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BASIC LINEAR ALGEBRA SUBPROGRAMS
FOR FORTRAN USAGE

C. L. Lawson, Jet Propulsion Laboratory
R. J. Hanson, Sandia Laboratories, Albuquerque
D. R. Kincaid, University of Texas, Austin
F. T. Krogh, Jet Propulsion Laboratory

1. Introduction

This paper describes a package, called the BLAS, of thirty-eight
FORTRAN-callable subprograms for basic operations of numerical linear
algebra. This paper and the associated package of subprograms and testing
programs are the result of a collaborative voluntary project of the ACM-
SIGNUM committee on basic linear algebra subprograms. This project was
carried out during the period 1973-1977.

The init;al version of the subprogram specifications appeared in Ref.
[1]. Following distribution of Ref. [1] to persons active in the develop-
ment of numerical linear algebra software, open meetings of the project
were held at the Purdue Mathematical Software II Conference, May, 1974,

Ref. [2], and at the National Computer Conference, Anaheim, May, 1975.
Extensive modifications of the specifications were made following the Purdue
meeting which was attended by thirty people. A few additional changes
resulted from the Anaheim meeting. Most of the further Fortran code changes
resulted from an effort to improve the design and to make them more

robust.



2. Reasons for Developing the Package

Designers of computer programs involving linear algebraic operations
have frequently chosen to implement certain low-level operations such as the

dot product as separate subprograms. This may be observed both in many

published codes and in codes written for specific applications at many computer

installations. Following are some of the reasons for taking this approach:

(1) It can serve as a conceptual aid in both the design and coding
stages of a programming effort to regard an operation such as the
dot product as a basic building block. This is consistent with-
the ideas of structured programming which encourage modularizing

common code sequences,

(2) It improves the self-documenting quality of code to identify an

operation such as the dot product by a unique mnemonic name.

(3) Since a significant amount of the execution time in complicated
linear algebraic programs may be spent in a few low-level
operations, a reduction of execution time spent in these operations
may be reflected in cost savings in the running of programs.

Assembly language coded subprograms for these operations provide

such savings on some computers.

(4) The programming of some of these low-level operations involves
algorithmic and implementation subtleties that are likely to be

ignored in the typical applications programming environment.
For example the subprograms provided for the modified Givens
transformation incorporate control of the scaling terms which
otherwise can drift monotonically toward underflow.

If there could be general agreement on standard names and parameter
lists for some of these basic operations it would add the additional benefit
of portability with efficiency on the assumption that the assembly language
subprograms were generally available, Such standard subprograms would provide
building blocks with which desigrners of portable subprograms for higher

level linear algebraic operations such as solving linear algebraic equations,




eigenvalue problems, etc., could achieve additional efficiency. The
package of subprograms described in this paper is proposed to serve this

purpose.,

3. Scope of the Package

Specifications will be given for thirty-eight FORTRAN-callable subprograms
covering the operations of dot product, vector plus a scalar times a vector,
Givens transformation, modified Givens transformation, copy, swap, Euclidean
norm, sum of magnitudes, multiplying a scalar times a vector, and locating
an element of largest magnitude. Since we are thinking of these subprograms
as being used in an ANS FORTRAN context we provide for the cases of single
precision, double precision, and (single precision) complex data.

In Table 1 a concise summary of the operations provided and the
conventions adopted for naming the subprograms is given. Each type of
operation is identified by a root name. The root name is prefixed by one
or more of the‘letters I, s, D, C, or @ to denote operations on integer,
single precision, double precision, (single precision) complex, or extended
precision data.types, respectively. For subprograms involving a mixture of
data types the type of the output quantity is indicated by the left-most
prefix letter. Suffix letters are used on four of the dot product

subprograms to distinguish variants of the basic operation.

If one were to extend this package to include double precision complex
type data (COMPLEX*16 in TEM FORTRAN) we suggest that the prefix Z be used

in the names of the new subprograms. For example, subprograms CZDOTC and

CZDOTU for the dot product of (single precision) complex vectors, with
double precision accumulation, have been written for the CDC 6600. These

may be obtained directly from Kincaid.



Table 1

Summary of Functions and Names
Of the Basic Linear Algebra Subprograms

Root of
Function Prefix and Suffix of Name Name
Dot Product |SDS- DS- DQ-I DQ-A C-U C-C D-. S- -DOT-
Constant Times a Vector Plus a Vect.:or c- D- S- ~AXPY
| Set-up Givens Rotation D- S- =ROTG
Apply Rotation . D= S- -ROT
Set-up Modified Givens Rotation D- S- -ROTMG
Apply Modified Rotation D- S- -ROTM
Copy x into ¥ - Cc- D- S~ -COPY
Swap x andy C- D- S- ~SWAP
2-Norm (Euclidean Length) sC- D- S=~ ~NRM2
Sum of Absolute Values¥* sC- D- S~ -ASUM
Constant Times a Vector cs- C- D- S- -SCAL
Index of Element Having Max Absolute IC- ID- IS- =AMAX
Value*

*For complex components 2z j = ‘j + 1y j these subprograms compute

Ile 3 ]yjl instead of (xi + yi)uz.




Section 5 lists all of the subprogram names and their parameter lists,
and defines the operations performed by each subprogram,

The criterion for including an operation in the package was that it
should involve just one level of looping and occur in the usual algorithms
of numerical linear algebra such as Gaussian elimination or the various
elimination methods using orthogonal transformations.

