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BASIC CONCEPTS UNDERLYING SINGULAR PERTURBATION
TECHNIQUES*

P. A. LAGERSTROM AND R. G. CASTEN

Summary. In many singular perturbation problems multiple scales are used. For instance, one

may use both the coordinate x and the coordinate x* e-ix. In a secular-type problem x and x*
are used simultaneously. This paper discusses layer-type problems in which x* is used in a thin layer
and x outside this layer. Assume one seeks approximations to a function f(x, e), uniformly valid to
some order in for x in a closed interval D. In layer-type problems one uses (at least) two expansions
(called inner and outer) neither of which is uniformly valid but whose domains of validity together
cover the interval D. To define "domain of validity" one needs to consider intervals whose endpoints
depend on e. In the construction of the inner and outer expansions, constants and functions of occur
which are determined by comparison of the two expansions "matching." The comparison is possible
only in the domain of overlap of their regions of validity. Once overlap is established, matching is
easily carried out. Heuristic ideas for determining domains of validity of approximations by a study
of the corresponding equations are illustrated with the aid of model equations. It is shown that
formally small terms in an equation may have large integrated effects. The study of this is of central
importance for understanding layer-type problems. It is emphasized that considering the expansions
as the result of applying limit processes can lead to serious errors and, in any case, hides the nature of
the expansions.

1. Introduction. This paper is a survey of some essential ideas used in solving
singular perturbation problems. It is not a survey of the literature on the subject;
even for the problems discussed here no attempt has been made to make the
references complete. It is not a survey of results or techniques--for this the reader
is referred to Van Dyke (1964) and Cole (1968)--nor does it discuss exact mathe-
matical results as does the book by Wasow (1965). Its main aim is to show the
fundamental heuristic ideas which underlie certain techniques and which may
be used in expanding these techniques.

The problems to be discussed are what in this paper will be called layer-type
problems. Central concepts to be discussed are those of matching of asymptotic
expansions, domains of validity of such expansions, overlap, formal validity
of equations, limit processes, large integrated effects of formally small terms,
switchback, etc. Many of these concepts were introduced by Saul Kaplun in the
mid-fifties. Kaplun’s analysis of concepts underlying older techniques and intro-
duction of new concepts led to a much deeper understanding of older techniques
and consequently to an extension of those techniques.

In 2 a very simple physical example is used to show how singular perturbation
problems arise, and the difference between secular-type and layer-type problems
is illustrated. In 3 various basic concepts are introduced. The motivation for
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64 P. A. LAGERSTROM AND R. G. CASTEN

these concepts will be given in 4, 5 and 6 which discuss in detail three model
equations of increasing complexity. These equations were chosen to illustrate how
various conceptsand heuristic ideas are used in constructing asymptotic expansions.

Fluid dynamics has played an essential role in developing perturbation
methods, similar to the role celestial mechanics played during the last century.
Actually the first model equation (4.1) is similar to the one introduced by
Friedrichs (1953) to illustrate Prandtl’s boundary-layer theory for fluid flow at
large Reynolds numbers, while the second and third model equations were intro-
duced by one of the authors (see Lagerstrom (1961)) to illustrate Kaplun’s analysis
of fluid flow at small Reynolds numbers. However, at the same time the discussion
in 4, 5 and 6 aims at presenting the basic features of any typical layer-type
problem.

Section 7 deals directly with problems from fluid dynamics. It tries to show
how in many concrete physical problems the main body of perturbation ideas
is applicable but in addition some special new ideas are needed. Fluid dynamics
is still the source of many challenging perturbation problems.

There are many perturbation problems which properly may be called singular
but which are not of the layer type. A large class of such problems are of the
secular type (see 2). For such problems the reader is referred to Kevorkian (1966)
which discusses them in a systematic manner with many examples and to Cole
(1968). The method of straining coordinates, as used by Whitham and Lighthill,
is also omitted from the discussion; references are given in Van Dyke (1964).

2. A simple physical example. Before attempting any general description of
what a singular perturbation problem is we shall start with a very elementary
physical example which will show how both secular-type problems and layer-type
problems may arise.

2.1. Time scales. We consider a linear spring-mass system with mass m,
damping coefficient 2/3 and spring constant k. The equation is then

d2ya a(2.1) m(dta)2 + 2 + ky O,

where the amplitude yn is measured in a dimensional length scale and td is the
dimensional time. We know that the answer may be expressed in nondimensional
terms. As nondimensional amplitude we may take

(2.2) y y,/L,

where L is a typical amplitude (of dimensional length). To find a nondimensional
time scale we first observe that there are two independent ways of forming
parameters of dimension time from the original parameters. We may define

(2.3) T x//k
which is the inverse of the frequency. Another time parameter is

(2.4) T2 /k.
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From these we may form further time parameters

(2.5) T= TT, a+b= 1.

One way of nondimensionalizing the time-coordinate is to define

ta/T,.

d2y dv
(2.7a) + 2et + y 0

dt2

where

(2.7b) fl/X Tz/TI"

2.2. A secular-type problem. Suppose now we have a system of "small
damping." Expressed in nondimensional form this means that

(2.8) //<< or, equivalently, e << 1.

Making assumption (2.8) we study how one may solve (2.7) by perturbation
techniques. We take as initial conditions

(2.9) y(0) 0, (dy/dt),=o 1.

Because of (2.8) it seems natural to assume a first approximation Y0 satisfying

(2.10) dZYo/dt2 + Yo 0

and the initial conditions (2.9). Then

(2.11) Yo sin t.

If we assume that y has an asymptotic expansion

(2.12) Y 2 ’kyk(t),
k=O

then yl must satisfy

(2.13a) dyl/dt + yt -2 cos

and

(2.13b) yl(0) y’,(0) 0.

Hence

(2.14) Yl sin

and

(2.15) Y Yo + eYl q- O(32) sin t- et sin + O(e) 2.

We now ask whether (2.15) is a "good approximation." The answer obviously
depends on the time interval considered. Consider the time interval

(2.16) D [0, z].

(2.6)

Then (2.1) reads
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If z O(1), then, as is easily checked, there exists a constant K such that

(2.17) lY (Yo + eYl)l =< Ke2

for in D. The error is then uniformly small and of the order formally indicated.
However, ifz is large, say z O(1/e), then (2.17) no longer holds. Using an obvious
terminology we say that the formal order of -et sin is e but that its actual order
for O(1/e) is unity. Thus Yo + ey is uniformly valid to order e2 on the interval
[0, 1] but not on the interval [0, 1/el. This situation is the essence of a singular
perturbation problem: The "straightforward" perturbation (2.12) fails to be
uniformly valid.

A comparison with the exact solution shows that the approximation

(2.18) y e-t sin

is good to order unity on the interval of length 1/e. It is clear that the term (2.14)
results from expansion of the exponential function in powers of et. No partial
sum of this expansion is valid to order e if is order e-1. Thus the assumption
that a uniformly valid expansion could have the form (2.12) is wrong. A term such
as (2.14) is called a secular term. Its occurrence is due to the resonant forcing function
in (2.13a). However, in the present problem this resonance is not an actual physical
phenomenon but a false mathematical resonance due to an improper perturbation
method. We shall refer to problems of the type discussed here as secular-type
problems. A systematic perturbation procedure for handling such problems must
show how secular terms can be avoided. Such techniques are beyond the scope
of the present paper. They are discussed extensively in Kevorkian (1966)and
Cole (1968). We shall only draw attention to the following. In (2.18), sin varies
with ta/T1 whereas the exponential varies an order of magnitude more slowly,
with et [(Tz/T1)(ta/T1)] ta/T3, where

(2.19) T3 T21T-1 m/.

We are thus using two time scales of different orders of magnitude; the "normal"
T1 and the very long T3. Correspondingly, we use two nondimensional time
variables, and et. The first one is the "fast" variable and the second one the
"slow" variable.

2.3. A layer-type problem. We shall now consider the other extreme of very
large damping, or very small mass, i.e.,

(2.20) mk << 2.
We may then write (2.1) as

(2.21) deY sr/s2+2 +y=O

with

tak ta km 1 T(2.22) s
fl T2

r/ 2 g2 Tee
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The small parameter is now t/. As initial conditions we take

(2.23a) y A,

(2.23b) dy/ds=B at s=0.

If we now assume an expansion of the form

(2.24) y rlkyk(s),
k=O

we notice that there is something wrong even before we start solving the problem.
The leading term yo(s) would obey the first order equation

(2.25) 2d-y + Yo 0
as

and hence cannot be made to satisfy both initial conditions (2.23).
From the exact solution we find that

(2.26a) y Ae -s/2 1/4(A + 2B)e-Zs/n.q,

(2.26b) dy/ds -1/2 Ae -/2 + 1/2(A + 2B) e-2/,

is an approximation to order unity in any interval [0, s]. We note that neglecting
the term of formal order r/in y one obtains Ae-/z which satisfies (2.25) and the
initial condition (2.23a). It gives, however, the wrong velocity at s 0 and hence
also for small values of s. The second term is needed to correct this mistake.

We see again that a correct approximation involves the use of two time scales
and two nondimensional time variables"

(2.27a) s te/T2; T2 /k,

(2.27b) s/q te/T3 T3 T2 T; m/ft.

If we consider T2 "normal," then T3 is a very short scale. Both scales must be used
in order to express a uniformly valid approximation.

The two perturbation problems considered above have the following in
common: In both cases the assumption that the expansion in e is a simple power
series in e leads to approximations which are not uniformly valid. In the first
case the leading term of such a power series is valid to order unity in finite intervals.
In the second it is valid everywhere except in a thin layer very near the origin
where the mistake in the velocity is of order unity. We note that this correction
term proportional to e-2s/, changes very rapidly in the sense that its changes are
of order unity when the changes in the variable s are of order r/. In each case one
must use two time scales of different order of magnitude in order to obtain the
solution. Thus in both problems we use a method of multiple scales (in the present
case two time scales). In layer-type problems one scale is used in one region
(which will later on be referred to as "outer") and the other scale, much smaller
than the first, is used in another region which is a very thin layer (which will later
on be referred to as "inner"). In secular-type problems both scales are used
simultaneously. In our particular example there is a carrier wave, sin t, whose
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amplitude varied slowly as e -st Note that while the secular terms were due to
incorrect perturbation methods there is a genuine secular effect; i.e., the damping
is noticeable only if one studies the system over a very long time. We notice that
the existence of two independent time scales of different orders of magnitude
gives one the small parameter e and hence permits one to use perturbation methods.
However, at the same time the existence of two such independent scales leads to the
question of which scale should be used to nondimensionalize the time variables.
Actually, we saw that in each case it was necessary to use both, i.e., the problems
are singular. In general, as has been emphasized by Van Dyke (1964, p. 80),
when the small parameter e is a ratio oftwo lengths (or times) a perturbation scheme
is likely to be singular. Of course, there are many singular perturbation problems
which do not fit into this category. An example is flow at very high Mach number,
which is discussed extensively in the literature (see, e.g., Van Dyke (1964)).

3. General concepts in perturbation problems. In this section we shall discuss
some general concepts relating to asymptotic expansions. These concepts will
be needed in the detailed discussion of specific examples in subsequent sections.

3.1. Coordinates and parameters; approximations. In perturbation problems
we consider a function f(xl,..., x,,;el,..., era) depending on two sets of
complex- or real-valued arguments, one set (x, ..., x,) called "variables" and
another set (e, ..., e,,) called parameters. The distinction between variables and
parameters is not inherent in the nature of the function but depends on the context.
The distinction may be made on physical grounds; or if the function is defined
implicitly by differential equations and boundary conditions, then derivatives
with respect to the variables but not derivatives with respect to the parameters
occur in the equations. In a perturbation problem the distinction arises from the
way the xj and ej are treated. 2 For simplicity we consider one variable x and
one parameter e. In a perturbation problem we seek approximations to y(x, e)
which should be uniformly valid for all x in a closed domain D when e is very close
to some distinguished value which without loss of generality we may assume to
be zero. We say that f(x, e) is an approximation to y(x, e) uniformly valid to
order (e)if

(3.1) limY(X," e) f(x, e)
0 uniformly for x in O.

-o ()

In this definition there is of course no distinction between which function is
the approximation and which is "the real thing." In a perturbation problem
the function y(x, ) is usually defined implicitly by various equations (differential,
integral, functional, boundary conditions). The purpose of perturbation methods
is to try to construct approximating functions f(x, e), normally by the study of
simplified equations. Often one constructs a sequence of approximations as will
be discussed below.

In a physical problem e may be a parameter such that only nonnegative real
values of e are physically meaningful. It is known that for a thorough mathematical

The expression "secular" originated in classical celestial mechanics, where a century was
considered a long time unit as opposed to short time units such as year or month.

See, however, the discussion of coordinate-type expansions in 7.



SINGULAR PERTURBATION TECHNIQUES 69

study of y(x, e) it is desirable to let e assume complex values. We shall repeatedly
deal with cases for which y(x, e) has an essential singularity at e 0 in the
complex e-plane. In this case the limit in (3.1) may depend on the path along which
e approaches zero. Unless otherwise stated we shall assume below that e approaches
zero through positive values. The results will usually be valid in some wedge of
the complex e-plane surrounding these values. We shall, however, not discuss
complex values explicitly.

3.2. Sequence of approximations. In solving a perturbation problem one
usually constructs what is, in principle, the beginning of an asymptotic expansion
of y(x, e) at e 0.

Let j(),j 0, 1, ..., be an asymptotic sequence (for $ 0), i.e.,3

(3.2) lim j+ l(e)/j(e) 0.
0

A sequence of uniformly valid asymptotic approximations to y(x, e) with respect to
the sequence j is a sequence of functions ao(x, ), al(x, e),.., such that for any j,

(3.3) lim
y(x, e) aj(x, e)

0
o ()

uniformly in D. Thus each aj(x, e) is an approximation uniformly valid to order
We refer to the j(e) as the gauge functions for this approximation scheme.

A very common method for constructing the aj(x, e) is to find a sequence
b(x, e) such that

(3.4) aj(x, e) bk(x, ).
k=0

We say that if (3.3) and (3.4) hold, the formal sumo b(x, ) is an asymptotic
expansion of y(x, ) relative to the gauge functions j(e), uniformly valid in D,
and write

(3.5) y(x, e) Z b(x, e).
k=O

For the basic properties of asymptotic expansions the reader is referred to standard
literature, for instance, Wasow (1965) or Erd61yi (1956).

To summarize, a perturbation method as understood here is a method
of constructing an asymptotic expansion, or the beginning of an asymptotic
expansion of a function y(x, ). The partial sums of (3.5) will be approximations
to y(x, ). Note, however, that the error term is an order estimate. We may rewrite
(3.3) as

(3.6) y(x, e) aj(x, e) o((j(e)).
To convert this into a numerical error estimate one needs to find functions
where ’ o(), such that ]y(x, e) aj(x, e)l =< ]() for all x in D. The numerical
aspect of the approximation scheme will not be dealt with here.

