-symmetric $\mathbb{F}_{q}$-bilinear form. Let

$$
R_{f}=\{a \in J: f([a, b])=0 \text { for all } b \in J\}
$$

be the radical of $B_{f}$. Then $\left|J: R_{f}\right|=q^{m}$ where $m=\operatorname{dim} J-\operatorname{dim} R_{f}$ is even. We have the following result (see [5, Proposition 2.1]).
Lemma 1. Let $f \in J^{*}$ be arbitrary and let $C_{G}(f)$ be the centralizer of $f$ in $G$. Then $C_{G}(f)=1+R_{f}$ (hence, $R_{f}$ is a multiplicatively closed $\mathbb{F}_{q}$-subspace of $J$ ). In particular, if $\mathcal{O} \subseteq J^{*}$ is the $G$-orbit which contains $f$, then $|\mathcal{O}|=\left|J: R_{f}\right|$ is a power of $q^{2}$.
Proof. Let $x \in G$ be arbitrary. Then $x \in C_{G}(f)$ if and only if $f\left(x^{-1} b x\right)=f(b)$ for all $b \in J$. Hence $x \in C_{G}(f)$ if and only if $f(b x)=f(x b)$ for all $b \in J$. Let $a=x-1 \in J$. Then it is clear that $f(x b)-f(b x)=f([a, b])$ for all $b \in J$, hence $x \in C_{G}(f)$ if and only if $a \in R_{f}$. Thus, $C_{G}(f)=1+R_{f}$ and so $|\mathcal{O}|=\left|G: C_{G}(f)\right|=$ $\left|J: R_{f}\right|$ is a power of $q^{2}$.

With the notation as above, let $\mathcal{O} \subseteq J^{*}$ be an arbitrary $G$-orbit and let $\phi_{\mathcal{O}}: G \rightarrow$ $\mathbb{C}$ be the function defined by

$$
\begin{equation*}
\phi_{\mathcal{O}}(1+a)=\frac{1}{\sqrt{|\mathcal{O}|}} \sum_{f \in \mathcal{O}} \psi_{f}(a) \tag{1}
\end{equation*}
$$

for all $a \in J$. It is clear that $\phi_{\mathcal{O}}$ is a class function of $G$ and that $\phi_{\mathcal{O}}(1)=\sqrt{|\mathcal{O}|}$. We have the following result (see [5] Proposition 2.2]).
Proposition 1. Let $\Omega(G)$ be the set of all $G$-orbits on $J^{*}$. Then $\left\{\phi_{\mathcal{O}}: \mathcal{O} \in \Omega(G)\right\}$ is an orthonormal basis for the $\mathbb{C}$-space $\operatorname{cf}(G)$ consisting of all class functions on $G$. In particular, we have $\left\langle\phi_{\mathcal{O}}, \phi_{\mathcal{O}^{\prime}}\right\rangle_{G}=\delta_{\mathcal{O}, \mathcal{O}^{\prime}}$ for all $\mathcal{O}, \mathcal{O}^{\prime} \in \Omega_{n}(q)$. (For any finite group $G$, we will denote by $\langle\cdot, \cdot\rangle_{G}$ the Frobenius scalar product between class functions defined on $G$.)
Proof. Let $\mathcal{O}, \mathcal{O}^{\prime} \in \Omega(G)$ be arbitrary. Then, since $|G|=|J|$, we easily deduce that

$$
\left\langle\phi_{\mathcal{O}}, \phi_{\mathcal{O}^{\prime}}\right\rangle_{G}=\frac{1}{\sqrt{|\mathcal{O}|} \sqrt{\left|\mathcal{O}^{\prime}\right|}} \sum_{f \in \mathcal{O}} \sum_{f^{\prime} \in \mathcal{O}^{\prime}}\left\langle\psi_{f}, \psi_{f^{\prime}}\right\rangle_{J^{+}}
$$

where $J^{+}$denotes the (abelian) additive group of $J$. Now, the mapping $f \mapsto$ $\psi_{f}$ defines a one-to-one correspondence between $J^{*}$ and the set of all irreducible
characters of $J^{+}$. Therefore, we obtain $\left\langle\phi_{\mathcal{O}}, \phi_{\mathcal{O}^{\prime}}\right\rangle_{G}=\delta_{\mathcal{O}, \mathcal{O}^{\prime}}$ as required. To conclude the proof, we claim that $|\Omega(G)|$ equals the class number $k_{G}$ of $G$ (we recall that $k_{G}=\operatorname{dim}_{\mathbb{C}} \operatorname{cf}(G)$; see, for example, [9] Corollary 2.7 and Theorem 2.8]). First, we observe that $k_{G}$ is the number of $G$-orbits on $J$ for the adjoint action: $x \cdot a=x a x^{-1}$ for all $x \in G$ and all $a \in J$. Let $\theta$ be the permutation character of $G$ on $J$ (see [9] for the definition). Then, by [9, Corollary 5.15], $k_{G}=\left\langle\theta, 1_{G}\right\rangle_{G}$. Moreover, by definition, we have $\theta(x)=|\{a \in J: x \cdot a=a\}|$ for all $x \in G$. On the other hand, let $\operatorname{Irr}\left(J^{+}\right)$denote the set consisting of all irreducible characters of $J^{+}$and consider the action of $G$ on $\operatorname{Irr}\left(J^{+}\right)$given by $x \cdot \psi_{f}=\psi_{x \cdot f}$ for all $x \in G$ and all $f \in J^{*}$. We clearly have $\left(x \cdot \psi_{f}\right)(x \cdot a)=\psi_{f}(a)$ for all $x \in G$, all $f \in J^{*}$ and all $a \in J$. It follows from Brauer's Theorem (see [9, Theorem 6.32]) that $\theta(x)=\left|\left\{f \in J^{*}: x \cdot \psi_{f}=\psi_{f}\right\}\right|$ for all $x \in G$. Therefore, $\theta$ is also the permutation character of $G$ on $\operatorname{Irr}\left(J^{+}\right)$and so $\left\langle\theta, 1_{G}\right\rangle_{G}=|\Omega(G)|$. The claim follows and the proof is complete.

In general, the class functions $\phi_{\mathcal{O}}$, for $\mathcal{O} \in \Omega(G)$, are not characters (see [11). However, in the case where $G=U_{n}(q)$, there are some (important) examples where they are, in fact, (irreducible) characters of $U_{n}(q)$. A particular (and very special) family consists of the elementary characters of $U_{n}(q)$ which are defined as follows (see [1] for an equivalent definition in the case where $p \geq n)$. Let $(i, j) \in \Phi(n)$ be any root and let $\alpha \in \mathbb{F}_{q}$ be any non-zero element. (Throughout the paper, we will denote by $\mathbb{F}_{q}^{\#}$ the subset of $\mathbb{F}_{q}$ consisting of all non-zero elements.) Let $\mathcal{O}_{i j}(\alpha) \in \Omega_{n}(q)$ be the $U_{n}(q)$-orbit which contains the element $\alpha e_{i j}^{*} \in \mathfrak{u}_{n}(q)^{*}$ and let $\xi_{i j}(\alpha)$ denote the class function $\phi_{\mathcal{O}_{i j}(\alpha)}$ which corresponds to $\mathcal{O}_{i j}(\alpha)$. We shall see that this class function is, in fact, a character (hence, an irreducible character) of $U_{n}(q)$ and this will follow once we prove that $\xi_{i j}(\alpha)$ is induced from a character (in fact, from a linear character) of a certain subgroup of $U_{n}(q)$. We start by proving an auxiliary general result (see Proposition 2 below).