This orientation affected the specifications of SCASUM and ICAMAX
particularly. Although SASUM and DASUM computé Ll norms we assumed
that the usage of either of these subprograms in numerical linear algebra
software would be for the purpose of computing a vector norm that was less
expensive to compute than the LE norm, Thus for the complex version,

SCASUM, instead of specifying the ’l norm which would be

W =Z;"Re(xi)]2 + [Im(xi)]efl/e
i

we specified the less expensive norm,

W = Z’]Re(xi)l - ]Im(xi)|$ .
%

Similarly, whereas ISAMAX and IDAMAX may be regarded as determining
the 2 ncwm of a vector, we do not regard this as the essential property to
be carried over to the complex case., Thus ICAMAX is specified to find an

index J such that
|Re(xj)| + |Im(xj)| = maxiilRe(xi)l + ]Im(xi)|‘
rather than finding an index j such that
|:Re(x‘j)']2 + [Im(x'j)]2 = ma.xi’ [Re(xi)]2 + [Im(xi)]z‘

In both the computation of the LE norm and the Givens transformation



a naive computation of the squares of the given data would restrict the
exponent range of acceptable data. This package avoids this restriction

by making use of ideas described by Cody, Ref.[11],and Blue, Ref. [12].
Additionally, in the case of the Givens transformations, an idea of Stewart,
Ref. [137], permits the storage of all the 'cransformations of a matrix
decomposition in the memory space occupied by the elements zeroed by the
transformation.

The modified Givens transformation is a relatively new innovation among
numerical linear algebra algorithms, Refs. [3], (47, and [5]. The significant
features are the reduction of the number of multiplications, the elimination
of square root operations, and the capability of removing rows of data in
least squares problems. The details of this algorithm as implemented in

this package are given in {he Appendix.

L . Programming Conventions

Vector arguments are permitted to have a storage spating between
elements, This spacing is specified by an increment parameter. For example,

suppose a vector x having components x i=1...,N is stored in a DOUBLE

i’
PRECISION array DX( ) with increment parameter INCX. If INCX > O then g is
stored in DX(1+(i-1)*INCX). Tf INCX < O then x; i stored in DX(1+(N-1)*|INCX|).
This method of indexing when INCX < O avoids negative indices in the array

DX( ) and thus permits the subprograms to be written in FORTRAN. Only

positive values of INCX are allowed for operations 26-38 that each have a

single vector argument.
It is intended that the loops in all subprograms process the elements

of vector arguments in order of increasing vector component indices, .., in

the order X, i=1,...,N. This implies processing in reverse storage ordexr

when INCX <« O. Ir these subprograms are implemented on a computer having



paurallel processing capability, it is recommended that this order of

processing be adhered to as nearly as is reasonable,

5. Specification of the BLA Subprograms

Type and dimension information for variables occurring in the subprogzranm
specifications are as follows:

mx

my

max (1,N*| INCX| )
max (1,N*|INCY|)

]

INTEGER N,INCX,INCY,IMAX

REAL  SC(mx),SY(my),SA,SB,SC,SS

REAL  SD1,SD2,SBl,SB2,SPARAM(5),5W,,C(10)
DOUBLE PRECISION  DX(mx),DY(my),DA,DB,DC,DS
DOUBLE PRECISION  DD1,Db2Z,DBl,DB2,DPARAM(S),LW
COMPLEX CX(mx),CY(my),CA,CW

Type declarations for function names are as follows:

INTEGER  ISAMAX,IDAMAX, ICAMAX

REAL SDOT, SDSDGT,, SNRM2 , SCNRM2 , SASUM. SCASUM

DOUBLE PRECISION DSDOT,DDOT,DQDOTI . DGDOTA, DNRM2, DASUM
COMPLEX CDOTC CDOTU

Dot Product Subprograms

N
1. SW = SDOT(N,SX,INCX,SY,INCY) w o= Z :xiyi
i=1
N
2. DW = DSDOT(N,SX, INCX,SY,INCY) W oi= E X ¥
i=1

Double precision accumulation is used within the subprogram DSDOT.
N
3. SW =SDSDOT(N,SB,SX,INCX,SY,INCY) W :=Db + E xiyi
i=1

Accumulation of the inner product and addition of b is in double
precision. Conversion of tne final result to single precision is
done the same as the intrinsic function SNGL( ).



N
4, DW = DDOT(N,DX,INCX,DY,INCY) W o= E X, ¥y
i=1

N

5. DW = DQDOTI(N,DB,QC,DX,INCX,DY,INCY) w := ¢ := b + E XYy
i=1

The input data, b, x, and y, are converted internally to extended
precision., The result is stored in extended precision form in
QC( ) and returned in double precision form as the value of the
function DQDOTI. ‘
N
6. DW = DQDOTA(N,DB,QC,DX,INCX,DY,INCY) wizgci=b+e +Exiyi
i=1

The input value of c¢ in QC( ) is extended precision, The value c
must have resulted from a previous execution of DQDOTI or DQDOTA
since no other way is provided for defining an extended precision
number, The computation is done in extendci precision arithmetic
and the result is stored in extended precision form in oC( ) and

is returned in double precision form as the function value DQDOTA.
N
7. CW = CDOTC(N,CX,INCX,CY,INCY) W= z Eiyi
i=1

The suffix C on CDOTC indicates that the complex conjugates of the

components xi are used.