TO express relations such as (3.2) we shall often use the simpler notation j+ << j or j+ o((j).
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3.3. Regular and singular perturbations. It would be tempting to distinguish
between regular and singular perturbation problems according to whether
y(x,e) is regular or singular around e 0. This, however, leads to various
complications. One of these is the following: If we introduce x* and e* by4

(3.7a) x* function of x and e,

(3.7b) function of e such that e* 0 for e 0,

(3.7c) f*(x*, e*) f(x,

then x* is still a variable and e* still a parameter in the sense discussed above.
It may happen that f is singular at e 0 but f* is regular at e* 0. A trivial
example is, with

(3.8a) D {xlx >= 0},
(3.8b) f(x, e)= e-x/ + x,

(3.8c) x* x/, e* ,
(3.8d) f*(x*, e*) e -x* + ex*.

We say that a uniformly valid asymptotic expansion (3.5) is regular, with
respect to the domain D and the gauge functions j(e), if each bj(x, e) may be
written

(3.9) bj =//j(e)bj(x),
that is, if (3.5) has the form

(3.10) y(x, e) [3j(e)bj(x),
j=O

where the /j(e) form an asymptotic sequence which may or may not coincide
with the sequence of gauge functions ff.i(e). We do not require that the/.i(e) be
powers of e but admit, for instance,

/o 1, /3 =elne, 2 =e, etc.

Thus it is not necessary for f(x, e) to be regular at e 0. The two terms of the
right-hand side of (3.8b) do obviously not constitute a regular expansion. Less
obviously so, if j -/j eJ, then (3.8d) is not a regular expansion either since the
term ex* is not uniformly small in the domain D considered. Again we see that
regularity in e at e 0 is not necessarily a criterion for the possibility of a regular
expansion.

A regular perturbation method is a systematic way of successively constructing
the/3(e) and b(x), possibly preceded by a change of coordinates of the type (3.7).

A singular perturbation method may be defined in general as a method
which is not regular. To make a positive statement, in layer-type problems we
shall normally construct uniformly valid expansions by constructing expansions
of the form (3.10) which however are not uniformly valid and which must be

4 We shall denote the transformation (3.7) by the vague term "coordinate change."
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complemented by one or several expansions

(3.11) y(x, e) flj(e)aj(x*)
where x* function of e and x is a new variable of different order of magnitude
than x, say x* x/e,. The form is the same as that of (3.10) except that we use x*
as coordinate. Actually, as we shall see in 6, one or several of the expansions
may not be of the special form (3.10), (3.11) but will still be of the general form
(3.5). Obviously, in some sense the various expansions together must furnish
approximations uniformly valid in D. This important concept will be discussed
below.

Strictly speaking one should not speak of singular perturbation problems
but of singular perturbation methods or techniques. As an analogy consider a
differential equation with boundary conditions of such a nature that Fourier
analysis is a very natural and simple method for obtaining the solution. Still, we
do not call this problem a Fourier problem. Similarly, there are perturbation
problems for which it is natural to construct a singular asymptotic expansion.
However, it might have been possible by a clever a priori coordinate change,
to construct a regular asymptotic expansion. Or, as will be shown in 7, a regular
expansion may be constructed on the basis of the singular expansion. However, in
this paper we shall continue to use the convenient term "singular perturbation
problem."

3.4. Validity of an approximation. The aim of perturbation methods is to
obtain approximations which are uniformly valid in the given domain D. It is
typical of singular perturbation techniques (of the layer type) that one works
with approximations which are valid only in more restricted domains. It will be
necessary to define the concept of uniform domain of validity for such approxima-
tions. Thus we shall generalize (3.1).

As an example consider the functions

(3.12a) y(x, e)= e -x/ + x + e,

(3.12b) f(x, e)= x + e,

(3.12c) g(x, ) e -x/.

We shall consider y(x, e) as "the exact solution" and treat f(x, e) and g(x, e) as
approximations. The domain of the variable x will be the closed interval [0, 1].
We see that f is an approximation to y, uniformly valid to order unity on any
interval Ixo, 1] provided 0 < xo < 1, while it is not valid on [0, 1] (and not
uniformly valid on [0, 1] even if one redefines f(0, e) to be 1).

The statements just made seem to exhaust the description of where f(x, )
is a uniformly valid approximation. However, for the theory of matching it is
essential that the notion of "uniform validity" be extended. Consider the
continuum ofintervals [x/, 1] where e ranges in some open interval 0 < e < eo __< 1.
The maximum error in any such interval occurs at the left endpoint and is e-1/.
Then it is clear that given any 6 > 0 one can find an eo such that lY- fl < 6
for all e, 0 < e < % and all x in [x/, 1], i.e., in the vertically striped region of the
(x, e)-plane as shown in Fig. 3.1. The corresponding domain for an interval with
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FIG. 3.1. Domains of validity

fixed endpoints would look like the horizontally striped rectangle in the figure.
We shall simply refer to x/, 1] as an interval, with a moving endpoint (rather
than a continuum of intervals). It is natural to say that f is an approximation
to y uniformly valid on the interval x/, 1]. We note that in this statement x/ may
be replaced by any function r/such that 0 < r/(e) < 1 for e in some interval (0, eo)
provided that e << r/, i.e., lim (e/r/) 0 as e $ 0. Similarly we see that g(x, e) is an
approximation to y(x, ) uniformly valid on any interval 0, r/] provided r/(e) << 1,
and 0 < r/(e) < 1 for e sufficiently small.

The above examples suggest the following definitions.
(3.13) DEFINITION. A function w(x, ) converges uniformly to zero with respect

to (a class of functions r/(e)) if for any two v(e) and t(e) in @ it converges to zero
uniformly on the interval [t, v], i.e., for each 6 > 0 there exists an e6 such that
w(x, e)l < 6 for e < e and (e) < x <= v(e).

This definition needs considerable polishing although in practice no difficulties
occur" For values of e such that v(e) < kt(e), the interval [#, v] is empty. The most
convenient handling of this is to say that the error is zero on an empty interval
(see Kaplun (1967)). Also, the interval [t, v] may be partly outside the domain
of definition of w(x, e). This can be easily handled by trimming the functions in a
proper way. A more essential point is the following. In layer-type problems
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there will be exceptional points where the machinery we are developing here will
be needed. In the study of each such point we can always introduce a coordinate
such that the point is at the origin. Furthermore, for such points the behavior
of the function on one side may be radically different from its behavior on the
other side (a classical example is e-X/C). In studying the behavior on one side
we may use a coordinate which is positive on that side. For this reason we shall
assume that functions 11(e) are nonnegative. More precisely we shall assume that
either 11(e) > 0 or that 11(e) 0 over a whole interval (0, eo). These conventions
are not motivated yet but their purpose will be illustrated by the various examples
given later. With these restrictions on our function 11(e) we make the following
definition.

(3.14) DEFINITION. A function f(x, ) is an approximation to the function
y(x,e) uniformly valid to order (e) with respect to the function class if
(y(x, e) f(x, e))/(e) converges to zero uniformly with respect to .

Thus in (3.13) we generalize the concept of uniform convergence on an interval
to that of uniform convergence on a function class. Similarly (3.14) generalizes
the concept of uniform validity on an interval to that of uniform validity on a
function class. 5

3.5. Domains of validity. Returning to the example given by (3.12) we see
that the domain of uniform validity (to order unity) off(x, e) as an approximation
to y(x, e) is the function class

(3.15a) I {111e << 11}.

Similarly the domain of validity for the approximation g(x, e) is

(3.15b) g {11111 << 1}.

Here the functions 11() are restricted as discussed above.
The following lemma is trivial.
(3.16) LEMMA. Let be a domain of validity of an approximation f(x,e)

and let 111 < 113 < 112 with 111 and 112 in . Then the domain of validity can be
extended to include 113. The same conclusion follows if 111 << q3 << q2-

Thus a domain of validity can always be extended to include functions in-
between.

In most practical cases there will be a maximal domain of validity. When we
talk about the domain of validity we shall mean the maximal one.

3.6. Order classes. We note in our example that whether a function 11(e)
belongs to one of the domains (3.15a) or (3.15b) depends only on its order of
magnitude. It is convenient to formalize this by the following definition.

(3.17a) DEFINITION. The functions 11 and ff are o-equivalent if lim11/ as
e $ 0 exists and is different from zero and infinity.

The definition of asymptotic expansion introduced earlier is a natural but trivial generalization
of Poincar6’s definition. On the other hand, the introduction of the concepts used in (3.13) and (3.14),
due to Kaplun, is definitely nontrivial these concepts will be basic tools in the study of the nature of
matching.
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This is obviously an equivalence relation. Hence we may define the equivalence
class or order class (o-class)

(3.17b) ord r/ {1 o-equivalent to r/}.
We may also define the following more inclusive relation.

(3.18a) DEFINITION. The functions r/ and are O-equivalent if there exist
constants A and B, 0 < A < B, such that A < /r/ < B for e sufficiently small.

Similarly we define the O-class

(3.18b) Ord {1 O-equivalent to

There is a natural way of introducing a partial ordering among the equivalence
classes"

(3.19a) ord/ <ord and Ord <Ord
both mean

(3.19b) lim r// 0, i.e., r/<< .
The ordering is only partial" there may be equivalence classes which are incom-
patible, i.e., distinct but neither being greater than the other. Since ord r/1 < ord q2

implies Ord r/1 < Ordr/2 the class Ord q consists of pairwise incompatible
o-classes.

The concept of order classes would probably play an important role in any
rigorous theory of singular perturbations. Also, the structure of sets of such
classes leads to various interesting problems. For further details the reader is
referred to Kaplun (1967).

3.7. Overlap. The domains (3.15a) and (3.15b) are each half infinite intervals
which in an obvious sense are open. The domains of validity have the intersection

(3.20a) y f-I @g {r/le << q << 1}.
This is called the overlap domain of the two approximations (3.12b) and (3.12c).
More precisely it is the overlap domain to order unity.

At the same time, together, they cover the entire interval under consideration.
g includes the function r/-- 0 and all "infinitesimal" values of x, i.e., all x x,.
q o(1). y includes all constant functions q a, 0 < a _<_ 1, and enough
infinitesimals to overlap with g. We then say that the union of the two domains
is the complete interval

(3.20b) @ U @g [0, 1].

We shall use the expression that the functions f and g of (3.12b), (3.12c) together
give an approximation to the function y of (3.12a) which is uniformly valid to
order unity on the interval [0, 1.

3.8. Limit processes. An important tool in singular perturbation techniques
is that of a limit process. We define the q-limit of a function y(x, e) as follows.
First we introduce the variable x, by

(3.21) r/x, x.
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Then the q-limit of f is

(3.22) lim,f=limf ase$0 withx, fixed.

Thus given the proper continuity of f we may rewrite f as a function of x, and
e and then put e 0. To illustrate this concept consider y(x, e) as defined by
(3.12a). Then

(3.23a) lira, y e -x/ for r/ e,

(3.23b) lim, y 0 for r/ x/,
(3.23c) lim, y x for r/= 1.

3.9. A fundamental lemma. The following lemma is trivial and its proof
will be omitted. It is, however, fundamental for the theory of matching (cf. (3.16)).

(3.24) LEMMA. Let f(x, e) and g(x, e) be approximations to y(x, e) and let
be an overlap domain to order ((e). Let rll and r12 be in and assume rll << r/<< r/2.
Then

f(x, e,) g(x, e)
lim, (e)

0.

3.10. Matching. Letfand g be two asymptotic approximations to y. They are
said to match if their domains of validity overlap. If for instance f and g have been
found from approximate equations but g still involves one as yet undetermined
constant, then one may determine this constant by matching, i.e., by comparing

x=31

FIG. 3.2. Matching in overlap domain
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them in their domain of overlap. In principle,6 the matching may be carried out
by applying (3.24). Taking the lim, means letting e approach zero on the curve
x q(e) as shown in Fig. 3.2. Here vertical stripes indicate part of the domain of
validity of f and horizontal stripes refer to the domain of validity of g.

3.11. The extension theorem. Clearly, in order to use matching, we need
criteria for determining as large a portion as possible of the domain of validity of
an approximation. The following theorem, due to Kaplun, will play an essential
role in determining domains of validity for the examples in 5 and 6.

(3.25) THEOREM. Let w(x, e) tend to zero uniformly with respect to a class of
functions 9 which is maximal and let all functions of an o-class Y be in 9. Then
there exists an o-class X in 9 such that X < Y.

Proof Assume first that Y ord 1. To fix the ideas, consider the interval
0 =< x =< 1. By assumption, given a constant c > 0 and a 6 > 0 one may find an
e > 0 such that w(x, e) < for c =< x =< 1, 0 < e <_ e. The trick of the proof is to
use this property for a sequence of constants c, and a sequence 6,, both tending
to zero. One may, for instance, put , c, 1/n. Since all constants 1/n belong
to ord 1, we may, for each n, pick an e, such that w < 1/n for 1/n < x <= 1;
0 < e _<_ e,. We now define a function r/(e) by the requirement rl(e,,+ ) 1In and
assume that q is a linear function of e between any two adjacent values e and
e+ . We can now find an X such that ord r/ < X < Y. It is easily seen that any
such X is in 9. In the general case, when Y Ord , we replace x by x/ in the
above argument. Obviously the theorem can be proved with "<" replaced by
">". Also, the proof shows that the whole 0-class corresponding to X is in 9.

The extension theorem shows that a maximal domain of validity cannot
have an infimum or a supremum. It is open in the sense that for each 0-class Y
there exist 0-classes X and Z in the domain such that X < Y < Z.

We shall now illustrate the technique of singular perturbations and the
underlying concepts and heuristic ideas by several model examples.

4. First model equation.
4.1. Formulation of problem. As Example I we take a function y(x, e) defined

implicitly by the differential equation

(4.1a)
d2y dy

e-dx2 + a 2bx 0

and the boundary conditions

(4.1b) y(0, e) 0,

(4.1c) y(1, e) 1.

Here a and b are constants, independent of e.
By solving the above equation we find the explicit expression

1 e-X/
(4.2) y=(1-a-b+2eb)l_e_X/ + bx2 +ax-2ebx=+O(e-1/),

How it is done in practice will be discussed later.
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where 37 is obtained from y by omitting the term e-1/e in the denominator of the
first term of y.

We shall now show how one may construct an asymptotic expansion of
y by a method of singular perturbations applied to (4.1a), (4.1b), (4.1c). The results
may be analyzed by comparison with (4.2). We shall seek an asymptotic expansion
uniformly valid on the interval [0, 1] as e tends to zero through positive real
values. As gauge functions we shall use the sequence (ek), k 0, 1,.... A function
(e) is called transcendentally small if it is of smaller order of magnitude than all
gauge functions. The function e-1/e is then transcendentally small relative to
our gauge functions. Using only the ek as gauge functions we cannot expect
our construction to distinguish between y and 37 in (4.2).

4.2. Perturbation methods. In a regular perturbation method we would
assume that y(x, ) has an asymptotic expansion

(4.3) y - e’f,(x).
k=0

(The e might of course have to be replaced by less simple functions of e.) By
insertion of (4.3) into the equation and boundary conditions for y and grouping
terms of the same order in e one finds an equation and boundary conditions for
fo, then an equation and boundary conditions for fl which may assume that
fo is known, etc. In our case the equation for fo is

(4.4a) dfo/dx a 2bx O.

This equation is of first order. Thus it will be impossible to satisfy both boundary
conditions (4.1b) and (4.1c). For reasons to be discussed later (after (4.52)) we
impose the second boundary condition

(4.4b) fo(1) 1.

This determines fo to be

(4.5) fo 1- a- b + ax + bx2.