Let $A, J=J(A)$ and $G=1+J$ be as before. Let $H$ be a subgroup of $G$ and suppose that there exists an $\mathbb{F}_{q}$-subspace $U$ of $J$ such that $H=1+U$; following [10], we refer to such a subgroup as an algebra subgroup of $G$. Then $U$ is multiplicatively closed (because $H$ is a subgroup) and, in fact, $U$ is the Jacobson radical of the $\mathbb{F}_{q}$-algebra $\mathbb{F}_{q} \cdot 1+U$. Thus, $H$ is an $\mathbb{F}_{q}$-algebra group and so the set $\Omega(H)$ of coadjoint $H$-orbits and the class functions $\phi_{\mathcal{O}_{0}}$, for $\mathcal{O}_{0} \in \Omega(H)$, are defined as in the case of $G$. Let $\pi: J^{*} \rightarrow U^{*}$ be the natural projection; by definition, for any $f \in J^{*}, \pi(f) \in U^{*}$ is the restriction of $f$ to $U$. Then, for each $\mathcal{O} \in \Omega(G)$, the image $\pi(\mathcal{O}) \subseteq U^{*}$ is clearly $H$-invariant, hence it is a disjoint union of $H$-orbits; we will denote by $\Omega_{\mathcal{O}}(H)$ the set of all $\mathcal{O}_{0} \in \Omega(H)$ such that $\mathcal{O}_{0} \subseteq \pi(\mathcal{O})$. We have the following result (a more detailed discussion can be found in the expository paper [5]).
Proposition 2. Let $G$ be an arbitrary (finite) $\mathbb{F}_{q}$-algebra group and let $H$ be an algebra subgroup of $G$. Let $\mathcal{O} \in \Omega(G)$ and let $\phi$ denote the class function $\phi_{\mathcal{O}} \in$ $\operatorname{cf}(G)$. Then

$$
\begin{equation*}
\phi_{H}=\sum_{\mathcal{O}_{0} \in \Omega_{\mathcal{O}}(H)} n_{\mathcal{O}_{0}} \phi_{\mathcal{O}_{0}} \tag{2}
\end{equation*}
$$

where, for each $\mathcal{O}_{0} \in \Omega_{\mathcal{O}}(H)$, the multiplicity $n_{\mathcal{O}_{0}}=\left\langle\phi_{H}, \phi_{\mathcal{O}_{0}}\right\rangle_{H}$ is a positive integer.
Proof. By Proposition [1, we know that $\phi_{H}$ is a $\mathbb{C}$-linear combination of the class functions $\phi_{\mathcal{O}_{0}}$ for $\mathcal{O}_{0} \in \Omega(H)$. Let $\mathcal{O}_{0} \in \Omega(H)$ be arbitrary and let $\phi_{0}=\phi_{\mathcal{O}_{0}}$. Then
from the definitions it is easy to deduce that

$$
\begin{aligned}
\left\langle\phi_{H}, \phi_{0}\right\rangle_{H} & =\frac{1}{\sqrt{|\mathcal{O}|} \sqrt{\left|\mathcal{O}_{0}\right|}} \sum_{f \in \mathcal{O}} \sum_{f_{0} \in \mathcal{O}_{0}}\left\langle\psi_{\pi(f)}, \psi_{f_{0}}\right\rangle_{U^{+}} \\
& =\frac{1}{\sqrt{|\mathcal{O}|} \sqrt{\left|\mathcal{O}_{0}\right|}} \sum_{f_{0} \in \mathcal{O}_{0}}\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right|
\end{aligned}
$$

where $U, J$ and $\pi: J^{*} \rightarrow U^{*}$ are as above. Let $f_{0} \in \mathcal{O}_{0}$ be arbitrary. Then, since $\pi^{-1}\left(x \cdot f_{0}\right)=x \cdot \pi^{-1}\left(f_{0}\right)$ for all $x \in H$, we conclude that

$$
\begin{equation*}
\left\langle\phi_{H}, \phi_{0}\right\rangle_{H}=\frac{\sqrt{\left|\mathcal{O}_{0}\right|}\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right|}{\sqrt{|\mathcal{O}|}} . \tag{3}
\end{equation*}
$$

It follows that $\left\langle\phi_{H}, \phi_{0}\right\rangle_{H} \neq 0$ if and only if $f_{0} \in \pi(\mathcal{O})$ and, since $\pi(\mathcal{O}) \subseteq U^{*}$ is $H$-invariant, this is equivalent to saying that $\mathcal{O}_{0} \subseteq \pi(\mathcal{O})$. Therefore, we obtain the linear combination (2) with non-zero rational coefficients. In order to prove that these coefficients are integers, we proceed by induction on $|G: H|$.

First, let us assume that $|G: H|=q$ (we note that $|G: H|=|J: U|$ is always a power of $q$ ). In this case, $U$ is a maximal $\mathbb{F}_{q}$-subspace of $J$ (in fact, $\operatorname{dim} U=\operatorname{dim} J-1$ ) and we have $J^{2} \subseteq U$ (otherwise, $U+J^{2}=J$ and this implies that $U=J$; see [10, Lemma 3.1]). It follows that $U$ is an ideal of $J$ and so $H=1+U$ is a normal subgroup of $G$. Therefore, all the $H$-orbits in $\Omega_{\mathcal{O}}(H)$ have equal cardinality and, since $|G: H|=q$, we must have $\left|\Omega_{\mathcal{O}}(H)\right| \leq q$. Moreover, $G$ acts transitively on $\pi(\mathcal{O})$ and so, given any $f_{0} \in \pi(\mathcal{O})$, we conclude that

$$
\left|\mathcal{O} \cap \pi^{-1}\left(x \cdot f_{0}\right)\right|=\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right|
$$

for all $x \in G$ (because $\pi^{-1}\left(x \cdot f_{0}\right)=x \cdot \pi^{-1}\left(f_{0}\right)$ for all $x \in G$ ). Let $\mathcal{O}_{0} \in \Omega_{\mathcal{O}}(H)$ and $f_{0} \in \mathcal{O}_{0}$ be arbitrary. Then, by (21) and (3), we deduce that $\sqrt{|\mathcal{O}|} \phi(1)=$ $\left|\Omega_{\mathcal{O}}(H)\right|\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right| \sqrt{\left|\mathcal{O}_{0}\right|} \phi_{\mathcal{O}_{0}}(1)$ and so

$$
|\mathcal{O}|=\left|\Omega_{\mathcal{O}}(H)\right|\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right|\left|\mathcal{O}_{0}\right|
$$

(because $\phi(1)=\sqrt{|\mathcal{O}|}$ and $\phi_{\mathcal{O}_{0}}(1)=\sqrt{\left|\mathcal{O}_{0}\right|}$ ). Since $|\mathcal{O}|$ and $\left|\mathcal{O}_{0}\right|$ are powers of $q^{2}$ and since $\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right| \leq q$, we conclude that either $\left|\Omega_{\mathcal{O}}(H)\right|=\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right|=1$ (hence, $|\mathcal{O}|=\left|\mathcal{O}_{0}\right|$ ) or $\left|\Omega_{\mathcal{O}}(H)\right|=\left|\mathcal{O} \cap \pi^{-1}\left(f_{0}\right)\right|=q$ (hence, $|\mathcal{O}|=q^{2}\left|\mathcal{O}_{0}\right|$ ). In both cases, (3) implies that $\left\langle\phi_{H}, \phi_{\mathcal{O}_{0}}\right\rangle_{H}=1$ and this completes the proof in the case where $|G: H|=q$.

