
BIOINFORMATICS Vol. 17 no. 3 2001
Pages 226–236

Basic Gene Grammars and DNA-ChartParser for
language processing of Escherichia coli
promoter DNA sequences

Siu-wai Leung, Chris Mellish and Dave Robertson

Division of Informatics, University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, UK

Received on March 13, 2000; revised on October 13, 2000; accepted on November 21, 2000

ABSTRACT
Motivation: The field of ‘DNA linguistics’ has emerged
from pioneering work in computational linguistics and
molecular biology. Most formal grammars in this field
are expressed using Definite Clause Grammars but
these have computational limitations which must be
overcome. The present study provides a new DNA parsing
system, comprising a logic grammar formalism called
Basic Gene Grammars and a bidirectional chart parser
DNA-ChartParser.
Results: The use of Basic Gene Grammars is demon-
strated in representing many formulations of the knowl-
edge of Escherichia coli promoters, including knowledge
acquired from human experts, consensus sequences,
statistics (weight matrices), symbolic learning, and neural
network learning. The DNA-ChartParser provides bidirec-
tional parsing facilities for BGGs in handling overlapping
categories, gap categories, approximate pattern matching,
and constraints. Basic Gene Grammars and the DNA-
ChartParser allowed different sources of knowledge for
recognizing E.coli promoters to be combined to achieve
better accuracy as assessed by parsing these DNA
sequences in real-world data sets.
Availability: DNA-ChartParser runs under SICStus Pro-
log. It and a few examples of Basic Gene Grammars are
available at the URL: http://www.dai.ed.ac.uk/∼siu/DNA
Contact: {siu,chrism,dr}@dai.ed.ac.uk

INTRODUCTION
The genetic encoding in DNA has often been described
using formal systems with origins in computational
linguistics (Searls, 1989; Gribskov, 1992; Searls, 1997;
Ji, 1999). Formal DNA linguistics research has used
finite-state automata, stochastic grammars based on hid-
den Markov models (Durbin et al., 1998), and grammars
based on computational logic (Searls and Noordewier,
1991; Searls, 1989, 1992, 1993, 1997). The logic gram-
mar approach to DNA language analysis involved mainly
representing DNA structures in Definite Clause Gram-

mars (DCG) (Pereira and Warren, 1980). Advanced
programming features in DCGs such as parameter-
passing, procedural attachment, and arbitrary Prolog code
embedding (Clocksin and Mellish, 1994) were employed
to represent special structural features of DNA. DCGs
and Prolog are also useful in modeling gene regulation
(Collado-Vides, 1992, 1996; Rosenblueth et al., 1996).
The cumulative experience of many research groups
in using these sorts of systems suggests that no single
one of them is capable of solving the parsing problem
on its own. The more specialised formal systems (such
as finite-state automata) have difficulty in representing
the varied forms of knowledge which appear necessary
in obtaining accurate solutions. The more powerful
representational systems (such as DCGs which compile to
a general purpose programming language, Prolog) raise
problems of appropriate knowledge representation and in-
tegration. In this paper we describe a system of equivalent
representational power to DCGs which overcomes some
of these problems.

DCGs, although in theory allowing different styles of
processing, are in practice used in a top-down left-to-right
manner. When used in this way, they have difficulty in han-
dling the special features of DNA processing such as over-
lapping syntactic categories. More sophisticated natural
language processing techniques are needed for linguistic
studies of DNA. The present paper describes Basic Gene
Grammars, an attempt to simplify the representation of
DNA sequence knowledge, and a bidirectional chart parser
called the DNA-ChartParser to support the development
of Basic Gene Grammars. The use of Basic Gene Gram-
mars and the DNA-ChartParser will be demonstrated in
representing the knowledge of Escherichia coli promoter
sequences, which are probably the most studied and cited
sequences in molecular biology. Many kinds of formula-
tions of such DNA sequence patterns acquired from hu-
man and machine learning can be represented in Basic
Gene Grammars and processed by the DNA-ChartParser.

226 c© Oxford University Press 2001

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

DNA language processing

lhs_cat ---> rhs_cat_1, ..., rhs_cat_n.
lhs_cat : constraint_formulae --->

rhs_cat_1, ..., rhs_cat_n.

Fig. 1. The syntax of grammar rules.

BASIC GENE GRAMMARS
The development of Basic Gene Grammars was inspired
by work using Definite Clause Grammars in representing
DNA sequences (Searls, 1989) and further driven by
the need to represent some special features of E.coli
promoter DNA sequences. The term ‘grammar(s)’ in
the following sections refers to Basic Gene Grammar(s)
unless otherwise stated.

Grammar rule syntax
Figure 1 shows the syntax of basic grammar rules. A
grammar rule consists of a single left-hand-side (LHS)
category, an arrow symbol, and one or more right-hand-
side (RHS) categories (rhs cat 1,..., rhs cat n.).
The LHS category and RHS categories are separated by an
arrow symbol (e.g. --->). One or more optional formulae
representing constraints may be added in between the
LHS category and the arrow symbol. The operator ‘:’
separates the LHS category from the constraint formulae.
The constraint formulae are extra conditions for the LHS
category to be established.

Syntactic categories
In a grammar rule, the LHS category is a label for
the sequence comprising all the RHS categories. Each
syntactic category describes a structural and/or functional
region of the sequence. Similar to the convention in Prolog
(Clocksin and Mellish, 1994), the name of a constant starts
with a lower case character. A variable begins with an
upper case character.