The value of fo at x 0 is 1 a b. Excluding the accidental case of a + b 1
we find that fo(0)-# 0. Thus while fo is, in some sense to be determined, an
approximation to the exact solution y, the error at x 0 is of order unity. Hence
fo is not uniformly valid near x 0. We thus have a singular perturbation problem.
To get an approximation which is uniformly valid we shall have to complement
fo by an approximation valid near x 0. We shall now show how such an
approximation is constructed. The justification of the method will follow later.

We introduce the stretched variable x* defined by

(4.6) Cx* x.

Expressed in terms of this variable, (4.1a) becomes

d2y dy
(4.7)

dx *--- + x* ea 2e2bx* O.
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The introduction of this variable is based on the assumption that except very
near to the origin fo(x) is a good approximation. More precisely, there is a layer
of thickness e when y changes from the value 0 at x 0 to values close to fo(X).
Because of this rapid change the term dy/dx does not have its "formal" order,
which is unity, but is actually of order 1/e. The introduction of the variable
formalizes this order determination since dy/dx (1/e)dy/dx*.

We now assume that the approximation to y(x, e), valid near the origin,
has an asymptotic expansion of the form

(4.8) y - go(X*) + egl(x*) +

From (4.7) we see that go must satisfy the equation

(4.9a)
dZgo dg0
dx.2 + x* O.

Since this approximation is supposed to be valid near the origin, the boundary
condition at x 0 must be satisfied, i.e.,

(4.9b) go(0) 0.

In determining fo we could only impose one boundary condition on fo and had to
relinquish the condition at x 0. We are now faced with the problem of having
too few boundary conditions: The second order equation (4.9a) requires two
boundary conditions and while it is natural to impose (4.9b), it does not make
sense to impose the condition at x 1 since go is supposed to be an approximation
only for x near the origin.

4.3. Formal matching. We are now employing a technique of singular
perturbations in that we are using two scales. The approximation fo(X) is obtained
by using a scale of order unity (relative to the variable x). The approximation
go(x*) is obtained by using a scale of order e. This scale is used only near the
value x 0. We say that a boundary layer (or layer of rapid transition) of thickness
e exists at the origin. In this layer the solution fo(x) is not valid, but we use instead
the boundary-layer solution go(X*). Since the scale e is used only in this narrow
region we are dealing with a layer-type problem. An essential feature of a layer-
type singular perturbation technique is that the missing boundary condition
for the boundary-layer solution is supplied by matching with the solution fo(x).
In our case we may use as a formal matching condition

(4.9c) go(D) fo(0)=- 1 a b.

This condition may seem very surprising. For instance, go is supposed to make
sense only for x small and in (4.9c) we are using it at x* which would also
mean x if e were fixed. At the same time we are comparing go(D) with the
value of fo(x) for x 0. At present we only use the very vague justification that
for e very small there are values of x near zero such that x/e is near infinity and
where both fo and go are valid approximations. One of the main objects of the
present paper is to analyze and formalize this justification. This will lead to a
general method of matching which, in the present special case, will imply (4.9c).
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Using the boundary condition (4.9b) we find

(4.10a) go C(1 e-X*).
The matching condition (4.9c) then gives

(4.10b) C= 1-a-b.

4.4. Higher order approximations. We have seen that the expansion (4.3)
cannot be expected to be valid at the origin. We call it an outer expansion, while
the expansion (4.8), expected to be valid near the origin, is called the inner

expansion, v The first terms of each expansion have been determined and we shall
now find the higher order terms. From (4.3) we find that fl satisfies

(4.11a) df d2f 2b.
dx dx2

Again we require that fo + efl satisfy the boundary condition at x 1 which
gives

(4.1 lb) f(1) =0,

and hence

(4.12) fl 2b 2bx.

From (4.7) we find that g satisfies the equation

dZgl dgl
(4.13a) xx, t- x* a 0.

The boundary condition at x 0 gives

(4.13b) gl(0) 0.

Hence,

(4.14) g =Cl(1-e-x*)+ax*,

where C1 is a constant to be determined by matching. Obviously, the simple
matching principle (4.9c) will not work. We replace it by the more general, but
rather vague rule, which is a generalization of the justification given for (4.9c):

(4.15) fo + efl for x small must agree to order e with go + egl for x* large.

In this paper we apply the terms "outer" and "inner" to expansions, limits, variables and regions.
The reason for the use of the terms "outer" and "inner" is historical. Its origin dates back to the classical
boundary-layer problem of viscous flow past an object. (See 7.3.) Actually the terminology will be
incorrect for the flow inside a domain also discussed in 7. (In this case the inner region surrounds
the outer region.) We shall, however, follow the historical usage. Thus the inner region will always be
small, in our case of order e, relative to the outer region.

In the discussion after (4.31) we shall present an equivalent way of characterizing the outer limit
as the first principal limit. In a sense to be described it takes precedence over the second principal
limit which is the inner limit.

See also 4.14.
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For x* large the exponential terms are negligible and

(4.16a) go + egl - 1 (a + b) + e(C + ax*).

For x small we have

(4.16b) fo + efl - ax + 1 -(a + b) + 2be.

Here we have neglected terms of second order in x and e, i.e., bx2 2ebx. Thus
(4.16a) and (4.16b) agree if we put C1 2b, i.e.,

(4.17) 81 2b(1 e -x*) + ax*.

Continuing the same reasoning we find

(4.18) fk 0, k > 1,

(4.19a) 82 bx*2 2bx*,

(4.19b) gk 0, k > 2.

4.5. Comparison with exact solution. By asymptotic construction we have
obtained all the terms of the inner and the outer expansion. In what sense have we
obtained an asymptotic approximation to the exact solution? To answer this we
need the concept of domain of validity introduced in 3.

First we consider fo. Let x be in the interval It/, 1], where q is some function
of e. Since

(a) [Y fol [1 a b[ e-x/ + e. bounded function,

the maximal error occurs at the left endpoint where x q. The error tends
uniformly to zero in this interval provided e << q. Thus,

(4.20a)
the function fo is an approximation to y uniformly
valid to order unity on the domain 1 {t/le << }.

Similarly,

(4.20b) fo + efl is uniformly valid to all orders ek on 91.
It is clear that validity to order e is the essential feature. Validity to higher orders
would be spoiled by a simple modification, such as introducing a term cx2 into
the equation (4.1a) or by making y(1, e) 1 + e2.

The validity of the inner expansion is as follows"
Domain of validity of go to order unity is

(4.21a) 92 {q[/<< 1}.
Domain of validity of go + egl to order e is

(4.21b) 93 {qlq << x/}.
The reason for the smaller domain in the second case is that

(b) I(Y go 381)3-11 bxZ/e 2bx.

Finally, go + egl + eZga is the exact solution, neglecting the transcendentally
small term e-1/. This is clearly an accident and would again be spoiled by trivial
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modifications of the problem. The domains of overlap are, to order unity and e,
respectively:

(4.21c) for fo and go" 91 (q 92 {r/lg << r/ << 1};
(4.21d) for fo + efl and go + egl" 1 f’l 93 {r/le << r/<< x/}.

4.6. Matching reconsidered. We can now see a posteriori why the matching
methods used in the construction earlier worked. Consider first fo and go. Their
overlap domain is given by (4.21c). For any r/in this domain,

(4.22) lim, (fo go) 0

according to the fundamental lemma (3.24). For any limit with r/in the overlap
domain, x r/x, is small and x* rlx,/e is large. More specifically,

(4.23a) lim, x 0 for r/<< 1,

(4.23b) lim, x* oo for e << r/.

It follows that, for r/in the overlap domain,

(4.24a) lim, fo fo(0),

(4.24b) lim, go go(C)

Since the numbers given by the right sides above are finite, (4.22) implies (4.9c).
Similarly,

(C) (J; + gfl) (go + ggl) bx2 e2bx + (1 a b)e-* + e2be -x*.

With r/in the overlap domain (4.21d), lim, of the exponential terms divided by
e vanishes. Furthermore,

lim. [(br/2x2n/g) 2br/x.] 0(d)

since r/<< ,,/7. Hence,

(fo + e/l)- (go + eg,)
(4.25) lim, 0.

This shows that the matching obtained by use of (4.15) was indeed correct. 8

We have seen that the formal matching rules (4.9c) and (4.15) may be justified
by the application of Lemma (3.24). As stated in the discussion of that lemma
matching is by its nature a comparison of two approximations in their domain
of overlap.9 On the basis of this one may of course derive formal rules and recipes
for matching in which the concept of overlap does not appear explicitly. Such
rules may, however, be of limited validity, as is certainly the case with (4.9c).

In subsequent sectio.ns we shall see that matching is used not only to fix the values of certain
constants but also to determine the function fl(e) of (3.10) and (3.11).

Note that for the matching theory it is crucial to use intervals with moving endpoints in discussing
the domain of validity of an approximation. If we had used only the fact that fo is valid on any interval

Ixo, 1], x const. > 0, then the whole basis for matching would be missing. Also the meaning of such
vague statements that fo is valid "away from the origin" and go "near the origin" has now been made
precise with the aid of the extended concept of interval.
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On the other hand, once we know a region of overlap, matching can always be
carried out, e.g., by applying Lemma (3.24).

This, however, leads us to one of the central problems in perturbation theory"
How can one justify a priori that two approximations have a domain of overlap?
Some heuristic ideas about this will now be discussed.

4.7. Formal limits of equations and formal domains of validity. In 3 we have
defined /-limits of functions, and also domains of validity. Analogous concepts
will now be introduced for equations.

As before we define x, by x r/x,. Introducing this variable into (4.1) we
obtain

e. d2y 1 dy
(4.26) r/2 dx2, 1 dx,

a- 2rlbx, O.

Each term has a formal order in e determined by the function of e occurring
explicitly. For instance, the first term is formally of order eq-2, since we consider
dZy/dx2, to be formally of order unity. Similarly, x, is considered to be of order
unity formally; hence the last term is of order r/. Since we may multiply (4.26)
by an arbitrary function of e, it is only the relative order of terms which is impor-
tant. For each q we now multiply (4.26) by a suitable function of e such that the
highest order terms (or term) are of order unity, and then take the limit of the
equation as e tends to zero. Note that in this limit x, is fixed; similarly derivatives
dZy/dx2, and dy/dx, are formally unchanged. We are actually applying the limit
process lim, to equation (4.1a). We attach the qualifier "formal" since actually
dy/dx, is a function of both x, and e and will change as e tends to zero; we are
not even concerned whether this limit exists. However, the limit must exist
wherever functions of e are indicated explicitly. Thus we must require that q
be compatible with unity and with e; i.e., 1 q-1 and e. q-1 must tend to definite
values, possibly infinite, as e tends to zero. After the limit has been carried out we
may rewrite the resulting equation in x again.

Depending on the o-class of q we then find the following formal limits1

of (4.1a) (to avoid irrelevant complications we take q 1 and q e in deriving
(4.27b) and (4.27d) respectively):

(4.27a) ord r/ > 1

(4.27b) ord r/ =ord 1:

(4.27c) ord e < ord r/ <ord 1:

(4.27d) ord 7 ord e"

-2bx 0,

dy/dx a 2bx 0,

dy/dx 0,

dZy dy
+ yx=

10 This is an oversimplified version of the possible limiting equations. (i) One may introduce a
coordinate change ofthe type (3.7) before carrying out the limits. An example ofthis is the transformation
due to Bush, discussed in 6. (ii) One may consider different orders of magnitude of the dependent
variable. The classical example is the treatment of the stream function in flow at high Reynolds numbers
(see, e.g., Van Dyke (1964)). An interesting example is the corner-layer, actually proposed by Kaplun,
in the model equation discussed in Cole (1968, p. 32ff.).

An important modification of the idea of limiting equations is discussed after (6.3).
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(4.27e) ord t/ < ord e,: d2y/dx2 O.

Above, the equation on the right is obtained when q is in the function class on
the left.

We note that if q is such that lim, applied to the "full" equation (4.1a) yields
(4.27c), then the formal q-limit of (4.27b) also yields (4.27c). In a sense (4.27b)
is "rich enough" to contain (4.27c). We make the following definitions.

(4.28) DEFINITION. If E is an equation and lim,1 E El, lim,2 E E2 and
also lim,2 E1 E2, we say that E contains E2 (relative to E).

(4.29) DEFINITION. The formal domain of validity of an equation F, relative
to the "full" equation E, is the ord t/such that lim, E is either F or an equation
contained in F.

According to the definition just made, the validity of (4.27b) is

(4.30a) {t/lord t/> ord e,},
and that of (4.27d) is

(4.30b) 2 {t/lord t/ < ord 1}.
(The notation is the same as in (4.20a) and (4.21a).) One may object that (4.27a)
is a nonsensical equation. However, the point is that in the expression

d2y dy e, d2y
(d) e,-l--x2 + + a 2bx =_

t/
2 dx

dy- -x + a- 2bt/x

the last term is of larger order than the other terms provided 1 << t/.

4.8. Outer and inner limits and equations. Clearly (4.27b) and (4.27d) are the
two important equations; one of them or both contain each of the three other
equations but neither of them is contained in the other. We shall call them the
principal equations. They are obtained by the limit processes indicated above.
As representative of ord 1 we take the function t/ 1; the corresponding x, is
then x. Similarly we take e, as representative of ord e,; the corresponding x, is
x* as defined by (4.6). We define

(4.31a) outer limit: limou F(x, e,) lim F as e, $ 0, x fixed;

(4.31b) inner limit: limin F(x, e,) lim F as e, , 0, x* x/e, fixed.

We call (4.27b) and (4.27d) the outer and inner equations respectively and x and
x* the outer and inner variables. The outer and inner limits are called principal
limits; the lim, with e, << t/<< 1 are the intermediate limits. In the present case
we spot the principal limits by the fact that they give the two principal equations.
The use of (4.4a) and (4.9a) for determining fo and go respectively can now be
justified by the fact that they are the principal equations. Also, the assumption
made earlier that the boundary layer is of thickness e, can now be seen to depend
on the fact that the inner limit is principal.

Even within the principal limits there is a hierarchy. The outer limit being
in a sense the "first" limit since fo can be determined by itself but g0 must be
determined by matching with fo. In a physical problem this hierarchy is often
natural. The solution fo represents an unperturbed state. A perturbation of
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magnitude e is introduced; this may mean literally introduced in an experiment
or in the theoretical consideration of a small effect which the theory previously
had neglected. The effect of the perturbation is represented mathematically by
adding the term e(d2y/dx2) to the equation for the unperturbed state. Typical
for a layer-type singular perturbation problem is that while the perturbation
is of magnitude e its effect may be of order unity although only in a very small
region. In our case the effect of the perturbation is of order unity near the origin
as expressed by go(x*), a fact related to the new boundary condition imposed
there which was not imposed on the solution for the state fo. Thus often purely
physical considerations determine which is the first principal equation. 11 The
above ideas are illustrated by the discussion of flow at high Reynolds numbers
in 7; in fact (4.1), with b 0, was introduced by Friedrichs (1953) as a model
equation for this case.

Returning to our main problem of heuristic justification for our asymptotic
construction we see that while the outer and inner equations have been justified,
the principle of matching has not been explained. We have already seen that
matching offo and go can be explained a priori ifwe can find an a priorijustification
for their respective domains of validity. For this we again rely on a study of limits
of equations.

4.9. Heuristic principle for domains of validity. As the basis for our discussion
we shall use the following heuristic principle due to Kaplun.

