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Introduction

This text is written for an audience with some working knowledge of propo-
sitional and first-order logic. To make it more self-contained, a natural
deduction system and a proof of the completeness theorem are given in
Appendix A. Set-theoretic preliminaries are summed up in Appendix B.

The goal of this text is to provide a speedy introduction into what is
basic in (mostly: first-order) model theory.

Central results in the main body of this field are theorems like Com-
pactness, Löwenheim-Skolem, Omitting types and Interpolation. From this
central area, the following directions sprout:

• model theory for languages extending the first-order ones, abstract
model theory,

• applied model theory: non-standard analysis, algebraic model theory,
model theory of other special theories,

• recursive model theory,

• finite-model theory,

• classification theory.

There are occasional hints at the first and the fourth, leaving the others
largely untouched.

Languages other than first-order discussed below are the following.

• First-order with restricted number of variables,

• (monadic) second-order, admitting quantification over sets of indi-
viduals etc.,

• infinitary logic, admitting infinite conjunctions and disjunctions,

• fixed-point logic, which can refer to least fixed points of definable
monotone operators.

A short proof of Lindström’s famous characterization of first-order logic
concludes this introduction.

By then, the ideal student, but hopefully the not-so-ideal student as
well, should be comfortable with the standard model theoretic notions
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viii / Basic Model Theory

introduced here, have some idea concerning the use of Ehrenfeucht‘s game
in simple, concrete situations, and have an impression as to the applicability
of some of the basic model theoretic equipment.

Exercises have been printed in smaller font. Some of these require more
of the student than he might be prepared for. Usually, this is indicated by
a ♣.

Digressions from the main text are indented and printed in a smaller
font.

The bible for the model theory of first-order languages for more than
twenty years now is the book Model Theory by Chang and Keisler 1990,
the last edition of which has been updated. The newer Hodges 1993, that
carries the same title, might well rise to the same level of popularity in the
near future. These are the books to look for more. For a multitude of ref-
erences, see Vol. III (Model Theory) of the Ω-Bibliography of Mathematical

Logic Ebbinghaus 1987, which is the reason that a detailed bibliography is
omitted here.

These notes were originally written to accompany a course during the
Lisbon 1993 edition of the European Summer School in Logic, Language
and Information. (The presence of a course in finite-model theory there
accounts for the rather large amount of space devoted to the Ehrenfeucht
game in Chapter 3.) Since then, the material has been expanded and used
a couple of times for the courses on logic and model theory given at the
Mathematics Department, University of Amsterdam.

Acknowledgments

I thank Dag Westerst̊ahl and an anonymous referee for their valuable criti-
sism of an earlier version of the text, and Maarten de Rijke for his excellent
editorial help.
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Basic Notions

This chapter recalls the basic de�nitions of �rst�order model theory� It is
assumed that the reader has had some previous contact with these notions�
Thus� the purpose of this chapter is mainly to �x the notation and to set
the context for the remaining ones�

Let A be a set�
R is an n�ary relation over A �n � �� if R � An	 that is� for all

a�� � � � � an � A it is in some way determined whether the statement that
R�a�� � � � � an� is true or false�

f is an n�ary function over A �n � �� if f 
 An � A	 that is�
f�a�� � � � � an� is an element of A whenever a�� � � � � an � A�

Roughly� a model is a complex A � �A�R � � � � f � � � � a � � �� consisting of
a non�empty set A �the universe of the model� plus a number of relations
R � � � and functions f � � � over A and some designated elements �constants�
a � � � from A� A more explicit� vocabulary�related de�nition is to follow in
De�nition ����

It is always assumed that A is the universe of A � that B is the one of
B � M the one of M� etc�

Examples of models are the familiar structure of the natural numbers
N � �N � ����� �� �N � f�� �� �� � � �g	 this model has one binary relation
�� two binary functions  and �� and one constant ��	 the structures
discussed in algebra
 groups� rings� � � � etc�

Setting up a system of logic starts by choosing a set of symbols� The symbols
are partitioned into logical and non�logical ones� The logical symbols of
�rst�order logic are classi�ed into four groups


�� countably many �individual� variables�

�� the equality symbol ��

�� symbols for the logical operations
 �� �� �� �� 	 �connectives� and

� � �quanti�ers��

�� symbols to indicate grouping
 parentheses� comma�

�

�
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� � Basic Model Theory

The non�logical symbols comprise


�� relation symbols�

�� function symbols�

�� constant symbols or �individual� constants�

The logical symbols are �xed for every �rst�order language �although some�
times it is assumed that not all logical operations are present�� but the
non�logical symbols vary� The set of non�logical symbols is the vocabulary
of the language�

The di�erent categories of symbols are assumed to be pairwise disjoint�
and to every relation and function symbol is associated a positive natural
number
 the arity of the symbol� �You may want to view constant symbols
as ��ary function symbols��

Given a vocabulary L� you can form expressions
 �nite sequences of
L�symbols� Two classes of expressions are singled out
 the L�terms and
the L�formulas�

��� Terms� All variables and all individual constants of the vocabulary
L �considered as length�� expressions� are L�terms� If f � L is an n�ary
function symbol and t�� � � � � tn are L�terms� then the sequence f�t�� � � � � tn�
�obtained by writing the terms t�� � � � � tn one after the other� separating
them by commas� enclosing the result by parentheses� and putting f in
front� is an L�term�

More precisely� the set of L�terms is the smallest collection containing
all variables and constants that is closed under the operation of forming
a complex expression f�t�� � � � � tn� out of expressions t�� � � � � tn� So� what
you have here is an inductive de�nition� with an accompanying induction
principle


Term Induction� If X is a set of L�terms that �i� contains all variables
and individual constants from L and �ii� contains a term f�t�� � � � � tn� when�
ever f is an n�ary L�function symbol and t�� � � � � tn � X� then X contains
all L�terms�

See Section B�� for information on inductive de�nitions in general and
Exercise � for a �rst application of term induction�

Next to induct on terms� it is also possible to recursively de�ne op�
erations on them� �The proper justi�cation for this relies on a unique
readability result�� An important recursion is the one of De�nition ���
below� Another one is the notion of a subterm� Intuitively� a term s is a
subterm of the term t if s occurs as a subsequence of consecutive symbols
in t�

Subterms� The set Subt�t� of subterms of t is recursively de�ned by the
following clauses�

�
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Basic Notions � �

�� if t is a variable or a constant symbol� then Subt�t� � ftg�

�� if t � f�t�� � � � � tn�� then Subt�t� � ftg � Subt�t�� �    � Subt�tn��

��� Formulas� �First�order� L�formulas are expressions of one of the fol�
lowing forms� �� s � t �where s and t are L�terms�� �� r�t�� � � � � tn� �where
r � L is an n�ary relation symbol and t�� � � � � tn are L�terms�� �� combina�
tions of one of the forms ��� �� � ��� �� � ��� �� � ��� �� 	 ��� 
x��
�x�� where � and � are L�formulas �thought of as formed earlier� and x is
a variable�

Formulas of the form t� � t� are called equalities	 equalities and formulas
of the form r�t�� � � � � tn� are called atoms� �� is the negation of �� ������
������ ��� �� and ��	 �� are the conjunction� disjunction� implication
and equivalence of � and �	 
x� and �x� are �universal and existential�
quanti�cations of � with respect to the variable x�

Again� this should be read as an inductive de�nition� with an accom�
panying induction principle�

Formula Induction� Every set of L�formulas that contains the L�atoms
and is closed under the logical operations �formation of negations� conjunc�
tions� disjunctions� implications� equivalences and quanti�cations� contains
all formulas�

Every now and again� variations of this type of induction are used� In
every case� such an induction can be viewed as �the �strong form� of�
mathematical induction with respect to the number of occurrences of logical
constants�

In writing terms and formulas� parentheses �especially� outer ones� will
be dropped if this does not lead to confusion� If � is a ��nite� sequence or
set of formulas� then

V
� and

W
� can be used to denote the conjunction

and disjunction� respectively� of these formulas �formed in any order��
In addition to performing induction on formulas� it is possible to re�

cursively de�ne operations on them� A prominent example of this type of
recursion is De�nition ���� Another one is the de�nition of the notion of a
subformula that parallels the one of subterm�

Subformula� The set Subf ��� of subformulas of the formula � is recur�
sively de�ned by the following clauses�

�� If � is atomic� then Subf ��� � f�g�

�� Subf ���� � f��g � Subf ���� Subf �
x�� � f
x�g � Subf ��� �and
similarly for existential quanti�cations��
Subf �� � �� � f� � �g � Subf ��� � Subf ��� �and similarly for dis�
junctions� implications and equivalences��

The scope of the occurrence of a logical constant in a formula consists of
the subformula�s� to which the constant is applied� A quanti�er binds all

�
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� � Basic Model Theory

occurrences of its variable in its scope � except when such an occurrence is
already bound by another quanti�er in that scope� For instance� the scope
of the quanti�er 
x in the formula 
x �r��x� � �x r��x�� is the subformula
r��x� � �x r��x�� It binds the occurrence of x in the subformula r��x�� It
does not bind the occurrence of x in r��x�
 this occurrence is bound already
by the quanti�er �x�

A variable occurrence that is not bound is free�
As to substitution �replacement of �free� occurrences of a variable by

a term�� substitutability of a term for �the free occurrences of� a variable
in a formula �meaning that no variable in the term becomes bound after
substitution�� see Exercises � and ��

��� Sentences� An L�sentence is an L�formula in which no variable occurs
freely�

The more explicit de�nition of the notion of a model is the following�

��� Models� Let L be a vocabulary� An L�model is a pair A consisting of
a non�empty set A� the universe of A� and an operation � ��� �A de�ned
on all non�logical symbols � of L in such a way that

� if r � L is an n�ary relation symbol� then rA is an n�ary relation over
A�

� if f � L is an n�ary function symbol� then fA is an n�ary function
over A� and

� if c � L is a constant symbol� then cA � A�

The cardinality of a model is the cardinality of its universe� A model is
purely relational if its vocabulary consists of relation symbols only�

The object �A is the interpretation or meaning of � in A� and � also is
called a name of �A�

From a certain stage on� symbols and their interpretations shall usually
be confused�

Often� an L�model A over a universe A� where L � fr� � � � f � � � � c� � � �g�
will be represented in the form A � �A� rA� � � � fA� � � � cA� � � ��� And this is
the relation with the description of the notion of a model on page ��

To be able to interpret formulas in a model� you need assignments for
their free variables that specify their �temporary� meaning


��� Assignments� Let A be a model� An A�assignment is a function
from the set of all variables into the universe A of A�

In the context of a model A� a term stands for an element in A
 its
value� which is calculated �with the help of some assignment� following the
way in which the term has been built� �Compare the way polynomials are
evaluated in algebra��

��� Value of a Term� Let L be a vocabulary� A an L�model and � an

�
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Basic Notions � �

A�assignment� For every term t� an element tA��� � A� the value of t in A
under �� is de�ned by the following rules


�� If t is a variable x
 tA��� � ��x��

�� if t is a constant symbol c
 tA��� � cA�

�� if t has the form f�t�� � � � � tn�� where f is a function symbol and
t�� � � � � tn are terms
 tA��� � fA�tA� ���� � � � � t

A
n �����

Thus� the value of t is computed by taking a variable to stand for the
element given by the assignment and using the meaning of constants and
function symbols as supplied by the model�

Next comes the famous �Tarski de�nition� of the satisfaction relation
j� that assigns meanings to formulas
 statements about the given model�

��� Satisfaction of Formulas� Let L be a vocabulary� A an L�model
and � an A�assignment� For every formula �� the statement A j� ����� �
is satis�ed by � in A� is de�ned by the following rules


A j� �s � t���� � sA��� � tA����

A j� r�t�� � � � � tn���� � rA�tA� ���� � � � � t
A
n �����

A j� ����� � A �j� �����

A j� �� � ����� � A j� ���� and A j� ����

�similarly for the other connectives��

A j� �x���� � for some a � A� A j� ���xa�

�similarly for the 
�case��

In the last clause� the notation �xa stands for the modi�cation of � that
sends the variable x to a �but is otherwise the same as ���

On the use of ��� and ���� Although these stipulations are called
de�nitions� they are of course not as arbitrary as this word may suggest�
On the contrary� given the intended meaning of the symbols� they are really
unavoidable� However� in concrete� simple situations� you will never need
to use them
 the value of a simple term always is obvious� as is the meaning
of a concrete formula that is not too complicated� The use of ��� and ���
is in carrying out general arguments that need the principles of term or
formula induction� The �rst spot where such a use is made is in Exercise ��

��	 De
nitions� Conventions and Notations� If in a given context
x�� � � � � xn is a sequence of variables and t a term all of whose variables occur
in the sequence� then this can be indicated by writing t as t�x�� � � � � xn��
Simultaneously replacing these variables whenever they occur in t by terms
t�� � � � � tn� the resulting term is then written as t�t�� � � � � tn��

Similarly� a formula � with free variables among x�� � � � � xn can be writ�
ten as ��x�� � � � � xn�	 replacing the free occurrences of these variables in �

by t�� � � � � tn� the formula obtained will be written as ��t�� � � � � tn��

�
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� � Basic Model Theory

The result of Exercise � permits the following notation� If � is the A�
assignment that sends xi to ai �� � i � n�� then the notations tA�a�� � � � � an�
and A j� ��a�� � � � � an� are shorthand for tA��� and A j� ����� respectively�

The symbol j� is used in a number of di�erent ways�

� The notation A j� � is used if � is satis�ed in A by every assignment�
In that case� we say that � is true in A� that A satis�es �� or that A
is a model of �� �It is this use of the word model that is responsible
for the term model theory��

� The notation j� � � � is logically valid � is used when � is true in
every model� Formulas are logically equivalent if their equivalence is
logically valid�

� Finally� if � is a set of formulas� the notation � j� � � � follows logi�
cally from � � is used in the case that � is satis�ed by an assignment
in a model whenever all formulas of � are�

From now on� the use of notations such as tA��� and A j� ���� presupposes
that A� t and � have �or can be assumed to have� the same vocabularies
and that � is an A�assignment�

From time to time� logics extending the �rst�order ones will be consid�
ered� Therefore� from now on� the terms formula and sentence always shall
mean �rst�order formula and sentence� respectively� unless the contrary is
expressly indicated�

Exercises

� Suppose that t is a term� Let ni be the number of occurrences of i�ary
function symbols in t �i � �� �� �� � � ��� Show that the number of occurrences
of variables and individual constants in t equals �  n�  �n�  �n�    
�� � 

P
i�i� ��ni��

Hint� Use term induction�

� The value of a term and the meaning of a formula depend only on the
values that are assigned to variables that �freely� occur� More precisely�
suppose that A is a model� � and 	 are A�assignments� t is a term and � is
a formula� Show that if for all variables x that occur in t and freely occur
in �� ��x� � 	�x�� then

�� tA��� � tA�	��

�� A j� ����� A j� ��	��

Hint� Apply term and formula induction� respectively�

� �Substitution and value of a term�� Suppose that s and t � t�x� are
terms� A a model� and � an A�assignment� Let t�s� be the expression
obtained from t by replacing all occurrences of x by s�

Show that t�s� is a term�
Next� suppose that a � sA���� Show that t�s�A��� � tA��x

a��

�
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� � �Substitution and truth of a formula�� Suppose that s is a term�
� � ��x� a formula� A a model� and � an A�assignment� Let ��s� be the
expression obtained from � by replacing all free occurrences of x by s�

Show that ��s� is a formula�
Next� suppose that a � sA���� Show that if s is substitutable for x in

� �that is
 no free occurrence of x in � is in the scope of a quanti�er that
binds a variable from s�� then A j� ��s����� A j� ���xa�� Give an example
that shows the substitutability condition to be necessary�

� Suppose thatA is a model in which a�� � � � � an � A are the interpretations
of the individual constants c�� � � � � cn and � � ��x�� � � � � xn� is a formula
with x�� � � � � xn free� Show that A j� ��a�� � � � � an� i� A j� ��c�� � � � � cn��
Thus� in a sense� satisfaction is de�nable from truth�

� Suppose that � � ��x� a formula and s a term that is substitutable
for x in �� Let ��s� be the formula obtained from � by replacing all free
occurrences of x by s� Show that

�� 
x� j� ��s��

�� ��s� j� �x��

Hint� Use Exercise ��

� Assume that the individual constant c does occur neither in � nor in
��x�� Show the following


�� if � j� ��c�� then � j� 
x��x��

�� if ��c� j� �� then �x��x� j� ��

Hint � Assume that � j� ��c� and A j� �� Let a � A be arbitrary� You
have to show� that A j� ��a�� Expand A to a model �A� a� for a larger
vocabulary including c that interprets c as a� Of course� it is still true
that �A� a� j� �� Since �A� a� is a model for the vocabulary of ��c�� it now
follows that �A� a� j� ��c�� Thus� by Exercise �� A j� ��a��

	 �An alternative notion of logical consequence�� Sometimes� logical con�
sequence is de�ned by
 � j�� � i� � is true in every model of ��

Show that if � j� �� then � j�� �� and give an example showing that the
converse implication can fail� Show that if all elements of � are sentences�
then � j�� � i� � j� ��

��� De�nability and unde�nability of satisfaction� �These explanations
are not needed for most of what follows	
 In what way do the clauses of �	�
de�ne satisfaction� First of all� they can clearly be satised by just one relation
j� only	 �This is a consequence of formula induction	
 This fact can be used
to show that� if a structure has a means to code formulas and nite sequences
of its elements �which is the case for models of arithmetic and set theory
� the
satisfaction relation for �rst�order formulas can be second�order �see �	��
 de�

�
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� � Basic Model Theory

ned over it	 As they stand� the clauses of �	� can be used only to translate a
given formula into a statement about the model under consideration	 The usual
mathematical environment �the �meta�theory�
 for doing model theory is set
theory	 �In Chapter �� this environment comes into play with the subject in a
serious way	
 Existence of the satisfaction relation in formal set theory should
follow from a recursion theorem� and one can wonder as to the precise form of
the recursion that is going on	 Every recursion employs a well�founded relation	
About the well�founded relation this recursion is using there is no doubt� this
is the subformula relation	 So what should be recursively dened� is� for every
formula �� the set of A�assignments k�k � k�kA that satisfy �	 If you view
formulas as set�theoretic objects� this recursion takes the following form	 Like
�	�� it distinguishes as to the form of the formula	 S is the set of A�assignments	

ks � tk � f� � S j sA��� � t
A���g�

kr�t�� � � � � tn
k � f� � S j rA�tA� ���� � � � � t
A
n ���
g�

k��k � S � k�k�

k� � �k � k�k � k�k�

k�x�k � f� � S j �a�A��xa � k�k
g�

Such a set�theoretic formalisation of the satisfaction denition allows a com�
parison with the clauses of �	�� where these are viewed as a means to translate
formulas into statements about the model	 What is obtained then is a proof
that for every individual formula � the two ways �translation and denition
 of
assigning meaning amount to the same thing	

Tarski�s adequacy requirement� For every A�assignment �� � � k�kA i�

A j� �����

�To explain what this requirement is about� Tarski used the example that the
sentence �snow is white� should be true i�� indeed� snow is white	


Thus� you can now simply de�ne the relation j� that accomplishes the re�
quired job by putting A j� ���� �� � � k�k	

The reason for insisting that the universe of a model be a set is now obvious� if
A would be a proper class� the values of the operation k	kA would become proper
classes as well and the usual set�theoretic instruments would not be su�cient any
longer to guarantee its existence	

That is not to say that we never should consider structures over a proper
class �the ��structure over the proper class of all sets is the main subject in set
theory
	 In fact� it is not true that you never can dene truth in such a structure	
For instance� Corollary �	�� shows that the ordering of the class � of all ordinals
has a denable notion of truth	 However� it is impossible to dene truth for the
universe of all sets	 That �the more general
 satisfaction relation of a structure
can never be dened over that structure is in fact a very easy application of the
Russell argument �in the following� read ��x� y
 as y � x
�

Proposition� Suppose that A is an L�structure and that v maps the set of all

L�formulas � � ��x
 in the one free variable x into A� There is no L�formula

� � ��x� y
 that de�nes satisfaction for such formulas� i�e�� such that for every

�
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� � ��x
 and all a � A�

A j� ��a� 
 A j� ��v��
� a��

Proof� Suppose that ��x� y
 satises this equivalence	 Consider the formula � ��
���x� x
 and let a �� v��
	 Then A j� ��a�� according to these denitions� would
be tantamount to A j� ���v��
� a�� whereas� according to the equivalence� it
should mean that A j� ��v��
� a�	 a

From this you can deduce the famous Tarski result that truth cannot be
dened either� on the assumption that the v�translated notion of substitution is
denable	 �This assumption is satised for the standard structures of arithmetic
and set theory and for any reasonable �G�odel numbering� v	


Note that G�odel�s rst incompleteness theorem is a corollary of this unden�
ability result	 For instance� it is �tedious but
 not particularly di�cult to verify
that derivability from a �arithmetically
 denable system of axioms is �arith�
metically
 denable and hence di�ers from �arithmetical
 truth	 Thus� for any
given denable axiom system �Peano arithmetic� Zermelo�Fraenkel set theory�
� � � 
 there will be arithmetical truths that are not derivable �unless the system is
inconsistent
	

�
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Relations Between Models

This chapter discusses several basic relations that can exist between two
models
 isomorphism� �elementary� equivalence and �elementary� embed�
dability�

��� Isomorphism and Equivalence

��� Isomorphism� The L�models A and B are isomorphic� notation

A �� B� if there exists an isomorphism between them	 that is
 a bijection
h 
 A� B between their universes that �preserves structure�


�� for every n�ary relation symbol r�L and a�� � � � � an�A


rA�a�� � � � � an�� � rB�h�a��� � � � � h�an���

�� for every n�ary function symbol f �L and a�� � � � � an�A


h�fA�a�� � � � � an�� � fB�h�a��� � � � � h�an���

�� for every individual constant c � L
 h�cA� � cB�

A function h 
 A � B is a homomorphism from A to B if it satis�es
conditions � and � and the ��half of condition ��

An automorphism of A is an isomorphism between A and A itself�

Isomorphism is a fundamental mathematical� non�logical concept� The
only role of the vocabulary L in the de�nition is to have a correspondence
between relations� functions and constants of the two models� Isomorphic
models are totally indistinguishable in terms of their structure alone� The
next de�nition introduces �rst�order logical indistinguishability�

��� Equivalence� L�models A and B are �elementarily or �rst�order�
equivalent� if they have the same true L�sentences	 i�e�� if for every L�
sentence �
 A j� � i� B j� �� Notation
 A � B�

Here comes the �rst theorem�

��� Theorem� If A �� B� then A � B�

Proof� This is the special case of Lemma ����� where � is a sentence� a

��

��
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��� Lemma� If h 
 A� B is an isomorphism between A and B� then� for
every term t� formula � and A�assignment ��

�� h�tA���� � tB�h���

�� A j� ���� � B j� ��h���

Proof� Note that h�� the composition of h and � that sends a variable x

to h���x��� is a B�assignment�
�� This is proved by term induction�
If t is a variable x� then �by ������ h�xA���� � h���x�� � xB�h���

If t is a constant symbol c� then �by ����� and ������ h�cA���� � h�cA� �
cB � cB�h���

Finally� if t � f�t�� � � � � tn� and �induction hypothesis� h�tAi ���� � tBi �h��
�i � �� � � � � n�� then

h�tA���� � h�f�t�� � � � � tn�
A����

� h�fA�tA� ���� � � � � tAn ������ �by ������

� fB�h�tA� ����� � � � � h�tAn ������ �by ������

� fB�tB� �h��� � � � � t
B
n �h����� �by induction hypothesis�

� tB�h��� �again� by �������

�� This is proved by formula induction�
For an identity s � t we have


A j� �s � t���� � sA��� � tA���� �by ����

� h�sA���� � h�tA����� �since h is an injection�

� sB�h�� � tB�h��� �by part ��

� B j� s � t�h��� �again� by �����

For an atom r�t�� � � � � tn�


A j� r�t�� � � � � tn���� � rA�tA� ���� � � � � tAn ����� �by ����

� rB�h�tA� ����� � � � � h�tAn ������ �by ������

� rB�tB� �h��� � � � � t
B
n �h���� �by part ��

� B j� r�t�� � � � � tn��h��� �again� by �����

For propositional combinations� the induction steps are rather trivial� For
instance� assuming the equivalences for � and � by way of induction hy�
pothesis�

A j� �� � �����

i� �by ���� A j� ���� and A j� ����

i� �by induction hypothesis� B j� ��h�� and B j� ��h���

i� �again by ���� B j� �� � ���h���

��
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Finally� assuming the equivalence for � as an induction hypothesis �with
respect to an arbitrary assignment�� here follows the equivalence for �x�


A j� �x���� i� �by De�nition ���� for some a � A� A j� ���xa�

i� �by induction hypothesis� for some a � A� B j� ��h�xa�

i� �since h is a surjection� for some b � B� B j� ��h�xb �

i� �again by ���� B j� �x��h��� a

The converse of Theorem ��� is very false� except for the following�

��� Proposition� If A � B and A is �nite� then A �� B�

Proof� By Proposition ��� and Theorem ���� below� However� you should
carry out the direct proof indicated in Exercise �� now� a

Exercises

� Show that an ordering of type 
  � is not isomorphic to one of type

  
��
Hint� Use Lemma ����

� Prove Proposition ����
Hint� Suppose that A � B� A � fa�� � � � � ang� but A ��� B� Write down
a �rst�order sentence En that does not use non�logical symbols with the
property that for every model C� C j� En i� C has precisely n elements�
Thus� En is true of A� true of B� and therefore B has n elements as well
and there are n� bijections between A and B� Show that �since A ��� B� for
every such bijection h 
 A� B there exists a formula �h � �h�x�� � � � � xn�
that is atomic or negated atomic such that A j� �h�a�� � � � � an� and B j�
��h�h�a��� � � � � h�an��� Now the sentence

�x�� � � � � xn

�
��

i�j

xi �� xj �
�
h

�h

�
A

is true in A but false in B� contradicting A � B�

��� �Elementary� Submodels

��� Submodel� The L�model A is a submodel of the L�model B� and B
an extension or a supermodel of A� notation
 A � B� if

�� A � B� and

�� a� rA � rB �An whenever r � L is an n�ary relation symbol�
b� fA � fB j An �the restriction of fB to A� whenever f � L is an

n�ary function symbol�
c� cA � cB whenever c � L is a constant symbol�

Example� �N ���� �� �� �� � �Q ���� �� �� �� � �R ���� �� �� ���

��
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From the de�nition of a submodel it follows that� if B is a model and
A � B� then A is the universe of a �unique� submodel A of B i� A is closed
under the functions of B and contains every constant of B� If A does not
satisfy these closure conditions� there always is a smallest set A� such that
A � A� � B that does satisfy them
 see Lemma �����

��� Lemma If A � B and � is an A�assignment� then

�� for every term t� tA��� � tB����

�� for every quanti�er�free formula �� A j� ���� � B j� �����

Proof� Exercise ��� a

Note that the condition that � be quanti�er�free in ����� is necessary�
For instance� �N � f�g� �� � �N � ��	 the formula �y�y � x� is satis�ed by
the number � in the bigger model �since � � ��� but not in the smaller
one� The smaller model is not an elementary submodel in the sense of the
following de�nition�

��	 Elementary Submodel� A is an elementary submodel of B� and B
an elementary extension of A	 notation
 A � B� if A � B� whereas the
equivalence ����� holds for every formula ��

��� Remarks�

�� If A � B� then A � B�

�� if A�B � C and A � B� then A � B�

�� if A � B and A � B �or even A �� B�� then it is not necessary that
A � B�

��� Tarski�s criterion� If A � B� and for every formula � � ��x�� � � � �
xk� and a�� � � � � ak�� � A we have that

B j� �xk��a�� � � � � ak��� � �a�A B j� ��a�� � � � � ak��� a��

then A is an elementary submodel of B�

Proof� The condition exhibited is the �missing link� in the inductive proof
of the required equivalence that for everyA�assignment � and every formula
�� A j� ���� i� B j� ����� Assuming this equivalence for � as an induction
hypothesis� here follows half of the equivalence for �xk��

Suppose that B j� �xk��a�� � � � � ak���� By the Tarski condition� for
some a � A we have that B j� ��a�� � � � � ak��� a�� By the induction hypoth�
esis� A j� ��a�� � � � � ak��� a�� Therefore� A j� �xk��a�� � � � � ak����

See Exercise �� for details� a

Notice that the condition of ���� refers to satisfaction in the larger
model only�

��
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���� Example� �Q � �� � �R � ��� Thus� order completeness� or the princi�
ple of the least upperbound� cf� ������ �page ���� �which is a property of the
bigger model not shared by the smaller one� is not �rst�order expressible�

Proof� Exercise ��� a

���� Lemma� Suppose that B is an L�model� that X � B and that
��� jLj� jXj � � � jBj� Then a submodel A � B exists such that X � A

and jAj � ��

Proof� Let A be the smallest submodel of B containing some superset of X
of power �� There are several equivalent ways to describe the universe A
of such a submodel A� First� choose A� � B of power � such that X � A��
�� A �

S
nAn� where A� � A� � A� �    � B is the sequence of subsets

of B such that An�� is An together with all constants of B and all values
of functions of B on arguments from An�

Note that A contains all constants from B �indeed� they are elements
already of A��� Furthermore� A is closed under the functions of B� For�
let k be the arity of such a function fB� If a�� � � � � ak � A� then for n �
maxfn�� � � � � nkg� where ni is chosen such that ai � Ani

�i � �� � � � � k�� we
have that a�� � � � � ak � An� and hence

fB�a�� � � � � ak� � An�� � A�

Thus� A is the universe of a submodel of B�
Next� note that every An has power �� For A� this holds by de�nition�

And if jAnj � �� then also jAn��j � �� since jAn��j is the union of the
��many elements of An� the constants of B of which there are at most �
�since jLj � �� and all values of functions of B on arguments in An � but
there are at most � such functions and at most � sequences of arguments
from An� Thus� the power of A equals at most �  �  � � � � �� �See
Section B�� for these cardinality calculations��
�� A is the set of values tB��� of terms t under assignments � of the variables
of t into A��
�� A is the least �xed point �see De�nition B�� page ���� of the operator
that maps a subset Y of B to Y �A� �fall constants from Bg� fall values
of functions from B on arguments from Y g�

See Exercise �� for further details� a

Working slightly harder� we obtain the Downward L�owenheim�Skolem�
Tarski Theorem� the �rst genuine result of �rst�order model theory�

���� Downward L�owenheim�Skolem�Tarski Theorem� Assume the
conditions of ��	�� Then an elementary submodel A � B exists such that
X � A and jAj � ��

Proof� Pick sets A� � A� � A� �    � B of power � such that X � A�

and such that the following condition is satis�ed


��
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for every ��x�� � � � � xk� and a�� � � � � ak�� � An�
if B j� �xk��a�� � � � � ak���� then there exists a � An�� such that
B j� ��a�� � � � � ak��� a��

Put A 
�
S
nAn� A has power �� is closed under the functions of B and

contains the constants of B� Thus� A is the universe of a submodel A of B�
In this situation� Tarski s criterion is satis�ed�
Here are some details� Assume that A� � A� �    � An of power � have
been found satisfying the requirements� By Exercise ��� over a vocabulary
of power � � there are at most � formulas� and since there are at most
� �nite sequences of elements from An� the condition of the construction
requires consideration of at most �� � � � combinations of an existential
formula and an assignment for its free variables in An� In every combina�
tion where the formula happens to be satis�ed by the assignment� by the
Axiom of Choice pick one satisfying element for the existentially quanti�ed
variable� The new set An�� consists of these elements plus those in An� It
follows that An�� has power � as well� As before� the union A �

S
nAn

also has power ��
Next� it must be shown that A contains the constants from B and is

closed under the functions from B� Let c be a constant symbol� Consider�
ation of the formula �x��x� � c� and the empty assignment shows that cB

already belongs to A�� Furthermore� let f be a k�ary function symbol� and
let a�� � � � � ak�� be a sequence of arguments for the corresponding function
fB from A� Find n so large that these arguments already belong to An�
Consideration of the formula �xk�xk � f�x�� � � � � xk���� and the assign�
ments a�� � � � � ak�� for its free variables shows that fB�a�� � � � � ak��� is in
An���

Finally� Tarski s condition holds� Indeed� if we have that

B j� �xk��a�� � � � � ak���

�where a�� � � � � ak�� � A�� then� for some n� a�� � � � � ak�� � An� Thus�
by the constructing condition there exists a � An�� such that B j�
��a�� � � � � ak��� a�� a

���� �Elementary� Embeddings� An embedding �elementary embed�
ding� of A into B is an isomorphism between A and a submodel �an ele�
mentary submodel� of B�

���� Lemma� Assume that h maps the universe of A into that of B� The
following conditions are equivalent�

�� h is an embedding �elementary embedding� of A into B�

�� for all atomic 
 equivalently� for all quanti�er�free 
 �for all� for�
mulas � and A�assignments �� A j� ���� � B j� ��h���

��
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Proof� That � implies � is immediate �for the embedding�case� use Lemmas
��� and ����� For the other direction� see Exercise ��� a

���� Chains� Let � be a limit ordinal� A sequence �A� j  � �� of models
of length � is a chain �an elementary chain� if for all  � � � � we have
that A� � A� �A� � A���S

��� A�� the limit of the chain� is the �unique� model with universeS
��� A� that is a supermodel of all models of the chain� �See Exercise ����

In the early days of model theory� limits of elementary chains used
to be popular� Such constructions are now often replaced by saturation
arguments�

���� Elementary Chain Lemma� The limit of an elementary chain
elementarily extends all models of the chain�

Proof� Assume that A is the limit of the elementary chain of models �A� j
 � ��� Using induction with respect to �� verify that for all  � � and
a�� � � � � ak�� � A�


A� j� ��a�� � � � � ak��� � A j� ��a�� � � � � ak����

The only point of interest is the induction step for � and �
 assume that
a�� � � � � ak�� � A� and A j� �xk��a�� � � � � ak���� Then a � A exists such
that A j� ��a�� � � � � ak��� a�� Say� a � A�� Without loss of generality� it
may be assumed that � � � By induction hypothesis� we have that

A� j� ��a�� � � � � ak��� a�	

and hence� that A� j� �xk��a�� � � � � ak���� However� A� � A�� It follows
that A� j� �xk��a�� � � � � ak���� a

Exercises

�� For every two pairs of models A and B from the following list� decide
whether �i� A � B� �ii� A �� B� �iii� A is �elementarily� embeddable in B

�N � ��� �N � ��� �Z� ��� �Z� ��� �N� � ��� �Z � f�g� ��� �Q � ��� �Q � f�g� ���
�Q � � ��� �R � ��� �R � f�g� ��� �R� � ��� �R � Q � ���
Answer the same question for the models �A� �� and �B� �� with constant
�� where A and B are models from the list�

�� Prove Lemma ����
Hint� Use induction on terms and formulas� In fact� you can take �the
appropriate part of� the proof of Lemma ��� and just erase h everywhere�

�� Prove the claims from ����

�� Complete the proof of Tarski s criterion �����

�� Prove �����
Hint� Verify Tarski s criterion using the following observation
 if r is a real
and q�� � � � � qn are rational� then an automorphism h of �R � �� exists such
that h�r� is rational and h�qi� � qi �i � �� � � � � n�� Apply Lemma ����

��
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�� Show that �N� � �� �� �� � � �� � �N � �� �� �� � � ��� �N� is the set of posi�
tive natural numbers� The vocabulary of these models has no relation or
function symbols and in�nitely many constant symbols for the elements of
N� ��
Hint� This is similar to Exercise ��� Note that a formula contains only
�nitely many constant symbols�

�� Let L be a vocabulary� Show that there are at most jLj �� L�terms
and L�formulas�

�	 Verify the claims from the proof of Lemma ����� In particular� why do
the three descriptions of the set A all refer to the same thing!