Basic lexicon. A basic lexicon comprises lexical rules, in
which base categories are on the LHS and terminals are on
the RHS. The basic lexicon was built in accordance with
the International Union of Biochemistry (IUB) Standard
Nucleotide Codes. We use b(Code), where Code is a
nucleotide code, to specify a base category. For instance,
b(a) specifies base a. Lexical rules for base categories
other than b(a), b(c), b(g), and b(t) are optional.
The optional lexical rules can be added or removed for
different parsing requirements.

Ordinary and variable categories. An ordinary category
is a simple constant symbol (e.g. regionA) or a functor
with feature arguments (e.g. regionB(x,y,z)). The
number of feature arguments should be kept minimal for
clarity.

If a syntactic category itself or its feature arguments are
variables, then we call it a variable category. A variable
category can be used to represent an unknown category
or the multiple occurrence of the same unknown category
in a single grammar rule. The values of variables with an
identical name but in separate grammar rules may differ.
To represent a variable category of bases, we may use
b(X) where X is a variable. To represent a general variable
category, we may use V. Examples of grammar rules with
variable categories are given below.

regionA ---> b(X), b(t), b(X).

regionB ---> V, regionA, V.

tandem_repeat ---> Y, Y.

Suppose that there are only four lexical rules for bases,
i.e. a, c, g, and t. The first grammar rule will accept a
three-base DNA sequence in which the first and the third
bases are identical (because they share the same variable,
X) and the second base is t. For instance, this grammar
will accept sequences such as ata, ctc, gtg, and ttt
but will not accept atg. The second grammar rule will
accept regionB if regionA is found to be flanked by two
identical categories. The third grammar rule specifies a
tandem repeat pattern, which is composed of two identical
categories.

Gap categories. Gaps are parts of the sequence that
are not of interest and/or their significance is still not
known. Our definition of a gap in the grammar is a
subsequence of some length (comprising zero or more
bases) flanked by two subsequences of interest. This is
the only place that gaps can be indicated. In the grammar,
the symbol gap is used to specify a gap of indefinite
length. When the gap length is known to be within a
range, gap(LowerLimit, UpperLimit) is preferred.
If the exact gap length is known, gap(Length) is more
elegant than gap(Length,Length). Some examples of
grammar rules with the gap categories are given below.

intron ---> b(g), b(t), gap, b(a), b(g).

contact ---> minus_35, gap(14,19), minus_10.

regionA ---> cat_A, gap(10, no), cat_C.

regionB ---> cat_E, gap(no, 20), cat_G.

regionC ---> cat_H, gap(25), cat_I.

In the above example, the first rule specifies a gap of
indefinite length between GT and AG. The second rule
specifies a gap of 14–19 bases in length. The third rule
specifies a gap of at least 10 bases in length. The fourth
rule specifies a gap not longer than 20 bases. The last rule
precisely specifies a gap of 25 bases in length.

Key categories and overlaps
Basic Gene Grammars represent overlapping categories
and indicate the possible distribution of key categories

227

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

S.Leung et al.

Table 1. Arrow notations

Arrow symbol Arrow body Arrow head

---> --- >

===> === >

<--- --- <

<=== === <

in DNA by using arrow symbols. There are four types
of arrow symbols in the grammar (Table 1). An arrow
symbol is composed of two parts, an arrow body and
an arrow head. The arrow body indicates whether the
RHS categories are possibly overlapping. The arrow head
specifies the distribution of possible key categories in the
RHS, i.e. more significant categories on the left (>) or
more significant categories on the right (<). The significant
categories contribute more essential characteristics and
higher confidence than other categories in the RHS for
pattern recognition. The chart parser will index each rule
on whichever of the leftmost or rightmost categories is
indicated as more significant.

A single-line arrow body (---) indicates that the
syntactic categories on the RHS of a grammar rule
are non-overlapping. A double-line arrow body (===)
suggests that the RHS syntactic categories are possibly,
but not necessarily, overlapping in a physical sequence,
regardless of the arrow symbol of the grammar rule. In
a grammar rule with an arrow ===>, each RHS category
must start at or after the start of the previous one. In a
grammar rule with an arrow <===, each RHS category
must end at or before the end of the next one.

Approximate sequence patterns
DNA sequences may have sequence variations in the
same syntactic category. It is possible to represent an
approximate sequence pattern in a grammar rule in which
only a subset of the RHS base categories have to match.

Simple match and mismatch. To represent an approxi-
mate base pattern with its score of matching, we introduce
an operator #, which indicates the score of matching, into
the LHS category. Two example grammar rules are given
below:

category # Match --->

b(g), b(n), b(t), b(t), b(n), b(a), b(a).

category # Match : Match >= 4 --->

b(g), b(n), b(t), b(t), b(n), b(a), b(c).

In the above grammar rules, the variable Match stores
the number of the bases matched to the given sequence
pattern in RHS. The value of Match indicates how similar
are the sequence and the pattern. There is no constraint

formula in the first grammar rule because the LHS
category can be accepted unconditionally. The constraint
Match >= 4 in the second grammar rule specifies that
the Match should be greater than or equal to 4 for the
LHS category to be accepted. To represent an approximate
base pattern with a possible number of base mismatches,
an operator $ is introduced to indicate the penalty of
mismatching, into the LHS category.

Best match of bases. While the simple match or mis-
match grammars specify the possible number of the bases
matched or mismatched to the given sequence pattern, a
best match grammar rule specifies that only the best match
of the RHS base categories is allowed when base inser-
tions and deletions are allowable. This is the best match
starting from the beginning or the end of the sequence,
depending on the direction of the arrow. We introduce an
operator & into the LHS category. Two example grammar
rules are given below:

category & (std, 15, Best) --->

b(g), b(n), b(t), b(t), b(n), b(a), b(c).

category & (std, 15, Best) : Best > 6 --->

b(g), b(n), b(t), b(t), b(n), b(a), b(c).

