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Abstract A control lab experiment is presented where the key issue is the modelling of a coupled tank
system using a suitable combination of phenomenological knowledge and basic least-squares
techniques. This approach can be followed without major difficulties by undergraduate students having
no prior knowledge of modelling techniques. The paper includes an outline for the lab experiment.
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One of the key issues in control system design is the availability of a good plant
model. This model is generally the starting point in the iterative procedure to build
a suitable controller. Most of the time, the required model is a linear model around
a chosen operating point. However, when attending a first course on automatic
control, the students have no prior knowledge of advanced modelling methods such
as least-squares algorithms,1,2 since those techniques are not often part of an under-
graduate curriculum. The least-squares algorithm is the most popular technique for
building models using the input-output or black-box approach. An alternative mod-
elling approach is based on first principles;3 this approach provides an insight into
the structure and dynamic complexity of a good model, although it demands sig-
nificant phenomenological knowledge and accurate measurements. Also, a good deal
of computing is required to obtain numerical values for the model parameters.

One can imagine the black-box approach and the full phenomenological model-
ling as the two extremes of a line which includes different degrees of mixing.

In this paper we develop a case study to illustrate how first-principles and basic
least-squares techniques can be combined to build a model which is suitable for
control and also to study the system behaviour. This can be done for engineering
students attending a first lab course on automatic control, having a basic background
in signals and systems. The plant we consider is a standard coupled-tank device.
This type of system has been widely used in automatic control teaching and for dif-
ferent purposes, due to its simplicity, suitable timescale and reliable actuator and
sensors.4–9

Plant description and phenomenological modelling

The plant shown in Fig. 1 is built with two interconnected tanks filled with water,
having two positive displacement pumps: a feeding pump P1 and a draining 
pump P2. Each tank has a cross-sectional surface of 100cm2 and the pumps are elec-
trically driven and can be used to control the water levels in the tanks. The water
levels are measured with semiconductor sensors S1 and S2. The system also has a



manually operated discharge valve which regulates the flow qd(t). The valve is 
modelled by a parameter Kd ∈ [0; Kmax], which depends on the opening of the valve;
in the sequel we will assume that Kd is either 0 or a fixed non-zero value, to be 
estimated.

Model
Tables 1 and 2 below define the variables and the constants required to model the
system.

To build a first-principles based model we apply the mass conservation principle.
It can then be shown that

(1)

(2)

Where m1(t), m2(t) denote the mass of water in each tank respectively. If the mass
is expressed in terms of geometry and density it follows that
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Fig. 1 Coupled tanks system.



Using basic fluid mechanics principles (Bernoulli’s law in this case3) plus some geo-
metric simplification, it can be proved that the influence of the orifice connecting
both tanks can be modelled as a nonlinear fluid resistor. The same principles apply
to the phenomenological modelling of the discharge. We thus have

(5)

(6)

Combining the above equations, a model is obtained as:

(7)
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TABLE 1 Dynamical variables involved in system of Fig. 1

Name Description Unit

h1(t) Water level in tank 1 cm
h2(t) Water level in tank 2 cm
q1(t) Input water flow in tank 1 cm3 s−1

q2(t) Output water flow in tank 2 cm3 s−1

q12(t) Intermediate water flow cm3 s−1

qd(t) Discharge water flow cm3 s−1

vh1(t) Output voltage in sensor 1 V
vh2(t) Output voltage in sensor 2 V
up1(t) Voltage applied to pump 1 V
up2(t) Voltage applied to pump 2 V

TABLE 2 Constants involved in system of Fig. 1

Name Description Unit

r Water density gcm−3

A Cross-sectional surface of each tank cm2

g Acceleration of gravity cms−2

K12 Intermediate restriction coefficient cm5/2 s−1

Kd Discharge restriction coefficient cm5/2 s−1

Km1 Gain of level sensor 1 Vcm−1

Km2 Gain of level sensor 2 Vcm−1

d1 Offset in level sensor 1 V
d2 Offset in level sensor 2 V
Kp1 Gain of pump 1 power amplifier cm3 V−1 s−1

Kp2 Gain of pump 2 power amplifier cm3 V−1 s−1

dp1 Offset of pump 1 power amplifier cm3 s−1

dp2 Offset of pump 2 power amplifier cm3 s−1



Two issues remain to be addressed: we need to link the liquid heights h1(t) and h2(t)
with the outputs of the level sensors, and the pump flows q1(t) and q2(t) with the 
corresponding voltage applied to each pump. These instrumentation relationships,
provided by the manufacturers, are

(9)

(10)

Note that the description for the draining pump, that is the equation for q2(t), does
not consider the effect of h2(t) in the pump flow.

