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1 Codes

Though we are not interested in technical coding, the starting point of Information Theory may

well be taken there. Consider Table 1. It shows a codebook pertaining to the �rst six letters

of the alphabet. The code this de�nes maps the letters to binary code words. The eÆciency is

determined by the code word lengths, respectively 3,4,3,3,1 and 4. If the frequencies of individual

letters are known, say respectively 20,8,15,10, 40 and 7 percent, eÆciency can be related to the

average code length, in the example equal to 2,35 measured in bits (binary digits). The shorter

the average code length, the higher the eÆciency. Thus average code length may be taken as

the key quantity to worry about. It depends on the distribution (P ) of the letters and on the

code (�). Actually, it does not depend on the internal structure of the code words, only on the

associated code word lengths. Therefore, we take � to stand for the map providing these lengths

(�(a) = 3; � � � ; �(f) = 4). Then average code length may be written, using bracket notation, as

h�; P i.

a 1 0 0

b 1 1 1 0

c 1 0 1

d 1 1 0

e 0

f 1 1 1 1

Table 1: A codebook

Clearly, not every map which maps letters to natural numbers is acceptable as one coming from

a \sensible" code. We require that the code is pre�x{free, i.e. that no codeword in the codebook

can be the beginning of another codeword in the codebook. The good sense in this requirement

may be realized if we imagine that the binary digits in a codeword corresponding to an initially

unknown letter is revealed to us one by one e.g. by a \guru" as replies to a succession of questions:

\is the �rst digit a 1?", \is the second digit a 1?" etc. The pre�x{free property guarantees the

\instantaneous" nature of the procedure. By this we mean that once we receive information which

is consistent with one of the codewords in the codebook, we are certain which letter is the one we

are looking for.

The code shown in Table 1 is compact in the sense that we cannot make it more eÆcient, i.e.

decrease one or more of the code lengths, by simple operations on the code, say by deleting one

or more binary digits. With the above background we can now prove the key result needed to get

the theory going.
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Theorem 1.1 (Kraft's inequality). Let A be a �nite or countably in�nite set, the alphabet,

and � any map of A into N0 = f0; 1; 2; : : :g. Then the necessary and suÆcient condition that

there exists a pre�x{free code of A with code lenghts as prescribed by � is that Kraft's inequalityX
i2A

2��(i) � 1 (1.1)

holds. Furthermore, Kraft's equality X
i2A

2��(i) = 1 (1.2)

holds, if and only if there exists no pre�x{free code of A with code word lenghts given by a function

� such that �(i) � �(i) for all i 2 A and �(i0) < �(i0) for some i0 2 A .

Proof. With every binary word we associate a binary interval contained in the unit interval [0; 1]

in the \standard" way. Thus, to the empty codeword, which has length 0, we associate [0; 1],

and if J � [0; 1] is the binary interval associated with "1 � � � "k, then we associate the left half

of J with "1 � � � "k0 and the right half with "1 � � � "k1. To any collection of possible code words

associated with the elements (\letters") in A we can then associate a family of binary sub{intervals

of [0; 1], indexed by the letters in A { and vice versa. We realize that in this way the pre�x{free

property corresponds to the property that the associated family of binary intervals consists of

pairwise disjoint sets. A moments reection shows that all parts of the theorem follow from this

observation.

In the sequal, A denotes a �nite or countably in�nite set, the alphabet.

We are not interested in combinatorial or other details pertaining to actual coding with binary

codewords. For the remainder of this paper we idealize by allowing arbitrary non{negative numbers

as code lengths. Then we may as well consider e as a base for the exponentials occuring in Kraft's

inequality. With this background we de�ne a general code of A as a map � : A ! [0;1] such thatX
i2A

e��i � 1 ; (1.3)

and a compact code as a map � : A ! [0;1] such thatX
i2A

e��i = 1 : (1.4)

The set of general codes is denoted �K(A ), the set of compact codes K(A ). The number �i above

is now preferred to �(i) and referred to as the code length associated with i. The compact codes

are the most important ones and, for short, they are referred to simply as codes.
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2 Entropy, redundancy and divergence

The set of probability distributions on A , just called distributions or sometimes sources, is denoted

M1
+(A ) and the set of non{negative measures on A with total mass at most 1, called general

distributions, is denoted �M1
+(A ). Distributions in

�M1
+(A )nM

1
+(A ) are incomplete distributions.

For P;Q; � � � in �M1
+(A ) the corresponding point probabilities are denoted by pi; qi; � � � .

There is a natural bijective correspondence between �M1
+(A ) and

�K(A ), expressed notation-

ally by writing P $ � or �$ P , and de�ned by the formulas

�i = � log pi ; pi = e��i :

Here, log is used for natural logarithms. Note that the values �i = 1 and pi = 0 correspond to

eachother. When the above formulas hold, we call (�; P ) a matching pair and we say that � is

adapted to P or that P is the general distribution which matches �.

As in Section 1, h�; P i denotes average code length. We may now de�ne entropy as minimal

average code length:

H(P ) = min
�2�K(A )

h�; P i ; (2.5)

and redundancy D(Pk�) as actual average code length minus minimal average code length, i.e.

D(Pk�) = h�; P i �H(P ) : (2.6)

Some comments are in order. In fact (2.6) may lead to the indeterminate form 1 �1. Nev-

ertheless, D(Pk�) may be de�ned as a de�nite number in [0;1] in all cases. Technically, it is

convenient �rst to de�ne divergence D(PkQ) between a probability distribution P and a, possibly

incomplete, distribution Q by

D(PkQ) =
X
i2A

pi log
pi

qi
: (2.7)

Theorem 2.1. Divergence between P 2 M1
+(A ) and Q 2 �M1

+(A ) as given by (2.7) is a well

de�ned number in [0;1] and D(PkQ) = 0 if and only if P = Q.

Entropy de�ned by (2.5) also makes sense and the minimum is attained for the code adapted to

P , i.e.

H(P ) = �
X
i2A

pi log pi : (2.8)

If H(P ) <1, the minimum is only attained for the code adapted to P .
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Finally, for every P 2 M1
+(A ) and � 2 �K(A ), the following identity holds with Q the distri-

bution matching �:

h�; P i = H(P ) +D(PkQ): (2.9)

Proof. By the inequality

x log
x

y
= �x log

y

x
� x� y (2.10)

we realize that the sum of negative terms in (2.7) is bounded below by �1, hence D(PkQ) is well

de�ned. The same inequality then shows that D(PkQ) � 0. The discussion of equality is easy as

there is strict inequality in (2.10) in case x 6= y.

The validity of (2.9) with �
P
pi log pi in place of H(P ) then becomes a triviality and (2.8)

follows.