(4.32) PRNC’LE. If y is a solution of an equation E and E* is an approximate
equation, then there exists a solution y* of E* whose actual domain of validity
(as an approximation to y) includes the formal domain of validity of E* (as an
approximation to E).

In subsequent sections we shall discuss important modifications of this
principle. The formulation above is so to speak only a starting point for the
discussion. It ceases to be valid when small terms have large integrated effects. 12

In our present example, however, this principle works: The domains of validity
of(4.27b) andfo on the one hand and the domains ofvalidity ofgo and (4.27d) on the
other hand coincide exactly.

Earlier we justified the asymptotic results by comparison with the exact
solution. We now have enough material for an a priori justification. We shall
review this, using ideas presented above. We perform the various limits on the
equation (4.1a). This leads automatically to the two principal limits and to the
two principal equations (4.27b) and (4.27d). We notice that these equations
together cover the entire interval [0, 1] (which would not be true of any single

11 Thus the first principal (outer) limit is characterized both by the fact that when applied to the
equation it gives a distinguished approximated equation (as described above) and when applied to the
solution it gives the unperturbed state. In a reasonable physical theory these two characterizations are
equivalent. As will be seen from Examples II and III the inner limit need not correspond to a distinguished
equation.

12 The basic assumption underlying perturbation methods is a sometimes very vague notion that
"neighboring equations have neighboring solutions." The heuristic principle (4.32) and modifications
thereof are examples of this. We can formalize clearly the idea of solutions being close (as was done in

3). However, the basic difficulty is to decide when equations are close; this would involve an estimate
of integrated effects. These difficulties will be discussed in 5 and 6.
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equation). Equation (4.27b) is valid for any finite x since its domain includes
functions of order unity. Equation (4.27d) is formally valid for all infinitesimal
values of x, i.e., it is valid on any interval [0, r/] provided r/<< 1. Equation (4.27b)
is also formally valid for infinitesimal values ofx provided their order ofmagnitude
is greater than e. The domain of overlap is

(4.33)

We now use the heuristic principle (4.32). It follows that (4.27b) must have
a solution fo valid in the domain (4.30a). Since this includes the point x 1,
as explained above, it must satisfy the boundary condition at x 1. This deter-
mines the solution completely to be (cf. (4.5))

(4.34) fo =(1-a-b)+ax+bxz.
Similarly, equation (4.27d) must have a solution go satisfying the boundary
condition at x 0. This gives

(4.35) go C(1 e-X*),
where the constant cannot be determined by the condition at x 1 since the
domain of validity of go cannot be expected a priori to include finite x. However,
we have now established the domain of overlap of fo and go and may now apply
Lemma (3.24). As shown earlier (see (4.22)) this gives the correct matching.

4.10. Higher order terms. The heuristic ideas introduced above may also be
used to justify the construction of higher order terms. We write

(4.36) Y fo + ell.
Then (4.1a) gives

(4.37) e + e. 2b + e 0.

This is an exact equation. We approximate to fl by fl obeying

(4.38a) df/dx + 2b O.

The domain of validity to order e is still given by (4.30a). From (4.1c) it follows
that the proper boundary condition is

(4.38b) f(1) 0,

and hence,

(4.39) f 2b- 2bx.

Similarly we put

(4.40) Y go + e
which gives

(4.41a) e2d +e -a-2bx=O.
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The exact boundary conditions are

(4.41 b) 1(0) 0,

(4.41c) 1(1) (a + b)/e.

We note, considering the definition (4.40) and the expression for go given by
(4.10), that the problem posed by (4.41) is an exact reformulation of the original
problem (4.1). We shall now try to attack problem (4.41) directly with the methods
previously applied to problem (4.1). To find an inner solution we approximate to

1 by a function g satisfying an equation analogous to (4.27d)"

(4.42a) e,
2d2gl

-d---x2 + e
x

a=0

and the boundary condition

(4.42b) gl(0) 0.

We expect the second boundary condition to be replaced by some matching
condition. However, the corresponding outer equation cannot be formed by our
previous restricted method of limit processes. The outer limit of (4.41a) does not
yield a differential equation. In fact, both terms containing derivatives vanish
under any lim, with e << /. On the other hand, if/= , then lim yields the inner
equation (4.42a). However, if we assume an outer approximation of the form

(4.43) - qo/ + q 1,

then applications of the outer limit yield

(4.44a)
dqo

a 2bx O,
dx

(4.44b) qo(1) a + b,

(4.44c)
d2qo dq
dx2

-q- O,

(4.44d) q 1(1) 0

with solutions

(4.45a) q o ax -k bx2,

(4.45b) q 2b(1 x).

The solution g of (4.42a,b) which matches with (4.45a,b) is then the one given
previously by (4.17). The form (4.43) is suggested by the outer boundary condition
(4.41c) for 1. Deriving the equation for qo amounts to applying the outer limit to
(4.41a) keeping el fixed; this is necessary because when x is of order unity the
dependent variable is of order e- rather than of order unity (cf. footnote 10).

We note that by definition go + egl approximates to y to order e in the same
domain in which gl approximates to 1 to order unity. As shown by (4.21b) the
actual domain of validity ofgl is 93 {qlq << 1/2}. On the other hand, the formal
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domain of validity of (4.42a) seems to be 92 {/l/<< 1 }. This seems to contradict
our heuristic principle (4.32). However, reconsidering the basis for the principle,
we are looking for the "effect" of the term -2bx. In a linear equation this effect
is completely independent of the effect of the term (-a). Hence we neglect the
third term and compare (- 2bx) with the derivatives. For/3 << /the first derivative
dominates and we find that (-2bx) is formally smaller than /3(d,l/dX) when
t] << /31/2, i.e., exactly in the domain 93 The largest part of the effect of (-2bx) is

(a)
1

2bs ds
bx

We note that in 93 this is o(1). Thus in 93, 1 is never large (if we abstract from
the effect of the term (-a)).

In a practical computation one would of course never compute an outer
approximation to such as is given by (4.43). Our investigation of served only
the purpose of showing that the heuristic principle (4.32), suitably interpreted, still
applied to the domain of validity ofg. The functionsf andfl could be discussed
in a similar manner. However, no difficulties arise in that case.

The justification for the construction of f and gk for k > 1, shown earlier,
proceeds in the same way.

As further positive and negative illustration of our heuristic principle we
notice that equation (4.27c) has a solution

(4.46a) yl= 1-a-b

which is uniformly valid to order unity in the same domain where (4.27c) is valid.
Similarly, (4.27e) has the solution

(4.46b) ym=(1-a-b)x//3

which is valid to order unity in the domain where (4.27e) is valid. Neither solution
is needed in the asymptotic construction because each is contained in solutions
already used. Equation (4.27c) is contained in (4.27b) in the sense of Definition
(4.28). We may then also regard (4.27c) as an approximation to (4.27b). By our
heuristic principle (4.32), equation (4.27c) has a solution, namely (4.45) which
is an approximation to fo uniformly valid to order unity in the domain where
(4.27c) is a formally valid approximation to (4.27b). In the same sense, the solution
(4.45) is an approximation to go in the domain where (4.27c) is an approximation
to (4.27d). In this sense the function of (4.45) is contained in both fo and go.
Similarly, (4.27e) is contained in (4.27d), and accordingly, (4.27e) has a solution,
namely m of (4.46b), which is contained in go. The function (4.46b) does not match
with fo; it gives the initial slope at x 0 but does not level off to a constant which
can be matched with the constant part of j for x small. There is no reason for
overlap since the domains of validity of (4.27b) and (4.27e) do not overlap.

4.11. Composite expansion. We have found two expansions which together
cover the entire interval [0, 1 although neither is uniformly valid in the entire
interval. Thus we have "in principle" obtained a uniformly valid solution. For
practical purposes, which is always a prime consideration in applied mathematics,
we may want to construct one expansion which is actually uniformly valid in the
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whole interval [0, 1]:

(4.47) y - ekhk(x, ).
Here ho should be uniformly valid to order unity in the entire interval [0, 1].
This will be achieved ifwe can construct ho in such a way thatfo and go approximate
ho to order unity in the same domains (or at least in domains together covering
[0, 1]) where they approximate the exact solution to order unity. There are several
ways of constructing such an ho. In the present case the most convenient method
is the additive one. 13 One puts

(4.48) ho fo + go (common part of fo and go).

The common part is the constant 1 a b. This yields

(4.49) ho (1 a b)(1 e -x/) + ax + bx2.

The justification is that we write

(4.50) Y fo + error + O(e).

Now fo has an error of order unity only for x O(e). Thus to calculate the error
to order unity we need an equation for

(4.51) z y fo
which is valid in some domain N << No where No is some function >> e. Using
reasoning explained above one finds that a first order approximation to z is

(4.52) z

which gives (4.49).

4.12. Position of boundary layer. So far we have tacitly assumed that the
boundary layer occurs at x 0. Assume instead that it occurs at a point xo.
We then define x, by NX, x Xo, in particular, x* by ex* x Xo. Proceeding
as above we are led to a boundary-layer solution Ae-(x-x)/ + B. However, since
e is positive, the exponential will tend to infinity wheneyer x < xo. Matching is
then impossible if Xo > 0. By the same argument we see that if e < 0, then the
boundary layer occurs at Xo 1.

4.13. Inner and outer expansions and limit-process expansions. We have
constructed two asymptotic expansions of y:

(4.53a) y- ekfk(x),
k=0

(4.53b) y- eg(x*).
k=0

The first expansion, the outer expansion, is valid except near the origin; the second
one, the inner expansion, is valid near the origin. These are the two principal
expansions; their-domains of validity cover the entire interval [0, 1], and no other
principal expansion is needed. More precisely we require the following for outer

For other methods, see Van Dyke (1964).
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and inner expansions: The domains of validity to order unity of fo and go should
have a nonempty intersection (overlap domain) and their union should be the
entire interval [0, 1]. The domains of validity to order e of fo + efl and go +
should have the same property. These requirements are symmetrical for the
two expansions. However, as explained earlier, it is fo which is being perturbed,
and go describes the result in the thin region where the result of the small perturbing
term is of order unity. Thus (4.53a) is the first principal expansion, and as a practical
consequence, fo is determined before go.

From the exact solution, or from (4.53) we find

(4.54a) limout Y fo,

y-fo
(4.54b) limou f,

and we thus obtain fo + ef + by a repeated application of the outer limit.
Such an expansion will be called an outer-limit expansion. Similarly, a repeated
application of the inner limit gives the inner-limit expansion go(X*) + egl(X*) + ....

In the present example the outer-limit expansion is actually identical with
the outer expansion (the analogous statement is true for the inner expansion).
They are, however, always conceptually different, and examples in subsequent
sections will show that they may be actually different. There is no a priori reason
why the inner-limit expansion should match the outer-limit expansion. On the
other hand, the method used here of systematically employing limit processes
to equations (rather than to functions) and then studying the domains of validity
of solutions of these equations gives heuristic reasons why the outer and inner
expansions built up of such solutions do match.

4.14. Note on terminology. In Kaplun and Lagerstrom (1967) the notion of
characterizing an expansion by its domain of validity was emphasized. The
term "intermediate expansion" was used in the sense in which "inner expansion"
is used here, whereas the term "outer expansion" was still used to denote a limit
process expansion. However, a term must be introduced to denote the expansion
corresponding to the outer one but determined by its domain of validity.
Furthermore, "intermediate expansion" may wrongly suggest an expansion
obtained by repeated application of some intermediate limit. For this reason a
deliberate change of terminology has been made in the present paper. The terms
"inner" and "outer expansions" refer here to expansions defined by their domains
of validity. Limit-process expansions are explicitly labeled as such. While this
differs from the terminology presently used in the literature, the change was
considered desirable for reasons stated. It also serves to emphasize that expansions
defined by their domains of validity are of more basic importance than expansions
defined by limit processes.

4.15. Techniques of matching. As discussed above the basis for the matching
of two asymptotic expansions is the existence of a domain of overlap. As an
actual technique for utilizing this, one may write out

(4.55) do fo go,
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where f0 is given by (4.5) and go by (4.10a). It is immediately obvious that do
can tend to zero under an intermediate limit only if one puts C 1 a- b.
Similarly we define

(4.56) dl (f0 _qt_ e/l) (go -Ji-/gl)

and it is obvious that the constant C1 in (4.14) must be put equal to 2b in order
for the q-limit of die-1 to tend to zero under some intermediate limit. We see
that the technique of the intermediate limit makes precise and justifies the
matching rule (4.15) as well as the vague justification of (4.9c) given right after
that rule. The connection is that under an intermediate limit x tends to zero
and x* to infinity. It is of course unnecessary to actually use the x, notation,
except for pedagogical purposes or for very tricky cases. Neither is it necessary
to use any particular t/. As a matter of practical technique one usually does not
try to determine a priori the extent of overlap but takes an experimental approach
instead. As long as there is some q-region such that the q-limit makes the difference
vanish, one assumes that there is overlap. Sometimes, however, it is necessary to
exercise a little more caution, as will be illustrated in subsequent sections. Formal
success in matching is not always a guarantee of correctness of matching.

Thus the analysis of why asymptotic expansions match leads to a very simple
technique for actually carrying out the matching. 14

The technique of applying the intermediate limit to the difference of two
partial expansions may be compared with the older5 technique of interchanging
outer and inner limits. For instance, (4.9c) may be written equivalently,

(4.57) limot limin Y limin limout y.

Also applying the inner limit twice (i.e., repeatedly, as illustrated by (4.54)) to

fo + ef one finds

(a) (1 a b) + (ax* + 2b),

whereas applying the outer limit twice to g0 + egl (with gl given by (4.14)) gives

(b) (1 a- b) + ax + eC1.
Requiring (a) and (b) to coincide we find the correct result C 2b.

We see that for the example of the present section the two techniques give the
same result. We shall show why this is so by considering a generalization of the
present problem.

The general structure of our problem is the following. We have an outer
expansion, which at the same time is an outer-limit expansion

(4.58a) y - eJf(x),
j=0

where each f has a Taylor expansion

(4.58b) fj(x) fkxk.
k=0

4 A large number of examples are found in Cole (1968). The basic ideas as well as the technique
were introduced by Kaplun in the mid-fifties.

15 Some references are given in Lagerstrom (1957).
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The "error," that is, y minus the outer expansion, consists of terms which die
out exponentially for large values of x*. These terms may be neglected, to any
order e", whether we do matching by an intermediate limit (where e << r/) or by
applying the outer limit repeatedly to the inner expansion. Thus the inner expansion
(which is also an inner-limit expansion) is, for matching purposes, essentially a
rewrite of the outer expansion in inner variables. Whether we use intermediate
limits or rewrite in inner variables, we have to use the Taylor expansion (4.58b)
of the outer expansion. Thus we have to consider terms of the form

(4.59) Tjk fjk,Jxk fjkeJl/Ikxkl fjk,J+kx *k.

Consider now matching to order e". Define

(4.60a) e(x) n + terms of the outer expansion,
j=0

(4.60b)

(4.60c)

(4.60d)

We see that Tjk will occur in B,

n + 1 terms of the inner expansion,

A,* n + terms of the inner-limit expansion of A,,

B,* n + 1 terms of the outer-limit expansion of B,.

(c)

It will then be written

(d)

if and only if

j+k=m<=n.