Xy

8. CW = CDOTU(N,CX,INCX,CY,INCY) W = A

N
i=1
The suffix U on CDOTU indicates that the vector components x, are

used unconjugated.
N

In the preceding eight subprograms the value of E will be set to zero if

N < 0. i=l

E.lementg.g_v_ Vector Operation y:i=ax +y

9. CALL SAXPY(N,SA,SX,INCX,SY,INCY)




1. CALL DAXPY(N,DA,DX,INCX,DY,INCY)

11. CALL CAXPY(N,CA,CX,INCX,CY,INCY)

If a = 0 or if N < O these subroutines retuvrn immediately.

Construct Givens Plane Rotation

12. CALL SROTG(S:,SB,SC,SS)

13. CALL DROTG(DA,DB,DC,DS)
Given a and b each of these subroutihes computes

{agn(a) if |a| > |b|

q:
sgn(b) if |b| = |a|
1/2
r = 0(32+b2)
{a/r it r#0
e =
1 if r=0

and
b/r if r#o0

o if r=0

The numbers c, s, and r then satisfy the matrix equation

BRINEA

The introduction of o is not essential to the computation of a
Givens rotation matrix but its use permits later stable reconstruction
of ¢ and s from just one stored number, an idea due to Stewart,
Ref'. [13]. For this purpose the subroutine also computes
s if |a| > |b| orifa=b=0

z=¢1/c if |a| s|b| #0 andc #0
1 if |a| < |b] #0 and ¢ =0



The subroutines return r overwriting a, ard z overwriting b, as well
as 1<turning ¢ and s.
If the user later wishes to reconstruct c and s from z it can

be done as follows

I z=1 set ¢c =0 and s =1

21/2
If |z] <1 set c = (1-2°) and s = z

- 21/2
If |z| >1 set ¢=1/z and s = (1-c%)

Apply a Plane Rotation

14, CALL SROT(N,SX,INCX,SY,INCY,SC,SS)
15. CALL DROT(N,DX,INCX,DY,INCY,DC,DS)

Each of these subroutines computes

IfF N<Oor if ¢ =1 and s = O the subroutines return immediately.

Construct a Modified Givens Transformation

16. CALL SROTM( (SD1,SD2,SBl,SB2,SPARAM)
17. CALL DROTM:(DD1,DD2,DB1,DB2,DPARAM)

The input quantities d4,, d,, b., and b2 define a 2-vector Fa.l,az']T

2! l!

in partitioned form as

a1 |8 o by
8 0 d;'/ e b

The subroutine determines the modified Givens rotation matrix H, as




defined in Eqs. (A.6) - (A.7) of Appendix 1 that transforms b,s and
thus &, to zero. A representation of this matrix is stored in the
array SPARAM( ) or DPARAM( ) as follows. Locations in PARAM not

listed are left unchanged.

PARAM(1) = 1 PARAM(1) = C PARAM(1) = -1
Case of Eq. (A.7) Case of Eq. (A6) Case of rescaling
hy, =1 hy = -1 hy; = hyp=1 PARAM(2) = h,y
PARAM(2) = hy, PARAM(3) = hy, PARAM(3) = h,,
PARAM(5) = h,, PARAM(Y) = h,, PARAM() = h,,

PARAM(5) = h,,

In addition PARAM(1) = -2 indicates H = I.

The values of dl, d2, and bl are changed to represent the

effect of the transformation. The quantity b2 which would be

zeroed by the transformation is left unchanged in storage.
The input value of d1 should be nonnegative, tut d2 can be
negative for the purpose of removing data from a least squares

problem, Further details can be found in Appendix 1,

Apply a Modified Givens Transformation

18,

13.

CALL SROTM(N,SX,INCX,SY,INCY,SPARAM)

CALL DROTM(N,DX,INCX,DY,INCY,DPARAM)

Let H denote the modified Givens transformation defined by

the parameter array SPARAM( ) or DPARAM( ). The subroutines compute

It N<Oor if H is an identity matrix the subroutines return

immediately. See Appendix 1 for further details.



Copy a Vector x to Y ¥V 1= X%

20. CALL SCOPY(N,SX,INCX,SY,INCY)
21. CALL DCOPY(N,DX,INCX,DY,INCY)

22, CALL CCOPY(N,CX,INCX,CY,INCY)

Return immediately if N < O,

Interchange Vectors x and y X :=: ¥

23. CALL SSWAP(N,SX,INCX,SY,INCY)
2L, CALL DSWAP(N,DX,INCX,DY,INCY)

25. CALL CSWAP(N,CX,INCX,CY,INCY)
Return immediately if N < O.

1/2

Euclidean Length or 4_ Norm of a Vector — 2 : linE
[

i=1
26. SW=SNRM2(N,SX,INCX)

27. DW=DNRM2(N;DX,INCX)
28. SW=SCNRM2(N,CX,INCX)

If N = O the result is set to zero.

Sum of Magnitudes of Vector Components

29. SW=SASUM(N,SX,INCX)
30. DW=DASUM(N,DX,INCX)
31, SW=SCASUM(N,CX,INCX)

N
The functions SASUM and DASUM compute w := E |x;| . The function
i=1

SCASUM computes

N
wis ) %lﬂmw |+ imm(xi)l}
i=1

14




These functions return immediately with the result set to zero if

N < 0.