Now, assume that $|G: H|>q$ and let $V$ be an $\mathbb{F}_{q}$-subspace of $J$ containing $U$ and such that $\operatorname{dim} J=\operatorname{dim} V+1$. Then we have $J^{2} \subseteq V$ (by [10, Lemma 3.1]) and so $V$ is multiplicatively closed. Therefore, $K=1+V$ is an algebra subgroup of $G$ and $|G: K|=|J: V|=q$. By the first step of the induction, we know that $\phi_{K}=\phi_{\mathcal{O}_{1}}+\cdots+\phi_{\mathcal{O}_{k}}$ where either $k=1$ or $k=q$, and where $\mathcal{O}_{1}, \ldots, \mathcal{O}_{k}$ are all the distinct $K$-orbits in $\Omega_{\mathcal{O}}(K)$. Let $\mathcal{O}_{0} \in \Omega_{\mathcal{O}}(H)$ be arbitrary and let $\phi_{0}=\phi_{\mathcal{O}_{0}}$. Then $\left\langle\phi_{H}, \phi_{0}\right\rangle_{H}=\left\langle\left(\phi_{\mathcal{O}_{1}}\right)_{H}, \phi_{0}\right\rangle_{H}+\cdots+\left\langle\left(\phi_{\mathcal{O}_{k}}\right)_{H}, \phi_{0}\right\rangle_{H}$ and the result follows immediately (by induction, because $\left.|K: H|=q^{-1}|G: H|<|G: H|\right)$.

Now, we can prove the following result. (A different approach, using Clifford's theory (see, for example, [7] Theorems 11.5 and 11.8]), can be found in the paper [12]).
Lemma 2. Let $(i, j) \in \Phi(n)$ and let $\alpha \in \mathbb{F}_{q}^{\#}$. Then the class function $\xi_{i j}(\alpha)$ is an irreducible character of $U_{n}(q)$. Moreover, let $U_{i j}(q)$ be the subgroup of $U_{n}(q)$
consisting of all matrices $x \in U_{n}(q)$ which satisfy $x_{i k}=0$ for all $i<k<j$, and let $\lambda_{i j}(\alpha): U_{i j}(q) \rightarrow \mathbb{C}$ be the function defined by $\lambda_{i j}(\alpha)(x)=\psi\left(\alpha x_{i j}\right)$ for all $x \in U_{i j}(q)$. Then $\lambda_{i j}(\alpha)$ is a linear character of $U_{i j}(q)$ and $\xi_{i j}(\alpha)=\lambda_{i j}(\alpha)^{U_{n}(q)}$ is induced by this linear character.

Proof. By Proposition 1 we know that $\left\langle\xi_{i j}(\alpha), \xi_{i j}(\alpha)\right\rangle_{U_{n}(q)}=1$. Therefore, to prove that $\xi_{i j}(\alpha)$ is an irreducible character of $U_{n}(q)$ it is enough to show that it is, in fact, a character (we note that $\xi_{i j}(\alpha)(1)=\sqrt{\left|\mathcal{O}_{i j}(\alpha)\right|}$ is a positive integer) and this will follow by the second part of the lemma. The first assertion is clear: since $\psi$ is a linear character of $\mathbb{F}_{q}^{+}$, the function $\lambda_{i j}(\alpha): U_{i j}(q) \rightarrow \mathbb{C} \#$ is a homomorphism of (multiplicative) groups. For the second assertion, by Proposition_1, we know that $\lambda_{i j}(\alpha)^{U_{n}(q)}$ is a $\mathbb{C}$-linear combination of the class functions $\phi_{\mathcal{O}}$ for $\mathcal{O} \in \Omega_{n}(q)$; and, by Proposition 2 and Frobenius reciprocity, we know that the coefficients of this linear combination are non-negative integers. Now, let $\mathfrak{u}_{i j}(q)$ be the $\mathbb{F}_{q}$-subspace of $\mathfrak{u}_{n}(q)$ consisting of all matrices $x-1$ with $x \in U_{i j}(q)$ (hence, $U_{i j}(q)=1+\mathfrak{u}_{i j}(q)$ ), let $f=\alpha e_{i j}^{*} \in \mathfrak{u}_{n}(q)^{*}$ and let $f_{0} \in \mathfrak{u}_{i j}(q)^{*}$ be the restriction of $f$ to $\mathfrak{u}_{i j}(q)$. Then, since $f(a b)=0$ for all $a, b \in \mathfrak{u}_{i j}(q),\left\{f_{0}\right\}$ is a single $U_{i j}(q)$-orbit on $\mathfrak{u}_{i j}(q)^{*}$. Moreover, by definition, $\lambda_{i j}(\alpha)$ is the class function which corresponds to this $U_{i j}(q)$-orbit (in the sense of (11)). Since $f \in \mathcal{O}_{i j}(q)$ and since $\xi_{i j}(\alpha)=\phi_{\mathcal{O}_{i j}(\alpha)}$, we conclude that

$$
\left\langle\lambda_{i j}(\alpha)^{U_{n}(q)}, \xi_{i j}(\alpha)\right\rangle_{U_{n}(q)}=\left\langle\lambda_{i j}(\alpha), \xi_{i j}(\alpha)_{U_{i j}(q)}\right\rangle_{U_{i j}(q)} \neq 0
$$

(by Frobenius reciprocity and Proposition 2). Finally, in order to conclude the proof, it is enough to show that $\left|\mathcal{O}_{i j}(\alpha)\right|=q^{2(j-i-1)}$ (because $\lambda_{i j}(\alpha)^{U_{n}(q)}(1)=$ $\left|U_{n}(q): U_{i j}(q)\right|=q^{j-i-1}$, because $\xi_{i j}(\alpha)(1)=\sqrt{\left|\mathcal{O}_{i j}(\alpha)\right|}$ and because $\lambda_{i j}(\alpha)^{U_{n}(q)}$ is a $\mathbb{Z}$-linear combination with non-negative coefficients of the class functions $\phi_{\mathcal{O}}$, for $\left.\mathcal{O} \in \Omega_{n}(q)\right)$. However, it is easy to see that the centralizer $C_{U_{n}(q)}(f)$ of $f$ in $U_{n}(q)$ consists of all matrices $x \in U_{n}(q)$ which satisfy $x_{i k}=x_{k j}=0$ for all $i<k<j$. Therefore, $\left|\mathcal{O}_{i j}(\alpha)\right|=\left|U_{n}(q): C_{U_{n}(q)}(f)\right|=q^{2(j-i-1)}$, as required.

In the notation of the previous lemma, we will refer to the irreducible character $\xi_{i j}(\alpha)$ of $U_{n}(q)$ as the $(i, j)$-th elementary character of $U_{n}(q)$ associated with $\alpha$.