The criterion for its occurrence in A,* is the same. In fact, neglecting exponentially
small terms, we see that B, consists entirely of rewrite terms such as (d) and is
identical with A,*. Conversely, consider a term such as (d) with m <= n. Rewritten
in outer variables it becomes

(e) fjkm k.xk.

Since 0 =< m k < n, this term occurs in B.*. Hence we find the matching criterion

(4.61) A,* B,*.

Let us instead consider matching by an intermediate limit

(4.62) lim, ,-"(A, B,) 0.

The limit is zero by two mechanisms" (i) Certain terms in A, and B, must cancel
identically when the difference is formed. These are obviously the terms Tk
with j + k < n. (ii) Other terms tend to zero by themselves, even after division
by e". This includes all exponentially small terms of B,. Furthermore, since the
nonexponential terms of B, come from rewriting A,, it follows that the domain
of validity of A. extends arbitrarily close to ord e. By taking ord r/ sufficiently
close to ord e we see that e-"Tk tends to zero under some intermediate limit if
and only ifj + k > n. The most critical case is j 0, k n + 1 which restricts
q to be << e"/"+ 1. The domain of overlap to order e" is hence

(4.63) @, {/l e << / << e./.+ 1}.
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We thus see that the terms which remain in forming A,* and B,* are exactly
those which must cancel identically in the difference expression in (4.62). The
terms that get wiped out in forming A,* and B,* are exactly those that tend to
zero by themselves under a suitable q-limit in (4.62).

Matching techniques will be discussed further at the end of 6.

5. Second model equation.6 As Example II we take a function y(x; e)
defined by the equation

n-ldy
(5.1a)

d2y - y 0
dx2 x dx

and the boundary conditions

(5.1b) y=0 atx=e;

(5.1c) y=l atx=

The cases n 1, 2, 3 will be discussed in detail.
We shall give (5.1a) a somewhat vague but very convenient interpretation.

The first two terms represent the Laplacean of a spherically symmetric function
in n dimensions, the variable x being the radial variable. We shall think of y as
temperature; then (5.1a) is the equation for the equilibrium distribution of
temperature with the term y(dy/dx) representing some fictitious nonlinear heat
loss. The boundary conditions state that the temperature is equal to one at
infinity and zero at the surface of a small n-sphere of radius e. We interpret this
as a perturbation problem in the following way: In the absence of the sphere
the temperature is equal to one everywhere. This situation is perturbed by the
introduction of a cool (y 0) sphere. Since its radius is o(1), we expect the
perturbation to be small (for n 2, 3,-..) except near the surface of the sphere
where the boundary condition forces the temperature to be zero. Similarly, if the
radius e shrinks to zero and the sphere disappears, the temperature will revert
everywhere to one. More precisely, if one observes the temperature at a fixed
point (in terms of x), the influence of the sphere will vanish as e tends to zero;
i.e., y will tend to one. This convergence is, however, nonuniform near the sphere.
An observer whose x-coordinate varies as eC, C const., is expected to observe
a strong influence of the sphere in particular, if C 1, he always observes y 0.
We thus have a singular perturbation problem. The heuristic argument suggests

16 The problem discussed here was originally introduced as a model for the asymptotic theory of
incompressible flow at low Reynolds numbers as given in Kaplun and Lagerstrom (1957) and Kaplun
(1957). Equation (5.1a) corresponds to the Navier-Stokes equations (see 7) for viscous flow in n
dimensions, (5.6b) to the Stokes equations and (5.11) to the Oseen equations in three dimensions and
(A.la) to the Oseen equations in rn dimensions. Previously the Stokes equations had been con-
sidered as a linearization of the Navier-Stokes equations. Kaplun’s analysis of the asymptotic nature
of the equations showed that the linearity was a coincidence and would no longer occur for compressible
flow (Kaplun (1957)). The asymptotic derivation of the nonlinear Stokes equation for compressible
flow is given in Lagerstrom (1964). The model equation of 6 was introduced to illustrate certain
mathematical complications occurring in the compressible case. While the "Stokes equation" (5.6b)
is linear for the present example, the corresponding equation in 6, namely (6.2b), is nonlinear. Much
of the material in 5 and 6 is based on Lagerstrom (1961). For further discussion of the same model
equations, see Bush (1971) and the references given there.
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the following principal variables"

(5.2) x outer variable, x* x/e inner variable.

The convergence to one as described above can now be described as

(5.3) f0 limout y fo 1.

The heuristic interpretation also suggests that the convergence to unity is uniform
in any interval [Xo, oe],Xo > 0. Note that the terminology agrees with the
conventions discussed after (4.31). The outer limit is the first principal limit since
it is the state y fo which is perturbed by the introduction of a small sphere.

As a negative confirmation of the above argument we consider the case
n 1. The one-sphere is an interval of length 2e. We may think of the one-sphere
as two planes perpendicular to the x-axis located at a distance + e from x 0
in three-dimensional space. Clearly as e tends to zero the "sphere" does not
disappear. The planes decompose space into two independent regions. Physically,
the magnitude of e is irrelevant; it is taken care of by the shift in coordinate
x x e. In fact, the exact solution is

(5.4) y(x e) tanh
x

2 1 + e -(x-)"

We see that while fo 1 is an approximation valid for x large, it is not valid for
x of order unity. The function (5.4) has indeed a regular expansion for e small.

Returning now to the cases n 2, 3,-.. we shall see whether a formal study
of the limiting equations justifies our choice of variables. As in Example I we
introduce the variable x, by t/x, x and rewrite (5.1a) as

dZy n- 1 dy dy
0

x, dx,

and obtain various approximating equations valid in different domains of the
functions

dy
(5.6a) Yxx 0 for q >> 1,

d2y n- 1 dy
(5.6b)

dx2 x dx
0 for t/<< 1.

For r/ of order unity the full equation (5.1a) is obtained. Thus, as it should
according to the discussion after (4.31), the first principal limit gives a distinguished
equation. The inner limit (x* fixed) gives, however, the same equation as any
q-limit with t/- o(1). Its importance comes rather from the boundary conditions,
as discussed earlier. Actually, the inner limit will play a less important role here
than in Example I (its role will be even less important in Example III). What
matters is that the formal domain of validity of (5.6b) includes all t/, such that
r/= o(1), in particular r/= e. In accordance with the heuristic principle (4.32),
we expect that there exists a solution go of (5.6b) valid to order unity in the same
domain. In particular, such a solution must be valid at x e, i.e., it must satisfy
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the inner boundary condition (5.1b). It will turn out that such a solution is
conveniently expressed with the aid of the inner variable. This is natural since
the inner boundary condition is given at x* 1. However, we shall see later
that the e-dependence of the terms in the inner expansion will not always have
the simple form: (function of e) times (function of x*).

The solution g0 just described is determined within a constant of integration
B (which may depend on e) and is

(5.7a) go B In x* for n 2,

(5.7b) go B(1 -(x*)2-") for n > 2.

The constant B must be determined by matching 17 with the outer solution.
The function fo given by (5.3) seems to be a candidate for the outer solution. It
certainly is uniqaely determined as the solution of the first order equation (5.6a)
since it satisfies the outer boundary conditions. However, the regions of validity
of (5.6a) and (5.6b) do not overlap. Assume, however, that the domain of validity
of f0 also includes the r/such that ord r/ ord 1. Then we may use the extension
theorem, Theorem (3.25), to prove that its domain of validity also includes the
region r/>> qo for some r/o << 1. The domains of validity of f0 and go then overlap,
and matching is possible.

To justify that fo is valid for x of order unity we cannot rely solely on the
equations. The corresponding equation is the full equation (5.1a). While f0 is a
solution of this equation satisfying the outer boundary condition, it is not uniquely
determined since (5.1a) is a second order equation. However, we may instead
use our earlier heuristic reasoning which showed that fo is the outer limit of y,
valid on any interval [Xo, ) with Xo > 0, which means that its domain of validity
includes the domain {r/lord r/>= ord 1}, and that hence the extension theorem
may be used. Thus in the present example it is essential that fo be an outer limit;
it is the combination of this fact and the extension theorem which shows that it
has a large enough domain of validity. On the other hand, the domain of validity
of g0 is obtained from a consideration of the validity of the equation which it
satisfies. It may happen to be an inner limit, but this is not essential.

Parenthetically we shall show that some special arguments about the domain
of validity of f0 given above are necessary. Its extended domain of validity, and
the existence of an overlap domain, cannot be automatically deduced from the
"adjacent" but not overlapping domains of validity of (5.6a)and (5.6b). In
Example I the function l(x, e)= 1 -a- b satisfying (4.27c) is valid for ord e
< ord r/< ord 1, and the function m(x, e) (1 a b)x/e satisfying (4.27e) is
valid for ord r/ < ord e. However, these two functions do not match in spite of
the fact that l(x, e) satisfies (4.27d). Instead, each of the functions match with a
nonconstant solution of (4.27d), namely go(X*) as given by (4.10). Note that
matching of m(x,e), multiplied by an undetermined constant, with l(x,e) is

17 In the corresponding problem in fluid dynamics the fact that (5.7a) cannot satisfy the boundary
condition at infinity (5.1c) was known as the Stokes paradox. It was resolved when Kaplun pointed out
that the perturbation problem is singular and that the Stokes solution (5.7) is an inner solution which
must satisfy a matching condition but not necessarily the boundary condition at infinity. An elementary
presentation of Kaplun’s argument is given in Lagerstrom and Cole (1955, p. 873ff.).
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(5.11)

and

formally impossible. In Example II, fo can be matched formally with go. This,
however, is a necessary but not a sufficient condition. As will be illustrated by
Example III, formal success of matching is not a sufficient proof of its correctness.

We shall now work out some details for the cases n 3 and n 2.

5.1. The ease n 3. The solution of the inner equation (5.6b) is

(5.8) go l/x*.

Here the constant B of (5.6b) has been evaluated to B by matching with

f0 1. Obviously go tends to fo when x* tends to infinity, i.e., under any q-limit
such that e << r/. Now putting

(5.9) y 1 + fill, fl fl + O(fl),

where fi(e) << 1, we find the exact equation for f to be

(5.10) dZfx 2 df dr1 dy
dx----2 + + + fill 0x-dTx Tx Ux

By applying limit processes to this equation we find equations for f:
d2f 2 df df
dx2 +-x)-x + O, ord r/ ord 1,

(5.12a) df 0 for q >> 1,
dx

(5 12b) dZf 2 df
dx2 x dx

=0 forr/<<l.

Since (5.12a) and (5.12b) are contained in (5.11), this equation is formally valid
everywhere, i.e., in the whole interval [e,

The solutions of (5.11) satisfying fl(c) 0 have the form

(a) f A 1E2(x

when E2 is defined as in the Appendix. To determine A and fl by matching we
apply an intermediate limit to the differences

(b) do (1 + flf) go.

Since x tends to zero and x* to infinity under the intermediate limit, we need
the expansion of 1 + flfl for x small and the expansion of go for x* large. The
function go is already given in expanded form. From the Appendix we find

(c) 1 + A lflE2 1 + A x(1/x + In x + O(1)).

Thus, if we put

(d) Ax -1, 3--e,

18 Here we determine the second term of the outer expansion by matching with go alone. The more
general rule is that the second terms of both the inner and outer expansions have to be determined by
simultaneous matching. See Kaplun and Lagerstrom (1957, p. 590) and Kaplun (1957, p. 598).
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then

(e) do -e In x + O(e),

which tends to zero in the entire x-range (although not uniformly, it does not
vanish for x el/). Hence,

(5.13) To + flY1 1-eE2(x).

In 4 we emphasized the use ofmatching to determine constants of integration
not given by boundary conditions. Actually matching is also used to determine
the functions flj(e) of the expansions (3.10) and (3.11). In 4 this was trivial but
the present section contains several nontrivial examples of determining the flj.

5.2. Higher order terms. If we now put

Y g0(Xg) AI- gl(X8, g), 1 gl(x*) + O(1),(5.14)

then

d2 2 dl d*(5.15)
dx.2 x* dx*

+- go + e, 2 dl+ e gx* O.

Neglecting terms of formal order e and using the value of go given by (5.8), we
have

(5.16) dx,2 x* dx* -X- 1

The neglected terms remain of formal order e if one introduces any x,, where
r/x, x ex*, provided r/<< 1. Hence (5.16) is formally valid in this domain.

The solutions satisfying the inner boundary condition g 0 at x*=
have the form

Hence,

t- e In x + In e + ?B 1
X X

We expect this to be valid to order e. The formal domains ofvalidity ofthe equations
for fl and gl indicate that in matching by taking an intermediate q-limit we must
have t/<< 1. Thus we need to find the expression for fl for x small. From the
Appendix we find

(5.19) fo + ef 1 + e(-1/x In x -(7 1) + x/2 + O(x2)).

The difference between (5.19) and (5.18), divided by e, should tend to zero
with e. However, our construction fails here. The term e In e in (5.18) cannot be
matched by anything in (5.19). No choice of the constant B1 (if considered
independent of e) or of an q-limit can remedy this situation; neither can the un-
matched term be eliminated by continuing the expansions to higher order.

In x*
(5.17) gl

x*
In x* + Bigo.
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The formal remedy is to backtrack to lower order terms. If we insert into
(5.18) a term ((e)gs(X*), then g will obey the homogeneous inner equation (5.6b)
provided e << (. The obvious choice is

(5.20) g(x*) -e In ego(x*).

Then e In e disappears from the expansion

(.5.21) y - go(x*)- e In ego(x*) + eel(X*).

Putting B 1 in order to match the terms e times const., we now find that
the difference d between (5.19) and (5.21) is

e2 In x e2(y 1) 2e2 In e
(5.22) a + cO(x).

x x x

Matching is now formally possible since

(5.23) lim, --dl 0 for le In el << << 1.

Note that the overlap domain is smaller than anticipated.
While we have succeeded in overcoming our difficulties it is essential for

understanding perturbation theory to understand why our a priori estimates fail.
We have here run into the phenomena of integrated effects and resulting switch-
back, two terms which will be explained below after some additional formal
calculations.

5.3. Calculation off2. If one continues the outer expansion formally as

(5.24) y
_

1 + efl + eZf2,
then f2 obeys (A.3) of the Appendix whose solution is

(5.25a) f2 F2 + AzE2.
For small values of x (cf. Appendix),

(5.25b) f2--( lnXx 7+2x 31nx +O(1) +(27 + 1)(+lnx+O(1)
where the constant A 2 has been evaluated to be 27 + 1.