Vector Scaling X := ax

32. CALL SSCAL(N,SA,SX,INEX)
33. CALL DSCAL(N,DA,DX,INCX)
34, CALL CSCAL(N,CA,CX,INCX)
35. CALL CSSCAL(N,SA,CX,INCX)

Return immediately if N < O,

Find Largest Component of a Vector

36. IMAX=ISAMAX(N,SX,INCX)
37. IMAX=IDAMAX(N,DX,INCX)
38. IMAX=ICAMAX(N,CX,INCX)
The functions ISAMAX and IDAMAX determine the smallest index i
such that |xi| = maxg|x3|:3 )
The function ICAMAX determines the smallest index i such that

|x =~max{|Real(xJ)| + |Imag(xd)[:j - l,...,N}.

i
These functions set the result to zero and return immediately

if N < 0.

6. Implementation

In addition to the FORTRAN versions, all of the subprograms except DQDOTI
and DQDOTA are also supplied in assembler language for the Univac 1108, the
IBM 300/67, and the CDC 6600 and 7600. The FORTRAN versions of DQDOTI and
DQDOTA use part of Brent's multiple precision package, Ref. [lh]. Assembler
language modules for these two subprograms are given only for the Univac 1108.

Only four of the assembly routines for the CDC 6600 and 7600 take

advantage of the pipeline architecture of these machines. The four routines

15



spor( ), SAXPY( ), SROT( ), and SROTM( ) are those typically used in the
innermost loop of computations. Some timing results are given in section 8,
The subprograms SMCHCN and DMCHCN provide three machine dependent

parameters that are used by the five routines SROTG, DROTG, SNRM2, DNRM2 and
SCNRM2. These parameters are: SMALL = smallest positive floating point
number, BIG = biggest pocitive floating point number, and EPS = relative
arithmetic precision. They are computed by use of subprograms SMCHAR and
DMCHAR. These two subprograms were provided by W. J « Cody. An individual
computer installation may wish to remove Cody's routines and simply have the
subprograms SMCHCN and DMCHCN return the appropriate constants. The test
driver prints these numbers so that their values will he known by the user

installation,

7. Relation to the ANS FORTRAN Standard

As of this writing (May, 1977) the present American National Standard
FORTRAN is the 1966 standard, Ref. [6-87], that we will refer to as 1966
FORTRAN. A draft proposed revision to this standard is currently identified
as FORTRAN 77, Ref.l 97, presently in the final editing phase.

The calling sequences of the BLA subprograms would require that the

subprograms contain declarations of the form

REAL SX(MAXO(1,N*IABS(INCX))

to precisely specify the array lengths. Neither 1966 FORTRAN nor FORTRAN 77
permits such a statement. A statement of the form

REAL 8X(1)

Y
is permitted by major FORTRAN compilers to cnver cases in which it is

inconvenient to specify” an exact dimension. This latter form is used in the

BLA subprograms even though it does not conform to 1966 FORTRAN. FORTRAN 77




allows the form
' REAL SX(*)
for this situation., Thus the BLAS can be made to conform to FORTRAN 77 by

changing "1's" to "*'s" in the subprogram arra’ declarations.

8. Testing
A Master Test Package has been written in FORTRAN and is included with

the submitted code. This package consists of a main program and a set of
subprograms containing built-in test data and correct answers. It executes
a fixed set of test cases exercising all thirty-eight subprograms or
optionally any selected subset cof these.
The test driver also calls subroutines SMCHCN and DMCHCN and prints
the values of machine dependent values detecrmined by these subroutines.
We have attempted to design the test cases and the Master Test Program
to be useble on a wide variety o non-decimal machines having FORTRAN systems.
The Master Test Package has succeusfully executed, testing the FORTRAN
coded version of the Basic Linear Algebra Subprograms, on Univac 1108,
IBM 360/67, Burfoughs 6700, CDC 6600, and CDC 7600 computers. These tests
have also been run successfully testing the respective assembler packages
on he Univac 1'18, IBM 360/6T7, CDC 6600 and CDC 7600 computers.
The following method of comparing true and computed numbers is used
in the Master Test Package. Let z denote a pre~-stored true result and let z

denote the corresponding computed result to be tested. The numbers ~ and g

are prestored constants that will be discussed belov. The test program computes

1]

£1(z-2z)
£1(|o| + |£1(g*a)])

| o]

f1(g-h)

4 5 R’
[}

]

17



18

where f1 denotes machine floating point arithmetic of the current working
precision, either single precision or double precision., It is further
assumed that g and h are truncated to working precision before being used in
the computation of =,

The test is passed if 7 = O and fails if r # O. Note that r will be zero
if |d| 1s so small that adding |fl(g*d)| to |~| gives & result that is not

distinguished from |g| when truncated to working precision.

9& then the mathematical

For example, suppose o = 1., g = .5, d = 10~
value of o + g*d is 1.0000000005, but the single precision computed value
of g on the Univac 1108 will be 1. resulting in = = O. Thus in this case

d is small enough to pass the test.

The number ~ is prestored along with the correct result z in the testing
program., In general, o has different values for different test cases.

The number g is a "tuning" factor which has been determined empirically
to make the test perform correctly on a variety of machines. Note that the
stringency of the test is relaxed by decreasing the value of g. This has
been used to denens;tize the testing to the effects of differences in the
treatment of trailing digits in the floating point arithmetic of different
machines.

There are four different values of ¢ prestored in the main program,
TBLA, of the testing package. These value=s are called SFAC, SDFAC, DFAC,
and TQFAC. These are used for testing operations which are respectively
single precision, mixed single and double precision, double precision, and
mixed double and extended precision.