We are now able to define the basic characters of $U_{n}(q)$. To start with, a subset $D \subseteq \Phi(n)$ is called a basic subset if $|D \cap\{(i, j): i<j \leq n\}| \leq 1$ for all $1 \leq i<n$, and if $|D \cap\{(i, j): 1 \leq i<j\}| \leq 1$ for all $1<j \leq n$. In particular, the empty set is a basic subset of $\Phi(n)$. Given an arbitrary non-empty basic subset $D$ of $\Phi(n)$ and an arbitrary map $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$, we define the basic character $\xi_{D}(\varphi)$ of $U_{n}(q)$ to be the product (of elementary characters)

$$
\begin{equation*}
\xi_{D}(\varphi)=\prod_{(i, j) \in D} \xi_{i j}\left(\alpha_{i j}\right) \tag{4}
\end{equation*}
$$

where $\alpha_{i j}=\varphi(i, j)$ for $(i, j) \in D$. For our purposes, it is convenient to consider the trivial character $1_{U_{n}(q)}$ of $U_{n}(q)$ as the basic character $\xi_{D}(\varphi)$ corresponding to the empty subset of $\Phi(n)$ and to the empty function $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$.

The main goal of this paper is to extend [1, Theorem 1] to all prime numbers $p$. In fact, we will prove the following result.

Theorem 1. Let $\chi$ be an irreducible character of $U_{n}(q)$. Then $\chi$ is a constituent of a unique basic character of $U_{n}(q)$; in other words, there exists a unique basic subset $D$ of $\Phi(n)$ and a unique map $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ such that $\chi$ is a constituent of $\xi_{D}(\varphi)$.

The proof of this theorem splits into two parts. First, we prove that the basic characters of $U_{n}(q)$ are pairwise orthogonal (see [1] Proposition 2] for the case where $p \geq n)$ and, secondly, we obtain a decomposition of the regular character $\rho$ of $U_{n}(q)$ as a sum of basic characters (see [3, Theorem 1] and [4, Corollary 7.1] for the case where $p \geq n$ ). For the first part of the proof, we start by proving the following general result.

Proposition 3. Let $G$ be an $\mathbb{F}_{q}$-algebra group and let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{t} \in \Omega(G)$. For each $i \leq i \leq t$, let $\phi_{i}$ denote the class function $\phi_{\mathcal{O}_{i}} \in \operatorname{cf}(G)$. Then, for any $\mathcal{O} \in \Omega(G)$, the class function $\phi_{\mathcal{O}}$ is a constituent of the product $\phi_{1} \cdots \phi_{t}$ if and only if $\mathcal{O} \subseteq \mathcal{O}_{1}+\cdots+\mathcal{O}_{t} ;$ moreover, the scalar product $\left\langle\phi_{\mathcal{O}}, \phi_{1} \cdots \phi_{t}\right\rangle_{G}$ is a non-negative integer.
Proof. Let $G^{t}=G \times \cdots \times G$ be the direct product of $t$ copies of $G$. Let $A$ be a finite dimensional $\mathbb{F}_{q}$-algebra such that $G=1+J$ where $J=J(A)$ is the Jacobson radical of $A$. Then $G^{t}$ is the $\mathbb{F}_{q}$-algebra group associated with the Jacobson radical $J^{t}=J \times \cdots \times J$ ( $t$ copies) of the $\mathbb{F}_{q}$-algebra $\mathbb{F}_{q} \cdot 1+J^{t}$. Moreover, $G$ can be naturally identified with the diagonal subgroup $G_{d}=\{(x, \ldots, x): x \in G\}$ of $G^{t}$. Then the class function $\phi_{1} \cdots \phi_{t}$ of $G$ is naturally identified with the restriction $\left(\phi_{1} \times \cdots \times \phi_{t}\right)_{G_{d}}$ to $G_{d}$ of the class function $\phi_{1} \times \cdots \times \phi_{t}$ of $G^{t}$. It is clear that this class function is associated (by the rule (1)) with the $G^{t}$-orbit $\mathcal{O}_{1} \times \cdots \times \mathcal{O}_{t} \in \Omega\left(G^{t}\right)$; we note that the dual space $\left(J^{t}\right)^{*}$ of $J^{t}$ is naturally isomorphic to $\left(J^{*}\right)^{t}=J^{*} \times \cdots \times J^{*}$ $(t$ copies $)$. Let $J_{d}$ be the diagonal $\mathbb{F}_{q}$-subspace of $J^{t}$ and let $\pi:\left(J^{*}\right)^{t} \rightarrow\left(J_{d}\right)^{*}$ be the natural projection. Since $G_{d}$ is an algebra subgroup of $G^{t}$ (because $J_{d}$ is multiplicatively closed), we may apply Proposition 2, given $\mathcal{O} \in \Omega(G)$, we have $\left\langle\phi_{\mathcal{O}}, \phi_{1} \cdots \phi_{t}\right\rangle_{G} \neq 0$ if and only if $\mathcal{O} \subseteq \pi\left(\mathcal{O}_{1} \times \cdots \times \mathcal{O}_{t}\right)$; moreover, that scalar product is a non-negative integer. The result follows because $\pi\left(\mathcal{O}_{1} \times \cdots \times \mathcal{O}_{t}\right)=$ $\mathcal{O}_{1}+\cdots+\mathcal{O}_{t}$.

We now apply this result to an arbitrary basic character of $U_{n}(q)$. Let $D$ be a non-empty basic subset of $\Phi(n)$ and let $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ be a map. Following [2], we denote by $\mathcal{O}_{D}(\varphi)$ the basic subvariety of $\mathfrak{u}_{n}(q)^{*}$ associated with the pair $(D, \varphi)$ :

$$
\begin{equation*}
\mathcal{O}_{D}(\varphi)=\sum_{(i, j) \in D} \mathcal{O}_{i j}\left(\alpha_{i j}\right) \tag{5}
\end{equation*}
$$

where $\alpha_{i j}=\varphi(i, j)$ for all $(i, j) \in D$. For convenience, we extend this definition to the case where $D$ is the empty subset of $\Phi(n)$ : we consider $\varphi$ to be the empty function and we define $\mathcal{O}_{D}(\varphi)=\{0\}$. Then the following result is an obvious consequence of the previous proposition.

Corollary 1. Let $D$ be a basic subset of $\Phi(n)$ and let $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ be a map. Let $\mathcal{O} \in \Omega_{n}(q)$ be arbitrary. Then the class function $\phi_{\mathcal{O}}$ of $U_{n}(q)$ is a constituent of the basic character $\xi_{D}(\varphi)$ if and only if $\mathcal{O} \subseteq \mathcal{O}_{D}(\varphi)$. Moreover, the scalar product $\left\langle\phi_{\mathcal{O}}, \xi_{D}(\varphi)\right\rangle_{U_{n}(q)}$ is a non-negative integer.