The simple identity (2.9) is important. It connects three basic quantities: entropy, divergence

and average code length. We call it the linking identity. Among other things, it shows that in

case H(P ) <1, then the de�nition (2.6) yields the result D(Pk�) = D(PkQ) with Q $ �. We

therefore now de�ne redundancy D(Pk�), where P 2M1
+(A ) and � 2

�K(A ) by

D(Pk�) = D(PkQ) ; Q$ � : (2.11)

Divergence we think of, primarily, as just a measure of discrimination between P and Q. Often

it is more appropriate to think in terms of redundancy as indicated in (2.6). Therefore, we often

write the linking identity in the form

h�; P i = H(P ) +D(Pk�) : (2.12)

3 Some topological considerations

On the set of general distributions �M1
+(A ), the natural topology to consider is that of pointwise

convergence. When restricted to the space M1
+(A ) of probability distributions this topology coin-

cides with the topology of convergence in total variation (`1{convergence). To be more speci�c,

denote by V (P;Q) the total variation

V (P;Q) =
X
i2A

jpi � qij : (3.13)

Then we have
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Lemma 3.1. Let (Pn)n�1 and P be probability distributions over A and assume that (Pn)n�1

converges pointwise to P , i.e. pn;i ! pi as n ! 1 for every i 2 A . Then Pn converges to P in

total variation, i.e. V (Pn; P )! 0 as n!1.

Proof. The result is known as Sche��e's lemma (in the discrete case). To prove it, consider Pn�P

as a function on A . The negative part (Pn � P )� converges pointwise to 0 and for all n, 0 �

(Pn�P )
� � P , hence, e.g. by Lebesgue's dominated convergence theorem,

P
i2A (Pn�P )

�(i)! 0.

As, for the positive part,
P

i2A (Pn�P )
+(i) =

P
i2A (Pn�P )

�(i), we �nd that also
P

i2A (Pn�P )
+(i)

converges to 0. As V (Pn; P ) =
P

i2A jPn � P j(i) and, generally, jxj = x+ + x�, we now conclude

that V (Pn; P )! 0.

We denote convergence in M1
+(A ) by Pn

V
�! P . As the lemma shows, it is immaterial if we

here have the topology of pointwise convergence or the topology of convergence in total variation

in mind.

Another topological notion of convergence in M1
+(A ) is expected to come to play a signi�cant

role but has only recently been discovered. This is the notion de�ned as follows: For (Pn)n�1 �

M1
+(A ) and P 2 M1

+(A ), we say that (Pn)n�1 converges in divergence to P , and write Pn
D
�! P ,

if D(PnkP ) ! 0 as n ! 1. The new and somewhat unexpected observation is that this is

indeed a topological notion. In fact, there exists a strongest topology on M1
+(A ), the information

topology, such that Pn
D
�! P implies that (Pn)n�1 converges in the topology to P and for this

topology, convergence in divergence and in the topology are equivalent concepts. We stress that

this only holds for ordinary sequences and does not extend to generalized sequences or nets. A

subset P � M1
+(A ) is open in the information topology if and only if, for any sequence (Pn)n�1

with Pn ! P and P 2 P, one has Pn 2 P, eventually. Equivalently, P is closed if and only if

(Pn)n�1 � P, Pn
D
�! P implies P 2 P.

The quoted facts can either be proved directly or they follow from more general results, cf. [7]

or [1]. We shall not enter into this here but refer the reader to [6].

Convergence in divergence is, typically, a much stronger notion than convergence in total varia-

tion. This follows from Pinsker's inequality D(PkQ) � 1
2
V (P;Q)2 which we shall prove in Section

4. In case A is �nite, it is easy to see that the convergence Pn
D
�! P amounts to usual convergence

Pn
V
�! P and to the equality supp (Pn) = supp (P ) for n suÆciently large. Here, \supp " denotes

support, i.e. the set of elements in A with positive probability.

We turn to some more standard considerations regarding lower semi{continuity. It is an impor-

tant fact that entropy and divergence are lower semi{continuous, even with respect to the usual

topology. More precisely:

Theorem 3.2. With respect to the usual topology, the following continuity results hold:



Entropy, 2001, 3 168

(i) The entropy function H : M1
+(A ) ! [0;1] is lower semi{continuous and, if A is �nite, H

is continuous.

(ii) Divergence D :M1
+(A ) �

�M1
+(A ) ! [0;1] is jointly lower semi{continuous.

Proof. We need a general abstract result: Let X be a topological space and let ('n)n�1 be a

sequence of lower semi{continuous functions 'n : X !] �1;1] and assume that ' =
P

1

1 'n

is a well de�ned function ' : X !]�1;1]. Assume also that there exist continuous minorants

 n : X !] � 1;1[, i.e.  n � 'n; n � 1, such that the sum  =
P

1

1  n is a well de�ned

continuous function  : X !]�1;1[. Then ' is lower semi{continuous.

To prove this auxiliary result, let (x�) be an ordinary or generalized sequence and x an element

of X such that x� ! x. We have to prove that lim inf'(x�) � '(x). Fix N 2 N and use the fact

that a �nite sum of lower semi{continuous functions is lower semi{continuous to conclude that

lim inf '(x�) = lim inf (('�  )(x�) +  (x�))

= lim inf('�  )(x�) +  (x)

� lim inf

NX
n=1

('n �  n)(x�) +  (x)

�

NX
n=1

('n �  n)(x) +  (x) :

As this holds for all N 2 N , we conclude that

lim inf'(x�) �

1X
n=1

('n �  n)(x) +  (x) = '(x) ;

as desired.

In particular, a sum of non-negative real valued lower semi{continuous functions is lower semi{

continuous. The statement (i) follows from this fact as xy �x log x is non{negative and contin-

uous on [0; 1].

We now turn to the proof of (ii). First we remark that we may restrict attention to D de�ned

on the space M1
+(A ) �M1

+(A ). To see this, take any (ordinary or generalized) sequence (P�; Q�)�

in M1
+(A ) �

�M1
+(A ) which converges in that space to (P;Q). By taking a proper subsequence if

necessary, we may assume that the sequence (D(P�kQ�))� is convergent and also that (Q�(A ))�

converges. Then we may add a point { the \point at in�nity" { to the space A and extend all

measures considered to the new space in a natural way such that all measures become probability

distributions. Denoting the extended measures with a star, we then �nd that (P �� ; Q
�

�)� ! (P �; Q�)

and we have lim inf� D(P �� kQ
�

�) � D(P �kQ�), provided lower semi-continuity has been estableshed
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for true probability distributions. Then lim� D(P�kQ�) � D(PkQ) follows and we conclude that

the desired semi-continuity property also holds if the Q's are allowed to be improper distributions.