In the above grammar rule, the matching score scheme
(std) and the maximum length (15) of the final candidate
sequence are specified. The variable Best stores the
number of the nucleotides matched to the given sequence
pattern in the RHS. The variable Best is regarded as
additional information in the first grammar rule. The
constraint Best > 6 in the second grammar rule specifies
that the Best should be greater than 6 when the LHS
category is established.

As an approximate sequence will probably not be the
same as the given sequence pattern in terms of length
(because of insertions or deletions), the maximum length
of the allowable sequence should be given. We can specify
one of a variety of matching score schemes for best match,
similar to the score schemes used in sequence alignment
by dynamic programming. To specify a matching score
scheme in a grammar, we need to add a predicate as
exemplified below:

% scheme(+Name,+MatchWeight,+MismatchWeight,

% +InsWeight,+DelWeight).

scheme(std, 2, 0, -1, -1).

In a matching score scheme, we should specify the
name of the scheme (Name) and the weights for matches
(MatchWeight), mismatches (MismatchWeight), in-
sertions (InsWeight), and deletions (DelWeight) of
bases.

Overlapping approximate categories. To represent mul-
tiple approximate sequence categories that are overlapping

228

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

DNA language processing

with one another, we need to write an independent rule for
each approximate category and then combine overlapping
categories by an additional rule using a double-line arrow
symbol. For example,

cat1#X : X>2 ---> b(a), b(n), b(c), b(n), b(a).

cat2#Y : Y>3 ---> b(t), b(n), b(g), b(n), b(t).

siteA : A+B>8 ===> cat1#A, cat2#B.

cat1#A and cat2#B are overlapping approximate
cateogries in siteA. Their simple match scores are
the criteria for accepting category siteA in the third
grammar rule.

Constraints
Constraints, which determine whether the LHS category
can be established, may have multiple variables for
evaluation:

siteA : A+B <5 --->

b(g), cat1$A, b(t), cat2$B, b(c).

In the above example, A+B < 5 is a condition for
establishing the syntactic category siteA. The values
of A and B will be taken from cat1$A and cat2$B
respectively. During parsing, the equation A+B < 5 will
be evaluated when all the RHS categories have been
found. To handle complicated evaluation, it is possible to
have multiple constraint formulae in Prolog syntax. For
example,

siteA : (A+B < 5, P+Q > 6) --->

cat1$A, cat2$B, cat3$P, cat4$Q.

Positional information
Information about the absolute position of one or more
categories in a DNA sequence can be important for
recognizing a syntactic category. We may use position
variables to retrieve positional information and require
position values as a kind of constraint. A position variable
or value is preceded by an operator ‘@’, which means
‘located at’.

siteA ---> @10, cat2, cat3, @30.

siteA ---> @P1, cat2, cat3, @P1+20.

siteA : P2-P1<25 --->

@P1, cat2, cat3, @P2.

In the above example, the first grammar rule specifies
the absolute positions of the start and end points of
siteA in the DNA sequence. The second grammar rule
only defines the length of siteA to be 20, not the
absolute positions of the starting and ending points. The
third grammar rule relaxes the positional constraints but
stipulates a range of possible lengths (less than 25 bases)
for siteA.

i
k

j
l

i
k l

i
k

j
l

i
k

j

j
l

i k j l

i k l j

i = k l j

i k j = l

Type 1:

Type 2:

Type 3:

Type 4:

i j
Type 0 (Non-overlapping):

i j

lk

Type 5:
i = k j = l

i j = k lk l

Fig. 2. Some possible types of overlapping and the relative positions
of the overlapping categories.

The positional information is also useful in specifying
particular ways categories can overlap. For instance, Type
I overlapping as illustrated in Figure 2 can be specified as
follows:

siteA(I,J) ---> @I, cat1, @J.

siteB(K,L) ---> @K, cat2, @L.

region1 :(K>I, J>K, L>J) ===>

siteA(I,J), siteB(K,L).

DNA-CHARTPARSER
Chart parsing stores intermediate parsing data in a chart to
avoid redundant searches (Gazdar and Mellish, 1989). Its
parsing algorithm can be viewed as a kind of dynamic pro-
gramming, which is widely used in sequence alignment.
We extended the Gazdar and Mellish chart parser (Gaz-
dar and Mellish, 1989) to develop the DNA-ChartParser.
This section describes chart recognition, which is easily
supplemented with additional facilities to support parsing.

The chart and agenda
The chart of a chart parser is a modified well-formed sub-
string table (WFST) including not only the intermediate
results but also the hypotheses for parsing. While the chart
accumulates the intermediate data during chart parsing,
an agenda temporarily stores the data that are still to be
added to the chart. The data in the agenda are arranged ac-
cording to their priority for processing. A chart is usually
represented as a set of structures, each of which has the

229

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

S.Leung et al.

following attributes:

<Start, Finish, Label, Found, ToFind>

This structure is called an edge. The attributes Start
and Finish respectively store the starting and ending
chart positions. The chart positions are equivalent to
the positions in the string, i.e. DNA sequence. Label is
equivalent to the LHS of a particular grammar rule. Found
is the sequence of RHS categories which have been found.
ToFind is the sequence of RHS categories which are being
looked for. We can also represent an edge in the following
structure:

<Start, Finish, Label→ Found . ToFind>

where the edge attribute Label is equivalent to the LHS of
a grammar rule. Found is the RHS category set recording
the categories which have been found. ToFind is the RHS
category set recording the categories which are still to be
found so that the LHS category can be established.

An edge with an empty ToFind is called an inactive
(complete) edge. An edge with a non-empty ToFind is
called an active (incomplete) edge.