By [2, Theorem 1 and Eq. (12)], the dual space $\mathfrak{u}_{n}(q)^{*}$ decomposes as the disjoint union

$$
\begin{equation*}
\mathfrak{u}_{n}(q)^{*}=\bigcup_{D, \varphi} \mathcal{O}_{D}(\varphi) \tag{6}
\end{equation*}
$$

where the union is over all basic subsets $D$ of $\Phi(n)$ and all maps $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$. This decomposition allows us to establish the orthogonality relations for the basic
characters (see [1] Proposition 2] for the case where $p \geq n$ ). For simplicity, given an arbitrary basic subset $D$ of $\Phi(n)$ and an arbitrary map $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$, we will denote by $\Omega_{D}(\varphi)$ the set of all $U_{n}(q)$-orbits $\mathcal{O} \in \Omega_{n}(q)$ such that $\mathcal{O} \subseteq \mathcal{O}_{D}(\varphi)$.

Proposition 4. Let $D$ and $D^{\prime}$ be basic subsets of $\Phi(n)$ and let $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ and $\varphi^{\prime}: D^{\prime} \rightarrow \mathbb{F}_{q}^{\#}$ be maps. Then $\left\langle\xi_{D}(\varphi), \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)} \neq 0$ if and only if $D=D^{\prime}$ and $\varphi=\varphi^{\prime}$.

Proof. By Corollary 1 (and also by Proposition 2), we have

$$
\xi_{D}(\varphi)=\sum_{\mathcal{O} \in \Omega_{D}(\varphi)} n_{\mathcal{O}} \phi_{\mathcal{O}}
$$

where $n_{\mathcal{O}}$, for $\mathcal{O} \in \Omega_{D}(\varphi)$, is a positive integer. It follows that

$$
\left\langle\xi_{D}(\varphi), \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)}=\sum_{\mathcal{O} \in \Omega_{D}(\varphi)} n_{\mathcal{O}}\left\langle\phi_{\mathcal{O}}, \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)}
$$

and so $\left\langle\xi_{D}(\varphi), \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)} \neq 0$ if and only if $\left\langle\phi_{\mathcal{O}}, \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)} \neq 0$ for some $\mathcal{O} \in$ $\Omega_{D}(\phi)$ (because, for any $\mathcal{O} \in \Omega_{D}(\varphi), n_{\mathcal{O}}$ is a positive integer and $\left\langle\phi_{\mathcal{O}}, \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)}$ is a non-negative integer). By Corollary 1, we conclude that $\left\langle\xi_{D}(\varphi), \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)} \neq$ 0 if and only if $\Omega_{D}(\varphi) \cap \Omega_{D^{\prime}}\left(\varphi^{\prime}\right) \neq \emptyset$. The result follows by (6).

The following result will be useful to decompose the regular character of $U_{n}(q)$ as a sum of basic characters (which will, of course, imply (together with the previous proposition) our main result).

Proposition 5. Let $\mathcal{O} \in \Omega_{n}(q)$ be arbitrary. Then there exists a unique basic subset $D$ of $\Phi(n)$ and a unique map $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ such that the class function $\phi_{\mathcal{O}}$ of $U_{n}(q)$ is a constituent (with non-zero integer multiplicity) of $\xi_{D}(\varphi)$.

Proof. By (6), there exists a unique basic subset $D$ of $\Phi(n)$ and a unique map $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ such that $\mathcal{O} \subseteq \mathcal{O}_{D}(\varphi)$. The result follows easily using Corollary $\square \square$

Next, we consider the decomposition of the regular character of $U_{n}(q)$ as a sum of basic characters. In fact, we will prove the following result (for the case where $p \geq n$, see [3, Theorem 1] and [4, Corollary 7.2]).

Theorem 2. Let $\rho$ denote the regular character of $U_{n}(q)$. Then

$$
\rho=\sum_{D, \varphi} \frac{q^{s(D)}}{\xi_{D}(\varphi)(1)} \xi_{D}(\varphi)
$$

where the sum is over all basic subsets $D$ of $\Phi(n)$ and all maps $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ and where, for any basic subset $D$ of $\Phi(n), s(D)$ denotes the cardinality of the subset $S(D)=\bigcup_{(i, j) \in D}\{(i, k),(k, j): i<k<j\}$ of $\Phi(n)$.

For some steps of the proof of this result, we will refer to 4]. We start by introducing some notation. Let $D$ be an arbitrary non-empty basic subset of $\Phi(n)$, let $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ be an arbitrary map and, for any $(i, j) \in D$, let $\alpha_{i j}=\varphi(i, j)$. Let $e_{D}(\varphi)$ denote the element

$$
e_{D}(\varphi)=\sum_{(i, j) \in D} \alpha_{i j} e_{i j} \in \mathfrak{u}_{n}(q)
$$

and let

$$
\mathfrak{o}_{D}(\varphi)=\left\{x e_{D}(\varphi) y^{-1}: x, y \in U_{n}(q)\right\} \subseteq \mathfrak{u}_{n}(q)
$$

be the $\left(U_{n}(q) \times U_{n}(q)\right)$-orbit on $\mathfrak{u}_{n}(q)$ for the action defined by $(x, y) \cdot a=x a y^{-1}$ for all $x, y \in U_{n}(q)$ and all $a \in \mathfrak{u}_{n}(q)$. Moreover, let

$$
\mathcal{K}_{D}(\varphi)=1+\mathfrak{o}_{D}(\varphi) \subseteq U_{n}(q)
$$

On the other hand, for each root $(i, j) \in \Phi(n)$, let $S^{\prime}(i, j)$ be the subset of $\Phi(n)$ which consists of all roots $(i, k)$, for $j<k \leq n$, and $(k, j)$, for $1 \leq k<i$ of $\Phi(n)$. Then, for any basic subset $D$ of $\Phi(n)$, we define the subsets $S^{\prime}(D)=\bigcup_{(i, j) \in D} S^{\prime}(i, j)$ and $R^{\prime}(D)=\Phi(n)-S^{\prime}(D)$ of $\Phi(n)$. Moreover, for each root $(i, j) \in \Phi(n)$, we denote by $D(i, j)$ the subset of $\Phi(n)$ which consists of all roots $(k, l) \in D$ with $i<k<l<j$.

The following result is precisely [4, Proposition 5.1] (see also [4, Proposition 5.2]).
Lemma 3. Let $D$ be a basic subset of $\Phi(n)$, let $\varphi: D \rightarrow K^{\#}$ be a map and let $x \in \mathcal{K}_{D}(\varphi)$. Then, for any $(i, j) \in \Phi(n)$ and any $\alpha \in \mathbb{F}_{q}^{\#}$, we have

$$
\xi_{i j}(\alpha)(x)= \begin{cases}q^{d(i, j)}, & \text { if }(i, j) \in R^{\prime}(D)-D \\ q^{d(i, j)} \psi(\alpha \beta), & \text { if }(i, j) \in D \\ 0, & \text { otherwise }\end{cases}
$$

where $d(i, j)=(j-i-1)-|D(i, j)|$ and where $\beta=\varphi(i, j)$ whenever $(i, j) \in D$. In particular, if $x_{D}(\varphi)$ denotes the element $x_{D}(\varphi)=1+e_{D}(\varphi) \in \mathcal{K}_{D}(\varphi)$, we have

$$
\xi_{i j}(\alpha)(x)=\xi_{i j}(\alpha)\left(x_{D, \varphi}\right)
$$

for all $x \in \mathcal{K}_{D}(\varphi)$.
Using this lemma (and the definition of the basic characters), we easily deduce the following result (which is precisely the statement of [4, Theorem 5.1]).