�� Suppose that � � ��x�� � � � � xk�� A Skolem function for �xk� in B
is a function f over B such that for every a�� � � � � ak�� � B� if B j�
�xk��a�� � � � � ak���� then B j� ��a�� � � � � ak��� f�a�� � � � � ak����� Using the
Axiom of Choice you can construct Skolem functions for every existen�
tial formula� Show that� using this� Theorem ���� becomes a corollary to
Lemma �����

� Prove the remaining halves of Lemma �����

�� Prove that chains of models do have limits in the sense of De�ni�
tion �����

Next follow some set�theoretic applications for students familiar with the set�
theoretic cumulative hierarchy

fV�g��OR

and the constructible hierarchy

fL�g��OR�

See Appendix B for explanations	 Here� A �� B means that every formula of �
is satised by a given A�assignment in A i� this is the case in B	 If � is closed

under subformulas� i	e	� if every subformula of a formula in � again belongs to
�� then the Elementary Chain Lemma �	�� holds when � is replaced by ��	

���� The Re�ection Principle� Suppose that � is a �nite set of set�theoretic

formulas� closed under subformulas� ZF proves that the classes of ordinals � for

which �V���
 �� �V��
 and �L���
 �� �L��
� are closed and unbounded�

�� � Prove the Re�ection Principle �	��	 Note that there are but two properties
of these hierarchies that are needed for the proof� namely� � � �  V� � V��
and� for limits 	� V� �

S
���

V� �and similarly for the L�
	

�	 Assume that � � � are ordinals such that �V���
 � �V� ��
	 Show that
�V���
 j� ZF 	
Hint� First� show that � is a limit� that � 
 �� and that �V���
 is a model of
the Collection Schema �x�a �y � � �b �x�a �y�b � �b not free in �
	

�
 � Assume that the initial number � has strongly inaccessible cardinality	
Show that f� � � j �V� ��
 � �V���
g is closed and unbounded in �	

��
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Show that if � 
 � is uncountable and regular� then f� � � j �L� ��
 �
�L���
g is closed and unbounded in �	
Hints� �First part	
 Closed� use the Elementary Chain Theorem	 Unbounded�
if �� � �� dene the chain V�� � A� � V�� � A� � 	 	 	 � V� such that
�n�� ��

T
f� j An � V�g� jV�n j � jAnj� �An��
 � �V���
 �L�owenheim�Skolem�

Tarski� note that �n � �
� now consider
S
n
V�n 	

The following exercise indicates that the relation � between models �V���

is very much weaker than �	

�� Show that from the ZF axioms it follows that an unbounded collection C of
ordinals exists such that for all �� � � C� �V���
 � �V� ��
	
Hint� If you map all ordinals into some set � then an unbounded collection of them
will be mapped to the same element	 Apply this ZF �pigeon�hole principle� to
the map that sends an ordinal � to the set of sentences true in �V���
	 Thus�
the only �logical� ingredient of the argument is the fact that all set�theoretic
sentences form a set	

Bibliographic Remarks

The Downward L�owenheim�Skolem Theorem ����� as well as the material
on elementary submodels� is from Tarski and Vaught ����� The history of
this theorem dates back to L�owenheim ���� and Skolem �����

An old source of results on the �natural� models �V���� is Montague
and Vaught �����
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Ehrenfeucht�Fra��ss�e Games

The notion of an Ehrenfeucht�Fra��ss�e game provides a simple character�
ization of elementary equivalence with straightforward generalizations to
several languages other than �rst�order� which� for simple models �linear
orderings� trees� � � � 	� is easy to apply
 Besides� it is almost the only tech�
nique available in �nite�model theory �where Compactness and L�owenheim�
Skolem are of no use	


��� Finite Games

In order to get neat results� the following is assumed�

��� Proviso� In this section� all vocabularies are �nite and do not contain
function symbols�

Warning� In later sections� proofs are often given using the material of
this one
 So the results there may fall under this proviso as well� even
though this restriction on the vocabulary can often be lifted


For reasons of uniformity� this chapter admits models that have an
empty universe


First a preliminary de�nition� �xing terminology in the context of shift�
ing vocabularies


��� Expansions� If L and L� are vocabularies such that L � L�� then L�

is an expansion of L and L is a reduct of L�

If L � L�� A is an L�model� and B is an L��model such that A � B

and the interpretations of L�symbols in A and B coincide� then B is an
L��expansion of A and A is the L�reduct of B notation� A � B j L


If L��L consists of constant symbols only� the corresponding expansions
are called simple


If A is an L�model and L� � L � fc�� � � � � cng� then the simple L��
expansion of A that interprets ci as ai � A �� � i � n	 is denoted by
�A� a�� � � � � an	


��

��
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See Exercise � to see how satisfaction in A by a�� � � � � an � A can be reduced
to truth in the simple expansion �A� a�� � � � � an	� using individual constants
to refer to these elements


Note that if � is an L�sentence� L � L�� and A an L��model� then � is
an L��sentence as well and we have that A j L j� � i� A j� �


��� Local Isomorphisms� A local isomorphism between models A and
B of the same vocabulary is a �nite relation

f�a�� b�	� � � � � �an� bn	g � A�B

such that the simple expansions �A� a�� � � � � an	 and �B� b�� � � � � bn	 satisfy
the same atomic sentences


Every local isomorphism is a ��nite	 injection
 Often� the models in�
volved are purely relational �i
e
� there are no individual constants in the
vocabulary	
 In that case� a local isomorphism is the same as an isomor�
phism between �nite submodels
 See Exercise ��


��� Examples�

�
 The empty function is a local isomorphism between any two purely
relational models


�
 Every restriction of a �local	 isomorphism is a local isomorphism


�
 The �nite injection f��� �	� ��� e	� ��� �	g is a local isomorphism be�
tween �Z� �	 and �R � �	


The last example illustrates the fact that a local isomorphism does not
need to extend to an isomorphism


��� Ehrenfeucht�s Game� Let A and B be models and n � N a nat�
ural number
 The Ehrenfeucht game of length n on A and B� notation�
E�A�B� n	� consists of the following
 There are two players� whom are
baptized Di and Sy
 �Other names are� I and II� the Spoiler and the Dupli�
cator 
	 In a play of the game� the players move alternately
 Di is granted
the �rst move the players are allowed n moves each
 A move of Di consists
in choosing an element of either A or B
 A counter�move of Sy consists in
choosing an element of either B �in case Di made her choice in A	 or A �in
the other case	


At the end of each play of the game� there is one winner
 Each play
determines n pairs ��move� countermove	� or vice versa	 that make up
an n�element relation h �� f�a�� b�	� � � � � �an� bn	g between A and B
 By
de�nition� Sy has won if h is a local isomorphism between A and B and
Di has won in case this is false


Since it is allowed for one or two of the models to be empty� we also
stipulate that a player whose turn it is but who cannot move by lack of
element� loses


��
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The idea of the game is best explained by revealing some peculiarities
about the characters of the participants that become apparent after playing
a couple of example games
 Thus� Di sees di�erences all around each of
her moves is accompanied by some exclamation �hey� Sy� look� here I�ve
found an extraordinary element in this model you can�t �nd the equal of
in the other one��
 On the other hand� to Sy every two models appear to
be similar and every move of Di is countered with some �oh yeah� then
what about this one��

In the purely relational case� Sy immediately wins every game E�A�B� �	
of length �� since the empty relation is a local isomorphism
 If one of the
models is empty and the other one is not� then Di can win any length
non�� game by picking an element from the non�empty model� since this
cannot be countered by Sy
 However� if both models are empty� Sy wins
automatically even if n � �


��� Example� Consider the length�� game on the models � �� �Z� �	 and
� �� �R � �	
 Suppose Di and Sy play as follows�

Di Sy Di Sy Di Sy

Z � � �
R e � �

The moves make up the �nite relation f��� �	� ��� e	� ��� �	g� which is the
local isomorphism of Example �
�� and so Sy has won this play


Of course� the real issue with these games is� whom of the players
has a winning strategy� For this notion� see De�nition B
�� page ���
 It
follows from Lemma B
�� that for every game E�A�B� n	� exactly one of
the players has a winning strategy
 To get some feel for this� try your hand
at Exercises �� and ��
 The answers to these exercises can be found in the
theory that is to follow� but it is useful to experiment a little �rst


��	 Notation� The situation that Sy has a winning strategy for E�A�B� n	
is denoted by Sy�A�B� n	


The following results are straightforward


��
 Lemma�

�
 Sy�A�B� n	 �m � n � Sy�A�B�m	�

�
 Sy�A�B� n	 � Sy�B�A� n	�

�
 A 	� B � 
n Sy�A�B� n	�

�
 Sy�A�B� n	 � Sy�B� C� n	 � Sy�A� C� n	�

Proof� Here is the argument for part �
 Assume that 	 and 
 are winning
strategies for Sy in the games of length n on A and B� respectively� B and
C
 In order to win the game on A and C� Sy does the following
 Next to
the actual playing of E�A� C� n	 against Di� he is also busy bookkeeping two

��
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plays of E�A�B� n	 and E�B� C� n	 respectively� in which the Sy�moves are
executed by 	 and 
 � respectively
 Suppose that Di starts by playing an
element a from A
 To this move� Sy applies 	� as though it were a �rst move
in the game E�A�B� n	
 The answer b produced by 	 is given as an input to

 as though it were a �rst move in E�B� C� n	
 Finally� the answer c given
by 
 is returned by Sy as his real answer in the game E�A� C� n	
 A similar
procedure is carried out by Sy when Di moves in C
 �In that case� the move
is given to 
 � 
 �s answer to 	� and 	�s answer is taken as the real answer by
Sy in E�A� C� n	
	 Eventually� the relations built by the winning strategies
	 and 
 must be local isomorphisms between A and B� respectively� B and
C
 Therefore� their composition will be a local isomorphism as well� and
hence Sy wins the play from E�A� C� n	


For the remaining parts� see Exercise ��
 a

By Theorem �
�� the following implies Proposition �
�


��� Proposition� Assume that A has n elements�

�
 If Sy�A�B� n	� then there exists an embedding of A into B�

�
 if Sy�A�B� n � �	� then A 	� B�

Proof� See Exercise ��
 a

Below� the game is played on linear orderings
 Then� arguments can
often be given by induction via the following Splitting Lemma


This uses the following notation
 If � is a linear ordering of A and
a � A� then a� denotes the submodel of �A��	 the universe of which is
fx � A j a � xg� and a� denotes the submodel of �A��	 the universe of
which is fx�A j x � ag
 �Note that these submodels can be empty
	

���� Splitting Lemma� If A and B are linear orderings� then

Sy�A�B� n � �	

i� both

��forth	
 
a�A b�B �Sy�a�� b�� n	 � Sy�a�� b�� n	 � and

��back	
 
b�B a�A �Sy�a�� b�� n	 � Sy�a�� b�� n	 �

Proof� First� assume that Sy�A�B� n� �	
 Suppose that a � A
 Consider a
as a �rst move of Di in the game of length n � �
 Let b � B be an answer
of Sy given by some winning strategy 	
 In the game� n moves remain for
both players
 Now� 	 can be used as a winning strategy in E�a�� b�� n	

For� if Di chooses some x � a� this can be considered a second move in
E�A�B� n� �	� and 	 returns an answer y that will be necessarily � b� etc


Conversely� suppose that the back�and�forth conditions are satis�ed
 It
then follows� that Sy�A�B� n��	
 For� suppose that Di plays a � A
 Accord�
ing to �forth� there exists b � B such that Sy�a�� b�� n	 and Sy�a�� b�� n	