To design a linear controller, such as a member of the PID family, the standard
approach is to build an incremental (linearised) model around an equilibrium point.
Assume that this equilibrium point Q is achieved with a pair of constant pump volt-
ages Up1Q and Up2Q. Then, the remaining equilibrium values, assuming that the water
always flows from tank 1 to tank 2, are given by

(11)

(12)

If we next use incremental variables, having the generic form ∆f(t) = f(t) − FQ, the
linearised model built from (7)–(8) becomes

(13)

(14)

And, on introducing the sensor and pump equations (9) and (10), the overall 
linearised model becomes

(15)

(16)

Equations (15) and (16) describe a linear 2-input, 2-output model, where the inputs
are the incremental pump voltages ∆up1(t) and ∆up2(t), and the outputs are the incre-
mental level sensor outputs, ∆vh1(t) and ∆vh2(t). Alternatively, the model above can
also be interpreted as a state description of the system, where the states are ∆vh1(t)
and ∆vh2(t).

Regardless of the interpretation we give to this description, to obtain a model
which is useful for control design, numerical values for the system parameters are
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first needed. At first glance, these values could be computed from the operating-
point equations, provided that the equilibrium values could be measured. However,
two issues must be considered, namely:

• Every measurement is noisy, hence the computation of the parameters based on
a single measurement of every variable can have significant errors.

• The model above has limited fidelity, hence an optimisation approach is highly
advisable to compute the values for the model parameters.

A common strategy is to collect a large set of measurements and use them to compute
the parameters so that the resulting model is such that the data is reproduced with
minimum error. This is the underlying concept in methods like least-squares esti-
mation (LSE).

In the next section, we briefly present the LSE method, in its basic form, to sub-
sequently apply that method to the numerical construction of the system model.

Least squares

Assume that we have a collection of data and that, based on phenomenological rea-
soning, we conclude that a good model is

(17)

where y[k] ∈R and j[k] ∈Rp are functions of data taken from a real process, e[k]
is an error term, and q ∈ Rp is a vector to be determined so that a measure (cost
function) of the error term is minimised. We choose this measure as the quadratic
error between the process data and (17), so that the optimal parameter vector qo is:

(18)

where

(19)

(20)

The error term, e[k], in equation (17) encompasses measurement errors as well as
modelling errors arising from the high complexity of the process description. Here
is where the strength of the LSE technique lies, since it implicitly averages, in an
optimal way, the modelling errors. This feature connects LSE methods with the
optimal filtering theory.

In the current case study we will only deal with, at most, a 2 × 2 inverse in (18).
This simplicity, plus the fact that we design suitable data collection experiments,
makes unnecessary to address in this paper other relevant issues such as invertibil-
ity of FTF.1

A useful feature of the LSE approach is that we only require the model (17) to be
linear in the parameters q, but it can be a non-linear function of the measurements,
since j[k] may be a very complex function of the data. This feature will be explored
in this case study.
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Parameter estimation

In this section, values for the model parameters are estimated using the least squares
estimation approach. This computation requires measurements of the system 
variables.

Sensor modelling
We first estimate the parameters of both sensors modelled in equation (9). This 
can be done by applying LSE independently to each of the sensors. The key idea is
to measure, at regular level intervals, the liquid level hi and the sensor output vhi in
tank i, for i = 1, 2. If we denote those measurements as him and vhim, respectively,
then

(21)

so that the parameters Km1, d1, Km2 and d2 can be estimated using the LSE 
method.

In the experiment to obtain the data, a voltmeter is used to measure the each sensor
output and a ruler is used to measure the liquid levels. To obtain the data pairs (him[k],
vhim[k]), both tanks are filled with water (approximately 27cm). Then, with no
voltage applied to the pumps, and using the hand-operated discharge, the levels in
both tanks are taken down in steps of approximately 2cm each time. Recording the
voltages and the level in both tanks, the relationships shown in Fig. 2 are obtained.
Note that in every step, the measurements must be taken once the levels have settled
to the new value. Building the appropriate matrices F and YN for each sensor and
using equation (18), the optimal vectors of parameters result:

(22)