5.4. Switchbacks, integrated effects. Nothing in our formal expansion pro-
cedure indicated that an intermediate term of order e In e was needed until it was
found that (5.18) and (5.19) did not match. Terms such as (5.20) whose existence
is deduced from inspection of formally higher order terms, such as (5.17), are
called switchback terms. The switchback phenomenon is quite common in
singular perturbation constructions.9

In 2 we saw an example of how the effect of a term may be of larger
magnitude than the order formally indicated. The term of order e in (2.7a) has,

19 Classical examples from fluid mechanics are the so-called Filon terms discussed by Chang
(1961, p. 851ff.) and the R In R term in Proudman and Pearson (1957, p. 255). An artificial but very
intuitive example is given in Kaplun (1967, p. 15).
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over a time interval sufficiently long, an effect of order unity. In our present
problem we may write the basic equation as

d2y 2 dy dy
(5.26) dx,2 x* dx* Ydx*
Suppose that we impose the condition y 0 at x* 1 and (instead of the boundary
condition at x oe) the condition that, for x* large, y should match, to appropriate
order, with the outer expansion which is considered known. Assume that we have
the correct solution for y, y f(x*, ), and insert its value into the right-hand side,
keeping y on the left-hand side as unknown. This second problem is a linear
equation with known forcing term -ef(df/dx*), and its solution is of course the
same as that of the first problem. The solution of the problem with e : 0 minus
the solution of the problem with e 0 (which is go(X*)) is the integrated effect
of the right-hand side. The question is whether this effect is of order e or of a
different order. In our case we hope that if we use go(X*) in the right-hand side,
rather than the correct f(x*, ), the answer will change by O(e). We deal with a
problem of the type: a second order linear operator operating on y equals
e. (function of x*) with a boundary condition at x* 1 and a matching condition
for x* large. Suppose we have no matching condition but a second boundary
condition at a point independent of e, say at x* oe, and that the appropriate
Green’s function exists. The integrated effect of the forcing function is then
formally the customary integral involving the forcing function and the Green’s
function. Now, either the integral does not exist, i.e., the problem has no solution,
or its value is e. (function of x*) i.e., the integrated effect is of order e (ifwe include
the degenerate case of the result being identically zero). Thus, there is nothing
surprising about the magnitude of integrated effects in any reasonable physical
problem where we solve a boundary value problem.

However, let us now return to the case in which the outer condition is a
matching condition. Let us consider our special case (5.26) with y replaced by
go(X*) in the right-hand side. The general solution satisfying y 0 at x* 1 is

y=C 1--) elnx*
x*

e In x*

(5.27)
-C 1-) e2(lnx-lne)

elnx + elne.
x

There is, of course, no a priori reason to assume C independent of e. Matching
(5.27) with (5.19) to order we find that the term In is too large and must be
gotten rid of with the aid of C. In fact, we must have

(5.28) C 1

which of course agrees with (5.21).
Essential for integrated effects is that in a matching problem we consider

intervals with moving endpoints and hence containing different orders of
magnitude of x* (and x). Without the term -e In e the solution would be too
large in the matching region (where x* is very large). But introducing this term
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makes it larger than anticipated where x* is of order unity. Since often a quantity
such as dy/dx* is of physical interest this result may be important,z

A systematic justification of a perturbation method must involve a method
of estimating integrated effects. Large integrated effects occur especially when
an infinite domain is considered or when singularities such as x-1 occur in the
approximating functions. In the simple case of Example I it is clear that the
integrated effects will be of the order formally indicated.

5.5. The ease n 2. In this case

(5.29) go B(ln x In e) BIn x*

with ex* x. The difference between go and fo is

(a) do B(ln x, + In r/ In e)- 1.

If

(5.30) B l/In + o(- l/In e),

then

(5.31) lim, do 0 for Iln r/I << Iln el.
In the present example we see that the overlap domain is very small. In particular,

(5.32) lim, g0 1-a fort/
so that the functions ea, a > 0, do not belong to the overlap domain. On the other
hand, we note that the outer limit gives the correct result. Hence the overlap
domain includes ord 1 and, by the extension theorem, some r/>> 1.21

5.6. Higher order terms. To obtain higher order approximations we proceed
as in the case n 3. We assume expansions

(5.33a)

(5.33b)

where

(5.33c)

We note that

(5.34)

y +  fl, fl L(x) +

Y gO(X$) + 01, 1 g,(x*) + o(1),

a -1/(lne + b), b O(1).

e-1/ ,eb.

Hence the functions ea, a > 0, are transcendentally small relative to the a". In the
exact equation for 1 the highest order terms are

d2 d_(b) dx,2 x* dx*
0

2o A concrete physical example is the R In R in the drag formula for low Reynolds number flow
past a sphere, given in Proudman and Pearson (1967).

21 This also follows from Iln
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For x O(q) the first term is O((Z/32//2) and the second term is 0(/32////). The ratio
of the second term to the first is then O(r//e). For n << e", with a > 0, this ratio is
transcendentally small. For this reason g will obey the same homogeneous
equation as go. A similar reasoning will hold for g2. Matching of go(X*) +
-+- 02g2(x*) and of 1 + fx(x) + 2fz(x) is formally possible so that there is no
evidence of large integrated effects.

The function fx obeys (A.la) with m 1 (see Appendix) and the solution is

(5.35) f -AxE(x).

We write the solution for g as

(5.36) gx Bx In x*.

Then, for x small,

dx =fo +fx-go-
1 + Ax(ln x + 7 + O(x))- B(ln x- In/3)- B2(ln x- In e).(c)

Putting

(5.37)

we find

B a and A1 1

In e 7 B1 In e In x
dx 1 lne+b-ln/3+b +(ln/3+b)2-Bx(ln/3+b)2 + O(x)

(d) b 7
In/3 In/3

The obvious choice is to put

(5.38a)

i.e.,

(5.38b)

Then

B B In x
In/3 (In/3)2

-’[- O(X)O.

and b 7,

a 1/(ln/3 + ),).

(e) d O(x)O
and

(5.39) lim, d/a 0 for r/ o(1).
If instead we put b 0, then we must have B 7 and the term B In x/(ln/3)2,
divided by , goes to zero only in the very restricted domain where Iln r/[ << Iln/3[.

The term f2 obeys (A.3) of the Appendix; hence,

(5.40)
f2 2E(2x) -(e-‘. E(x)) + A2E(x

-(1 +Az) lnx-21n2-7-A27-xlnx+O(x).

This solution has to be matched with a solution valid near the body

(5.41) 02g2 B203 In x*.
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The difference

(f)

becomes, with

d2 --(fo + of + 02f2) (go q- g + 02g2)

(5.42) A2 1 and B2 --2 In 2,

(g) d2 d + o{2E- 2 In 2 x In x + 2 In 2. (ln x In e) + O(x)].

Since d, O(x). or,

(h) lim, d/o2 0 for << .
Thus,

(5.43) limd2/2 0 for [In /1 << [In el and /<< .
An essential feature of the discussion of the case n 2 is the curious meta-

morphosis of the logarithmic function into a constant; for instance, In x*/-In e
tends to unity for x O(r/), where /is in the overlap domain. As we saw earlier in
the discussion of integrated effects, an essential feature of the analysis of layer-
type problems is that we consider regions of x of different order and that the
order of a function of x depends on the order of x. Thus In x* is O() for
x O(e) but O(1) for x O(ea), 0 < a < 1.

In general, according to (5.32), go tends to the constant value 1 a if x
decreases as ca. In a sense, the logarithmic function go generates all the constants
in the interval [0, 1]. It was Kaplun’s observation (in the corresponding problem
in fluid dynamics) that while lim, y for r/<< 1 gives a continuum of limits, the
same limit processes applied to the equation yield only one equation, namely
(5.6b) with n 2. His idea was then to look for a solution of this equation which
need not be a limit but which would contain all these limits. This solution is in
fact go(X*).

We have just discussed in what sense the inner solution senses the y-value
("temperature") at infinity. Actually, of course, it should be matched with a
somewhat lower value since y < 1 for any finite x. The constant term in the
expansion of fl gives the correction to order of the temperature at the apparent
infinity. This was taken care of by a special trick of defining . Similarly 2f2
gives a correction to order2 of the temperature at the apparent infinity the inner
term 2g2 has to agree with this value in the same sense in which go agreed with
the value one. Note that the term y(dy/dx) will be transcendentally small in the
inner region in the sense that it will never enter the equations for the gj. However,
it will influence the gj indirectly through the matching conditions.

We shall now make various comments on the results obtained for n 2
and n 3.

5.7. Outer and inner expansions versus limit-process expansions. Since partial
sums of the inner and outer expansions are together uniformly valid to an order
depending on the number of terms considered we may apply limit processes to
these expansions instead of to y. For n 3 we find that the outer and inner limits
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of y are fo and go, respectively. For a repeated application of the inner limit we
find

(5.44) limin
y go= gs(x, go(x,

with -e In e. Since

(5.45) limou 0,

we may put fs 0. The first two terms of the outer-limit expansion and the inner-
limit expansion respectively are then go + g and fo + f, respectively. Earlier
in this section we saw that regarding fo as an outer limit helped determine its
domain of validity. However, in general a limit-process expansion does not give
any indications of the domain of validity. In fact,

(5.46) (fo + f) -(go + g) 1 (1 e/x) + e In e(1 e/x).

This difference, divided by -e In e, does not tend to zero.
The functions fo and go give uniform validity to order unity, i.e., the union

of their domains of validity is the entire interval e _<_ x < (cf. (3.20b)) and are
thus the leading terms of the outer and inner expansions respectively. The term
g(x*) gives higher order validity near x* 1 and thus gives a correction to go
(if one, for instance, is interested in computing (dy/dx*)x.= 1). However, as seen
by (5.46), the terms gs and f do not together give uniform validity to an order
higher than unity; in other words, adding these terms does not improve the
uniform validity. Actually, the second term of the outer expansion is efl. We
forget about f. It is identically zero; it is only if one insists on limit-process
expansions that one needs it for bookkeeping purposes. As the second term
of the inner expansion one should take ega(x,e)=-elnego(x*) +
If this term is added to go and efl to fo, then the inner and outer expansions
together are uniformly valid to order e. Thus the second term of the inner expansion
does not have the form fl(e)g(x*). However, if we liberate ourselves from the
notion that the inner expansion should be a limit process expansion, we see that
there is no reason why it should have such a special form. This point will be
discussed further at the end of 6.

For n 2 we find as usual that the outer limit of y equals one and

(5.47) limin y 0, limin (y 0)/ In x*.

The first term of the inner-limit expansion is then zero. By repeated application
of the inner limit we find that the second term of the inner-limit expansion agrees
with the first term of the inner expansion. We see thus that inner and outer limits
do not match. A priori we can only expect the following for the domains of validity
of limits" Let f be the r/o-limit of a function z(x, e). By definition limbo (z f)
is zero, and the domain of validity of f as an approximation to z must include
the functions r/o. By the extension theorem we know that there must exist functions
r/1 and r/Z, r/1 << r/O << r/2, such that

(5.48a) @’ {r/Ir/1 << r/<< r/2} =(ord r/l, ord r/2)
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is included in the domain of validity. Now let o << r/o and let the o-limit of z
be g. Then g is valid in some open order-interval containing

(5.48b) " =(ord, ord (2)

for some functions 1 << o << 2. However, there is nothing in the extension
theorem which states that 9’ and 9" must overlap. The fact that fo was an outer
limit determined that it had a domain of validity of the form (5.48a) with r/ 1.
However, this trick was useful only once; go had to be determined, not as a limit,
but as a solution whose formal domain of validity overlapped with the domain
of validity of fo.

We see that, at least to the order computed here, the same terms appear
in the inner and the inner-limit expansions. However, we notice that the first
term in the inner-limit expansion is 0 and the second term is e In x*. The first
term in the inner expansion, however, is c In x*. This term, together with the first
term in the outer expression, namely fo 1, gives uniform validity to order unity.

5.8. Inner limit of the outer expansion. Since the equation for fl contains
the equation for go, we would expect that a solution of the former equation would
contain go. Actually, for n 3 the inner limit of 1 +/3fl (which obeys the same
equation as fa) is go and, for n 2, the application of the inner limit, repeated
once, yields go"

More generally, a repeated application ofthe inner limit to the outer expansion
gives the inner-limit expansion and, by a regrouping of terms, the inner expansion.
For instance, for n 3,

fo -I- gfl -F g2f2 + 2g2 In gE2 1 + ---- e In x* e In e + e(1 7) + O(e2)

/3 In x* /3 In/3 /3(7 1)
(5.49) +

x* x* x*
-]- 0(/32)

2/3 In/3
+ x* + 0(/32 In/3)

from which the leading terms of the inner expansion may be computed. (Note
that a switchback term of order/32 In/3 has been added to the outer expansion in
order to match the switchback term of ord (/3 In/3) of the inner expansion.) This
implies in particular that each partial outer expansion satisfies the boundary
condition at x =/3 to a certain order, a fact which can be verified. We may then ask
why one uses the inner expansion at all. One reason is that if one is only interested
in calculating conditions near the sphere, then, so to speak, the inner expansion
is one step ahead of the outer expansion. A typical quantity to compute would be,
say,/3(dy/dx)x= which, in our physical analogy, may be the heat transfer at the
surface of the sphere. Let us take the case n 2. The quantity mentioned may be
computed to lowest order from go, which is obtained by solving a relatively simple
equation and then matching with fo 1. Computation off improves the cal-
culation. (In our calculations we found a better value of e which enabled us to
choose g 0.) To the next order we need f2 to calculate g2. However, inspection
of the calculations shows that we only need the value at zero of f2 minus its
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singular part. This value is the 2 correction to the temperature at the apparent
infinity discussed above. This is exactly the way Kaplun (1957) calculated an
improved value of the drag on a circular cylinder in very viscous flow. In this case
it would have required extensive numerical calculation to find f2 as a function
of x, but the order unity term of f2 in the expansion near x 0 could be found
by evaluating an integral.

The fact that the outer expansion contains the inner expansion is a coincidence.
It will no longer be true if we modify Example II to Example III which will now
be studied.

(6.1a)

(6.1b)

(6.1c)

6. Third model equation. As Example III we take a function defined by

d2Y t- +y =0
dx2 x dx

y=0 atx

y=l atx= m.

This example differs from Example II only by the addition of the term (dy/dx)2

in the left-hand side of the equation.
The approximating equations are

dy
(6.2a) Yx 0 for r/>> 1,

n-ldy (dy) 2

(6.2b)
d2y - 0 for << 1
dx2 x dx x rl

and the full equation for ord r/ ord 1.
The solution of (6.2b) satisfying the inner boundary condition is

(6.3a) n=2: go =In(1 +Blnx*),

(6.3b) n =3: go =In
x* B

x*(1 B)"
Since the inner equation (6.2b) is nonlinear, the constant of integration

B is no longer multiplicative as it was in the corresponding solutions for Example II.
This is a significant difference between the two cases.

As in 5 we show that the leading term of the outer expansion is f0 =- 1.
The equation for fx is the same as in 5, namely (5.11). The equation for f2 has
an additional forcing term (due to the term (dy/dx)2 in (6.1)) compared to that of
5, but it is just as easily solved as before.

While there are some great similarities between the two examples, there are
some essential differences: (i) The "Stokes equation" (6.2b) is now nonlinear
and (ii) is not contained in the "Oseen equation. ’’22 A consequence of the second
difference is that the inner expansion can no longer be retrieved from the outer
expansion as was done in (5.49). The important consequence of the first difference
will be discussed below.

22 The same mathematical differences exist between the problems of flow at low Reynolds numbers
in the compressible case and the incompressible case respectively. (See footnote 16.)
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Thus, the leading terms of the outer expansion are

fo 1 for all positive integers,

(6.4a) fl AE(x) for n 2,

(6.4b) fl AE2(x) for n 3.

For matching we need the expansion of go for large x*. In the case n 2
we see that B In x* cannot be large since otherwise In In x* would be the dominant
term. For go to tend to one it is necessary for B In x* to tend to e 1. This gives

(6.5a) n=2: B=q()(e- 1), q(;)= -1/lne.