Suppose that 	 and 
 are winning strategies
 Then they combine to one

��
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winning strategy for the remaining n�move game E�A�B� n��	 that follows
the pair of moves �a� b	
 Indeed� a move in a� or in b� will be answered by
	� whereas 
 will take care of moves in a� or b�
 a

For �notations of	 orderings and their types� and sums and products�
see Section B
� �page ���	


���� Example� For every n we have that Sy��� �� n	�

Proof� This is by induction with respect to n� using Lemma �
�� and the
fact that for � � � or � �� every choice of an element in � splits it as
� � � � � � �
 Note the peculiarity that the winning strategy does not
depend on the length of the game here
 a

Part � of the following lemma should be compared to Exercise ��
�
similarly� for part �� compare Exercise ��
�
 These results will be used in
Section �
�


���� Lemma�

�
 k�m � �n � � � Sy�k�m� n	�

�
 m � �n � � � Sy� � ��m� n	�

Proof� �
 We argue by induction with respect to n� using Lemma �
��

Basis� n � �

This case is trivial� the models under consideration are purely relational�
therefore� the empty relation is a local isomorphism

Induction step�
Induction hypothesis� assume the implication holds for n

Now suppose that k�m � �n�� � �
 In order for Sy�k�m� n� �	 to hold� it
su!ces �by Lemma �
��	 to show that for every element i in the universe
f�� � � � � k � �g of the linear ordering k there exists an element j in the
universe f�� � � � �m � �g of m such that Sy�i�� j�� n	 en Sy�i�� j�� n	� and
conversely
 Therefore� assume that � � i � k
 Note that i� � i and
i� � k � i � �
 Distinguish three cases as to the location of i� i can be
located �in the middle�� �at the beginning� or �at the end� of k


�i	 ��In the middle
�	 i� k � i� � � �n � �

Claim� There exists j� � � j � m such that j�m� j � � � �n � �

Proof� m � �n��� and �n�� � � � ��n � �	 � � � ��n � �	
 a
Take such a j
 By induction hypothesis we have that Sy�i�� j�� n	 and
Sy�i�� j�� n	


�ii	 ��At the beginning
�	 i � �n � �

Put j �� i
 Then we have that Sy�i�� j�� n	
 Furthermore �since k�m �
�n�� � ��n � �	 � � � ��n � �	 and i � j � �n � �	 we have that k � i �
��m� j � � � �n � �� hence it follows from the induction hypothesis that
Sy�i�� j�� n	


��
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�iii	 ��At the end
�	 k � i� � � �n

Now choose j such that m� j � � � k � i� � and argue as under �ii	

�
 See Exercise ��
 a

���� Lemma�

�
 Sy���� ��� n	�Sy���� ��� n	 � Sy������� ������ n	� more generally�

�
 If I is a linearly ordered set and� for every i � I� �i and �i are
orderings such that Sy��i� �i� n	� then Sy�

P
i�I �i�

P
i�I �i� n	�

Proof� See Exercise ��
 a

���� Lemma�

�
 For every n� Sy��  � �� n	�

�
 For every n� Sy��� � � �� n	�

Proof� See Exercise ��
 a

���� Lemma� Suppose that � is an arbitrary order type �� �� � in 
 and
n � N � Then�

�
 m � �n� � � Sy�� �� ��	 ���m� n	 �with � � �� this is �
��
�	�

�
 Sy��  � � � �� n	 �with � � �� this is �
��
�	�

�
 Sy��� � � �� n	 �with � � �� this is �
��
�	�

Proof� See Exercise ��
 a

Exercises

�� Show that every local isomorphism is an injection

Suppose that A and B are purely relational �the vocabulary has only

relation symbols	
 Show that a bijection h between a �nite subset of A
and a �nite subset of B is a local isomorphism between A and B i� h is an
isomorphism between the submodels of A and B that have these subsets as
universes


�	 Does either Di or Sy have a winning strategy in the game E��� �� �	�

�For the notations of the linear orderings involved� see Section B
�
	

�
 Whom of the players has a winning strategy in the following games��

�
 E���	� �	 E�	�
� �	�

�
 E�� �� �	 E��  � � �	�

�
 E����  � �� �	�

�
 E��  � �� �	


�� The existence of a winning strategy for player Sy can be used to �trans�
fer� truth of a statement for one of the models to the other one
 �The
explanation for this phenomenon is given in the next section
	

�
 Suppose that player Sy has a winning strategy for the game

E��A�R	� �B�S	� �	

��
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and that the relation R is symmetric
 Show that S is symmetric as
well


�
 Give an example showing that in the above �symmetric� cannot be
replaced by �dense�


�
 However� the phenomenon does hold for �dense� if you assume that
Sy has a winning strategy for E��A�R	� �B�S	� �	


�
 Same questions for �transitive�


Solution for �� Suppose that b�Sb�
 To show that b�Sb� holds as well�
let Di and Sy play the game E��A�R	� �B�S	� �	
 Let Sy use his winning
strategy� whereas Di plays b� and b� �without paying attention to the move
of Sy	
 Suppose that the winning strategy of Sy returns the answers a�
and a� from A
 Since the strategy is winning� f�a�� b�	� �a�� b�	g is a local
isomorphism
 By the fact that b�Sb�� we therefore also have that a�Ra�

However� R is symmetric
 Thus� a�Ra�
 But then� b�Sb�� as well


�� Suppose that A is a linear ordering� and that Sy has a winning strategy
for the game E�A�B� �	
 Show that B also is a linear ordering


Show that it does not su!ce for this to assume that Sy�A�B� �	


�� Prove the remaining parts of Lemma �
�


�� Prove Proposition �
�

Hint� In part �� let Sy use his winning strategy
 But how do you ask Di to
play�

�� Prove Lemma �
��
�

Hint� Use �
 and the fact that any choice of an element in � ��  � �

splits it as k� �� � or �� �� k for some k � N 


�� Prove Lemma �
��


�� Prove Lemma �
��

Hint� Use Lemma �
�� and �
��


�� Prove Lemma �
��


�	 Give a simple necessary and su!cient condition on n and the �possibly
in�nite	 number of elements in the universes of A and B under which
Sy��A� �	� �B� �	� n	
 ��A� �	 is the model with universe A for an empty
vocabulary
	

�
 � Show that if jAj� jBj � �n� then Sy��P�A	��	� �P�B	��	� n	


��� The Meaning of the Game

The logical meaning of the game is now to be revealed


���� Quantier Rank� The quanti�er rank of a formula � is the maxi�
mal number of nested quanti�ers in �� that is� the natural number qr��	
recursively computed as follows


��
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�
 The rank of an atom is ��

�
 qr���	 � qr��	�

�
 qr��� �	 � qr�� � �	 � � � � � max�qr��	� qr��		�

�
 qr�
x�	 � qr�x�	 � qr��	 � �


���	 n�Equivalence� The models A and B are n�equivalent � notation�
A �n B� if they satisfy the same sentences of quanti�er rank � n


���
 Main Theorem� Sy�A�B� n	 � A �n B�

Reconsider Exercises �� and �� in the light of this result

The following lemma is an immediate consequence of De�nition �
�


���� Lemma� Suppose that A and B are models� and that a � A� b �
B� For a �nite injection h such that Dom�h	 � A and Ran�h	 � B the
following two conditions are equivalent�

�
 h is a local isomorphism between �A� a	 and �B� b	�

�
 h � f�a� b	g is a local isomorphism between A and B�

The next lemma describes an obvious inductive condition that charac�
terizes the games for which Sy has a winning strategy
 Compare it with
Lemma �
��


���� Lemma� For Sy�A�B� n� �	 it is necessary and su�cient that both

��forth	
 
a�A b�B Sy��A� a	� �B� b	� n	� and

��back	
 
b�B a�A Sy��A� a	� �B� b	� n	�

Proof� Suppose that Sy�A�B� n��	
 Fix a winning strategy 	 for Sy in the
game E�A�B� n � �	
 Suppose that ��forth�	 a � A
 Consider a as a �rst
move of Di
 Now 	 produces an answer b � B

Claim� Sy��A� a	� �B� b	� n	

Proof� 	 can be used as a winning strategy for Sy
 To be able to apply
	� Sy pretends to play the game E�A�B� n � �	 in which already a �rst
pair of moves �a� b	 has been played
 Going about this way� after the
playing of E��A� a	� �B� b	� n	 a relation h between A and B has been built

Since 	 is winning for Sy in E�A�B� n � �	� h � f�a� b	g must be a local
isomorphism between A and B
 But then� according to Lemma �
��� h
is a local isomorphism between �A� a	 and �B� b	
 Hence� this strategy is
winning for Sy


The converse uses Lemma �
�� in a similar way cf
 Exercise ��
 a

Lemma �	�
 motivates the following de�nition of a monotone operator � over the
set of local isomorphisms between two models A and B	

�X� � fh j �a�A�b�B h�fa� b�g � X� � �b�B �a�A h�fa� b�g � X�g���

It will transpire that Sy has a winning strategy in the n�game i� � � ��n see
Exercise �
�	 By Theorem �	�� still to be proved�� � � ��� i� A 	 B	

��
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The least �xed point of this operator is empty	 You shall meet its greatest
�xed point later on	

Proof of Theorem �
��
 We argue by induction on n

Basis� n � �� To have quanti�er rank � � means to be quanti�er�free


�� That A �� B means that A and B satisfy the same quanti�er�free
sentences
 Thus� in particular� A and B satisfy the same atomic sentences


�� Assume that Sy�A�B� �	
 Then A and B satisfy the same atomic
sentences
 Now� use Lemma �
�� to see that A and B satisfy the same
quanti�er�free sentences

Induction step� Assume �induction hypothesis	 the result for n


First� suppose that Sy�A�B� n � �	
 By induction on the number of
logical symbols in the quanti�er�rank � n � � sentence �� it is shown that
A j� � � B j� �
 The only case that requires attention is when � is
x�
 So assume that A j� x��x	
 For instance� a � A and A j� ��a 
equivalently �see Exercise �	� �A� a	 j� ��c	� where c is a new individual
constant interpreted by a
 Now a can be considered a �rst move of Di in
the length n� � game
 Applying Lemma �
��� you obtain b � B such that
Sy��A� a	� �B� b	� n	
 By induction hypothesis� �A� a	 �n �B� b	
 Therefore
�note that ��c	 has quanti�er rank � n	� �B� b	 j� ��c	 i
e
� B j� ��b �
and it follows that B j� x�
 �Note that in this argument the induction
hypothesis must be applied to simple expansions of the two models
	

Next� assume that A �n�� B
 Suppose that a � A
 The intention
is to show that b � B exists such that �A� a	 �n �B� b	
 �By induction
hypothesis� it then follows that Sy��A� a	� �B� b	� n	
 The same goes for the
other way around� so by Lemma �
�� you obtain that Sy�A�B� n � �	� as
required
	 Suppose that such a b does not exist
 Then for every b � B

there exists a quanti�er rank � n sentence �b�c	 satis�ed by �A� a	 but
not by �B� b	
 Suppose that you can choose these sentences in such a way
that f�b j b � Bg is �nite
 Then the quanti�er�rank � n � � sentence
x
V
b �b�x	 is satis�ed in A but not in B� contradicting hypothesis
 That

you can manage with �nitely many �b follows from Lemma �
��
 a

���� Remark� Note that the relation Sy�A�B� n	 is recursively character�
ized by the following two equivalences


�
 Sy�A�B� �	 � � is a local isomorphism between A and B�

�
 the equivalence of Lemma �
���

Sy�A�B� n � �	 �


a�Ab�BSy��A� a	� �B� b	� n	 � 
b�Ba�ASy��A� a	� �B� b	� n	�

Therefore� to prove Theorem �
��� it su!ces to show that the relation
A �n B also satis�es these equivalences
 See Exercise ��


��
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To express the relation A �n B as the existence of a winning strategy
for Sy in the corresponding game �as proposed by Ehrenfeucht	 can be con�
sidered as a convenient aid to the imagination� the above characterisation
really says all there is to it