Theorem 3. Let $D$ and $D^{\prime}$ be basic subsets of $\Phi(n)$, let $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ and $\varphi^{\prime}: D^{\prime} \rightarrow$ $\mathbb{F}_{q}^{\#}$ be maps and let $x \in \mathcal{K}_{D^{\prime}}\left(\varphi^{\prime}\right)$. Then

$$
\xi_{D}(\varphi)(x)= \begin{cases}q^{e\left(D, D^{\prime}\right)} \psi_{D}(\varphi)\left(e_{D^{\prime}}\left(\varphi^{\prime}\right)\right), & \text { if } D \subseteq R^{\prime}\left(D^{\prime}\right) \\ 0, & \text { otherwise }\end{cases}
$$

where $e\left(D, D^{\prime}\right)=\left|S_{c}(D)-S^{\prime}\left(D^{\prime}\right)\right|=\left|S_{c}(D) \cap R^{\prime}\left(D^{\prime}\right)\right|$, where $S_{c}(D)$ is the union of all the subsets $\{(k, j) \in \Phi(n): i<k<j\} \subseteq \Phi(n)$ for $(i, j) \in D$, and where $\psi_{D}(\varphi): \mathfrak{u}_{n}(q)^{+} \rightarrow \mathbb{C}$ is the (linear) character of the additive group $\mathfrak{u}_{n}(q)^{+}$of $\mathfrak{u}_{n}(q)$ defined by

$$
\psi_{D}(\varphi)(a)=\prod_{(i, j) \in D} \psi\left(\varphi(i, j) a_{i j}\right)
$$

for all $a \in \mathfrak{u}_{n}(q)$.
We now prove the following result (see [1, Corollary 5] for the case where $p \geq n$ ).
Theorem 4. Let $D$ and $D^{\prime}$ be basic subsets of $\Phi(n)$ and let $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ and $\varphi^{\prime}: D^{\prime} \rightarrow \mathbb{F}_{q}^{\#}$ be maps. Then

$$
\left\langle\xi_{D}(\varphi), \xi_{D^{\prime}}\left(\varphi^{\prime}\right)\right\rangle_{U_{n}(q)}= \begin{cases}0, & \text { if }(D, \varphi) \neq\left(D^{\prime}, \varphi^{\prime}\right) \\ q^{-s(D)} \xi_{D}(\varphi)(1)^{2}, & \text { if }(D, \varphi)=\left(D^{\prime}, \varphi^{\prime}\right)\end{cases}
$$

Proof. By Proposition 4, it remains to prove that

$$
\left\langle\xi_{D}(\varphi), \xi_{D}(\varphi)\right\rangle_{U_{n}(q)}=q^{-s(D)} \xi_{D}(\varphi)(1)^{2}
$$

Let $\mathcal{F}$ be the set of all pairs $\left(D^{\prime}, \varphi^{\prime}\right)$ where $D^{\prime}$ is a basic subset of $\Phi(n)$ satisfying $D \subseteq R^{\prime}\left(D^{\prime}\right)$ and where $\varphi^{\prime}: D^{\prime} \rightarrow \mathbb{F}_{q}^{\#}$ is a map. Then, using Theorem 3, we deduce that (as usual, we denote by $\bar{z}$ the conjugate of a given complex number $z \in \mathbb{C}$ )

$$
\begin{aligned}
&\left\langle\xi_{D}(\varphi)\right.\left., \xi_{D}(\varphi)\right\rangle_{U_{n}(q)}=\frac{1}{\left|U_{n}(q)\right|} \sum_{x \in U_{n}(q)} \xi_{D}(\varphi)(x) \overline{\xi_{D}(\varphi)(x)} \\
& \quad=\frac{1}{\left|U_{n}(q)\right|} \sum_{\left(D^{\prime}, \varphi^{\prime}\right) \in \mathcal{F}} \sum_{x \in \mathcal{K}_{D^{\prime}\left(\varphi^{\prime}\right)}} \xi_{D}(\varphi)(x) \overline{\xi_{D}(\varphi)(x)} \\
& \quad=\frac{1}{\left|U_{n}(q)\right|} \sum_{\left(D^{\prime}, \varphi^{\prime}\right) \in \mathcal{F}}\left|\mathcal{K}_{D^{\prime}}\left(\varphi^{\prime}\right)\right| q^{2 e\left(D, D^{\prime}\right)} \psi_{D}(\varphi)\left(e_{D^{\prime}}\left(\varphi^{\prime}\right)\right) \overline{\psi_{D}(\varphi)\left(e_{D^{\prime}}\left(\varphi^{\prime}\right)\right)} \\
& \quad=\frac{1}{\left|U_{n}(q)\right|} \sum_{\left(D^{\prime}, \varphi^{\prime}\right) \in \mathcal{F}}\left|\mathcal{K}_{D^{\prime}}\left(\varphi^{\prime}\right)\right| q^{2 e\left(D, D^{\prime}\right)} \psi_{D}(\varphi)\left(e_{D^{\prime}}\left(\varphi^{\prime}\right)\right) \psi_{D}(\varphi)\left(-e_{D^{\prime}}\left(\varphi^{\prime}\right)\right) \\
& \quad=\frac{1}{\left|U_{n}(q)\right|} \sum_{\left(D^{\prime}, \varphi^{\prime}\right) \in \mathcal{F}}\left|\mathcal{K}_{D^{\prime}}\left(\varphi^{\prime}\right)\right| q^{2 e\left(D, D^{\prime}\right)} .
\end{aligned}
$$

Now, by [4, Proposition 4.1], we have $\left|\mathcal{K}_{D^{\prime}}\left(\varphi^{\prime}\right)\right|=q^{\left|S^{\prime}\left(D^{\prime}\right)\right|}$ and so

$$
\begin{align*}
\left\langle\xi_{D}(\varphi), \xi_{D}(\varphi)\right\rangle_{U_{n}(q)} & =\sum_{\left(D^{\prime}, \varphi^{\prime}\right) \in \mathcal{F}} q^{-\left|R^{\prime}\left(D^{\prime}\right)\right|} q^{2 e\left(D, D^{\prime}\right)}  \tag{7}\\
& =\sum_{D^{\prime} \in \mathcal{B}}(q-1)^{\left|D^{\prime}\right|} q^{2 e\left(D, D^{\prime}\right)-\left|R^{\prime}\left(D^{\prime}\right)\right|}
\end{align*}
$$

where $\mathcal{B}$ is the set of all basic subsets $D^{\prime}$ of $\Phi(n)$ which satisfy $D \subseteq R^{\prime}\left(D^{\prime}\right)$. Finally, by Proposition 6 (see below), we have

$$
\sum_{D^{\prime} \in \mathcal{B}}(q-1)^{\left|D^{\prime}\right|} q^{2 e\left(D, D^{\prime}\right)-\left|R^{\prime}\left(D^{\prime}\right)\right|}=q^{2 \ell(D)-s(D)}
$$

where $\ell(D)=\sum_{(i, j) \in D}(j-i-1)$. The proof is complete because $\xi_{D}(\varphi)(1)=$ $q^{\ell(D)}$.