Then, the sensors input/output relationship can then be modelled as
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Pump modelling
The parameters in the input/output relationships of both pumps in equation (10) can
also be computed by independent application of the LSE methodology. This requires
the measurement, at regular voltage intervals, of the pump flows qi(t) and the voltage
applied to the pumps, upi(t), i = 1, 2. If we assume that the measurements are qim(t)
and upim(t) respectively, then
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so that the parameters Kp1, Kp2, dp1 and dp2 can be estimated using LSE. However
this will require a special sensor to measure flows q1(t) and q2(t). This is hard since
in this case, small flows are involved and accurate measurement is then expensive.
A way to circumvent this difficulty is to substitute the flow measurement by its first-
order approximation. To build that approximation, we assume that the hand-
operated valve is closed and that only one pump is working, at a fixed voltage, 
during a time interval T. We measure the total volume of water in both tanks, i.e.
the liquid level in both tanks, at the beginning of the interval, and then at the end
of the interval, thus

(26)

the experiment is performed for a voltage set which spans the allowable range. Then
the experiment is repeated for the other pump. Figure 3 shows the results of the
described experiments for T = 7s. During the measurements it was discovered that
both pumps exhibit a dead zone; however only that of the output pump is signifi-
cant. The results of the estimation process using (18) yields the following pump
models.
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Fig. 2 Voltage-height characteristic of: (a) sensor in tank 1, (b)sensor in tank 2.



(27)

(28)

Connecting orifice modelling
The circular orifice connecting both tanks plays a key role in the overall system
dynamics. If the tank section is fixed, then the radius of the orifice determines,
together with Kd, the time constants in the linear model (15)–(16). The parameter
K12 condenses this dependence. Hence, a larger orifice section will lead to a larger
K12 which, in turn, will result in faster dynamics.

The experiment to collect the data to be used in the parameter estimation should
be carefully designed, while at the same time it should be kept simple. In this exper-
iment we only work with initial conditions, i.e. both pumps are turned off. Firstly,
the connecting orifice is closed, the discharge is off (Kd = 0) and water is poured
into the tanks, so that h1[0] >> h2[0]. Next, the orifice is unplugged and measure-
ments of h1 and h2 are taken every To seconds.
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Fig. 3 Flow-voltage characteristic of: (a) input pump, (b) output pump.



To estimate the orifice constant K12 we also need to estimate the flow variable q12.
We thus use the same strategy as the previous section.

(29)

If we denote by h1m[k] and h2m[k] the measurements of h1 and h2, then according to
(5) the model where LSE will be applied is

(30)

For instance, if we choose h1[0] = 25.5[cm], h2[0] = 3[cm] and To = 0.03 [s], and if
we use the sensors characteristics given in (23) and (24), the data plotted in Fig. 4
are obtained. Note that although the measurement is noisy, the noise is not signifi-
cantly high. The optimal value for K12 using (18) turns out to be
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Fig. 4 Measurement of water level in tank 1 (thick) and tank 2 (thin).



Discharge modelling
The discharge plays a similar role in the system dynamics to that of the connecting
orifice and the strategy to estimate the discharge coefficient Kd is the same as the
one used to estimate K12. For that purpose, both pumps are powered off and the con-
necting orifice is blocked (K12 = 0). Then, water is poured into tank 2, and the level
h2 is measured every Td [s] while the tank is being drained. To build a model suit-
able to apply LSE, we again use a first order approximation for the discharge flow
qd, namely

(32)

If we denote by h2m[k] the measurement of h2, then the model where LSE will be
applied is

(33)

Figure 5 shows the result of an experiment where h2(t) is sampled every 0.03s. 
Note that the voltage measurements have been properly converted to level data 
using (24) and we can see that again the measurement noise is acceptable. The LSE
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Fig. 5 Measurement of water depleting in tank 2.



technique is finally applied using the collected data and the optimal value for Kd is
obtained.

(34)

Modelling validation
Once the model has been completely identified, i.e. all the unknown parameters have
been estimated, its effectiveness can be evaluated. The idea of building a mathe-
matical model for a real dynamical system is to achieve the ability to predict, with
good accuracy, the response of the real system under different operation conditions,
within a sensible range. This means that the usefulness of the model that has been
built should be judged for its ability to predict the system response when given inputs
are applied. The process of evaluating the prediction performance of the model is
known as Model Validation.

The validation is done in two steps. In a first stage, an experiment is performed
on the real system. This experiment should be complex enough to reveal all rele-
vant dynamic features in the system response. As a second step, the estimated model
is simulated with the same inputs that were applied to the real system, so that by
comparing the real and the simulated responses, the accuracy of the model can be
assessed.