The domain of overlap is the same as in Example II.
Similarly,

(6.5b) n=3: B=(e-1)/e.

For n 3, go thus happens to satisfy the condition at infinity; for n 2, it does
not.

In Example II for n 2, the second term of the inner-limit expansion
matched with fo. An important consequence of the nonlinearity of (6.2b) is that
this is no longer true for the present example. The inner-limit expansion of go(X*)
for n 2 starts

(6.6) go(X*) - 0 + qg(e)(e 1) In x* +

We may assume that the terms given explicitly also represent the beginning
of the inner-limit expansion of y. We notice now that in the present case the
inner-limit expansion and the outer-limit expansions do not match; more precisely,
no partial sum of the inner-limit expansion of y will match with fo. The failure
ofmatching is not due to the omission ofsome third distinguished limit representing
some buffer layer. The inner and outer limits are the only distinguished limits.
It is plausible a priori that for n 2 the inner limit of y is zero. Hence one may
assume the inner-limit expansion to be of the form

(6.7) y - 0 + qg(e)l(x*) + ...,
where qg(e) o(1) but is as yet undetermined. The equation for l(x*) is then

d21 1 dl
(6.8)

dx.2 x* dx*
O.

However, unlike (6.2b) this equation is not valid in a domain which overlaps
with the outer limit. It is valid in the region where y o(1), a region which does
not overlap with the region where y 1 is valid.

Note that formally a solution of (6.8) matches with y 1, namely,

(6.9)
-1

q(e)l(x*) In x*.
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This is of course the wrong result, since the factor e 1 is missing.23 Thus, this
illustrates the fact that formal success of matching is no guarantee of correctness
of the result.

6.1. Change of coordinates for n 2. Bush (1971) has introduced an interest-
ing change ofcoordinates for n 2 such that the inner expansion actually becomes
an inner-limit expansion. He puts

(6.10) In (l/x).

Equations (6.1) then become (n 2)
d2y (dY) 2 ydY(6.11a) dr--T + -- exp (- t) -d-f 0,

Y=0 att=ln(1/e),
(6.1 lb)

1 at -@,

where y(x, e) Y(t, e).
The transformation is important only for the inner expansion, and we shall

restrict our discussion accordingly. The inner layer occurs at large, and Bush
introduces the inner variable

(6.12) t* go()t.

The last term in (6.11a) will be exponentially small and hence transcendentally
small in the inner region (which is especially easy to see in the present coordinates,
cf. statement following (5.34)). We put

(6.13) gj(x*, ) Gj(t*)

(as will be seen, the Gj will not depend on e explicitly). The inner expansion is
then

(6.14) Y- GO +goG +
One finds

(6.15a) Go In [1 + (e- 1)(1 t*)],

(6.15b) Gx 7(e 1)(1 t*)[1 + (e 1)(1 t*)] -1.

(The computation of G necessitates matching with the third outer term f2(x)
which is computed in the same way as the corresponding f2 of Example II in 5.
Details are given in Bush (1971).)

Thus GO and G do not contain e explicitly and each term in the inner
expansion is now identical with the corresponding term in the inner-limit expan-
sion. This fact does not change any of the heuristic ideas of matching. However,
it has certain advantages for the actual construction of the expansion. Bush’s
procedure is as follows. One first finds go as shown earlier. Guided by the form
of go one finds the variables and t* such that the explicit dependence of e will

23 It has been proved rigorously in Cohen and Lagerstrom (to be published) that go as given by
(6.3a) is indeed correct.
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disappear in Go(t*). The equation for G1 is then expected to be somewhat simpler
than that for gl. In the present case we get

d2G1 2dGo dG1 0(6.16)
dt *----f + dt* dr*

Defining gl as the function of x and e which corresponds to Gl(t* we see from
(6.16) that it obeys the equation

d2gl 1 dgl - 2xx dgo
(6.17a)

dx.2 x* dx* dx*
=0

with

(6.17b) dgo= cp(e)(e- 1)
dx* [1 + (e 1)cp(e) In x*]x*"

The solution of (6.16), satisfying appropriate matching and boundary conditions,
is

(6.18)
7(e- 1)(1 t*)

G1 1 +(e- 1)(1- t*)"

Rewriting this in x* one finds the solution of (6.17) to be

7(e 1)cp In x*
(6.19) gl

1 + (e 1)q In x*"

For large values of x*, one finds, using the outer variable, that

e-1 e-1-- (D 2 In X -- O(q)2).(6.20) gl 7 e e

From the point of view of the present paper, the interest in Bush’s trans-
formation is not the simplification of the calculations, but rather the following
two points: First, it is not necessary to form the inner variable by dividing x
by a function of e; one may instead divide some function of x by a function of e.
Instead of a function of x one may even use a more general coordinate change as
described by (3.7). This is a rather obvious statement, but it is also a nonconstructive
generality. The interest in Bush’s analysis lies in the fact that a specific coordinate
change has actually been found systematically which simplifies the analytical
work, and the question is raised whether this may be done in a systematic way
for a large class of problems. Secondly, and this is of special interest in the context
of the present paper, the following problem is raised by the coordinate change:
(6.17a) is obtained by applying limit processes to the proper equations, as shown
in detail in 5, provided the explicit formula for the derivative of go is not used.
However, if the explicit expression (6.17b) is used, then the third term will dis-
appear in the limit and the resulting equation is

d2,l 1 dl(6.21)
dx.2 x* dx*

O.
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The solution2’ is

e-1 e-1 e-1
(6.22) 1 997 In x* 7 + 997 In x.

The two results are significantly different. As was the case for Example II,
in a physical problem (dy/dx*)x,= may be important. The contribution of q0g
to this quantity is q927(e- 1) whereas a would give q927(e- 1)/e. Thus the
difference between the two values cannot be corrected by higher order terms.
However, g is the correct answer; the reason for this will now be discussed.

6.2. Integrated effects. To examine the situation more closely we write
(6.17a) as

d i1n(6.23)
dx*

Inserting (6.17b) we find that the right-hand side is of order q0. However, integrating
transforms it into a term of order unity. Thus the integrated effect is of order
unity and the function g rather than 1 gives the correct answer.

In 5, after (5.26) we discussed the integrated effects of a term of the form
(function of e). (function of x). We observed that the effect of such a term could
be larger than anticipated ifa matching condition rather than a boundary condition
were imposed. In that case there was no doubt about which equation to use for
g (or rather for go). The only question was wlaich solution to use; the correct
solution was not the one expected from a limit-process expansion or from a
superficial order estimate. In the present case the main question is which equation
to use. We actually have to modify our notion of formal limit of an equation.
Since according to (5.32) the r/-limit ofq In x* is 1 a for r/= ", a formal applica-
tion of limits to (6.23) would yield infinitely many equations. It is therefore natural
to extend the discussion after (5.43) from solutions to equations, i.e., to include
all limits we have to regard 99 In x* as formally of order unity. We also note that
in the present case g and go are of the same order.

From Examples II and III we learn that the heuristic principle (4.32) is
a very useful starting point in constructing solutions but that it needs to be
modified by the consideration of integrated effects. Furthermore we have just
seen that our original ideas about limits of equations have to be modified. The
statement that integrated effects should be considered correctly is, of course,
a tautology. However, our aim here has been to give specific examples of how
large integrated effects occur and how one can spot them. We believe that the
examples given are typical of a large class of problems. The easiest one to spot
is the switchback effect which occurred in Example II for n 3. Here impossibility
of matching warned us that the assumed form of the expansion was wrong.
The difficulties illustrated by Example III are more subtle. It shows that formal
success of matching is no guarantee that the solutions actually do match. This
was first illustrated by the incorrect formula for go given by (6.9). However, in

24- Both gl and 1 match with the "temperature" correction at the apparent infinity as given by
the constant term 7(e 1)/e of f2. The discussion after (5.43) applies equally well to the present case.
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this case our heuristic principle gave the correct result and there are no large
integrated effects. The difficulties in finding gl are greater. Suppose that (6.17a)
had been given as the original equation with dgo/dx* written out explicitly and
that the matching and boundary conditions are as above. If one wanted to find
a first approximation for e small, how could one see that g rather than 1 is the
correct result? The only answer seems to be that once one poses the question
one can find the right result. However, if one is not forewarned of the possibility
of large integrated effects and blindly neglects terms of order qg, then the wrong
answer will result.

6.3. Matching reconsidered. As discussed at the end of 4, the older technique
ofinterchanging limit expansions may be justified in certain simple cases and where
it was shown to be in essence identical with the use of the intermediate limit.
In simple cases one may even formulate a precise rule such as (4.61). Van Dyke
(1964, p. 90) has proposed a generalization of this rule as a general matching
principle. In a careful study Fraenkel (1969) has shown conditions under which
this rule holds and also given some counterexamples.

Although the present paper has a purpose quite different from that of
Fraenkel’s, some comments will be made. A basic difficulty with any general
matching principle based on interchange of inner and outer limit processes is
that it presupposes that the inner and outer expansions actually are obtained
by limit processes. The idea of characterizing expansions by their domain of
validity is not only more basic for understanding matching but often essential
in constructing these expansions. An obvious example of this is given in 6.
Less obvious but equally important is Example II for n 3. As discussed after
(5.46) it is really the function - In ego(X*) + egl(x*) which is the second term
of the inner expansion. One may of course try to formulate rules about applying
the inner-limit expansion to the outer expansion (in the sense used here) and
comparing it with the outer-limit expansion of the inner expansion. Any such
rule, which gives the number of terms to be used in the inner and outer expansions,
must specify the system for counting terms.

Another important point, which has been made earlier, is that whatever
techniques are used, matching is always based on overlap. It obviously does not
make sense to compare two approximations which do not have a common
domain of validity. Furthermore, the technique always consists of comparing the
outer expansion for small x with the inner expansion for large x* (assuming of
course that x and x* are the two principal variables). The present paper shows by
several examples how this can be carried out very simply by considering the order
of the terms in the difference between a partial outer and a partial inner expansion.

7. Examples from fluid dynamics. In previous sections some connected
problems of singular perturbations were discussed with the aid of relatively
simple model equations. Although these equations were originally introduced
to illustrate the use of certain ideas and techniques of singular perturbations
used in mathematical fluid dynamics, they may be discussed without reference
to fluid dynamics. In this section we shall show how a variety of special problems
may arise in singular perturbations using examples taken directly from fluid
dynamics. In many of the cases it seems difficult to invent simple model equations
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without losing the essence of the problem. Further examples are found in Van
Dyke (1964).

7.1. The Navier-Stokes equations. We shall be concerned mainly with two-
dimensional stationary incompressible viscous flow (see Lagerstrom (1964)).
From

(7.1a) v kinematic viscosity of the fluid,

(7.1b) Uo reference velocity,

(7.1c) Po reference pressure,

one may form the reference length of the fluid

(7.2) 2 V/Uo.
We shall let x (x, x2) denote the rectangular length coordinate nondimen-
sionalized by 2. The velocity nondimensionalized by Uo will be denoted by
q (q, q2). The pressure, nondimensionalized by Po, will be denoted by p.

The Navier-Stokes equations in nondimensional form are then
2

(7.3a) li,i 0,
i=1

2

(7.3b) (qqj, + p,j qj,,) O, j 1,2.
i=1

Here f’i 3f/xi"
As boundary conditions we require that

(7.4) q 0 on solid surface.

For flow of an infinite medium past a solid we require

(7.5) q 1, p 1 at infinity.

This means, of course, that we have used the value at infinity as reference value in
(7.1b) and (7.1c).

The boundary condition (7.4) refers to a solid surface. If this surface is a
characteristic length L, we may form a nondimensional parameter, called the
Reynolds number and denoted here by R,

(7.6) R L/2.
As discussed in 2, if in a problem the two lengths are of different order of
magnitude, we may use perturbation techniques but must expect that the problems
may be singular.

7.2. Flow at low Reynolds numbers. Consider viscous flow past an object
whose typical dimension L is much smaller than the viscous length 2, i.e.,

(7.7) L<<2 or R<< 1.

As inner coordinate we use

(7.8) x* Xdim/L X/R.
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The basic ideas on how to construct an asymptotic expansion for small R are
due to Kaplun. They will not be discussed here (see Van Dyke (1964) and references
given there). The essentials of the ideas involved are shown by our second model
equation. (The relation of the second and third model equations to fluid dynamics
is discussed in footnote 16.)

7.3. Flow at high Reynolds numbers. Written in x’-coordinates, (7.3) becomes

(7.9a) 0,

cqj 1 2qj

For large values of R we put the right-hand side of (7.9b)equal to zero. The
resulting equations are called the Euler equations. However, due to the lowering
of the order of the equations we have to weaken (7.4) to

(7.10) normal component ofq 0 on solid surface.

The viscous force exerted by the fluid on the body, the so-called skin friction,
cannot be computed from a solution of (7.10). Prandtl (1905) pointed out that
the tangential velocity changes very rapidly from its true value (= 0) to the
value given by the solution of (7.10). This change takes place in a layer, called
the boundary layer, of thickness e, where

(7.11) e= 1/.
To study this layer, Prandtl replaced the x by coordinates { and , where 0
on the surface of the body. If then is replaced by

(7.12)

and, using our terminology, the formal limit for e + 0 is applied to the resulting
equations, one obtains Prandtl’s boundary-layer equations. If and q are
coordinates tangential and normal to the surface of the solid respectively, and
d and dq give the correct length element (relative to the x) at the surface, and if
u and v are the velocity components relative to and q, then the Prandtl equations
are

(7.13a)
u
a +N=0,
au u @ 1 a2u

(7. 3b + + n a 2,

(7.3c) ap/a o.

As boundary conditions Prandtl proposed the obvious one, namely (7.4), and the
more surprising one

25This corresponds to (4.9c). It was precisely to illustrate some basic aspects of Prandtl’s
perturbation method that Friedrichs (1953) introduced a model equation similar to our Example of 4.
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The values of p and u of the boundary-layer solution
(7.14) at 0 equal the corresponding values (denoted by

Pe and Ue) of the Euler solution at r/ 0.

We note that from the Euler equations it follows that

d u
(7.15a)

d - q- Pe O,

and, since a physically irrelevant constant may be added to the pressure,

(7.15b) u2/2 + Pe O.

For a detailed discussion of boundary-layer theory and higher order approxi-
mations from the point of view of asymptotic theory, see, for instance, Lagerstrom
(1964) and Van Dyke (1964). Some specialized problems will be discussed below.

7.4. Role of subeharaeteristies. In a singular perturbation problem involving
partial differential equations the characteristic lines (or surfaces) of the outer
equations are called subcharacteristics. In our case the outer equations are the
Euler equations whose only real characteristics are the streamlines, i.e., the lines
everywhere tangent to the velocity field. Because of (7.10) the boundary is a
streamline, and on this streamline there is a discontinuity between the prescribed
values of the tangential velocity and the ones given by the Euler solution. Latta
(1951) showed for various partial differential equations, that the thickness of the
boundary layer depends on whether the discontinuity occurs on a subcharacteristic
or not. The application of this principle to fluid dynamics is discussed in detail by
Lagerstrom (1964). A simple illustration is the following. If the first two terms on
the left-hand side of (7.9b) (the so-called transport terms) are replaced by c3qj/c3x,
the so-called Oseen equations result. The characteristic lines are now the lines

x const. The thickness of the boundary layer is R-/2 when the boundary
is parallel to the x’-axis; it is R- when the boundary has positive slope;and
when the boundary has negative slope no boundary layer exists (loc. cit.). A general
discussion of the role of subcharacteristics is given by Cole (1968, Chap. 4).