To support parsing in a preferred direction correspond-
ing to the significance order of key categories, the DNA-
Chart Parser adds an attribute Arrow to the basic edge
structure. Hence, each edge in the DNA-ChartParser con-
sists of six attributes:

<Start, Finish, Label, Arrow, Found, ToFind>

where the order of attributes Found and ToFind depends
upon the direction of Arrow. The possible values of
Arrow are →, ⇒, ←, ⇐, and ↔. For the active edges
indicating a left-to-right parsing direction, the notations
are as follows:

<Start, Finish, Label→ Found . ToFind>

Since an inactive edge can be used in both the left-to-
right and right-to-left parsing, we use a bidirectional arrow
‘↔’ in this case:

<Start, Finish, Label↔ AllRHSCategories>

In an inactive edge, all the RHS categories are found.

Fundamental rules of chart parsing
To make use of the chart data, we need to apply the
fundamental rules of chart parsing. The fundamental rule
of left-to-right chart parsing is as follows:

Fundamental Rule: Left-to-Right
If the chart contains edges
<i, j, A→W1 . B W2> and
<j, k, B↔W3>,
where A and B are categories and W1, W2 and

W3 are sequences of zero or more categories, then
add edge:
<i, k, A→W1 B . W2>

to the agenda.

We can represent the edge structure as follows:

edge(Start,Finish,Label,Arrow,Found,ToFind).

where Start and Finish are respectively the starting
and ending positions of the found fragement of a category
Label. In the edge notation, the subcategories before the
dot (.) have been found and the subcategories after the
dot (.) is still to be found to fully establish the complete
category. To represent the dot, we use two separate lists,
i.e. Found and ToFind. The found subcategories are
stored in Found list while the subcategories to be found
are stored in ToFind list. For example, according to the
fundamental rule of chart parsing, if the chart contains the
following two edges:

edge(10, 14, region1, --->,

[[10,cat1,14]], [siteA,siteB]).

edge(14, 18, siteA, <-->,

[[14,cat2,16],[16,cat3,18]],[]).

then the following edge is added to the chart:

edge(10, 18, region1, --->,

[[10,cat1,14],[14,siteA,18]],[siteB]).

In this way, every step of the parsing process can be
recorded as an edge in the chart.

The right-to-left rule of chart parsing is a mirror image
of the left-to-right rule. Details about the mechanism of
chart parsing can be found in books on natural language
processing (Gazdar and Mellish, 1989).

Process of DNA chart parsing
The present DNA-ChartParser provides bottom-up chart
parsing and breadth-first search. The category matching
in the DNA-ChartParser is based on the Prolog unification
mechanism. Before initialization of chart parsing, both the
chart and agenda are usually empty. At initialization, the
inactive edges representing each base category in the input
DNA sequence will be generated during lexical lookup
and added to the agenda thereafter.

The chart parser adds one agenda edge at a time to the
chart according to their order appearing in the agenda,
until the agenda becomes empty. An agenda edge is only
added to the chart if it is not subsumed by an existing chart
edge.

Upon the addition of an inactive edge to the chart,
for each active chart edge that is waiting for something
matching the category of the newly added inactive edge,
the fundamental rule of chart parsing is applied to add

230

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

DNA language processing

a resulting edge to the agenda. In addition, for each
grammar rule with arrow ---> or ===> where the left-
most RHS category matches with the label of the newly
added edge, an active edge is added to the agenda; for
each grammar rule with arrow <--- or <=== where the
rightmost RHS category matches the label of the newly
added edge, an active edge is added to the agenda.

Upon the addition of an active edge to the chart, for
each inactive edge that matches the category required by
the newly added active edge, the fundamental rule of chart
parsing is applied to add a resulting edge to the agenda.

Parsing gap categories
We use bounded gap categories to illustrate the parsing
of gap categories. A bounded gap category is a gap
category with specific lower and upper limits of gap
length. The left-to-right parsing techniques for combining
two categories with an intervening bounded gap are as
follows:

If the chart contains edges
<i, j, A→W1 . gap(Lower,Upper) B W2> and
<k, l, B↔W>

where Lower � k – j � Upper, then add edges:
<i, l, A→W1 gap(Lower,Upper) B . W2> and
<j, k, gap↔ gap>

to the agenda.

The right-to-left parsing is a mirror structure of the left-
to-right parsing.

Parsing overlapping categories
Overlapping categories are syntactic categories that are
overlapping partially or completely. A method of combin-
ing two overlapping categories in the left-to-right direction
is as follows:

If the chart contains edges:
<i, j, A⇒W1 . B W2> and
<k, l, B↔W3>,
where (1) A and B are categories, (2) W1, W2 and
W3 are (possibly empty) sequences of categories,
(3) i � k � j, and (4) m is the maximum value of j
and l, then add edge:
<i, m, A⇒W1 B . W2>

to the agenda.

The right-to-left parsing has a mirror structure to the
left-to-right parsing.

Approximate pattern matching
Approximate Pattern Matching (APM) allows mis-
matches, insertions, and deletions of bases; thus, the
fundamental rules of chart parsing for perfect matching
are not applicable. By definition, every base category

is eligible to invoke an APM rule because every sub-
sequence is a possible candidate of an approximate
sequence pattern. To avoid doing unnecessary APM, the
APM rules are invoked only when a category adjacent to
an approximate sequence pattern has been found. Best
match scoring is explained to exemplify APM. As we
use breadth-first search, the edges for all the bases are
available in the chart during best matching. The best
match score is calculated according to a basic sequence
match algorithm (Pearson and Miller, 1992), which gives
the best possible similarity score in compliance with the
set of match, mismatch, insertion, and deletion scoring
parameters. For left-to-right parsing:

If the chart contains an edge:
<i, j, A→W1 . X&Y W2> and
there is a grammar rule
X&(Scheme,MaxLen,Y) : constraints→W
and l is the length of the DNA subsequence
matched with W after doing best matching and l
� MaxLen and r is the best match score W against
the sequence from j to j+l according the scoring
Scheme, and the constraints are satisfiable, then
add edges:
<i, j+l, A→W1 X&r . W2> and
<j, l, X&r↔W>

to the agenda.