It is intended that the test package be useful to anyone who undertakes
the implementation of an assembly-coded version of this package. In working
on a new machine, one may find it necessary to reduce the values of one or

more of the numbers SFAC, SDFAC, DFAC, or DQFAC to obtain correct test




performance., The authors would appreciate hearing of any new assembly-
coded versions of the packages and of any need to reduce the valuess of

these tuning parameters.

5. Selected Timing Results for the IBM 360/67, CDC 6600 and Univac 1108

Timing of Dot Products and Elementary Vector Operations

The most obvious implementation of the dot product and elementary
vector operations for vectors with unit storage increments are in-line

FORTRAN loops 1 and 2:

In-Line
FORTRAN for
Dot Products

Loop 1

DO10I=1,N
10 W=W+X(I)* Y(I)

In-Line
D020 I = 1,N FORTRAN for

Element
20 Y(I) = AX(I) + ¥(I) Vector O;e;:{ions

Loop 2

The BLAS replacements for these in-line FORTRAN loops, using the same

variable names and appropriate type statements, are

BLAS
W = _DOT(N,X,1,Y,1) Replacement for
Loop 1

-

BLAS
CALL _AXPY(N,A,X,1,Y,1) Replacement for
Loop 2

The "_" in front of the BLA subprogram names is due to the fact that both
single and double precision versions are discussed here.

These subprograms, coded in assembly language, were timed and compared



with the time for the in-line loops. As was stated in section 2, one
reason for development of the package was to make highly efficient code
possible., This goal has been achieved for the CDC 6600 but not for the
IBM 360/67. The IBM 360/67 FORTRAN H compiler, operating with Opt = 2,
generates nearly perfect object code.

In Tables 2 and 3 are some sample times for the three machines comparing

Loops 1 and 2 and their BLAS replacement. Interpretation of Tables 2 and 3,

supported more fully in Appendix 2, are as follows:

® Because of linkage overhead, the BLA subprograms for the IBM 360/67
are always less efficient than the in-line loops. For vectors of

large enough length the linkage overhead is relatively negligible.

® The dot product and elementary vector operation subprograms for the

CDC 6600 are respectively 3.1 and 1.6 times more efficient than in-line

code for vectors of large enough length.

® For the CDC 6600, dot products are considerably more efficient

than elementary vector operations on vectors of the same length.




Vector IBM 360/67 CcDC 6600 Univac 1108
Length, Double Precision Single Precision Single Precision
N
In=Line In=Line In-Line
FORTRAN Assembler FORTRAN Assembler FORTRAN Assembler
(H,0pt=2) (FIN,Opt =2)
10 0.1438 0.1917 0.0360 0.0480 0.0756 0.0790
25 0.3436 0.3854 0.0750 0.0625 0.1836 0.1730
50 0.6719 0.7186 0.1400 0.0800 0.3598 0.3182
100 1.3750 1.3750 0.2800 0.1250 0.6986 0.6162

Time, in seconds, for 1000 executions of in=line FORTRAN Loop 1 and calls to

the _DOT( ) function.

Times for 5 runs were averaged.

Apply factors of 1.1 and 0.75 to IBM 360/67 times to get approximate respective
No distinction for
nonequal increments is necessary for the CDC 6600 and Univac 1108,

times for nonequally spaced increments and single precision.

Table 2, _DOT( ) function and in-line Loop 1 timings

Vector IBM 360/67 CDC 6600 Univac 1108
Length, Double Precision Single Precision Single Precision
N
In=-Line In-Line In=Line
FORTRAN Assembler FORTRAN Assemuler FORTRAN Assembler
(H,0pt=2) (FTN,Opt=2)
10 0,0590 0.2050 0.0500 0.0650 0.0740 0.0886
25 0.3930 0.4375 0.1125 0.1000 0.1806 0.1830
50 0.7350 0.8400 0.2100 0.1725 0.3544 0.3574
100 1.5500 1.6000 0.4200 0.3000 0.7292 0.7170

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 2 and calls to the
_AXPY( ) subprogram. Times for 5 runs were averaged.

Apply factor of 0.75 to get single precision IBM 360/67 times. Only vectors
with unit increments were used in this timing.

Table 3,

_AXPY( ) subprogram and in-line Loop 2 timings
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Iiming of Standard and Modified Givens Methods

Gentlemen's modification of the Givens transformation is discussed in
the Appendix. This technique eliminates square roots and two of the four multiply
operations when forming the product of the resulting matrix by a 2-vector.

The relative efficiency of Gentlemen's modification to the standard
Givens transformation was compared. Both techniques were used to

triangularize 2N by N matrices A 1 where

]

[aid

(1+3-1)"1

iJ

In Table 4 there are some sample times which resulted from the
triangularizations using both methods.

we are primarily interested in algorithm comparison here, so both
methods were timed uainé their assembler versions to apply the matrix
products.

A conclusion is that in the context of triangularizing matrices, the
modified Givens transformation method is ultimately more efficient in
computer time by factors varying between 1.4 and 1.6. This is fully
supported in Appendix 2. The comparison is most favorable on the IEM

360/67 in double precision.




N IBM 360/67 CDC 6600 Univac 1108
Double Precision Single Precision Single Precision
Standard Modified Standard Modified Standard Modified
Givens Givens Givenrs Givens Givens Givens
10 0.0800 0.Uo50 0.0200 0,0190 0.0335 0.0298
25 0.8789 0.6250 0.1719 0.,1445 0.3633 0.3001

and modified Givens transformations.

Times for 5 runs were averaged.