To prove (ii) we may thus restrict attention to the space M1
+(A ) �M1

+(A ). Further, we may

assume that A = N . For each n, denote by 'n the map M1
+(A ) �M1

+(A ) !]�1;1] de�ned by

(P;Q)y pn log pn
qn
. Then 'n is lower semi{continuous. Denote by  n the map (P;Q)y pn � qn.

Then  n is a continuous minorant to 'n and
P

1

1  n = 0. As D =
P

1

1 'n, the auxiliary result

applies and the desired conclusion follows.

In Section 5 we shall investigate further the topological properties of H and D. For now we

point out one simple continuity property of divergence which has as point of departure, not so

much convergence in the space M1
+(A ), but more so convergence in A itself. The result we have

in mind is only of interest if A is in�nite as it considers approximations of A with �nite subsets.

Denote by P0(A ) the set of �nite subsets of A , ordered by inclusion. Then (P0(A );�) is an upward

directed set and we can consider convergence along this set, typically denoted by limA2P0(A ) .

Theorem 3.3. For any P;Q 2M1
+(A )

lim
A2P0(A )

D(P jAkQ) = D(PkQ);

P jA denoting as usual the conditional distribution of P given A.

Proof. First note that the result makes good sense as P (A) > 0 if A is large enough. The result

follows by writing D(P jAkQ) in the form

D(P jAkQ) = log
1

P (A)
+

1

P (A)

X
x2A

P (x) log
P (x)

Q(x)

since limA2P0(A ) P (A) = 1 and since

lim
A2P0(A )

X
x2A

P (x) log
P (x)

Q(x)
= D(PkQ):

4 Datareduction

Let, again, A be the alphabet and consider a decomposition � of A . We shall think of � as de�ning

a datareduction. We often denote the classes of � by Ai with i ranging over a certain index set
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which, in pure mathematical terms, is nothing but the quotient space of A w.r.t. �. We denote this

quotient space by @A { or, if need be, by @�A { and call @A the derived alphabet (the alphabet

derived from the datareduction �). Thus @A is nothing but the set of classes for the decomposition

�.

Now assume that we have also given a source P 2 M1
+(A ). By @P (or @�P ) we denote the

derived source, de�ned as the distribution @P 2 M1
+(@A ) of the quotient map A ! @A or, if

you prefer, as the image measure of P under the quotient map. Thus, more directly, @P is the

probability distribution over @A given by

(@P )(A) = P (A) ; A 2 @A :

If we choose to index the classes in @A we may write @P (Ai) = P (Ai), i 2 @A .

Remark. Let A 0 be a basic alphabet, e.g. A 0 = f0; 1g and consider natural numbers s and t with

s < t. If we take A to be the set of words x1 � � �xt of length t from the alphabet A 0 , i.e. A = A t
0 ,

and � to be the decomposition induced by the projection of A onto A s
0 , then the quotient space

@A t
0 can be identifyed with the set A s

0 . The class corresponding to x1 � � �xs 2 A s
0 consists of all

strings y1 � � � yt 2 A
t
0 with x1 � � �xs as pre�x.

In this example, we may conveniently think of x1 � � �xs as representing the past (or the known

history) and xs+1 � � �xt to represent the future. Then x1 � � �xt represents past + future.

Often, we think of a datareduction as modelling either conditioning or given information. Imag-

ine, for example, that we want to observe a random element x 2 A which is govorned by a distri-

bution P , and that direct observation is impossible (for practical reasons or because the planned

observation involves what will happen at some time in the future, cf. Example ??). Instead, par-

tial information about x is revealed to us via �, i.e. we are told which class Ai 2 @A the element

x belongs to. Thus \x 2 Ai" is a piece of information (or a condition) which partially determines

x.

Considerations as above lie behind two important de�nitions: By the conditional entropy of P

given � we understand the quantity

H�(P ) =
X
i2@A

P (Ai)H(P jAi): (4.14)

As usual, P jAi denotes the conditional distribution of P given Ai (when well de�ned). Note

that when P jAi is unde�ned, the corresponding term in (4.14) is, nevertheless, well de�ned (and

= 0).

Note that the conditional entropy is really the average uncertainty (entropy) that remains after

the information about � has been revealed.
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Similarly, the conditional divergence between P and Q given � is de�ned by the equation

D�(PkQ) =
X
i2@A

P (Ai)D(P jAikQjAi): (4.15)

There is one technical comment we have to add to this de�nition: It is possible that for some

i, P (Ai) > 0 whereas Q(Ai) = 0. In such cases P jAi is wellde�ned whereas QjAi is not. We

agree that in such cases, D�(PkQ) =1. This corresponds to an extension of the basic de�nition

of divergence by agreering that the divergence between a (well de�ned) distribution and some

unde�ned distribution is in�nite.

In analogy with the interpretation regarding entropy, note that, really, D�(PkQ) is the average

divergence after information about � has been revealed.

We also note that D�(PkQ) does not depend on the full distribution Q but only on the family

(QjAi) of conditional distributions (with i ranging over indices with P (Ai) > 0). Thinking about

it, this is also quite natural: If Q is conceived as a predictor then, if we know that information

about � will be revealed to us, the only thing we need to predict is the conditional distributions

given the various Ai's.

Whenever convenient we will write H(P j�) in place of H�(P ) whereas a similar notation for

divergence appears awquard and will not be used.

From the de�ning relations (4.14) and (4.15) it is easy to identify circumstances under which

H�(P ) or D�(PkQ) vanish. For this we need two new notions: We say that P is deterministic

modulo �, and write P = 1 (mod �), provided the conditional distribution P jAi is deterministic

for every i with P (Ai) > 0. And we say that Q equals P modulo �, and write Q = P (mod �),

provided QjAi = P jAi for every i with P (Ai) > 0. This condition is to be understood in the sense

that if P (Ai) > 0, the conditional distribution QjAi must be well de�ned (i.e. Q(Ai) > 0) and

coincide with P jAi. The new notions may be expressed in a slightely di�erent way as follows:

P = 1 (mod�), 8i9x 2 Ai : P (Ai n fxg) = 0

and

Q = P (mod �), 8P (Ai) > 09c > 08x 2 Ai : Q(x) = c � P (x):

It should be noted that the relation \equality mod �" is not symmetric: The two statements

Q = P (mod �) and P = Q (mod �) are only equivalent if, for every i, P (Ai) = 0 if and only if

Q(Ai) = 0.

We leave the simple proof of the following result to the reader:

Theorem 4.1. (i) H�(P ) � 0, and a necessary and suÆcient condition that H�(P ) = 0 is that

P be deterministic modulo �.
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(ii) D�(PkQ) � 0, and a necessary and suÆcient condition that D�(PkQ) = 0, is that Q be

equal to P modulo �.