The right-to-left parsing has a mirror structure to the
left-to-right parsing.

Evaluation of constraint formulae
In the notation for an edge, the constraint formulae
attaches to the LHS category. The constraint formulae are
evaluated just before adding the relevant inactive edge into
the agenda to ensure that all the edges added to the agenda
are eligible for further processing.

Evaluation of positional information
Positional information is stored in a dotted rule in the form
‘@X’, where ‘@’ is an operator and X can be an integer or
a variable. For processing a left-to-right edge having an
‘@X’ as the first data item of the attribute ToFind, X will
be unified with the value of Finish. For processing a right-
to-left edge having an ‘@X’ as the first data item of the
attribute ToFind, X will be unified with the value of Start.
If the unification is successful, the instantiated edge will
be added to the agenda.

GRAMMARS OF E.COLI PROMOTERS
This section exemplifies the use of BGGs in representing
knowledge of some DNA sequences, particularly the se-
quences of E.coli promoters. The knowledge to be rep-
resented is obtained from human and machine empirical
learning.

231

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

S.Leung et al.

promoter ===> contact, conformation.
contact ---> minus_35, gap(15,19), minus_10.
minus_35 ---> b(t),b(t),b(g),b(a),b(c),b(a).
minus_10 ---> b(t),b(a),b(t),b(a),b(a),b(t).
conformation --->

Fig. 3. A partial grammar of consensus sequences.

Features of E.coli promoters
A promoter enables the initiation of a gene expression
after binding with an enzyme called RNA polymerase,
which moves bidirectionally in searching for a promoter
and starts making RNA according to the DNA sequence
at the transcription initiation site following the promoter
(Mishra and Chatterji, 1993; Lewin, 2000). The most
significant patterns in E.coli promoter sequences are the
−10 and −35 regions, which are approximately at the
region of 10 bases and 35 bases before the transcription
initiation site. The spacing (gap) between the −10 and
−35 regions is not fixed, ranging from 15 to 19 bases. The
−35 and −10 sequences together are the contact region
for RNA polymerase.

Grammars of consensus sequences
A consensus sequence represents the common patterns of
a group of aligned sequences. The consensus sequences
for the −35 region and the −10 region of the E.coli
promoter are respectively TTGACA and TATAAT. A Basic
Gene Grammar making use of these consensus sequences
of the E.coli promoters is shown in Figure 3.

Despite the fact that a consensus sequence does repre-
sent a common pattern for the group of sequences it is
not useful for the recognition of variable DNA sequence
patterns unless a facility for approximate pattern matching
can be provided (Mehldau and Myers, 1993).

To do approximate pattern matching, we need to find
the best match score for each possible subsequence and
then compare the score to a cutoff value (threshold) when
applying grammar rules. The calculation of the best match
score is based on a pre-defined scoring scheme which
we illustrate using a hypothetical example. Suppose we
would like to use a scoring scheme ‘ecoli’, in which the
score for each match, mismatch, insertion, and deletion
is respectively 12, −1, −9, and −9, as stipulated in the
following predicate:

scheme(ecoli, 12, -1, -9, -9).

A grammar rule for representing the consensus sequence
of the −10 region may be written as follows:

minus_10 & (ecoli,7,Score):Score>=20 --->

b(t), b(a), b(t), b(a), b(a), b(t).

The above grammar rule specifies that the best match
score Score is calculated according to the scoring scheme
ecoli; the maximum length of the qualified sequence is
7; the best match score (Score) must be equal to or greater
than 20; and the consensus sequence is TATAAT.

Grammars of weight matrices
A weight matrix, also called a frequency matrix, is more
informative than a consensus sequence in representing
a DNA sequence pattern. A weight matrix is a two-
dimensional representation of a sequence pattern where
one axis represents the position in the pattern, and the
other axis provides the frequency of occurrence of each
of the nucleotides at each position in the pattern (Rice et
al., 1991).

One method for obtaining an estimated score is by per-
forming a calculation according to the following equation
(Harr et al., 1983):

Score =
m∏

i=1

ni

ai
= n1 × n2 × · · · × nm−1 × nm

a1 × a2 × · · · × am−1 × am

where ni is the score for base at position i taken from
the weight matrix, ai is the score for the most frequent
base at position i , and m is the number of bases in the
sequence pattern. The equation gives a value of 1 for a
perfect match.

To do this calculation by using Basic Gene Grammars,
we need to have a category that can carry a weight for
each base occurrence. A calculation performed on the
weights of the bases within a particular region will give
an estimated score. If the estimated score is greater than
the pre-defined cutoff value, then the region is classified
as a qualified region. A possible category is as follows:

freq(Position, Weight)

where Weight stores the weight (or frequency ratio) of
a base at a particular position (Position). To use the
method suggested in Harr et al. (1983), we use this special
category in the grammar rules to represent a weight matrix
provided in Lisser and Margalit (1993). The grammar
rules in Figure 4 illustrate a possible representation of
the frequency ratios of bases in the −10 region. These
grammar rules represent the probabilities of base existence
in the −10 region of the E.coli promoters. Each of these
grammar rules suggests the frequency ratio (the second
argument of the LHS category) of a particular base at a
specific position (the first argument of the LHS category)
in the −10 region. To obtain the frequency ratios as
suggested in Harr et al. (1983), we calculate the ratio of
the frequency of a particular base at a specific position to
the highest frequency at that position. For example, the
frequency of base A at the first position (m10 pos1) of the

232

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

DNA language processing

freq(m10_pos1, 5/77) ---> b(a).
freq(m10_pos2, 76/76) ---> b(a).
. . .
freq(m10_pos1, 10/77) ---> b(c).
freq(m10_pos2, 6/76) ---> b(c).
. . .
freq(m10_pos1, 8/77) ---> b(g).
freq(m10_pos2, 6/76) ---> b(g).
. . .
freq(m10_pos1, 77/77) ---> b(t).
freq(m10_pos2, 12/76) ---> b(t).
. . .