The following result was used at the end of the previous proof.
Proposition 6. Let $D$ be a basic subset of $\Phi(n)$, let $\mathcal{B}$ be the set of all basic subsets $D^{\prime}$ of $\Phi(n)$ which satisfy $D \subseteq R^{\prime}\left(D^{\prime}\right)$ and let $\ell(D)=\sum_{(i, j) \in D}(j-i-1)$. Then the identity

$$
\sum_{D^{\prime} \in \mathcal{B}}(t-1)^{\left|D^{\prime}\right|} t^{e\left(D, D^{\prime}\right)-\left|R^{\prime}(D)\right|}=t^{2 \ell(D)-s(D)}
$$

holds in the polynomial ring $\mathbb{Z}[t]$ in one indeterminate $t$ over $\mathbb{Z}$.
Proof. Let $p \geq n$ be a prime and consider the group $U_{n}(q)$ for an arbitrary power $q$ of $p$. Then, by [1] Corollary 5], we have

$$
\left\langle\xi_{D}(\varphi), \xi_{D}(\varphi)\right\rangle_{U_{n}(q)}=q^{-s(D)} \xi_{D}(\varphi)(1)^{2}=q^{2 \ell(D)-s(D)}
$$

As we have deduced in the previous proof, we have

$$
\left\langle\xi_{D}(\varphi), \xi_{D}(\varphi)\right\rangle_{U_{n}(q)}=\sum_{D^{\prime} \in \mathcal{B}}(q-1)^{\left|D^{\prime}\right|} q^{e\left(D, D^{\prime}\right)-\left|R^{\prime}\left(D^{\prime}\right)\right|}
$$

and so

$$
\sum_{D^{\prime} \in \mathcal{B}}(q-1)^{\left|D^{\prime}\right|} q^{e\left(D, D^{\prime}\right)-\left|R^{\prime}\left(D^{\prime}\right)\right|}=q^{2 \ell(D)-s(D)}
$$

It follows that the polynomial

$$
t^{2 \ell(D)-s(D)}-\sum_{D^{\prime} \in \mathcal{B}}(t-1)^{\left|D^{\prime}\right|} t^{e\left(D, D^{\prime}\right)-\left|R^{\prime}\left(D^{\prime}\right)\right|} \in \mathbb{Z}[t]
$$

has an infinite number of roots, hence it must be the zero polynomial. The result follows.

Using Theorem 4 we can prove the following orthogonality relations where, for arbitrary basic subsets $D$ and $D^{\prime}$ of $\Phi(n)$ and for arbitrary maps $\varphi: D \rightarrow$ $\mathbb{F}_{q}^{\#}$ and $\varphi^{\prime}: D^{\prime} \rightarrow \mathbb{F}_{q}^{\#}$, we denote by $\xi_{D, \varphi}^{D^{\prime}, \varphi^{\prime}} \in \mathbb{C}$ the constant value of the basic character $\xi_{D}(\varphi)$ on the subset $\mathcal{K}_{D^{\prime}}\left(\varphi^{\prime}\right)$; hence, by Theorem 3 we have $\xi_{D, \varphi}^{D^{\prime}, \varphi^{\prime}}=$ $\xi_{D}(\varphi)\left(x_{D^{\prime}}\left(\varphi^{\prime}\right)\right)$. (The proof of this theorem is the same as that of 4, Theorem 7.1] and so we omit it.)

Theorem 5. Let $D^{\prime}$ and $D^{\prime \prime}$ be basic subsets of $\Phi(n)$ and let $\varphi^{\prime}: D^{\prime} \rightarrow \mathbb{F}_{q}^{\#}$ and $\varphi^{\prime \prime}: D^{\prime \prime} \rightarrow \mathbb{F}_{q}^{\#}$ be maps. Then

$$
\sum_{D, \varphi} \frac{q^{s(D)}}{\xi_{D}(\varphi)(1)^{2}} \xi_{D, \varphi}^{D^{\prime}, \varphi^{\prime}} \overline{\xi_{D, \varphi}^{D^{\prime \prime}, \varphi^{\prime \prime}}}= \begin{cases}0, & \text { if }\left(D^{\prime}, \varphi^{\prime}\right) \neq\left(D^{\prime \prime}, \varphi^{\prime \prime}\right) \\ q^{n(n-1) / 2-\left|S^{\prime}\left(D^{\prime}\right)\right|}, & \text { if }\left(D^{\prime}, \varphi^{\prime}\right)=\left(D^{\prime \prime}, \varphi^{\prime \prime}\right)\end{cases}
$$

where the sum is over all basic subsets $D$ of $\Phi(n)$ and all maps $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$.
We are now able to prove Theorem 2 ,

Proof of Theorem 2 Let $x \in U_{n}(q)$ be arbitrary. Then $x \in \mathcal{K}_{D^{\prime}}\left(\varphi^{\prime}\right)$ for a unique basic subset $D^{\prime}$ of $\Phi(n)$ and for a unique map $\varphi^{\prime}: D^{\prime} \rightarrow \mathbb{F}_{q}^{\#}$. Using the previous theorem, we deduce that

$$
\sum_{D, \varphi} \frac{q^{s(D)}}{\xi_{D}(\varphi)(1)} \xi_{D}(\varphi)(x)=\delta_{x, 1} q^{n(n-1) / 2}
$$

where the sum is over all basic subsets $D$ of $\Phi(n)$ and all maps $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$. Therefore, the $\operatorname{sum} \sum_{D, \varphi} \frac{q^{s(D)}}{\xi_{D}(\varphi)(1)} \xi_{D}(\varphi)$ is the regular character of $U_{n}(q)$, as required.

Remark 1. The proof of Theorem 2 can be achieved using the corresponding result for the case where $p \geq n$. In fact, suppose that $p \geq n$. Let $D^{\prime}$ be an arbitrary basic subset of $\Phi(n)$ and let $\varphi^{\prime}: D^{\prime} \rightarrow \mathbb{F}_{q}^{\#}$ be an arbitrary map. For simplicity, let us write $x=x_{D^{\prime}}\left(\varphi^{\prime}\right)$ and, for each root $(i, j) \in \Phi(n)$, let $\beta_{i j} \in \mathbb{F}_{q}$ be the $(i, j)$-th
coefficient of $x$. Then, using Theorem[3] (or [4] Theorem 5.1]), we deduce that

$$
\begin{aligned}
\sum_{D, \varphi} \frac{q^{s(D)}}{\xi_{D}(\varphi)(1)} \xi_{D}(\varphi)(x) & =\sum_{\substack{D,, D \subseteq R^{\prime}\left(D^{\prime}\right)}} \frac{q^{s(D)+e\left(D, D^{\prime}\right)}}{\xi_{D}(\varphi)(1)} \prod_{(i, j) \in D} \psi\left(\varphi(i, j) \beta_{i j}\right) \\
& =\sum_{D \subseteq R^{\prime}\left(D^{\prime}\right)} \frac{q^{s(D)+e\left(D, D^{\prime}\right)}}{q^{\ell(D)}} \sum_{\varphi} \prod_{(i, j) \in D} \psi\left(\varphi(i, j) \beta_{i j}\right) \\
& =\sum_{D \subseteq R^{\prime}\left(D^{\prime}\right)} q^{s(D)+e\left(D, D^{\prime}\right)-\ell(D)} \prod_{(i, j) \in D} \sum_{\alpha \in \mathbb{F}_{q}^{\#}} \psi\left(\alpha \beta_{i j}\right)
\end{aligned}
$$