���� Lemma� If A and B satisfy the same atomic sentences� then they
also satisfy the same quanti�er�free sentences�

Proof� See Exercise ��
 a

���� Lemma� For every k and n there are only �nitely many inequivalent
formulas of rank � n that have x�� � � � � xk free�

Proof� The proof is by induction with respect to n �keeping k variable	

Basis� n � �� Recall Proviso �
�� that our vocabulary has no function sym�
bols and is �nite
 Thus� there are only �nitely many atoms in x�� � � � � xk

Every formula of rank � is quanti�er free� and has an equivalent in dis�
junctive normal form
 Obviously� up to equivalence� there are only �nitely
many disjunctive normal forms using �nitely many atoms

Induction step� n��� Every rank � n�� formula with x�� � � � � xk free has
an equivalent disjunctive normal form� the ingredients of which are rank
� n formulas and formulas xk��� where � has rank � n and x�� � � � � xk��
free
 By induction hypothesis� up to equivalence there are only �nitely
many of those
 a

You can now see what �niteness of the vocabulary is good for
 For
instance� let B be a proper elementary extension of �N � �� �� �� � � �	
 �Every
proper extension of this model happens to be an elementary one� but if you
do not want to accept this on faith� use Theorem �
��
	 Di can already win
the length � game on these models by choosing an element of B outside N 

A similar example with �N � �� S	 �where S�n	 �� n��	 illustrates why you
have to exclude function symbols


There are variations on the Ehrenfeucht�Fra��ss�e game that are adequate
with respect to languages other than �rst�order
 For instance� to get the
version for �say� monadic	 second�order logic �see De�nition �
�� page ��	�
Di is allowed to also pick a subset of one of the models Sy then is obliged
to counter with a subset from the other one


A nice variation with applications to intensional logics is the one to for�
mulas with a bounded number of variables
 �The relation with intensional
logics comes from the fact that standard translations into �rst�order logic
can be carried out with �nitely many variables� depending on the type of
intensional logic considered
	 From the above proof it can be seen that the
moves of the players are meant as assignments of elements to variables

Now� modify the game as follows
 Let k � N be a natural number
 Di and
Sy are given k pebbles each� marked �� � � � � k
 A move of Di now consists
of placing one of her pebbles on an element of one of the two models Sy

�
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counters by placing his corresponding pebble on an element of the other
model
 If the length of the game exceeds k� Di runs out of pebbles after
her k�th move
 She is allowed now to re�use one of her pebbles by simply
moving it to some other element �of either model	
 Sy then counters by
re�using his corresponding pebble
 When the play is over� the positions of
the �k pebbles determine a k�element relation between the models and Sy

again wins if this is a local isomorphism
 For the k�pebble game� there is
the following

���� Proposition� Sy has a winning strategy for the k�pebble game of
length n on A and B i� A and B satisfy the same rank � n�sentences
containing at most k variables�

In the context of linear orderings� � variables su!ce


���� Proposition� If A and B are linear orderings with the same valid
��variable sentences of rank � n� then A �n B�

Proof� Using induction� it is shown that for every n� if g and h are the
locations of at most � � � pebbles on A and B� respectively� such that Sy

has a winning strategy in the ��pebble game of length n at position �g� h	�
then Sy has a winning strategy in the ordinary game of length n at position
�g� h	

Basis� n � �
 Trivial

Induction step� Assume the result for n
 Suppose that Sy has a winning
strategy in the ��pebble game of length n�� at position �g� h	
 Distinguish
two cases


�i	 At position �g� h	� only �� � or less pebbles have been placed
 Then
each player has at least one free pebble
 Thus� for every a � A there exists
b � B and for every b � B there exists a � A such that Sy has a winning
strategy in the ��pebble game of length n at position �g � fag� h � fbg	

By induction hypothesis� for every a � A there exists b � B and for every
b � B there exists a � A such that Sy has a winning strategy in the ordinary
game of length n at position �g�fag� h�fbg	
 But that means that Sy has
a winning strategy in the ordinary game of length n� � at �h� g	


�ii	 At position �g� h	� all �� � pebbles have been used
 Suppose that g
consists of a� � a� � a� and h is b� � b� � b�
 A fortiori� Sy has winning
strategies for the two ��pebble games of length n � � at the two�pebble
positions ��a�� a�	� �b�� b�		 and ��a�� a�	� �b�� b�		
 The argument under �i	
shows that Sy has winning strategies 	 and 
 � respectively� in the ordinary
games of length n�� at positions ��a�� a�	� �b�� b�		 and ��a�� a�	� �b�� b�		�
respectively
 But then� Sy has a winning strategy in the ordinary game
of length n� � at position ��a�� a�� a�	� �b�� b�� b�		 as well� moves � a� or
� b� are countered using 	� whereas moves � a� or � b� are countered
using 
 
 a

��
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���� Corollary� On the class of linear orderings� every sentence is equiv�
alent with a three�variable sentence�

Proof� Via Exercise ���
 a

Another modi�cation of the game is obtained by stipulating that Sy wins
a play in case the relation built is not a local isomorphism but a local ho�
momorphism� which is a relation f�a�� b�	� � � � � �an� bn	g � A�B such that
every atomic sentence true in �A� a�� � � � � an	 is satis�ed by �B� b�� � � � � bn	
as well �but not necessarily conversely	
 Every local homomorphism is a
function� but it is not necessarily an injection


The resulting game Eh relates to positive formulas� which are generated
from the atomic ones using the logical symbols �� �� 
 and  only �thus�
�� � and � are not allowed	


Theorem �
�� can be now be modi�ed to the following result� the proof
of which can be obtained by straightforward adaptation of the former one


���	 Theorem� Sy has a winning strategy for Eh�A�B� n	 i� B satis�es
every positive quanti�er rank � n sentence true in A� a

As a �nal example of modifying the game� you can mix requirements

Assume that L� � L�frg� where r is some n�ary relation symbol
 Stipulate
that Sy wins i� the end�product of the play is a local isomorphism with
respect to L�structure� and a local homomorphism with respect to r
 This
determines the r�positive game Er�pos
 The game is related to so�called
r�positive sentences� which only use �� �� �� 
 and  and in which r occurs
in the scope of an even number of negation symbols
 �The restriction that
� and� do not occur is needed to keep the counting of negations straight�
� and � contain �hidden� negations
	

Exercises

�� Complete the proof of Lemma �
��


�� Show that� for the operator " de�ned by � �page ��	 the following
holds�

f�a�� b�	� � � � � �ak� bk	g � "�n i� Sy��A� a�� � � � � ak	� �B� b�� � � � � bk	� n	�

�� Prove Theorem �
�� using the remark from �
��

Hint� The argument may be extracted from the one for Theorem �
��


�� Prove Lemma �
��
Hint� Use induction on quanti�er�free sentences


�� Give a proof of the Splitting Lemma �
�� using Lemma �
�� and
Lemma �
��


�� Give an upper bound for the number inequivalent of quanti�er rank
� n formulas in a vocabulary with k variables in� say� one binary relation
symbol and m constant symbols


��
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The following exercise indicates a proof for Theorem �
�� that does not
change the vocabulary


�� Suppose that h � f�a�� b�	� � � � � �ak� bk	g � A � B is a local isomor�
phism
 Show that the following are equivalent�

�
 if � � ��x�� � � � � xk	 has quanti�er�rank � n� then

A j� ��a�� � � � � ak � B j� ��b�� � � � � bk �

�
 Sy has a winning strategy in position h in the game of length k � n

�with n more moves to go for each player	


�� Prove Proposition �
��

Hint� Re�ne the argument for Theorem �
��


�	 Formulate and prove a theorem that relates the appropriate version of
the Ehrenfeucht game to r�positive sentences


�
 Modify the Ehrenfeucht game of length n on models A and B by re�
quiring that Di always picks her moves from A
 Formulate and prove the
corresponding modi�cation of Theorem �
��


�� Show that every two dense linear orderings without endpoints are ele�
mentary equivalent


���
 n�local isomorphism� A local isomorphism h � f�a�� b�	� � � � �
�ak� bk	g between A and B is an n�local isomorphism if player Sy has a
winning strategy for the remaining n moves in the game E�A�B� k � n	 in
position h


A local isomorphism is elementary if it is an n�local isomorphism for
every n


Hence� every local isomorphism is a ��local isomorphism
 From Theo�
rem �
�� it follows that a local isomorphism h � f�a�� b�	� � � � � �ak� bk	g
is an n�local isomorphism i� for every quanti�er rank � n formula � �
��x�� � � � � xk	� A j� ��a�� � � � � ak i� B j� ��b�� � � � � bk 


A �nite part of an isomorphism is an elementary local isomorphism


�� Which local isomorphisms between � � �R � �	 and � � �Q � �	 are ele�
mentary� What about arbitrary dense linear orderings without endpoints�

�� Which local isomorphisms between  and  � � are elementary�

�� See Lemma �
��
� �page ��	


�
 For every n � �� produce a sentence �n of quanti�er rank n that
holds in a linear ordering A i� A has at least �n � � elements


�
 Give a simple condition on m and n that is equivalent with Sy� �
��m� n	


Solution�
�
 If � is a formula and x a variable that does not occur in �� then by ��x

��
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denote the formula obtained from � by replacing all quanti�ers 
y � � � and
y � � � by 
y � x � � � �� 
y�y � x� � � �		 and y � x � � � �� y�y � x�� � �		�
respectively
 ��x is de�ned analogously
 If x does occur in �� replace
bound variables by others
 Check that� for a linear ordering A� a � A�
and a sentence �� A j� ��x�a i� a� j� �
 �This requires a proof using
formula induction of something that is slightly more general
	 Now� de�ne�
�� � x�x � x	� �n�� � x���xn � ��xn 	


�
 Sy� � ��m� n	 � m � �n � �

Proof� ��	 Cf
 Lemma �
��

��	 Use the fact that  � � j� �n


�� See Lemma �
��
�


�
 For n � � and k � �n�� construct a sentence �n�k of quanti�er rank
� n that holds in a linear ordering i� it has exactly k elements


�
 Give a simple condition on m and n that is equivalent to Sy�k�m� n	


Hint� Use Exercise ��
 Start with n � � �then �� � � � �	� and k � ��
k � �
 Next� suppose that �n�k has been de�ned for n � � en k � �n � �

To construct �n���k� distinguish cases � � k � �n��� k � �n��� �n�� �
k � �n�� � �� and k � �n�� � �


�� Show that the following two conditions are equivalent�

�
 The sentence � has a logical equivalent of quanti�er rank � n�

�
 for every two models A� B such that A �n B� if A j� �� then B j� �


Conclude that transitivity can not be expressed with a sentence of quanti�er
rank � �
 �Cf
 Exercise ��
	

��� Applications

����� Beyond First�order

Here follow some properties that cannot be expressed in �rst�order terms


���� Denition� A formula � � ��x	 in one free variable x de�nes the
set fa � A j A j� ��a g in A a formula � � ��x� y	 in two free variables
x� y de�nes the relation f�a� b	 � A�A j A j� ��a� b g in A


For instance� the formula x � y��z�x � z�z � y	 de�nes the �successor	
relation n � � � m in the model  � �N � �	


���� Example� The set of even natural numbers is not de�nable in  �
�N � �	�

Proof� Suppose that � does de�ne this set
 I
e
�  j� ��n holds i� n is
even
 Then the sentence


x
y�x � y � �z�x � z � z � y	 � ���x	 � ���z			

holds in 
 Since  �  � � �cf
 Lemma �
��
� page ��	� this sentence
also holds in  � �
 Choose n�m in the ��tail of  � � such that m is the

��
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immediate successor of n
 Then we have that �� j� ��n i� �� j� ���m 

Consider the automorphism h of �� for which h�n	 � m
 A contradiction
follows using Lemma �
�
 a

A set X � N is co��nite if N �X is �nite

For every natural number n � N it is possible to write down a formula

�n � �n�x	 expressing that �an element assigned to	 x has exactly n pre�
decessors
 Thus�  j� �n�m holds i� m � n
 It follows that a �nite set
A � N can be de�ned in  by the disjunction