Fig. 4. A grammar of a weight matrix.

−10 region is 5 and the most frequent base (i.e. base T) at
such position is 77. The frequency ratio of the base A to
the most frequent base T is 5/77. The other grammar rules
for storing other base occurrence weights can be written
in the same way.

To calculate a score of a possible candidate of the −10
region and compare the score to a cutoff value, we can use
a grammar rule with a constraint formula as follows:

minus_10 : A*B*C*D*E*F>=0.002 --->

freq(m10_pos1,A), freq(m10_pos2,B),

freq(m10_pos3,C), freq(m10_pos4,D),

freq(m10_pos5,E), freq(m10_pos6,F).

where the cutoff value is assumed to be 0.002 and the score
is the product of the frequency ratios of the actual bases
within the −10 region.

Grammars of extracted knowledge
Some machine learning approaches such as neural net-
works are powerful in their ability to acquire knowledge
by learning from data but their knowledge representation
is difficult to comprehend and manipulate by humans.
Knowledge extraction from such machine learning sys-
tems can facilitate explicit representation and processing
(including combination) of knowledge, e.g. in logic gram-
mars. In this section we show how the output from several
different machine learning systems can be represented in
our BGG notation. In the next section we take advantage
of this to perform parsing using combined grammars.

Knowledge-based neural networks. Previous efforts in
using neural networks to recognize E.coli promoters by
perceptrons gave accuracy rates ranging from 75 (Nakata
et al., 1988) to 80% (Horton and Kanehisa, 1992). By
using a multi-layer perceptron with a hidden layer, 92% of
the E.coli promoter sequences were accurately recognized
(Shavlik et al., 1992).

The internal decision procedure of trained neural
networks is not directly accessible by human users.
Extracting rules from the trained neural networks can

promoter <--- b(t), gap(1), b(b), b(h),
gap(20), b(h), gap(9),
b(v), gap(1), start.

promoter <--- b(g), b(h), gap(20), b(w),
gap(11), start.

Fig. 5. A grammar of induce-net extracted rules.

assist human inspection of the implicitly encoded knowl-
edge. Where this is possible, we would expect that the
knowledge extracted from a neural network could be
represented by grammars and processed in a parsing
system.

The Knowledge-based Artificial Neural Network
(KBANN) approach not only extracts rules from a neural
network but also makes use of domain knowledge (Towell
and Shavlik, 1993). Using a rules-to-network translator,
KBANN uses the domain theory for constructing an initial
network topology. After training the neural network with
a number of positive and negative examples, KBANN
uses a network-to-rules translator to extract rules from the
trained neural networks.

An example for a KBANN extracted rule (with simpli-
fied notation) is as follows:

minus10 if 1.5 < nt(’CA---T’).

where the function ‘nt’ in the KBANN rules counts the
number of perfectly matched bases, which is equivalent to
simple approximate matching in Basic Gene Grammars.

The sequence pattern ‘CA---T’ can be represented in
the following simple match grammar rule:

minus10 # X : X>1.5 --->

b(c), b(a), b(x), b(x), b(x), b(t).

In the above grammar rule, the operator # indicates that
the rule is a simple match rule. The variable X stores
the simple match score as a result of doing a simple
approximate pattern matching. Unlike the category b(n),
the category b(x) is a special category that will not be
counted into the simple match score. The constraint ‘X
> 1.5’ is satisfiable only when two or more bases on
DNA are found matched with the base categories in this
sequence pattern, excluding the category b(x).

Besides KBANN, Induce-Net has also been used in
the recognition of E.coli promoters. Induce-Net is a
neural network model for inducing symbolic knowledge
from examples by exploiting the certainty-factor-based
activation function (Fu, 1999). The rules extracted from
trained Induce-Net can be represented in Basic Gene
Grammars (Figure 5).

HCV Rule-induction. As the HCV rule-induction algo-
rithm (Wu, 1992, 1993) gave higher accuracy in recogniz-
ing E.coli promoters than the reported result of the better

233

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

S.Leung et al.

promoter <--- b(v), gap(7) , b(k), b(b),
b(k), gap(20), b(r), gap(12),
start.

promoter <--- b(k), gap(1) , b(b), gap(2),
b(d), gap(18), b(h), gap(9),
b(v), gap(1) , start.

promoter <--- b(t), gap(26), b(t), gap(4),
b(t), gap(6), start.

Fig. 6. A grammar of HCV rules.

known ID3 rule-induction algorithm (Shavlik et al., 1992),
we consider HCV induced rules for our grammars. A set
of grammar rules based on the HCV if–then rules for rec-
ognizing a small set of promoter sequences obtained from
the Machine Learning Repository, University of California
at Irvine, are shown in Figure 6. The grammar for a large
set of promoter sequences (Lisser and Margalit, 1993) has
also been obtained.