where the sums are over all basic subsets $D$ of $\Phi(n)$ and over all maps $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ and where, for each basic subset $D$ of $\Phi(n), \ell(D)=\xi_{D}(\varphi)(1)=\sum_{(i, j) \in D}(j-i-1)$. Now, for each $\alpha \in \mathbb{F}_{q}$, the $\operatorname{map} \psi_{\alpha}: \mathbb{F}_{q}^{\#} \rightarrow \mathbb{C}$, defined by $\psi_{\alpha}(\beta)=\psi(\alpha \beta)$ for all $\beta \in$ $\mathbb{F}_{q}$, is a linear character of the additive group $\mathbb{F}_{q}^{+}$of $\mathbb{F}_{q}$. Moreover, the characters $\psi_{\alpha}$, for $\alpha \in \mathbb{F}_{q}$, are all distinct, hence they are all the irreducible characters of $\mathbb{F}_{q}^{+}$. It follows that the sum $\sum_{\alpha \in \mathbb{F}_{q}} \psi_{\alpha}$ is the regular character of $\mathbb{F}_{q}^{+}$and so, for an arbitrary $\beta \in \mathbb{F}_{q}$, we have

$$
\sum_{\alpha \in \mathbb{F}_{q}} \psi_{\alpha}(\beta)=q \delta_{\beta, 0}
$$

Therefore, given an arbitrary root $(i, j) \in \Phi(n)$, we conclude that

$$
\sum_{\alpha \in \mathbb{F}_{q}^{\#}} \psi\left(\alpha \beta_{i j}\right)= \begin{cases}q-1, & \text { if }(i, j) \in D^{\prime} \\ -1, & \text { if }(i, j) \notin D^{\prime}\end{cases}
$$

because (by definition of $\left.x_{D^{\prime}}\left(\varphi^{\prime}\right)\right) \beta_{i j} \neq 0$ if and only if $(i, j) \in D^{\prime}$. In conclusion, we obtain

$$
\sum_{D, \varphi} \frac{q^{s(D)}}{\xi_{D}(\varphi)(1)} \xi_{D}(\varphi)(x)=\sum_{D \in \mathcal{B}\left(D^{\prime}\right)} q^{s(D)+e\left(D, D^{\prime}\right)-\ell(D)}(-1)^{\left|D-D^{\prime}\right|}(q-1)^{\left|D \cap D^{\prime}\right|}
$$

where the sum on the left-hand side of this equation is over all basic subsets $D$ of $\Phi(n)$ and over all maps $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ and where $\mathcal{B}\left(D^{\prime}\right)$ denotes the set of all basic subsets $D$ of $\Phi(n)$ which satisfy $D \subseteq R^{\prime}\left(D^{\prime}\right)$. By [4, Corollary 7.2], we conclude that the equality

$$
\begin{equation*}
\sum_{D \in \mathcal{B}\left(D^{\prime}\right)}(-1)^{\left|D-D^{\prime}\right|} q^{s(D)+e\left(D, D^{\prime}\right)-\ell(D)}(q-1)^{\left|D \cap D^{\prime}\right|}=q^{n(n-1) / 2} \delta_{D^{\prime}, \emptyset} \tag{8}
\end{equation*}
$$

holds whenever $q$ is a power of a prime $p \geq n$. It follows that the identity

$$
\begin{equation*}
\sum_{D \in \mathcal{B}\left(D^{\prime}\right)}(-1)^{\left|D-D^{\prime}\right|} t^{s(D)+e\left(D, D^{\prime}\right)-\ell(D)}(t-1)^{\left|D \cap D^{\prime}\right|}=t^{n(n-1) / 2} \delta_{D^{\prime}, \emptyset} \tag{9}
\end{equation*}
$$

holds in the polynomial ring $\mathbb{Z}[t]$, hence the identity (8) holds whenever $q$ is a power of an arbitrary prime $p$. Since this equality implies (as above) that

$$
\sum_{D, \varphi} \frac{q^{s(D)}}{\xi_{D}(\varphi)(1)} \xi_{D}(\varphi)(x)=q^{n(n-1) / 2} \delta_{x, 1}
$$

Theorem 2 follows at once.

Finally, we prove Theorem 1 .
Proof of Theorem [1. Let $\chi$ be an arbitrary irreducible character of $U_{n}(q)$. Then $\chi$ is a constituent (with multiplicity $\chi(1)$ ) of the regular character $\rho$ of $U_{n}(q)$. By Theorem 2, we conclude that $\chi$ is a constituent of at least one basic character of $U_{n}(q)$ and, by Theorem 4 this basic character must be unique.

Remark 2. Let $D$ be a basic subset of $\Phi(n)$ and let $\varphi: D \rightarrow \mathbb{F}_{q}^{\#}$ be a map. Then, by Theorem 2 and by Theorem 1, we also conclude that

$$
\chi(1)=q^{s(D)-\ell(D)}\left\langle\chi, \xi_{D}(\varphi)\right\rangle_{U_{n}(q)}
$$

for any irreducible constituent $\chi$ of $\xi_{D}(\varphi)$.

## References

[1] C. A. M. André, Basic characters of the unitriangular group, J. Algebra 175 (1995), 287-319. MR 96h:20081a
[2] C. A. M. André, Basic sums of coadjoint orbits of the unitriangular group, J. Algebra 176 (1995), 959-1000. MR 96h:20081b
[3] C. A. M. André, The regular character of the unitriangular group, J. Algebra 201 (1998), 1-52. MR 98k:20071
[4] C. A. M. André, The basic character table of the unitriangular group, J. Algebra 241 (2001), 437-471.
[5] C. A. M. André, Irreducible characters of finite algebra groups, Proceedings of the Workshop "Matrices and Group Representations", p. 65-80, Textos de Matemática, Série B, n. 19, Departamento de Matemática da Universidade de Coimbra, Coimbra, Portugal, 1999. MR 2001g:20009
[6] E. Artin, Geometric algebra, Interscience, New York, 1957. MR 18:553e
[7] C. W. Curtis and I. Reiner, Methods of representation theory (with applications to finite groups and orders, Vol. 1, Wiley-Interscience, New York, 1981. MR 82i:20001
[8] B. Huppert, Character theory of finite groups, Walter de Gruyter, Berlin, 1998. MR 99j:20011
[9] I. M. Isaacs, Character theory of finite groups, Dover, New York, 1994. CMP 94:14
[10] I. M. Isaacs, Characters of groups associated with finite algebras, J. Algebra 177 (1995), 708-730. MR 96k:20011
[11] I. M. Isaacs and D. Karagueuzian, Conjugacy in groups of upper triangular matrices, J. Algebra 202 (1998), 704-711. MR 99b:20011
[12] G. I. Lehrer, Discrete series and the unipotent subgroup, Compositio Math. 28 (1974) 9-19. MR 49:5193

Departamento de Matemática e Centro de Estruturas Lineares e Combinatórias, Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto de Vasconcelos, Edifício C1, Piso 3, 1749-016 Lisboa, Portugal

E-mail address: candre@fc.ul.pt


[^0]:    Received by the editors July 18, 2000 and, in revised form, February 5, 2001.
    2000 Mathematics Subject Classification. Primary 20C15; Secondary 20G40.
    Key words and phrases. Unitriangular group, irreducible character, basic character, coadjoint orbit, basic subvariety.