Intuitively, it is to be expected that entropy and divergence decrease under datareduction:

H(P ) � H(@P ) and D(PkQ) � D(@Pk@Q). Indeed, this is so and we can even identify the

amount of the decrease in information theoretical terms:

Theorem 4.2 (datareduction identities). Let P and Q be distributions over A and let � de-

note a datareduction. Then the following two identities hold:

H(P ) = H(@P ) +H�(P ); (4.16)

D(PkQ) = D(@Pk@Q) +D�(PkQ): (4.17)

The identity (4.16) is called Shannon's identity (most often given in a notation involving random

variables, cf. Section 7).

Proof. Below, sums are over i with P (Ai) > 0. For the right hand side of (4.16) we �nd the

expression

�
X
i

P (Ai) logP (Ai)�
X
i

P (Ai)
X
x2Ai

P (x)

P (Ai)
log

P (x)

P (Ai)

which can be rewritten as

�
X
i

X
x2Ai

P (x) logP (Ai)�
X
i

X
x2Ai

P (x) log
P (x)

P (Ai)
;

easily recognizable as the entropy H(P ).

For the right hand side of (4.17) we �nd the expression

X
i

P (Ai) log
P (Ai)

Q(Ai)
+
X
i

P (Ai)
X
x2Ai

P (x)

P (Ai)
log

�
P (x)

P (Ai)

Æ Q(x)
Q(Ai)

�

which can be rewritten asX
i

X
x2Ai

P (x) log
P (Ai)

Q(Ai)
+
X
i

X
x2Ai

P (x) log

�
P (x)Q(Ai)

Q(x)P (Ai)

�
;

easily recognizable as the divergence D(PkQ).

Of course, these basic identities can, more systematically, be written as H(P ) = H(@�P ) +

H�(P ) and similarly for (4.17). An important corollary to Theorems 4.1 and 4.2 is the following
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Corollary 4.3 (datareduction inequalities). With notation as above the following results hold:

(i). H(P ) � H(@P ) and, in case H(P ) < 1, equality holds if and only if P is deterministic

modulo �.

(ii). D(PkQ) � D(@Pk@Q) and, in case D(PkQ) <1, equality holds if and only if Q equals

P modulo �.

Another important corollary is obtained by emphazising conditioning instead of datareduction

in Theorem 4.2:

Corollary 4.4 (inequalities under conditioning). With notation as above, the following re-

sults hold:

(i). (Shannon's inequality for conditional entropy). H(P ) � H�(P ) and, in case H(P ) < 1,

equality holds if and only if the support of P is contained in one of the classes Ai de�ned by �.

(ii). D(PkQ) � D�(PkQ) and, in case D(PkQ) < 1, equality holds if and only if @P = @Q,

i.e. if and only if, for all classes Ai de�ned by �, P (Ai) = Q(Ai) holds.

We end this section with an important inequality mentioned in Section 3:

Corollary 4.5 (Pinsker's inequality). For any two probability distributions,

D(PkQ) �
1

2
V (P;Q)2 : (4.18)

Proof. Put A+ = fi 2 A j pi � qig and A� = fi 2 A j pi < q1g. By Corollary 4.3, D(PkQ) �

D(@Pk@Q) where @P and @Q refer to the datareduction de�ned by the decomposition A =

A+ [ A�. Put p = P (A+) and q = P (A�). Keep p �xed and assume that 0 � q � p. Then

D(@Pk@Q)�
1

2
V (P;Q)2 = p log

p

q
+ (1� p) log

1� p

1� q
� 2(p� q)2

and elementary considerations via di�erentiation w.r.t. q (two times!) show that this expression

is non{negative for 0 � q � p. The result follows.

5 Approximation with �nite partition

In order to reduce certain investigations to cases which only involve a �nite alphabet and in

order to extend the de�nition of divergence to general Borel spaces, we need a technical result on

approximation with respect to �ner and �ner partitions.

We leave the usual discrete setting and take an arbitrary Borel space (A ;A) as our basis. Thus

A is a set, possibly uncountable, and A a Borel structure (the same as a �-algebra) on A . By
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��(A ;A) we denote the set of countable decompositions of A in measurable sets (sets in A),

ordered by subdivision. We use \�" to denote this ordering, i.e. for �; � 2 ��(A ;A), � � � means

that every class in � is a union of classes in �. By � _ � we denote the coarsest decomposition

which is �ner than both � and �, i.e. � _ � consists of all non{empty sets of the form A \B with

A 2 �, B 2 �.

Clearly, ��(A ;A) is an upward directed set, hence we may consider limits based on this set for

which we use natural notation such as lim�, lim inf� etc.

By �0(A ;A) we denote the set of �nite decompositions in ��(A ;A) with the ordering inherited

from ��(A ;A). Clearly, �0(A ;A) is also an upward directed set.

By M1
+(A ;A) we denote the set of probability measures on (A ;A). For P 2 M1

+(A ;A) and

� 2 ��(A ;A), @�P denotes the derived distributions de�ned in consistency with the de�nitions

of the previous section. If A� denotes the �{algebra generated by �, @�P may be conceived as a

measure in M1
+(A ;A�) given by the measures of the atoms of A� : (@�P )(A) = P (A) for A 2 �.

Thus

H(@�P ) = �
X
A2�

P (A) logP (A) ;

D(@�Pk@�Q) =
X
A2�

P (A) log
P (A)

Q(A)
:

In the result below, we use �0 to denote the set �0(A ;A).

Theorem 5.1 (continuity along �nite decompositions). Let (A ;A) be a Borel space and let

� 2 ��(A ;A).

(i) For any P 2M1
+(A ;A),

H(@�P ) = lim
�2�0;���

H(@�P ) = sup
�2�0;���

H(@�P ) : (5.19)

(ii) For P;Q 2M1
+(A ;A),

D (@�Pk@�Q) = lim
�2�0;���

D (@�Pk@�Q) = sup
�2�0;���

D (@�Pk@�Q) : (5.20)

Proof. We realize that we may assume that (A ;A) is the discrete Borel structure N and that � is

the decomposition of N consisting of all singletons fng; n 2 N .

For any non{empty subset A of A = N , denote by xA the �rst element of A, and, for P 2M1
+(A )

and � 2 �0, we put

P� =
X
A2�

P (A)ÆxA
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with Æx denoting a unit mass at x. Then P�
V
�! P along the directed set �0 andH(@�P ) = H(P�);

� 2 �0.