Classification and regression trees. Classification and
Regression Tree (CART) analysis was used for recog-
nizing the E.coli promoter sequences and a classification
result similar to decision trees was obtained (Walker,
1992). The −10 region of an E.coli promoter is assumed
to be the DNA subsequence from position−13 to position
−8. For instance, the CART tree will classify a DNA
sequence as a promoter if there are base T at position −13
and base A at position −12 of the DNA sequence. Each
path through the CART tree from the topmost node to a
promoter or non-promoter terminal node can be regarded
as a rule or a rule chain for classification. The CART
tree was generated according to a set of E.coli promoter
sequences which were pre-aligned to reveal the −10
region. A CART tree can be represented in grammar rules
with similar features of the HCV grammars.

Combined grammars for recognition
Many formulations of explicit knowledge for recognizing
E.coli promoter sequences can be represented simply
by Basic Gene Grammars, without needing machine
learning software or requiring tedious programming. The
grammars enable us to parse a large real-world data set
(Lisser and Margalit, 1993), which we used as unseen
examples to test the effectiveness of learning systems.
Machine learning approaches such as HCV, KBANN,
Induce-Net achieved higher than 95% in the accuracy
on the data sets used for development but not for the
unseen real-world examples, for which only 54–57%
accuracy was achieved. Table 2 shows our results for
KBANN (omitting HCV and InduceNet which were
similar). These parsings reflect the inadequacy of human/
machine learning methods (and data) for recognizing
E.coli promoters. Since individual grammars perform

poorly but we have (in BGGs) a single system for
representing them all, it is possible to experiment with
combinations of grammar rules from different sources
to see if diversity improves performance. Combination
may either be disjunctive (recognition by one single
grammar is sufficient) or conjunctive (recognition requires
agreement by all grammars). Both can be investigated
with either whole grammars or portions of grammars.
As expected, disjunctively combined grammars achieve
better sensitivity while conjunctively combined grammars
achieve better specificity and predictive values. We found
that the disjunctive combination of KBANN, Weight
Matrix, and 35W 10K grammars achieves better accuracy
than individual grammars (Table 2).

Parsing efficiency
This work has concentrated on supporting expressive
power in the grammar formalism rather than optimising
the implementation exhaustively. A standard chart parser
achieves polynomial (rather than exponential) complexity
in the length of the string because there is a fixed number
of possible edges that can be stored between any two
chart positions, adding an edge only leads to a polynomial
number of new edges being considered and the new
implications of an edge are only considered once. As long
as the feature arguments of categories all have a fixed
set of possible values that increases in size at most in a
way that is polynomial in the length of the string, our
extensions maintain all of the properties of a standard chart
parser, and so retain polynomial complexity. For simple
grammars like CART and HCV, parsing a sequence in
the dataset took one or two seconds of CPU time (on a
Dell Inspiron 3700 Pentium III-500 notebook computer)
when running SICStus Prolog under Linux. While the
processing of overlapping categories and approximate
pattern matching will lower the efficiency of chart parsing,
the performance is improved by finding key categories in a
preferred direction. For KBANN grammars which contain
overlapping categories and approximate pattern matching,
parsing a sequence in the dataset took nearly 1 min.
For parsing with all individual and combined grammars
of weight matrix and KBANN in a batch (Table 2),
processing a sequence took 125.64 ± 0.59 s of CPU time.
The processing of gap categories has no adverse effect
on the overall performance. The use of arbitrary Prolog
code in constraint formulae and the variable categories
with arguments should be kept minimal in order to avoid
performance degradation of the chart parsing. Although
the implementation of the DNA-ChartParser has not been
optimised for parsing large sequence databases, the DNA-
ChartParser is practical for significantly sized tasks such
as testing different grammars in the recognition of E.coli
promoters.

234

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

DNA language processing

Table 2. Parsing result of 300 E.coli promoters and ten sets of 300 non-promoter random DNA sequences. 35W 10K is a conjunctive combination of the
−35 region category specified in Weight matrix (W) grammar and the −10 region category specified in KBANN (K) grammar. K/W/35W 10K grammar is a
disjunctive combination of the KBANN, Weight matrix, and 35W 10K grammars. Specificity is a measure of the incidence of negative results in testing all the
non-promoter sequences, i.e. (True Negatives/(False Positives + True Negatives)) × 100. Sensitvity is a measure of the incidence of positive results in testing
all the promoter sequences, i.e. (True Positives /(True Positives + False Negatives)) × 100. Accuracy is measured by the number of correct results, the sum
of true positives and true negatives, in relation to the number of tests carried out, i.e. ((True Postives + True Negatives)/Total) × 100. The predictive value
of a positive test is the measure of all positive results which are true positives, i.e. (True Positives /(True Positives + False Positives)) × 100. The data are
expressed as average percentage ± standard deviation. As the same full set of positive examples was used in all trials with different set of negative examples,
the standard deviation of Sensitivity is zero.

Grammars Specificity Sensitivity Accuracy Predictive value

KBANN (K) 96.87 ± 0.69 15.67 ± 0.00 56.37 ± 0.29 83.44 ± 3.02
Weight matrix (W) 94.17 ± 1.42 49.33 ± 0.00 71.75 ± 0.71 89.48 ± 2.27
35W 10K 87.16 ± 2.16 46.67 ± 0.00 66.92 ± 1.08 78.53 ± 2.98
K/W/35W 10K 82.23 ± 2.31 68.67 ± 0.00 75.45 ± 1.18 79.50 ± 2.23

SIGNIFICANCE OF THE WORK
Basic Gene Grammars were found useful in representing
many kinds of non-trivial human and machine devised
knowledge of DNA sequences, particularly the sequences
of E.coli promoters. The present study is the first demon-
stration of a single grammar formalism that is able to
represent so many kinds of knowledge about E.coli
promoters, including human-devised domain theory,
weight matrices, approximate pattern matching, and the
knowledge discovered by symbolic and neural network
learning. Combinations of multiple grammars achieve
either higher sensitivity or higher specificity (but not both)
for E.coli promoter recognition. We also found a specific
combination of grammars achieving better accuracy than
any single grammar.