A validation procedure applied to the coupled tanks system is presented next. Volt-
ages are applied to both pumps and the water levels in both tanks are measured every
0.003s. Figure 6 shows the input signals applied to each pump and the measured
water levels, which have been converted from (23) and (24). Figure 6(b) shows that
a significant noise is present in the measured signals. This noise is mainly electro-
magnetic interference due to the pulse-width modulation used to drive the pumps.
To clean the signals for a fair comparison with the model-based simulation, some
sort of filtering must be used. One possible approach is to carry out a power spec-
tral density estimate of the measurement noise using some known spectral analysis
tools.10 However, the theory behind these techniques is far beyond the scope of this
paper. Instead we use an ad hoc procedure. To do this we examine Fig. 6(b) in detail.
Figure 7 shows the measured level h2[k], zoomed several times. We here observe a
very high frequency noise imposed on a lower frequency quasi-periodic signal. The
frequency of this quasi-periodic signal can be roughly calculated from the graph, as
0.33Hz. Therefore a sensible approach is to process the data through a filter which
attenuates significantly all frequencies beyond a sensible upper frequency, say 
0.3Hz. A digital third-order low-pass Butterworth filter,11 is chosen with a bandwidth
of 0.3Hz. The transfer function of this filter is

(35)

The simulation results of the nonlinear model described by (7)–(10), whose para-
meter values were estimated in the previous section, are shown in Figs 8(b) and (c)
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together with the associated filtered measurements. The effect of zero initial condi-
tions in the filter is evident in both signals. It can be seen that the estimated non-
linear model effectively predicts the outputs of the real system.

Prototype lab session

The material presented in the previous sections can be used in a standard three-hour
laboratory session for teaching purposes. The following steps are recommended to
exploit in depth the pedagogical features that this case of integrated system model-
ling provides.

• The students should have completed a previous work, which must accomplish
four main objectives:

Knowledge of the hardware involved
The students must become familiar with the relevant aspects of the coupled tanks
plant, actuators, sensors and the digital acquisition system. In the last two items,
special attention must be given to the phenomenon of measurement noise.
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Fig. 6 (a) Input voltage applied to input (dashed) and output (dotted) pumps, 
(b) measured water level in tank 1 (upper) and tank 2 (lower).
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Fig. 7 Zooming of measured tank 2 water level.

Analytical derivation of the nonlinear system model and its linear approximation
This corresponds to deriving the model in the subsection ‘Model’ above.

Knowledge of the basic LSE technique
This can be assisted by a handout covering the material presented in the section
‘Least squares’.

Ability to operate the computer software to be used to collect and to process
experimental data
The students must propose suitable experiments to collect useful data to perform the
estimations and validate the model.

• Within a three-hour lab session, the students should be able to perform the exper-
iments required to estimate all the unknown parameters of the nonlinear model.
The experiments should be the ones described in the present paper, but the stu-
dents could be given bonus marks for trying to compare their own pre-designed
experiments.

As well as the experiments needed for the estimation process, the students
must perform a validation experiment to assess the quality of the estimated



model. The experiment presented in this paper can be taken as a first step, but
some variations can be introduced.

The lab session can be organised as shown in Table 3.

• Finally, the estimation and validation procedures must be done at home by stu-
dents. Note that, as discussed in this paper, some filtering may be needed when
the collected data is too noisy. The estimated model must then be simulated with
an appropriate software package so that the validation stage can be performed.
All these results should be presented in a lab report, together with the relevant
conclusions.
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(c) 

Fig. 8 (a) Input voltage applied to input (dashed) and output (dotted) pumps, (b) filtered
measurement of water level in tank 1 (thick) and simulation result (thin), (c) filtered

measurement of water level in tank 2 (thick) and simulation result (thin).

TABLE 3 Schematic description of prototype lab session

Task Est. time

Hardware and software set-up 20min
Analysis of pre-designed experiments 10min
Experiments to collect data for parameter estimation 120min
Experiments to collect data for validation 30min



Conclusions

This paper has presented a case study where phenomenological knowledge has been
combined with basic least-squares estimation to obtain a model for a laboratory
plant. This approach can be followed by undergraduate students having no previous
knowledge of advanced modelling techniques. It has been shown how a set of sen-
sibly designed experiments yield enough data to model sensors, actuators and to esti-
mate the plant’s most significant parameters. These estimated parameters can be used
to construct a nonlinear description of the system as well as a linearised model
around a given equilibrium point. The study has also included a validation stage, to
assess the ability of the model to predict the system response under given experi-
mental conditions. In this validation stage, simple techniques have been used to deal
with measurement noise. Finally, it is suggested how the content of this paper can
be organised in a three-hour lab session with pre- and post-lab work from the 
students.
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