Combining lower semi{continuity and the datareduction inequality (i) of Corollary 4.3, we �nd

that

H(P ) � lim inf
�2�0

H(P�) = lim inf
�2�0

H(@�P ) � lim sup
�2�0

H(@�P )

� sup
�2�0

H(@�P ) � H(P ) ;

and (i) follows. The proof of (ii) is similar and may be summarized as follows:

D(PkQ) � lim inf
�2�0

D(P�kQ�) = lim inf
�2�0

D(@�Pk@�Q)

� lim sup
�2�0

D(@�Pk@�Q) � sup
�2�0

D(@�Pk@�Q) � D(PkQ) :

As the sequences in (5.19) and in (5.20) are weakly increasing, we may express the results more

economically by using the sign \"" in a standard way:

H(@�P ) " H(@�P ) as � 2 �0:� � � ;

D(@�Pk@�Q) " D(@�Pk@�Q) as � 2 �0; � � � :

The type of convergence established also points to martingale-type of considerations, cf. [8] 1

Motivated by the above results, we now extend the de�nition of divergence to cover probability

distributions on arbitrary Borel spaces. For P;Q 2 M1
+(A ;A) we simply de�ne D(PkQ) by

D(PkQ) = sup
�2�0

D(@�Pk@�Q) : (5.21)

By Theorem 5.1 we have

D(PkQ) = sup
�2��

D(@�Pk@�Q) (5.22)

with �� = ��(A ;A). The de�nition given is found to be the most informative when one recalls

the separate de�nition given earlier for the discrete case, cf. (2.6) and (2.7). However, it is also

important to note the following result which most authors use as de�nition. It gives a direct

analytical expression for divergence which can be used in the discrete as well as in the general

case.

1the author had access to an unpublished manuscript by Andrew R. Barron: Information Theory and Mar-

tingales, presented at the 1991 International Symposium on Information Theory in Budapest where this theme is

pursued.
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Theorem 5.2 (divergence in analytic form). Let (A ;A) be a Borel space and let P;Q 2

M1
+(A ;A). Then

D(PkQ) =

Z
A

log
dP

dQ
dP (5.23)

where
dP

dQ
denotes a version of the Radon{Nikodym derivative of P w.r.t. Q. If this derivative

does not exist, i.e. if P is not absolutely continuous w.r.t. Q, then (5.23) is to be interpretated as

giving the result D(PkQ) =1.

Proof. First assume that P is not absolutely continuous w.r.t. Q. Then P (A) > 0 and Q(A) = 0

for some A 2 A and we see that D(@�Pk@�Q) = 1 for the decomposition � = fA; {Ag. By

(5.21), D(PkQ) =1 follows.

Then assume that P is absolutely continuous w.r.t. Q and put f = dP

dQ
. Furthermore, put

I =
R
log fdP . Then I can also be written as

R
'(f)dQ with '(x) = x log x. As ' is convex,

1
Q(A)

R
A
'(f)dQ � '

�
P (A)

Q(A)

�
for every A 2 A. It is then easy to show that I � D(@�Pk@�Q) for

every � 2 ��, thus I � D(PkQ).

In order to prove the reverse inequality, let t < I be given and choose s > t such that I� log s >

t. As P (ff = 0g) = 0, we �nd that

I =

1X
n=�1

Z
An

log f dP

with

An = fsn � f < sn+1g ; n 2 Z :

Then, from the right{hand inequality of the double inequality

SnQ(An) � P (An) � sn+1Q(An) ; n 2 Z ; (5.24)

we �nd that

I �

1X
n=�1

log sn+1 � P (An)

and, using also the left{hand inequality of (5.24), it follows that

I � log s+D(@�Pk@�Q)

with � = fAnjn 2 Zg [ ff = 0g. It follows that D(@�Pk@�Q) � t. As � 2 ��, and as t < I was

arbitrary, it follows from (5.22) that D(PkQ) � I.
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For the above discussion and results concerning divergence D(PkQ) between measures on arbi-

trary Borel spaces we only had the case of probability distributions in mind. However, it is easy to

extend the discussion to cover also the case when Q is allowed to be an imcomplete distribution.

Detals are left to the reader.

It does not make sense to extend the basic notion of entropy to distributions on general measure

spaces as the natural quantity to consider, sup�H(@�P ) with � ranging over �0 or �� can only

yield a �nite quantity if P is essentially discrete.

6 Mixing, convexity properties

Convexity properties are of great signi�cance in Information Theory. Here we develop the most

important of these properties by showing that the entropy function is concave whereas divergence

is convex.

The setting is, again, a discrete alphabet A . On A we study various probability distributions. If

(P�)��1 is a sequence of such distributions, then a mixture of these distributions is any distribution

P0 of the form

P0 =

1X
�=1

��P� (6.25)

with � = (��)��1 any probability vector (�� � 0 for � � 1,
P

1

1 �� = 1). In case �� = 0,

eventually, (6.25) de�nes a normal convex combination of the P�'s. The general case covered by

(6.25) may be called an !-convex combination
2.

As usual, a non-negative function f : M1
+(A ) ! [0;1] is convex (concave) if f(

P
��P�) �P

��f(P�) (f(
P
��P�) �

P
��f(P�)) for every convex combination

P
��P�. If we, instead,

extend this by allowing !-convex combinations, we obtain the notions we shall call !-convexity,

respectively !-concavity. And f is said to be strictly !-convex if f is !-convex and if, provided

f(
P
��P�) < 1, equality only holds in f(

P
��P�) �

P
��f(P�) if all the P� with �� > 0 are

identical. Finally, f is strictly !-concave if f is !-concave and if, provided
P
��f(P�) < 1,

equality only holds in f(
P
��P�) �

P
��f(P�) if all the P� with �� > 0 are identical.

It is an important feature of the convexity (concavity) properties which we shall establish, that

the inequalities involved can be deduced from identities which must then be considered to be the

more basic properties.

2\!" often signals countability and is standard notation for the �rst in�nite ordinal.
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Theorem 6.1 (identities for mixtures). Let P0 =
P

1

1 ��P� be a mixture of distributions P� 2

M1
+(A ); � � 1. Then

H(

1X
�=1

��P�) =

1X
�=1

��H(P�) +

1X
�=1

��D(P�kP0): (6.26)

And, if a further distribution Q 2M1
+(A ) is given,

1X
�=1

��D(P�kQ) = D(

1X
�=1

��P�kQ) +

1X
�=1

��D(P�kP0): (6.27)

Proof. By the linking identity, the right hand side of (6.26) equals

1X
�=1

��h�0; P�i

where �0 is the code adapted to P0, and this may be rewritten as

h�0;

1X
�=1

��P�i ;

i.e. as h�0; P0i, which is nothing but the entropy of P0. This proves (6.26).

Now add the term
P
��D(P�kQ) to each side of (6.26) and you get the following identity:

H(P0) +

1X
�=1

��D(P�kQ) =

1X
�=1

��(H(P�) +D(P�kQ)) +

1X
�=1

��D(P�kP0):

Conclude from this, once more using the linking identity, that

H(P0) +

1X
�=1

��D(P�kQ) =

1X
�=1

��h�; P�i+

1X
�=1

��D(P�kP0);

this time with � adapted to Q. As
P
��h�; P�i = h�; P0i = H(P0) +D(P0kQ), we then see upon

subtracting the term H(P0), that (6.27) holds provided H(P0) <1. The general validity of (6.27)

is then deduced by a routine approximation argument, appealing to Theorem ??.