ACKNOWLEDGEMENTS
We thank LiMin Fu for the induce-net extracted rules,
Hanah Margalit for the E.coli promoter sequences, Jude
Shavlik for the KBANN extracted rules, and Xindong Wu
for the HCV software. Their material and advice were very
useful for our parsing experiments.

REFERENCES
Clocksin,W. and Mellish,C. (1994) Programming in Prolog.

4th edn, Springer, Berlin.

Collado-Vides,J. (1992) Grammatical model of the regulation of
gene expression. Proc. Natl Acad. Sci. USA, 89, 9405–9409.

Collado-Vides,J. (1996) Integrative representations of the regulation
of gene expression. In Collado-Vides,J., Magasanik,B. and
Smith,T. (eds), Integrative Approaches to Molecular Biology.
MIT Press, Boston, MA, pp. 179–203.

Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis. Cambridge University Press, Cambridge.

Fu,L. (1999) Knowledge discovery by inductive neural networks.
IEEE Trans. Knowl. Data Eng., 11, 992–998.

Gazdar,G. and Mellish,C. (1989) Natural Language Processing in
Prolog. Addison-Wesley, Reading, MA.

Gribskov,M. (1992) The language metaphor in sequence analysis.
Computers Chem., 16, 85–88.

Harr,R., Haggstrom,M. and Gustafsson,P. (1983) Search algorithm
for pattern match analysis of nucleic acid sequences. Nucleic
Acids Res., 11, 2943–2957.

Horton,P. and Kanehisa,M. (1992) An assessment of neural network
and statistical approaches for prediction of E.coli promoter sites.
Nucleic Acids Res., 20, 4331–4338.

Ji,S. (1999) The linguistics of DNA: words, sentences, gram-
mar, phonetics, and semantics. Ann. New York Acad. Sci., 870,
411–417.

Lewin,B. (2000) Genes VII. Oxford University Press, Oxford.
Lisser,S. and Margalit,H. (1993) Compilation of E.coli mRNA

promoter sequences. Nucleic Acids Res., 21, 1507–1516.
Mehldau,G. and Myers,G. (1993) A system for pattern matching

applications on biosequences. Comput. Appl. Biosci., 9, 299–
314.

Mellish,C. (1989) Some chart based techniques for parsing ill-
formed input. In Proceedings of 27th Annual Meeting of the
Association of Computational Linguistics, pp. 102–109.

Mishra,R. and Chatterji,D. (1993) Promoter search and strength of a
promoter: two important means for regulation of gene expression
in Escherichia coli. J. Biosci., 18, 1–11.

Murakami,K. and Takagi,T. (1998) Gene recognition by combina-
tion of several gene-finding programs. Bioinformatics, 14, 665–
675.

Nakata,K., Kanehisa,M. and Maizel,J. (1988) Discriminant analysis
of promoter regions in Escherichia coli sequences. Comput.
Appl. Biosci., 4, 367–371.

Pearson,W. and Miller,W. (1992) Dynamic programming algo-
rithms for biological sequence comparison. In Brand,L. and
Johnson,M. (eds), Methods in Enzymology, Vol. 210, Academic
Press, New York, pp. 575–601.

Pereira,F. and Warren,D. (1980) Definite clause grammars for
language analysis. Artif. Intell., 13, 231–278.

Rice,P., Elliston,K. and Gribskov,M. (1991) DNA. In Girbskov,M.
and Devereux,J. (eds), Sequence Analysis Primer, chapter 1,
Stockton Press, pp. 1–59.

235

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

S.Leung et al.

Rosenblueth,D., Thieffry,D., Huerta,A., Salgado,H. and Collado-
Vides,J. (1996) Syntactic recognition of regulatory regions in
Escherichia coli. Comput. Appl. Biosci., 12, 415–422.

Searls,D. (1989) Investigating the linguistics of DNA with defi-
nite clause grammars. In Lusk,E and R.,O. (eds), Logic Pro-
gramming: Proceedings of the North America Conference on
Logic Programming, Vol. 1, Association for Logic Programming,
pp. 189–208.

Searls,D. (1992) The linguistics of DNA. Am. Sci., 80, 579–591.
Searls,D. (1993) The computational linguistics of biological se-

quences. In Hunter,L. (ed.), Artificial Intelligence and Molecular
Biology, chapter 2, MIT Press, Boston, MA, pp. 47–120.

Searls,D. (1997) Linguistic approaches to biological sequences.
Bioinformatics, 13, 333–344.

Searls,D. and Noordewier,M. (1991) Pattern-matching search of

DNA sequence using logic grammars. In Proceedings of 7th
Conference on Artificial Intelligence Applications, pp. 3–9.

Shavlik,J., Towell,G. and Noordewier,M. (1992) Using neural
networks to refine existing biological knowledge. Int. J. Genome
Res., 1, 81–107.

Towell,G. and Shavlik,J. (1993) Extracting refined rules from
knowledge-based neural networks. Mach. Learn., 13, 71–101.

Walker,M. (1992) Probability estimation for classification trees and
DNA sequence analysis, PhD Thesis, Department of Computer
Science and Medicine, Stanford University.

Wu,X. (1992) HCV user’s manual. Technical Paper No. 9, Depart-
ment of Artificial Intelligence, University of Edinburgh.

Wu,X. (1993) Knowledge acquisition from data bases, PhD Thesis,
Department of Artificial Intelligence, University of Edinburgh.

236

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/3/226/189517 by guest on 21 August 2022