W
n�A �n its complement

N �A is de�ned by the negation of this formula

Therefore� all �nite and co��nite sets of natural numbers are de�nable

in 
 Conversely�

���� Proposition� Every set de�nable in  � �N � �	 is either �nite or
co��nite�

Exercises

�� Prove Proposition �
��


���� Denition� Let nb�x� y	 be the formula

�x � y � �z�x � z � z � y		 � �y � x � �z�y � z � z � x		�

expressing that x and y are neighbours in the ordering �
 If S is the
relation de�ned by nb in A � �A��	� then �A�S	 is the neighbour model
corresponding to A notation� Anb


For instance� the relation of nb is de�ned by jn�mj � �


�� Show the following�

�
 A �n�� B � Anb �n Bnb�

�
 A � B � Anb � Bnb


�	 The universe of the model Cm is f�� � � � �mg on which the relation R is
de�ned by iRj �� ji� jj � �� �i � �� j � m	� �i � m� j � �	
 �Visualize
this model by drawing �� � � � �m on a circle
	 Show that if m � �n� then
Sy�Cm� �

nb� n	

Hint� After the �rst two moves� the game reduces to one on successor
structures of linear orderings
 After a �rst move a � Cm� �cut� Cm in a

�by which a is doubled into elements a� and a��	
 This operation produces
the structure �m � �nb� a�� a��	� in which a� and a�� have become endpoints

Similarly� �OP � after a �rst move b � �� is cut open� producing

�� � �	nb� b�� b��	�

Now� use Lemma �
��
� and Exercise ��


�
 Consider the successor relation S on  de�ned by nSm �� n � � � m

Show that the ordering � is not de�nable in �N � S	


��
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Hint� S is de�ned in  by a modi�cation suc of the formula nb� i
e
�
�N � S	 � suc
 Now suppose that LO�x� y	 would be a de�nition of the
required type
 Then the sentences


x
y�x �� y � LO�x� y	 � LO�y� x		

and

x
y�LO�x� y	� �LO�y� x		

would hold in �N � S	
 Hence they would hold in � � � � �	suc
 Deduce a
contradiction


����� Second�order

In a �monadic
 second�order language you can write down everything you
could write down before� but now you are also allowed to use relation vari�
ables X�Y�Z� � � � occurring in atomic formulas X�t�� � � � � tn	 and quanti�ers
over these variables
 The meaning of this new form of expressions in the
context of a model A with a universe A is the following� the new variables
stand for relations on A and the second�order quanti�ers 
X and Y are
to be read as� �for every relation X �of the appropriate arity	 on A�� and
�for some relation X on A�� respectively
 Finally� an atom X�t�� � � � � tn	 is
read as �the tuple t�� � � � � tn is in the relation X�


In a similar way� function variables could be quanti�ed over

More formally� the concept of a second�order formula is most easily

obtained by modifying De�nition �
�� page �� viewing some non�logical
symbol as a variable�

���� Second�order Formulas� The class of second�order formulas is
obtained by adding the following clause to De�nition �
� �page �	


�
 If � is an L�formula and 	 � L a relation symbol� then 
	� and 	�
are L� f	g�formulas


If second�order quanti�cation is permitted only over unary relation vari�
ables� the resulting formulas are called monadic second�order
 Such a for�
mula is universal if it has the form 
r� where r is a sequence of relation
variables and � is �rst�order it is monadic universal if these relation vari�
ables are unary
 #�

� and #�
��mon	 are the classes of universal� and monadic

universal second�order formulas� respectively their existential counterparts
$�
� and $�

��mon	 are de�ned similarly
 �The superscript � refers to second
order % a � would refer to �rst order� %� the subscript counts quanti�er
blocks in the pre�x� # says the �rst block consists of universal� $ says it
consists of existential quanti�ers
	

Although the semantics of this formalism is pretty obvious� here follows
the clause that says how to read a universal second�order quanti�er
 In this
clause� � is an A�assignment for the free �rst�order variables in � in the
right�hand side� R is the interpretation of the monadic relation �variable�

��

For personal use



Ehrenfeucht�Fra��ss�e Games � ��

r in the expansion �A� R	


A j� 
r��� � for all R � A� �A� R	 j� ��� �

We leave it to the reader to write down the other necessary clauses extend�
ing De�nition �
�


A property �of models� or of elements in a given model	 that is both
#�
� and $�

� �respectively� #�
��mon	 and $�

��mon		 de�nable is said to be &�
�

�respectively� &�
��mon		


A class of �nite models �suitably coded as sequences of symbols	 is in
NP if membership in the class is Non�deterministically Turing machine
decidable in Polynomial time
 Cf
 the discussion in A
��
 The following
result explains the relationship with second�order de�nability


���� Theorem� On the class of �nite models� $�
� � NP� a

Below� we deal especially with monadic second�order sentences that are
universal � i
e
� have the form 
X� where � uses the unary relation variable
X in atoms X�t	� but it does not quantify over such second�order variables
itself


Instead of X�t	� we often write t � X
 Notations such as 
x � X �

and x � X � are abbreviations for 
x�x � X � �	 and x�x � X � �	�
respectively
 Using such sentences you can express a lot of things you
cannot express in �rst�order terms


���� Examples� �
 Compare �
��
 The set of even natural numbers can
be de�ned in  using a monadic second�order formula
 An example of such
a second�order de�nition is 
X�'�X	 � x � X	� where ' is the formula

y�X�z�z � y		 �


y
z�y � z � �u�y � u � u � z	 � �y � X � z �� X		�

��The least element is in X� and from an element and its immediate suc�
cessor exactly one is in X
�	 The formula ' is satis�ed by the set of even
natural numbers only
 As a consequence�  j� '�n holds i� n is even�

��	 If  j� 
X�' � x � X	�n � then in particular we have that
 j� �' � x � X	�n�E � where E is the set of even natural numbers

However� E satis�es the left�hand side ' of this implication
 Therefore� E
also satis�es the right�hand side� i
e
� n � E� n is even


��	 If n is even and A � N is a set satisfying '� then obviously A � E

Indeed� the �rst conjunct of ' says that � � A� the second conjunct has
the e�ect that � �� A� next� that � � A� � �� A� etc
 Therefore� n � A

�
 The orderings  and  � � cannot be distinguished by means of a �rst�
order sentence� they are elementarily equivalent
 However� consider the
following monadic second�order sentence�


X�
x�
y � x�y � X	 � x � X	 � 
x�x � X	 �

��
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This sentence �the Principle of Strong Induction	 expresses a fundamental
property of � but is false in  � �
 �Consider the initial of type  of this
model as value for X
	
�
 The elementary equivalent orderings �Q ��	 and �R ��	 are distinguished
by the monadic second�order Principle of the Least Upper Bound ��every
non�empty set of reals that has an upper bound also has a least upper
bound�	�


X�x�x � X	 � y
x�X�x � y	 �

y�
x�X�x � y	 � 
y��
x�X�x � y�	 � y � y�		 �

�By the way� this sentence also serves to distinguish  from  � �
	

Exercises

�� Look up the formula ' in Example �
��
�
 Verify that the formula
X�' � x � X	 also de�nes the set of even natural numbers in 


�� Cf
 Exercise ��
 '�x� y	 is the monadic second�order formula

X�
z�z � X � �r�x� z	 � z��z� � X � r�z�� z				 � y � X	�

�
 Show that ' de�nes the usual ordering � of N in the successor struc�
ture suc 


�
 Show that the usual ordering of Z is not de�ned by ' in �suc


�
 Produce a monadic second�order formula that de�nes the ordering in
both structures suc and �suc
 �Can you �nd one that is #�

��mon	
and one that is $�

��mon	�	

�� Formulate and prove a counterpart of Lemma �
� �page ��	 for monadic
second�order languages


A graph is a model �G�S	� where S is a binary relation on G that is
symmetric
 A graph is called connected if for all a� b � G there is a �nite
sequence a� � a� � � � � an � b such that for all i� � � i � n� aiSai��


The notion of connectedness is #�
��mon	 on the class of graphs� G is

connected i� for all a� b � G and all U � G� if a � U and U is closed
under neighbourship� then b � U 
 However� the connected graph nb is
elementarily equivalent to the graph � � �	nb� which is not connected

Thus� the �rst claim of the next proposition


���� Proposition� Connectedness is not �rst�order de�nable on the class
of graphs� In fact� it is not $�

��mon	 on the class of �nite graphs�

�� Show that no �rst�order sentence 	 exists such that for all �nite graphs
A� A j� 	 i� A is connected

Hint� Use models of the form Cm and Cm � Cm� respectively �cf
 Exer�
cise ��	


Connectedness is $�
� on �nite graphs� S is connected i� there exists a

��
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strict partial ordering � with a least element� such that if y is an immediate
��successor of x� then xRy


By K�onig�s Lemma B
� �page ���	� a �nitely branching tree is �nite i�
all of its branches are �nite
 Thus� �niteness is #�

��mon	 on the class of
�nitely branching trees
 However�

���	 Proposition� Finiteness is not $�
��mon	 on the class of binary trees�

a

Finally� here is an example of a partition argument


���
 Proposition� Assume that L � f�g� Every L�sentence with a well�
ordered model has a well�ordered model of type � ��

Proof� Suppose that � � �A��	 is a well�ordering
 It su!ces to show that
for every n� � has a well�ordered n�equivalent of type � �
 Fix n
 By the
Downward L�owenheim�Skolem Theorem� there is no loss of generality in
assuming that A is countable
 Apply induction with respect to the order
type of �


If � has only one element� then � itself is the required n�equivalent

�For� � � �
	

Next� suppose that � � � � �
 Then by induction hypothesis� � has
such an n equivalent ��� and �by Lemma �
��
�	 �� �� �n ��� � � is the
required equivalent
 �Note that if � � �� then � � � � �
	

Finally� assume that � has a limit type
 Let a� � � be the least element
of �
 Since � is countable� there is a countable sequence a� � a� � a� � � � �
that is unbounded in �
 For a� b � �� a � b� the notation �a� b	 is used for
the submodel of � with universe fx � � j a � x � bg
 For i � j� let
F �i� j	 be the set of rank�n sentences true in �ai� aj	
 By Lemma �
���
you may think of F as taking �nitely many values only
 By Ramsey�s
Theorem B
�� there exist k� � k� � k� � � � � such that all F �ki� kj	 are the
same
 By induction hypothesis� there is a well�ordering � � � that is an
n�equivalent of every �aki � akj 	
 Again by induction hypothesis� let � be a
well�ordering of type � � that is n�equivalent with �a�� ak�	
 Then �by
Lemma �
��
�	

� � � �  �n �a�� ak�	 �
X

i

�aki � aki��	 � ��

hence � � � �  is the required n�equivalent of �
 �Note that if �� � � ��
then � � � �  � �
	 a

Let ( be the well�ordering of all ordinals


���� Corollary� ( � ��

Proof� See Exercise ��
 a

��
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Exercises

�� Show that the class of models with an even number of elements is
&�

��mon	 de�nable in the class of �nite linear orderings� but not �rst�order
de�nable


�� Show that every $�
��mon	 sentence true of  is also true of  � �


Nevertheless� produce a set X of natural numbers such that no expansion
of  � � is elementarily equivalent to ��X	


�� Is every $�
��mon	 sentence true of � true of � as well�

�� Show that if � � � � �� then � �� �

Hint� Use the Cantor Normal Form from Section B
�


�	 Prove Corollary �
��

Hint� Show that ( �n � by induction with respect to n
 Use Lemma �
��
and the fact that �nal segments of ( ��	 have type ( ��	


�
 � A linear ordering is scattered if it does not embed �
 Let $ be the
least set of order types such that �i	 �� � � $� �ii	 �� � � $ � �� � � $�
�iii	 � � $ � � �� � �� � $
 Show that every ordering in $ is scattered�
and that every sentence with a scattered model has a model in $