7.5. Nonuniqueness of the Euler solution. Actually the asymptotic theory for
flow at high Reynolds numbers leads to some very difficult and as yet unsolved
problems. A crucial difficulty is that the solution of the Euler equations with
the boundary conditions given above is not unique, and it is often difficult to
select the relevant solution, i.e., the one which is the limit of the Navier-Stokes
equations as R --, .

In some cases a study of the vorticity is helpful. We define

(7.16) vorticity 09 q/3y q2/c3x.

It is then easily seen that vorticity obeys the equation

(7.17) q 3x-- + q2
c3x’ - + y

A curve everywhere tangent to q is called a streamline. Equation (7.17) may then
be interpreted as follows: Vorticity is transported by the streamlines and at
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the same time it diffuses like heat with coefficient 1/R. In the limit of infinite
R vorticity is constant on each streamline. For flow past an object the boundary
conditions prescribe q 1 and q2 0, and hence o 0 at x -oe. If every
streamline comes from upstream infinity, then in the limit vorticity is zero
everywhere. This assumption reduces the Euler equations to the Laplace equation
which has a unique solution. For semi-infinite bodies whose width increases
monotonely downstream it seems plausible that every streamline comes from
upstream infinity. The simplest example of such a body is the parabola with axis
along the positive x 1-axis. For this case Van Dyke (1964a) has computed the
two leading terms of the inner and outer expansions respectively.

However, for the case of flow past a finite body the assumption that the
limiting solution obeys the Laplace equation leads to contradictions with boundary-
layer theory (see Lagerstrom (1964)). The limiting flow must then contain
streamlines with nonzero vorticity; these lines must either be closed or come
from and return to downstream infinity (x oe). A limiting case is the so-called
Kirchhoff flow where two streamlines, originating at the solid, separate a region
of potential flow from a region of zero velocity; these streamlines carry infinite
vorticity. However, so far no valid arguments have been established to characterize
the limiting flow in such a way as to make the solution of the Euler equations
unique. The difficulties are connected with the very complex problem of flow
separation and nonexistence of solutions of the Prandtl equations, subjects which
cannot be discussed here.

We notice that unlike examples discussed earlier, the leading term of the
outer expansion cannot be determined a priori, in other words, we do not know
what is being perturbed. A solution would involve a simultaneous consideration
of the leading term of both the inner and the outer expansion (and possibly other
expansions). A similar situation exists for the problem discussed below which,
however, is much simpler and which can be solved for special boundary conditions.

7.6. Limiting flow inside a finite domain. We consider a finite domain D
with boundary B. In the boundary conditions for (7.3) we replace (7.4) by

(7.18a) normal velocity component 0,

(7.18b) tangential velocity component given function ub.

For the Euler flow in the same domain we use (7.18a) and give up (7.18b).
Obviously the solution is not unique. If (q, p) is one solution, then (kq, k2p) with
k const, is another solution and many other drastically different solutions
exist. However, the limiting flow is characterized by the following property
(Prandtl (1905)):

(7.19) The vorticity is constant in each vortex.

To define a vortex we say that two streamlines belong to the same vortex
if and only if one encloses the other and if the region between the streamlines
consists entirely of such "nested" streamlines. Thus the flow depicted in Fig. 7.1
consists of two vortices. The bounding streamlines are ABC and ACD respectively.
The streamline ABCD does not belong to either vortex.
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FIG. 7.1. Vortices

The proof of (7.19) depends on the assumption that in a finite domain the
streamlines are closed (which follows if one assumes that there are no mass-
sources or mass-sinks in the domain).

We may write the two equations of (7.9b) as

-c3h 1 c309
(7.20a) c3x--- + q I(-D g Ox’

h 1
(7.20b) Ox + q2 R x’
where

(7.20c) h 2(ql + q)+ P.

Consider a closed streamline S with normal dn (-dx, dx). Multiply (7.20a),
(7.20b) by dx and dxT, respectively, and integrate over the streamline. The
integral of the first term gives the increase in h going around a closed curved
and is zero since h is one-valued. The second term gives zero since q. dn is zero.
Thus We obtain

(7. Ns 0,

where ds is the length element along the curve S. This result is valid for arbitrary R.
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We now introduce the streamfunction by

(7.22) q C3/OX, q2 @/OX,

a definition which is possible because of (7.9a). Obviously the value of does
not change along a streamline. In the limit R -, oe, the value of co is also constant
along a streamline so that co o9() and furthermore dco/dO is constant along each
streamline. We then rewrite (7.21) as

(7.23) - n ds O.

Since, as follows from (7.22), c/c3n is the tangential velocity component, the value
of the integral is nonzero. The conclusion presupposes that S is part of a vortex
(it would be invalid for the streamline ABCD in Fig. 7.1). Hence

(7.24) cco/c3qt 0 for R

This concludes the proof of (7.19).
Returning to the perturbation problem we consider first the flow inside a

*-coordinates. The prescribed tangential velocitycircle of radius unity in xj
component u is now a function of the angle 0. We shall see if (7.19) will help in
finding the solution. The obvious difficulty is that we do not know how many
vortices there are. Assume tentatively that only one vortex occurs. It can easily be
shown that the only solution of the Euler equations with constant vorticity is
when the fluid rotates like a solid, i.e., when the r-component of the velocity is zero
and the 0-component, denoted by u, is proportional to r. This still leaves a one-
parameter family of solutions: If (u, p) is a solution, then so is (ku, kZp). The flow
field is uniquely determined if u is given, where

(7.25) Ue=U atr-- 1.

Thus we want to relate the unknown u to the known u(O) through a boundary-
layer solution. We note that the Eulerflow at r 1 is u whereas the actual velocity
field at r 1 is u. We introduce the boundary-layer coordinates (cf. (7.12))

(7.26) =0, r/ l-r,

As boundary conditions for the boundary-layer flow we then find

(7.27a) u=u atf/=0,

(7.27b) u u at f/=

The criterion for finding u is that the Navier-Stokes solution is periodic in 0
and that hence the boundary-layer solution must be periodic in (= 0). Our
problem is then to translate this criterion into an a priori estimate of u.

For the circle one proceeds as follows (Feynman and Lagerstrom (1956)).
We make the coordinate change from (, r/) to (, q) (known to aerodynamicists

as von Mises coordinates). The boundary-layer equation (7.13b) then becomes

C3U p 632(U2/2)
(7.28) u- + - u c3
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This equation is valid when Pe is an arbitrary function of . In the present case

Pe is constant and (7.28) reduces to
GU Gq2U2

(7.29) 2.c ,2.
We define the average of a function f(, ,) by

ff(0) f(, 0)d, 0 const.

We can now use periodicity: u(, 0) u( + 2, 0) implies that the average of
the left-hand side (of (7.29)) is zero. Then

(7.30) d2a2/dO2 O.

Thus the derivative of the mean of u2 does not vary from streamline to streamline.
Evaluation at shows that this derivative actually is zero on every streamline.
Thus 2 is the same on all streamlines. Evaluation at 0 and 0 0 gives,
finally,

2(7.31) Ue U.
Hence we have found an a priori relation between the given function u(O) and
the unknown constant u.

Equation (7.31) does not give the sign of Ue. There is, however, a much more
serious difficulty than that. Equation (7.31) is a necessary but not a sufficient
condition for the existence of a boundary-layer solution. Consider the Euler
flow as in Fig. 7.1 and assume that + 1 in the upper half of the circle and

1 in the lower half of the circle. If one prescribes u to be equal to the values
taken by the Euler flow on the boundary or deviating very slightly therefrom
while still keeping the basic symmetry around AC, the limiting flow must be of
the form shown in Fig. 7.1 with possibly a slightly different value of Il. Thus
computation of a Ue from (7.31) is meaningless in this case.

The vortex picture shown in Fig. 7.1 is still relatively simple; there may be
a large number of vortices in an asymmetrical arrangement.

At present the limiting vortex structure cannot be determined a priori.
Thus, even for the flow inside a circle the problem is not solved. However, if the
resulting flow has only one vortex, the solution may be obtained with the aid of
(7.31). The natural way to test whether there is one vortex is the following:

One computes lull by (7.31) and gives u the same sign as the average of u
and studies the resulting boundary-layer equations. The breakdown of the
boundary-layer solution indicates that there is more than one vortex. The theory
of the boundary-layer equations furnishes approximate criteria for the non-
existence of a solution. Clearly, if u differs only slightly from the computed u,
there will be only one vortex.

If the boundary is not a circle, the equivalent of (7.31) is not known. However,
assume that the domain is simply connected. Let the given boundary condition

u have the form

(7.32) u f() + eg(),
26 The argument used amounts to the consideration of momentum balance over one period.
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where f() is the value at the boundary of a special one-vortex Euler solution
(which can be found by solving Poisson’s equation). We assume e to be small.
Then the actual Euler flow corresponding to the boundary conditions (7.32)
differs from the special one by a multiplicative constant k. Thus

(7.33) b/e k .f.
For e 0, k 1. Hence

(7.34) k 1 + ek +....

The periodicity requirement then gives (Feynman and Lagerstrom (1956))

(7.35) kl f2g/f3.

This result reduces to (7.31) when the boundary is a circle. It may be proved
using von Mises coordinates. The proof is similar to that of (7.31).

7.7. Optimal coordinates. By some ingenious geometrical reasoning Kaplun
(1954) showed that if one finds the first two terms of the outer expansion and the
first term of the inner expansion for flow at high Reynolds numbers in two
dimensions, then one may introduce a new system of coordinates, called optimal
coordinates, such that the leading term of the inner expansion with respect to
the new system contains the two leading terms of the outer expansion. This work
has been extended to higher order by Legner (1971). Thus, up to the order con-
sidered, the two matching expansions have been replaced by one regular expansion.

7.8. Coordinate-type expansions, artificial parameters. In 3 it was mentioned
that the distinction between coordinates and parameters is not intrinsic but
depends on the problem studied and the method of solution. In the asymptotic
expansions studied here we have sought expansions which are uniformly valid
in a closed domain of coordinate-space as the parameter e tends to a limiting value.
The quantity e was also a parameter in the sense that derivatives with respect to
e never appeared in the differential equations determining the function. There are
however cases where a variable is physically a coordinate and occurs like a
coordinate in the differential equation, but in the asymptotic solution we treat
it as a parameter. We may for instance consider an expansion of f(x x2, e)
uniformly valid in x2 as x tends to infinity and for a fixed value of e. Such
expansions are called coordinate-type expansions as opposed to the parameter-
type expansions studied earlier; see Lagerstrom and Cole (1955) and Chang
(1961).

A typical problem of coordinate-type expansions occurs in the theory of
viscous compressible flow past a finite body, the problem being to find the flow
field at a large distance from the body. The two-dimensional case of this problem
has been studied thoroughly by Chang (1961) who also discusses the general
methodology for coordinate-type expansions. The problem is singular; in the
narrow wake region downstream of the body called the wake, a different scale
in x2 is used than outside the wake. The solutions for different regions are matched
as in a parameter-type expansion; even switchback occurs. The quantity corre-
sponding to the small parameter e is x - 1. One may achieve the same formal result
by introducing an artificial dimensional parameter in the form of an artificial
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length. The small parameter is then the body dimension divided by the artificial
length. Of course, the artificial length must disappear from the final answer (see
Chang (1961)).

It must be emphasized that for fixed Reynolds number the flow at large
distances cannot be matched with the flow near the body. Since, however, the
flow at large distances is determined by the boundary conditions on the body, the
asymptotic expansion for large distances will then contain undetermined con-
stants. Assume one also finds a solution near the body, say a Taylor expansion
in suitable coordinates. This expansion will also contain undetermined constants.
However, the undetermined constants of the two expansions cannot be related
by matching, i.e., by comparison of partial sums. The problem is that of analytic
continuation rather than matching; only the entire Taylor expansion near the
body will determine the asymptotic expansion at large distances. One may,
however, use integral conservation laws as a kind of analytic continuation in the
mean.27 For instance, since divergence of the velocity field is zero (conservation
of mass) and since the flow through the surface of the body is zero it follows that
the integral of q-dn over any closed curve is zero. This determines one of the
constants of the asymptotic expansion at infinity. Similarly, other constants
in this expansion may be related to the total force and the torque exerted by the
fluid on the body.

Another problem which has only one length is nonviscous flow past a
parabola, or paraboloid. The problem has only one independent real length,
say the nose radius of curvature, so that one cannot talk about a slender parabola.
However, far downstream the parabola looks slender; i.e., the radius divided
by the distance to the nose is small. One may formalize this by introducing a
large artificial length, and use singular perturbation techniques. The solution
will not be valid near the nose and no matching is possible. However, the law of
conservation of mass can be used to great advantage here. Details are given in
Van Dyke (1958).

We note that in a given problem a physical parameter may be mathematically
artificial depending on the boundary conditions. For instance, in viscous flow
past a semi-infinite plate (or any conical body, i.e., body with no length parameter)
the viscosity is artificial in the sense that it must be eliminated. From dimensional
analysis we know that v must appear only in the combinations (cf. (7.2))
xj (dimensional coordinate). Uo/V. Thus if we use these coordinates, v will
disappear both from the equations (7.3) and the boundary conditions. One may,
of course, expand in small values of v but this is in reality an expansion f6r large x.
The expansion will not be uniformly valid at the nose of the flat plate. More
precisely, it is easily shown that if we have any approximation which is uniformly
valid to order unity everywhere and where v occurs only in the combination
described in the definition of xj above, then the approximation is in reality the
exact solution; see Lagerstrom and Cole (1955, pp. 869-870) and Chang (1961,
pp. 821-822).

27 This leads to the interesting question of finding all independent conservation laws for a system
of equations. This problem is discussed in Casten (1970).
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Appendix. The equation

(A.la) dZf m df df
dx2 +- =0

with boundary condition

(A.lb) f(oe) 0

determines f to be a constant times the function

(A.2) Em(x e-’t dt.

The corresponding nonhomogeneous equations

(A.3) d2f m df df
dx-- + +x Ux

and

(A.4) dZf m df df
dx--5 + +

have the particular solutions, with f(oe) 0,

(A.5) f Fm(x
and

2

dEm- 22m- (2x)-d
(X)

Em(X) -- 1E2m_

f Gm(X ----}(Era(X))2,
respectively.

Asymptotic expansions valid for x small are

(A.6a) El(X)= -lnx-7+x+O(x2),

(A.6b) Ez(x)
e

El(X
1 x x2

+ In x + (7 1)- + + O(x3),

(A.6c) E3(x
e-:’ e-:’ 1 1 3 27
2X2 2x +- }E(x) 2X2 X 2

In x +
4

(A.7a) FI(x -In x 2 In 2 7 x In x + (3 7)x + O(x2 In x),

lnx 7+2(A.Yb) Fz(x
X X

31nx- 37+5-41n2+ O(xlnx),

(A.Sa) G -} In2 x 7 In x 7
2

+ xlnx + 7x +

(A.8b)

1
G2 In x

2x 2 x
7- ln2x
x 2

(7 1) Inx---72 +27 xlnx 7- 1
-1
t- -1"- X --1- O(X2).

2 2 2
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