Theorem 6.2 (basic convexity/concavity properties). The function P y H(P ) of M1
+(A )

into [0;1] is strictly !-concave and, for any �xed Q 2 M1
+(A ), the function P y D(PkQ) of

M1
+(A ) into [0;1] is strictly !-convex.
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This follows from Theorem 6.1.

The second part of the result studies D(PkQ) as a function of the �rst argument P . It is natural

also to look into divergence as a function of its second argument. To that end we introduce the

geometric mixture of the probability distributions Q�; � � 1 w.r.t. the weights (��)��1 (as usual,

�� � 0 for � � 1 and
P
�� = 1). By de�nition, this is the incomplete probability distribution

Q
g
0, notationally denoted

Pg
��Q�, which is de�ned by

Q
g
0(x) = exp(

1X
�=1

�� logQ�(x)) x 2 A : (6.28)

In other words, the point probabilities Q
g
0(x) are the geometric avarages of the corresponding

point probabilities Q�(x); � � 1 w.r.t. the weights �� ; � � 1.

That Q
g
0 is indeed an incomplete distribution follows from the standard inequality connecting

geometric and arithmetic mean. According to that inequality, Q
g
0 � Qa

0, where Q
a
0 denotes the

usual arithmetic mixture:

Qa
0 =

1X
�=1

��Q� :

To distinguish this distribution from Q
g
0, we may write it as

Pa
��Q�.

If we change the point of view by considering instead the adapted codes: �� $ Q� , � � 1 and

�0 $ Q
g
0, then, corresponding to (6.28), we �nd that

�0 =

1X
�=1

���� ;

which is the usual arithemetic average of the codes ��. We can now prove:

Theorem 6.3 (2nd convexity identity for divergence). Let P and O�; � � 1be probability

distributions over A and let (��)��1 be a sequence of weights. Then the identity

1X
�=1

��D(PkQ�) = D(Pk

1X
�=1

g

��P�) (6.29)

holds.

Proof. Assume �rst that H(P ) < 1. Then, from the linking identity, we get (using notation as
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above):

1X
�=1

��D(PkQ�) =

1X
�=1

�� (h��; P i �H(P ))

= h

1X
�=1

����; P i �H(P )

= h�0; P i �H(P )

= D(PkQg
0);

so that (6.29) holds in this case.

In order to establish the general validity of (6.29) we �rst approximate P with the conditional

distributionsP jA; A 2 P0(A ) (which all have �nite entropy). Recalling Theorem3.3, and using

the result established in the �rst part of this proof, we get:

1X
�=1

��D(PkQ�) =

1X
�=1

�� lim
A2P0(A )

D(P jAkQ�)

� lim
A2P0(A )

1X
�=1

��D(P jAkQ�)

= lim
A2P0(A )

D(P jAkQg
0)

= D(PkQg
0):

This shows that the inequality \�" in (6.29) holds, quite generally. But we can see more from

the considerations above since the only inequality appearing (obtained by an application of Fatou's

lemma, if you wish) can be replaced by equality in case �� = 0, eventually (so that the �'s really

determine a �nite probability vector). This shows that (6.29) holds in case �� = 0, eventually.

For the �nal step of the proof, we introduce, for each n, the approximating �nite probability

vector (�n1; �n2; � � � ; �nn; 0; 0; � � � ) with

�n� =
��

�1 + �2 + � � �+ �n
; � = 1; 2; � � � ; n:

Now put

Q
g
n0 =

1X
�=1

g

�n�Q� =

nX
�=1

g

�n�Q�:
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It is easy to see that Q
g
n0 ! Q

g
0 as n ! 1. By the results obtained so far and by lower

semi-continuity of D we then have:

D(PkQg
0) = D(Pk lim

n!1
Q
g
n0)

� lim
n!1

D(PkQg
n0)

= lim
n!1

nX
�=1

�n�D(PkQ�)

=

1X
�=1

��D(PkQ�);

hereby establishing the missing inequality \�" in (6.29).

Corollary 6.4. For a distribution P 2M1
+(A ) and any !-convex combination

Qa
0 =

P
1

1 ��Q� of distributions Q� 2M
1
+(A ); � � 1, the identity

1X
�=1

��D(PkQ) = D(Pk

1X
�=1

��Q�) +
X
x2A

P (x) log
Qa
0(x)

Q
g
0(x)

holds with Q
g
0 denoting the geometric mexture

Pg
��Q� .

This is nothing but a convenient reformulation of Theorem6.3. By the usual inequality con-

necting geometric and arithemetic mean { and by the result concerning situations with equality

in this inequality { we �nd as a further corollary that the following convexity result holds:

Corollary 6.5 (Convexity of D in the second argument). For each �xed P 2 M1
+(A ), the

function Qy D(PkQ) de�ned on M1
+(A ) is strictly !-convex.

It lies nearby to investigate joint convexity of D(�k�) with both �rst and second argument

varying.

Theorem 6.6 (joint convexity divergence). D(�k�) is jointly !-convex, i.e. for any sequence

(Pn)n�1 � M1
+(A ), for any sequence (Qn)n�1 �

�M1
+(A ) and any sequence (�n)n�1 og weights

(�n � 0 ; n � 1 ;
P
�n = 1), the following inequality holds

D

 
1X
n=1

�nPnk

1X
n=1

�nQn

!
�

1X
n=1

�nD(PnkQn) : (6.30)

In case the left{hand side in (6.30) is �nite, equality holds in (6.30) if and only if either there

exists P and Q such that Pn = P and Qn = Q for all n with �n > 0, or else, Pn = Qn for all n

with �n > 0.
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Proof. We have

1X
n=1

�nD(PnkQn) =

1X
n=1

X
i2A

�npn;i log
pn;i

qn;i

=
X
i2A

1X
n=1

�npn;i log
pn;i

qn;i

�
X
i2A

 
1X
n=1

�npn;i

!
log

P
1

n=1 �npn;iP
1

n=1 �nqn;i

= D

 
1X
n=1

�nPn

 1X
n=1

�nQn

!
:

Here we used the well{known \log{sum inequality":X
x� log

x�

y�
�
�X

x�

�
log

P
x�P
y�
:

As equality holds in this inequality if and only if (x�) and (y�) are proportional we see that, under

the �niteness condition stated, equality holds in (6.30) if and only if, for each i 2 A there exists

a constant ci such that qn;i = cipn;i for all n. From this observation, the stated result can be

deduced.