Time, in seconds, for the triangularization of 2N by N matrices using standard

Table 4 .
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Appendix 1

The Modified Givens Transformation

The Givens transformation which eliminates z,, if z, # 0, is

l’

(A.1) GW

1]

1
] 0
(p] w0
S ——
N ]
.
N =

=

where ¢ = wl/r, 8 = zl/r, » i ‘w‘iﬂi)%. This requires ~LN floating point
multiplications, 2N floating point additions and one square root. Gentleman,
Ref. [3], has reported on a modification to the Givens transformation which
reduces this operation count. Gentleman's idea is presented here in a
slightly different form than found in his paper.

Suppose that W in Eq. (A.1) is available in factored form
(A.2) W= D%X = 1
d

25



o l~
Substituting Dix for W and refactoring GDé as D°H ylelds

&"li 0
(A.3) GW = GD°X = D %HX = HX
0 32%

The right-hand side of Eq. (A.3) yields an updated factored form for the
matrix product GW. The crucial point is that the matrix H is celected so
that two =lements are exactly units. This eliminétes 2N floating point
multiplications when forming the matrix product HX, To preserve numerice .

stability two cases are considered:

" For |s| < |e

» % d%c dgs d%é 0 1 t(de/dl)% di 0 1 dzyl/dlxl
AlL) cDp°= = = -
~d%s dgc 0 dgc -(dl/de)ét 1 0 'Hé' -yl/x1 1

(A.5)

where t = s/c.

For |c| = |s|, by similar manipulations,

~%
, 1™ ¥ dyx) /oy, 1 <1
GD§ - 2 D“H

33 '
d; -1 %/v

o

where'ﬁé = éh, and 3%

1 2 2
rotation matrix,

d%s. This factorization can be done for any plane

i

3

Only the squares of the scale factors di are involved in the non-unit
elements of the matrix H defined in Eq. (A.4t) - (A.5), which permits the
Givens transformation Eq. (A.1l) to be computed without square roots. Using

" -1
the identity c“ = (1+t2) and Eq. (A.4) allows the squares of the scale




-1

factors to be updated: d, = di(l+t2) s 1 = 1,2, Letting v = s/c in Eq.

i
-1

= d2(1+72) and d. = dl(1+¢2) . For |e| > |s]| or,

(A.5) we have 4. o

1

equivalently, |d xl’ > |d23i|

by, =1, h

hyp = dp¥y/dy%) 5 By, =1

(4.6) = 2112

Q.

[ =
1] I
(=" —
—

=
e 3
= 2

[o"
]
(=9
~

[ -1

For |c| s |s| or, equivalently, ] l' < |d2yl

=1

=
|

1 = 4%/d¥) 5 By

121 By /Y

=2
[}

=] + h11h22

=4
|

(A.7) v=d/u

(o7
]

1 ¢ de/u

d, =Y

»
I

q = ¥R

When using the modified Givens transformation in the context of
"row accumulation," d1 >0, i=1, 2, the values of u in Eq. (A.6) - (A.7)

will setisfy 1 <u < 2., Thus the squares d,, 1 = 1,2, decrease by as much

i’
as 1/2 at each updating step. If no rescaling action is taken, these scale

27
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factors would ultimately underflow. The details concerning rescaling
are implemented in the modified Givens subprograms.

Since only di’ the squares of the weights, appear in the formulas of
Eq. (A.6) - (A.7) it is possible to use the same formulas to remove a row
from a least squares problem simply by setting d. = -1. Remarks about

2
this row removal method are found in Ref. [5], Chapter 27.

When the modified Givens transformation is used in the context of the
"row removal method" mentioned above, the values of u in Eq. (A.6) - (A.7)
satisfy O < u £ 1. The case u = 0 is eliminated by restricting d1 2 0. If

d, < 0, we define H as the zero matrix, the updated d, = 0, i = 1,2, and x

1 i
With this restriction, we have O < u < 2 in Eq. (A.6) - (A.7). Thus the

1

change in the scale factors di’ i=1,2, is unbounded at each step. Either
underflow or overflow can occur if no rescaling is performed.
The problem is rescaled by the modified Givens subprograms to keep

within the conservative limits

Y-2$|di|5y2’ i=l,2,v=h0%.
2 -1
Note that when we rescale di 1= div , we must rescale hij 1= hiJV r
j = 1,2, and rescale x, := X o

1 1

0.



Appendix 2
Extended Timing Results for Some Operations

In Section 9 selected timing results were presented for the IBM 360/67
(double precision), the CDC 6600 (sirgle precision), and the Univac 1108
(single precision), Timing of dot products, elementary vector operations,
and Givens transformations was presented. This was done mainly for the
purpose of illustrating the relative efficiency of in-line FORTRAN vs.
assembler, and the standard vs. the modified Givens transformation.

Tables 5-11, given below, give more of this data than found in
Section 9. The exception to this is the Univac 1108 timing data which is

totally presented in Section 3, so we did not reproduce it here.

F’—
Vector IBM 360/67 IBM 360/67
Length, Single Precision Single Precision
N I'Equal Storage Increments Nonequal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(H’0pt=2) (H: 0pt=2)
10 0.1020 0.1k470 0.1160 0.1660
25 . 0.2380 0.28L0 0.2740 0.3100
50 0.4620 0.5110 0.5510 0.5720
100 0.9490 0.9970 1.1700 1.1000
Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1,
Section 9, and calls to the SDOT( ) function. Times for 5 runs
were averaged.