7 The language of the probabilist

Previously, we expressed all de�nitions and results via probability distributions. Though these are

certainly important in probability theory and statistics, it is often more suggestive to work with

random variables or, more generally { for objects that do not assume real values { with random

elements. Recall, that a random element is nothing but a measurable map de�ned on a probability

space, say X : 
 ! S where (
;F ; P ) is a probability space and (S;S) a Borel space. As we

shall work in the discrete setting, S will be a discrete set and we will then take S = P(S) as the

basic �-algebra on S. Thus a discrete random element is a map X : 
! S where 
 = (
;F ; P )

is a probability space and S a discrete set. As we are accustomed to, there is often no need to

mention explicitly the \underlying" probability measure. If misunderstanding is unlikely, \P" is

used as the generic letter for \probability of". By PX we denote the distribution of X:

PX(E) = P (X 2 E); E � S:

If several random elements are considered at the same time, it is understood that the underlying

probability space (
;F ; P ) is the same for all random elements considered, whereas the discrete

sets where the random elements take their values may, in general, vary.



Entropy, 2001, 3 183

The entropy of a random element X is de�ned to be the entropy of its distribution: H(X) =

H(PX). The conditional entropy H(XjB) given an event B with P (B) > 0 then readily makes

sense as the entropy of the conditional distribution of X given B. If Y is another random element,

the joint entropy H(X; Y ) also makes sense, simply as the entropy of the random element (X; Y ) :

! y (X(!); Y (!)). Another central and natural de�nition is the conditional entropy H(XjY ) of

X given the random element Y which is de�ned as

H(XjY ) =
X
y

P (Y = y)H(XjY = y): (7.31)

Here it is understood that summation extends over all possible values of Y . We see that

H(XjY ) can be interpretated as the average entropy of X that remains after observation of Y .

Note that

H(XjY ) = H(X; Y jY ): (7.32)

If X and X 0 are random elements which take values in the same set, D(XkX 0) is another

notation for the divergence D(PXkPX0) between the associated distributions.

Certain extreme situations may occur, e.g. if X and Y are independent random elements or, a

possible scenario in the \opposite" extreme, if X is a consequence of Y , by which we mean that,

for every y with P (Y = y) positive, the conditional distribution of X given Y = y is deterministic.

Often we try to economize with the notation without running a risk of misunderstanding, cf.

Table 2 below

short notation full notation or de�nition

P (x); P (y); P (x; y) P (X = x); P (Y = y); P ((X; Y ) = (x; y))

P (xjy); P (yjx) P (X = xjY = y); P (Y = yjX = x)

Xjy conditional distribution of X given Y = y

Y jx conditional distribution of Y given X = x

Table 2

For instance, (7.31) may be written

H(XjY ) =
X
y

P (y)H(Xjy):

Let us collect some results formulated in the language of random elements which follow from

results of the previous sections.
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Theorem 7.1. Consider discrete random elements X; Y; � � � . The following results hold:

(i) 0 � H(X) � 1 and a necessary and suÆcient condition that H(X) = 0 is, that X be

deterministic.

(ii) H(XjY ) � 0 and a necessary and suÆcient condition that H(XjY ) = 0 is, that X be a

consequence of Y .

(iii) (Shannon's identity):

H(X; Y ) = H(X) +H(Y jX) = H(Y ) +H(XjY ): (7.33)

(iv) H(X) � H(X; Y ) and, in case H(X) <1, a necessary and suÆcient condition that H(X) =

H(X; Y ) is, that Y be a consequence of X.

(v)

H(X) = H(XjY ) +
X
y

P (y) �D(XjykX): (7.34)

(vi) (Shannon's inequality):

H(XjY ) � H(X) (7.35)

and, in case H(XjY ) < 1, a necessary and suÆcient condition that H(XjY ) = H(X) is,

that X and Y be independent.

Proof. (i) is trivial.

(ii): This inequality, as well as the discussion of equality, follows by (i) and the de�ning relation

(7.31).

(iii) is really equivalent to (4.16), but also follows from a simple direct calculation which we

shall leave to the reader.

(iv) follows from (ii) and (iii).

(v): Clearly, the distribution of X is nothing but the mixture of the conditional distributions

of X given Y = y w.r.t. the weights P (y). Having noted this, the identity follows directly from

the identity for mixtures, (6.26) of Theorem 6.1.

(vi) follows directly from (v) (since independence of X and Y is equivalent to coincidence of

all conditional distributions of X given Y = y whenever P (y) is positive).
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8 Mutual information

The important concept of mutual information is best introduced using the language of random

elements. The question we ask ourselves is this one: Let X and Y be random elements. How

much information about X is revealed by Y ? In more suggestive terms: We are interested in the

value of X but cannot observe this value directly. However, we do have access to an auxillary

random element Y which can be observed directly. How much information about X is contained

in an observation of Y ?

Let us suggest two di�erent approaches to a sensible aswer. Firstly, we suggest the following

general principle:

Information gained = decrease in uncertainty

There are two states involved in an observation: START where nothing has been observed and

END where Y has been observed. In the start position, the uncertainty about X is measured by

the entropy H(X). In the end position, the uncertainty about X is measured by the conditional

entropy H(XjY ). The decrease in uncertainty is thus measured by the di�erence

H(X)�H(XjY ) (8.36)

which then, according to our general principle, is the sought quantity \information about X

contained in Y ".

Now, let us take another viewpoint and suggest the following general principle, closer to coding:

Information gained = saving in coding e�ort

When we receive the information that Y has the value, say y, this enables us to use a more

eÆcient code than was available to us from the outset since we will then know that the distribution

of X should be replaced by the conditional distribution of X given y. The saving realized we

measure by the divergence D(XjykX). We then �nd it natural to measure the overall saving in

coding e�ort by the average of this divergence, hence now we suggest to use the quantityX
y

P (y)D(XjykX) (8.37)

as the sought measure for the \information about X contained in Y ".

Luckily, the two approaches lead to the same quantity, at least when H(XjY ) is �nite. This

follows by (7.34) of Theorem 7.1. From the same theorem, now appealing to (7.33), we discover

that, at least when H(XjY ) and H(Y jX) are �nite, then \the information about X contained
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in Y " is the same as \the information about Y contained in X". Because of this symmetry, we

choose to use a more \symmetric" terminology rather than the directional \information about

X contained in Y ". Finally, we declare a preference for the \saving in coding e�ort-de�nition"

simply because it is quite general as opposed to the \decrease in uncertainty-de�nition" which

leads to (8.36) that could result in the indeterminate form 1�1.

With the above discussion in mind we are now prepared to de�ne I(X ^ Y ), the mutual infor-

mation of X and Y by

I(X ^ Y ) =
X
y

P (y)D(XjykX): (8.38)

As we saw above, mutual information is symmetric in case H(XjY ) and H(Y jX) are �nite.