Table 5. IBM 36C/67 SDOT( ) function and single precision
in-1ine Loop 1 timings
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Vector IBM 360/67 IBM 360/67
Length, Double Precision Double Precision
N Equal Storage Increments Nonequal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(H,0pt=2) (H,0pt=2)
10 0.1430 0.1910 0.1590 0.1980
25 0.3430 0.3840 0.3840 0.4160
50 0.6770 0.7250 0.7800 c.8180
100 0.3900 1.3900 1.5kL00 1.5700

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1,

Section 9, and calls to the DDOT( ) function,

Times for 5 runs were

averaged.
Table 6. TIBM 360/67 DDOT( ) function and double precision in-line
Loop 1 timings
Vector CDC 6600 CDC 7600
Length, Single Precision Equal or Single Precision Equal or
N Nonequal Storage Increments Nonequal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(FTN,Opt=2) (FTN,Opt=2)
10 0.0358 0.0480 0.0042 0.0092
25 0.0756 0.0638 0.0100 0.0110
50 0.1420 0.0808 0.0210 0.0162
100 0.2750 0.1230 0.Ch1k 0.0254

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 1,

Section 9, and calls to the SDOT( ) function.

averaged.

Times for 5 runs were

Table T.

CDC 6600 and CDC 7600 SDOT( ) function and single precision

in-line Loop 1 timings




Vector IBM 360/67 IBM 360/67
Length, Single Precision Double Precision
N Equal Storage Increments Egnel Storere Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(H,0pt=2) (H,0pt=2)
10 0.1130 0.1700 0.1590 0.20L0
25 0.:2880 0.3610 0.333¢ 0.43%
50 0.5760 0.6300 0.79%60 0.8420
100 1.1700 1.1900 1.5500 1.59C0

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 2,
Section 9, and calls to the SAXPY( ) and DAXPY( ) subprograms.

Times for 5 runs were averaged,

Table 8. IBM 360/67 SAXPY( ) and DAXPY( ) subprogram, and
single and double precision in-line Loop 2 timings
Vector CDC 6600 CDC 7600
Length, Single Precision Single Precision
N " Equal Storage Incrementc Equal Storage Increments
In-Line In-Line
FORTRAN Assembler FORTRAN Assembler
(FTN,Opt=2) (FTN,Opt=2)
10 0.0502 0.0640 0.0060 0.0114
25 0.1120 0.1020 0.0150 0.0162
50 0.2130 0.1710 0.0290 0.0252
100 0.42ko 0.3020 0.0582 0.0420

Time, in seconds, for 1000 executions of in-line FORTRAN Loop 2,
Section ¢, and calls to the SAXPY( ) subprogram. Times for S

rns were averaged.

Table 3,

CDC 66C0 anc. CDC 7600 SA¥PY( ) subprogram and single
rrecisicn in=line Loop 2 timings
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IBM 360/67 IBM 360/67
N Single Precision Double Precision
Standard Modified Standard Modified
Givens Givens Givens Givens
10 0.0580 0.0484 0.0800 0,0650
25 0.5850 0.4635 0.8789 0.6250

cransftornations .

Mime, in seconds, for the triengularization of 2N
by I matrices using standard and modified Givens

Times for 5 ung were averaged.

Table 20, I®™M 36')/67 single suna double
precision standerd and modified
Glrens transformation timing for
macrix " riangularizetion
e .
i ) CDC 6600 CDC 7600
b Single Precision Single Precision
Standard Modified Standard Modified
Givens Givens Givens Givens
10 0,0200 0.0130 0.0036 0.0035
25 0.1719 0.1445 0.0279 0,0250
50 0.9600 0.7550 0.1430 0.1265
1 5.8520 4,3500 0.8200 0.7100

transformations.

Time, in seconds, for the triangularization of 2N
by N matrices using standard and modified Givens

Times for 5 runs were averaged.

Table 11.

CDC 6600 and CDC T600 single precision

standard and modified Givens trans-

formation timing for matrix

triangularization




Appendix 3
Sample Usage of the BLAS in FORTRAN Programming

Our experience indicates that using the BLAS actually enhances the
readability and reliability of codes in which they are utilized. Efficiency
does not appreciably degrade with their usage, as indicated in Section 9, and
for large-scale problems certain of the BLAS will markedly out-perform in-line
FORTRAN code.

These remarks are based on usage of the BLAS in developing new software
for the Sandia Math., Library, developing new ordinary differential equation
solving codes, conversations with members of the LINPACK working group
participating in the project of Ref. [10], and experience with applications
programmers at Sandia Laboratories and Jet Propulsion Laboratory.

Typical usage of the BLAS in FORTRAN programs is now illustrated with
nine examples using the single precision versions of the operations.

Some rules, based upon the FORTRAN language, that a programmer may find
useful to recall are these:

@ Suppose a two-dimensional FORTRAN array A(MDA,NDA) is used to hold an M
by N matrix A = [aIJ]. If A(I,J) := 815
and the Jth column vector of A respectively start at A(I,1) and A(1,J).

The relations MDA = M and NDA = N must hold for the matrix to fit into
this array.

then the Ith row vector of A

® The storage increment between elements of row vectors of A, e.g. A(1,1)
and A(1,2), is MDA, the first dimensioning parameter of the array A(*,*).

® The storage increment between elements of column vectors of A, e.g. A(1,1)
and A(2,1), is 1. This is due to the fact that the FORTRAN language

stores A(*,*) by columns:
A(1,1),A(2,1),...,A(MDA,1),A(1,2),...,A(MDA,2),...,A(MDA,NDA)

The value of NDA is used by the FORTRAN compiler only to allocate MDA*NDA

words of memory in the program.
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Examgle X

Given M by K and K by N natrices A and B, compute the M by N product
matrix C = AB.

The coding technique for this computation is based on the fact that

each element cIJ of C is the dot product of row I of A and column J of B.

DIMENSION A(20,20),B(15,10),C(20,15)

c
MDA=20
MDB=15
MDC=20
c
M=10
K=15
N=10
c
¢ FORM THE DOT PRODUCT OF ROW I OF A WITH COLUMN J OF B. EACH OF THESE
C  VECTORS IS OF LENGTH K, THE VALUE OF MDA IS THE STORAGE INCREMENT
c BETWEEN ELEMENTS OF ROW VECTORS OF A.
¢
DO 10 I=1,M
DO 10 J=1,N
10 ¢(1,J)=spoT(K,A(I,1),MDA,B(1,J),1)
Example 2

Solve an N by N upper triangular nonsingular system of algebraic
equations, Ax = b. The method used is based on the observation that if
we compute the component Xy = bN/aNN’ then we have a new problem in N - 1
unknowns, still upper triangular, with the new right-side vector

T
(bl-alﬂxN""’bN-l'aN-l,NxN) + In this example the solution vector, x,
overwrites the vector b in the array B(*).
DO 20 II=1,N
I=N+1-IT

B(I)=B(I)/A(1,I)
20 CALL SAXPY (I-1,-B(I),A(1,I),1,B,1)




Ex le
Scale the columns (each assumed to be nonzero) of an M by N matrix C

so that each column has unit length,

DO 30 J=1,N
T=1.E0/SNRM2(M,C(1,J),1)
30 CALL SSCAL(M,T,C(1,J),1)

Example L
Row-equilibrate an N by N matrix A, (Divide each non-zero row vector
of A by the entry in that row of maximum magnitude). Here MDA is the

first dimensioning parameter of the array A(%*,*).

DO LO I=1,N
JMAX=ISAMAX(N,A(I,1),MDA)
T=A(I,JMAX)
IF(T.EQ.0.E0) GO TO Lo
CALL SSCAL(N,1.EO/T,A(I,1),MDA)
Lo CONTINUE
When using ISAMAX( ) to choose row pivots in Gaussian elimination,

for example, the major loop contains a statement of the form
IMAX=ISAMAX (N-J+1,A(J,J),1)+J-1

At that point IMAX corresponds to the row that will be interchanged
with row J. Thus the offset value J - 1 must be added to the computed

value of ISAMAX( ) to get the actual row number to interchange.

Example 5
Set an N by N matrix A to the N by N identity matrix. Then set B = A,

Notice that a storage increment value of O for the first vector
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argument of SCOPY( ) is used., This "broadcasts" thc values of 0,EO and

1.E0 into

Here

50
60
Example 6

the second vector argument,

MDA is the first dimensioning parameter of the array A(*,*).
DO 50 J=1,N
CALL SCOPY(N,0.E0,0,A(1,J),1)
CALL SCOPY(N,1.E0,0,A,MDA+1)

DO 60 J=1,N
CALL SCOPY(N,A(1,J),1,B(1,J),1)

Interchange or swap the columns J.f an M by N matrix C. The column

to be interchanged with column J is in a type INTEGER array IP(*), and

has the value IP(J).

TO

Examgle 7
a)

DO 70 J=1,N

L=IP(J)

IF(J.NE.L) CALL SsSwAP(M,c(1,J),1,c(1,L),1)
CONTINUE

Extract the first number and "pop" a list of N single precision

numbers: x i=1,...,N-1, N := N-1

e Ll S PO L

"Push-down" a list of N siigle precision numbers and insert a

new number x_ at the top of the list: 1= Nyeessls

0
xl 1= xo, N:=N+ 1.

Xi41 1T Xpo

For these illustrations the vector x = (xl,...,xN)T is in the FORTRAN

array X (*).

Notice the usage of the negative increments (-1) for the push-down

example of b). This causes the assignment

L(N+1)=X(N),X(N)=X(N=1),...,X(2)=x(1)




to be implemented in this order,

a) Extract and "pop"
N=N-1
X0=X(1)
CALL SCOPY(N,X(2),1,X(1),1)

b) "Push-down'" and insert
CALL Scory(N,X(1),-1,X(2),-1)

N=N+1
X(1)=Xo

Example 8

In this example we want to transpose an N by N matrix A in-place,

(ig-situ). Here MDA is the first dimensioning parameter of the array

A(*,%),

DO 80 J=1,N
80 CALL SSWAP(N-J,A(J,J+1),MDA,A(J+1,J),1)
Ex le

In this more complicated example we swap in-place (ngsitu) the

components of the vector
<
T
(xl, R S PRTILE ,xN)

so they become

T
(xK+l,...,xN,x1,...,xK)

making repeated vse of the "Pop" or "Push-down" operations,

NMK:=N-K
IF(.NOT. (K.GT.O,AND.NMK,GT.0)) GO TO 120

IF(,NOT.(K.LT.NMK)) GO TO 100
DO 90 I=1,K
T=X(1)

CALL SCOPY(N-1,X(2),1,X(1),1)

9 X(N)=T
GO TO 120
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100

110

120

CONTINUE
DO 110 I=1,NMK
T=X(N)
CALL SCOPY(N-1,X(1),-1,X(2),-1)
X(1)=T

CONTINUE
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