However, symmetry holds in general as we shall now see. Let us collect these and other basic

results in one theorem:

Theorem 8.1. Let X and Y be discrete random elements with distributions PX, respectively PY

and let PX;Y denote the joint distribution of (X; Y ). Then the following holds:

I(X; Y ) = D(PX;Y kPX 
 PY ); (8.39)

I(X ^ Y ) = I(Y ^X); (8.40)

H(X) = H(XjY ) + I(X ^ Y ); (8.41)

H(X; Y ) + I(X ^ Y ) = H(X) +H(Y ); (8.42)

I(X ^ Y ) = 0, X and Y are independent; (8.43)

I(X ^ Y ) � H(X); (8.44)

I(X ^ Y ) = H(X), I(X ^ Y ) =1_X is a consequence of Y: (8.45)
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Proof. We �nd that

I(X ^ Y ) =
X
y

P (y)
X
x

P (xjy) log
P (xjy)

P (x)

=
X
x;y

P (x; y) log
P (x; y)

P (x)P (y)

= D(PX;Y kPX 
 PY )

and (8.39) follows. (8.40) and (8.43) are easy corollaries { (8.43) also follows directly from the

de�ning relation (8.38).

Really, (8.41) is the identity (6.26) in disguise. The identity (8.42) follows by (8.41) and

Shannon's identity (7.33). The two remaining results, (8.44) and (8.45) follow by (8.41) and (ii)

of Theorem (7.1).

It is instructive to derive the somewhat surprising identity (8.40) directly from the more natural

datareduction identity (4.17). To this end, let X : 
 ! A and Y : 
 ! B be the random

variables concerned, denote their distributions by P1, respectively P2, and let P12 denote their

joint distribution. Further, let � : A � B ! A be the natural projection. By (4.17) it then follows

that

D(P12kP1 
 P2) = D(@�P12k@�(P1 
 P2)) +D�(P12kP1 
 P2)

= D(P1kP1) +
X
x2A

P12(�
�1(x))D(P12j�

�1(x)kP1 
 P2j�
�1(x))

= 0 +
X
x2A

P1(x)D(Y jxkY )

= I(Y ^X) :

By symmetry, e.g. by considering the natural projection A � B ! B instead, we then see that

I(X ^ Y ) = I(Y ^X).

9 Information Transmission

An important aspect of many branches of mathematics is that to a smaller or larger extent one is

free to choose/design/optimize the system under study. For key problems of information theory

this freedom lies in the choice of a distribution or, equivalently, a code. In this and in the next

section we look at two models which are typical for optimization problems of information theory.

A detailed study has to wait until later chapters. For now we only introduce some basic concepts

and develop their most fundamental properties.
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Our �rst object of study is a very simple model of a communication system given in terms of a

discrete Markov kernel (A ;P; B ). This is a triple with A and B discrete sets, referred to respectively,

as the input alphabet and the output alphabet. And the kernel P itself is a map (x; y)y P (yjx) of

A � B into [0; 1] such that, for each �xed x 2 A , yy P(yjx) de�nes a probability distribution over

B . In suggestive terms, if the letter x is \sent", then P(�jx) is the (conditional) distribution of the

letter \received". For this distribution we also use the notation Px. A distribution P 2M1
+(A ) is

also referred to as an input distribution. It is this distribution which we imagine we have a certain

freedom to choose.

An input distribution P induces the output distribution Q de�ned as the mixture

Q =
X
x

P (x)Px:

Here, and below, we continue to use simple notation with x as the generic element in A and with

y the generic element in B .

When P induces Q, we also express this notationally by P  Q.

If P is the actual input distribution, this de�nes in the usual manner a random element (X; Y )

taking values in A � B and with a distribution determined by the point probabilities P (x)P(yjx);

(x; y) 2 A � B . In this way, X takes values in A and its distribution is P , whereas Y takes values

in B and has the induced distribution Q.

A key quantity to consider is the information transmission rate, de�ned to be the mutual

information I(X ^ Y ), thought of as the information about the sent letter (X) contained in

the received letter (Y ). As the freedom to choose the input distribution is essential, we leave the

language expressed in terms of random elements and focus explicitly on the distributions involved.

Therefore, in more detail, the information transmission rate with P as input distribution is denoted

I(P ) and de�ned by

I(P ) =
X
x

P (x)D(PxkQ) (9.46)

where P  Q. In taking this expression as the de�ning quantity, we have already made use of

the fact that mutual information is symmetric (cf. (8.40)). In fact, the immediate interpretation

of (9.46) really concerns information about what was received given information about what was

sent rather than the other way round.

The �rst result we want to point out is a trivial translation of the identity (6.27) of Theorem

6.1:

Theorem 9.1 (The compensation identity). Let P be an input distribution and Q the in-

duced output distribution. Then, for any output distribution Q�,X
x

P (x)D(PxkQ
�) = I(P ) +D(QkQ�): (9.47)
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The reason for the name given to this identity is the following: Assume that we commit an error

when computing I(P ) by using the distribution Q� in (9.46) instead of the induced distribution

Q. We still get I(P ) as result if only we \compensate" for the error by adding the term D(QkQ�).

The identity holds in a number of cases, e.g. with D replaced by squared Euclidean distance,

with socalled Bregman divergencies or with divergencies as they are de�ned in the quantum setting

(then the identity is known as \Donald's identity" ). Possibly, the �rst instance of the identity

appeared in [9]

In the next result we investigate the behaviour of the information transmission rate under

mixtures.

Theorem 9.2 (information transmission under mixtures). Let (P�)��1 be a sequence of in-

put distributions and denote by (Q�)��1 the corresponding sequence of induced output distributions.

Furthermore, consider an !-convex combination P0 =
P

1

1 s�P� of the given input distributions

and let Q0 be the induced output distribution: P0  Q0. Then:

I

 
1X
�=1

s�P�

!
=

1X
�=1

s�I(P�) +

1X
�=1

s�D(Q�kQ0): (9.48)

Proof. By (9.47) we �nd that, for each � � 1,X
x

P�(x)D(PxkQ0) = I(P�) +D(Q�kQ0):

Taking the proper mixture, we then getX
�

s�
X
x

P�(x)D(PxkQ0) =
X
�

s�I(P�) +
X
�

s�D(Q�kQ0):

As the left hand side here can be written asX
x

P0(x)D(PxkQ0);

which equals I(P0), (9.48) follows.

Corollary 9.3 (concavity of information transmission rate). The information transmission

rate P y I(P ) is a concave function on M1
+(A ). For a given !-convex mixture P0 =

P
s�P� for

which
P
s�I(P�) is �nite, equality holds in the inequality
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