Hint� Use the technique of the proof of Proposition �
��
 Suppose that
a certain �rst�order sentence of quanti�er rank q is true in the scattered
model �A��	
 Without loss of generality� assume that A is countable

Identify every submodel of �A��	 with its universe
 For a� c � A� write
a 	 c in case that �i	 a � c and for all a�� c� such that a � a� � c� � c�

�a�� c�	 �� fb � A j a� � b � c�g

has a q�equivalent in $� or �ii	 c � a and a similar statement holds� or �iii	
a � c
 Then 	 is an equivalence
 Clearly� if a 	 c and a � b � c� then
a 	 b
 Thus� A is an ordered sum of equivalence classes

P
i�I Ci� where I

is a certain linear ordering

Show that the order type of I is dense
 Since �A��	 is scattered� con�

clude that I is a singleton i
e
� A is the only equivalence class

Finally� show that A itself has a q�equivalent in $
 If A has no greatest

element� choose a� � a� � a� � � � � co�nal in A and apply Ramsey�s
theorem to see that fc � A j a� � cg has a q�equivalent in $
 Do this also
for fc � A j c � a�g� by choosing� if necessary� b� � a� � b� � b� � � � �
co�initial in A


����� �Exercises about� Theories

As always� )sentence� means )�rst�order sentence�� unless the contrary is
explicitly stated


�
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���� Theories� A theory is just a set of sentences� Theories are equivalent
is they have the same models� A theory is complete if all its models are
pairwise equivalent�

�� Show that theories are equivalent i� they have the same logical conse�
quences� �De�nition ���	 page 
��

Because of this result	 a theory � is usually identi�ed with the set
f� j � j �g of sentences that logically follow from it� In that way	 for
a theory � and a sentence � the expression �� j �� becomes tantamount
with �� � ���

���� Examples�

�� The empty set of sentences � equivalently� the set of logically valid
sentences � is the smallest theory� Every model is a model of this
theory�

�� There are also theories without models	 for instance	 f�x�x  xg�
These theories are trivially complete	 and equivalent to the theory of
all sentences� the largest theory�

�� If A is a model	 then the theory of A	 which is the set of all sentences
true in A	 a complete theory� Notation� Th�A��

�� If K is a class of models	 then Th�K� �
T
A�K Th�A�	 the theory of

K	 is a theory�

�� Show that for every two models A and B	 the following conditions are
equivalent�

�� A � B	

�� Th�A�  Th�B�	

�� Th�A� � Th�B�	

�� B j Th�A��

Hint� For the implication �� �	 note that if � �� Th�A�	 then �� � Th�A��

�� Assume that � is a theory� Show that the following conditions are
equivalent�

�� � has a model	

�� not every sentence follows logically from �	

�� there is no sentence � such that both � j � and � j ���

Show that the following conditions are equivalent�

�� There is a model the theory of which is equivalent with �	

�� � has a model and is complete	

�� for every sentence � it holds that either � j �	 or � j ��	

�� � has a model	 and every theory containing � that has a model is
equivalent with ��

��

For personal use



�� � Basic Model Theory

Dense linear orderings without endpoints� LO is the �rst�order the�
ory �in the vocabulary f�g� of linear orderings� �This needs only four
sentences�� DO is the �rst�order theory of dense linear orderings without
endpoints� �Three more sentences��

Prominent models of DO are � and ��

�	 Give some other models of DO � Give in�nitely many models of DO �

�� Show that for every sentence �� � j � i� DO j ��

���	 Axiomatizations� The set of sentences � axiomatizes the model A
�or its theory Th�A�� if for every sentence �� A j � i� � j �� equivalently�
if � and Th�A� are equivalent�

The set of sentences � axiomatizes the class of models K �or its corre�
sponding theory Th�K�� if for every sentence �� � is true in every model
in K i� � j �� equivalently� if � and Th�K� are equivalent�

Thus	 Exercise �� shows that � is axiomatized by DO � furthermore	 	
axiomatizes the class of all models �relative a given vocabulary�	 and the
set of all sentences axiomatizes the empty class of models�

�� Show that no �nite axiomatization is possible for the linear ordering
� � ���
Hint� Suppose that � is the conjunction of all sentences in such a hypothet�
ical �nite axiomatization� Let � have quanti�er rank n and let m � �n�
Then �Lemma ������	 page �
� m� � is a model of �� However	 the sen�
tence that expresses the existence of at least m elements is not true in this
model	 whereas it is true in � � ���

Finite linear orderings� FLO is the set of �rst�order sentences extending
LO with sentences expressing that� there is a �rst element	 a last element	
and every element that has a successor �predecessor� also has an immediate
successor �immediate predecessor��

���� Lemma� Every in�nite model of FLO has an order type of the form
� � � 
 �� ���

Proof� Assume that A  �A	�� is an in�nite model of FLO � A has an
initial of order type �� there is a �rst element �� this is not the only
element	 so it has an immediate successor �	 which in turn has an immediate
successor �	 etc� Similarly	 A has a tail �� 
 �� 
 �� 
 
 
 
 of order type
���

If this all of A	 then A has order type � � � 
 � � �� where �  �� If
not	 there exists some a � A di�erent from these elements� So

� � � � � � 
 
 
 � a � 
 
 
 � � � �� � ���

Since a has successors such as ��	 it has an immediate successor a � ��
a � � in turn has an immediate successor a � � etc�� similarly	 a has an

��
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immediate predecessor a�� etc� This series of successors and predecessors
form an interval � � � 	 a� �	 a� �	 a	 a� �	 a� �	 � � � of type ��

The collection of these intervals of type � itself is ordered in some type
�� It follows that A has type � � � 
 �� ��� a

�
 Show that FLO axiomatizes the class of �nite linear orderings�

�� Show that FLO �fMm j m � N
�g �where Mm is a sentence expressing

the existence of at least m elements� axiomatizes the linear ordering �����

�� Suppose that � has arbitrarily large	 �nite linear orderings as models�
I�e�� for every n � N there exists m � N such that n  m and such that m
is a model of �� Show that � � �� also is a model of ��

�� Give a ��
��mon��sentence � with the property that a linear ordering

satis�es FLO � f�g i� it is �nite�

�� Construct a �nite axiomatisation for �� Do this in such a way that
every model of your axioms in which the monadic second�order sentence
from Example ���
�� holds	 is isomorphic with ��
Hint� Use the method of Lemma ���� and Exercise �
�

�� Produce a �nite axiomatization for �� Give a monadic second�order
sentence that is true of � such that every model of your axioms in which
this sentence holds true is actually isomorphic with ��

�� Show that the following two conditions are equivalent�

�� A has a �nite axiomatization	

�� there exists a natural number n such that for every model B� B �n

A � B � A�

�	 � Show that if the linear orderings � and  are �nitely axiomatizable	
then so are ��	 � � �	 �� � and �� �� � Give an example showing that
��  is not necessarily �nitely axiomatizable�

Successor relations� The in�nite set SUCC consists of the following
sentences�

�x�y�r�x	 y� � �z�r�x	 z�� z  y��

and
�x�y�r�y	 x� � �z�r�z	 x�� z  y��	

as well as

��� ��x�r�x�	 x��

��� ��x��x��r�x�	 x�� � r�x�	 x���

��� ��x��x��x��r�x�	 x�� � r�x�	 x�� � r�x�	 x���

��� � � �

�� Show that every model of SUCC is of the form �� 
��suc for a suitable
��

��
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Categoricity� A theory is categorical in a cardinal if each of its models
of that cardinal are pairwise isomorphic�

Examples� DO is categorical in �� �Corollary ����� but in no uncountable
cardinal� SUCC is categorical in every uncountable cardinal but not in ���

�� Show that SUCC has in�nitely many non�isomorphic countable models�

�
 � Show that SUCC is categorical in every uncountable cardinal�

�� Show that every sentence true of �suc also has a �nite model� �In
particular� �suc is not �nitely axiomatizable��

�Los� conjecture� If a theory in a countable vocabulary is categorical in one
uncountable cardinal� then it is categorical in every uncountable cardinal�

The following deep	 thirty year old result forms the germ of the �eld
known as classi�cation theory�

Morley�s Theorem� The �Lo�s� conjecture is correct�

�� Produce a theory that has models of every in�nite cardinality which is
categorical in every in�nite cardinal�

���� �Los�Vaught test� Every theory in a countable vocabulary that is
categorical in some in�nite cardinal and has some in�nite model is com�
plete�

�� Prove the �Los�Vaught test�
Hint� Use the Downward and Upward L�owenheim�Skolem�Tarski Theo�
rems ���� and �����

��� The In�nite Game

���
 De�nition� In the in�nite Ehrenfeucht game E�A	B	�� on A and
B	 there is no bound on the number of moves� Di and Sy alternate in making
an ��sequence of moves each	 and win and loss are determined �almost� as
before� Sy wins if at each �nite stage of the play	 the moves made so far
constitute a local isomorphism between the models�

A and B are partially isomorphic if Sy has a winning strategy for
E�A	B	���

���� Examples�

�� � and � are partially isomorphic� Better still�

�� Every two dense linear orderings without endpoints are partially iso�
morphic�

�� No well�ordering is partially isomorphic with a non�well�ordering�
�Let Di play an in�nite descending sequence in the non�well�ordering�
Note that this argument also works for the ��pebble game��

�� Well�orderings of di�erent type are not partially isomorphic� �To
begin with	 Di plays the element a of the larger one such that a� has

��

For personal use



Ehrenfeucht�Fra��ss�e Games � ��

the type of the smaller one� Subsequently	 Di can always counter a
move b of Sy with a move c such that c� and b� have the same type�
Eventually	 she must out�play Sy� For this argument	 again � pebbles
su�ce��

���� Proposition� In every in�nite Ehrenfeucht game� exactly one of the
players has a winning strategy�

Proof� Note that if Di wins a play	 this fact becomes apparent after �nitely
many moves already� the game is open� See Section B��� a

The following important theorem has an extremely simple proof� �Com�
pare Proposition �����

���� Theorem� Countable partially isomorphic models are isomorphic�

Proof� Let Di enumerate all elements of the two models and let Sy use his
winning strategy� The resulting play constitutes the isomorphism we are
looking for� a

Cantor�s characterization of the ordering � of the rationals is an imme�
diate corollary� The proof of Theorem ���� is an abstract version of the
usual back�and�forth proof for the Cantor result�

���� Corollary� The linear ordering � is 	up to isomorphism
 the only
countable dense linear ordering without endpoints� a

Of course	 the game Eh has an in�nite version as well	 with its cor�
responding notion of partial homomorphism� Theorem ���� now modi�es
to�

��
� Proposition� If the countable models A and B are partially homo�
morphic� then there is a homomorphism from A onto B� a

Similarly�

��
� Proposition� If Sy has a winning strategy in the in�nite Er�pos�
game on the countable L � frg�models A and B� then A j L � B j L and
the isomorphism is an r�homomorphism�

To explain the logical meaning of the in�nite game	 you need the notion
of an in�nitary formula� This is obtained by modifying the de�nition of
�rst�order formula	 admitting conjunctions and disjunctions of arbitrarily
many formulas� I�e�	 if L is a vocabulary	 the class L�� of in�nitary L�
formulas is obtained by adding to De�nition ��� �page �� the clause

�� if � is an arbitrary set of formulas	 then
V
� and

W
� are formulas�

The semantics of such in�nitary formulas is rather obvious� the formulaV
� �
W
�� is satis�ed by the assignment � in the model A i� every �some�

� � � is� �This implies that
V
	 is always satis�ed whereas

W
	 never is	

and that
V
f�g and

W
f�g are logically equivalent with ���

��
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Equivalence with respect to in�nitary sentences is denoted by ����
�In this notation	 the � signi�es that arbitrary con� and disjunctions are
admitted� the � indicates that quanti�cation still is restricted to �nitely
many variables at the same time��

The following proposition explains that the in�nite game is not just the
limit of the �nite games�

Recall the monotone operator

��X� 

fh j �a�A �b�B �h � f�a	 b�g � X� � �b�B �a�A �h � f�a	 b�g � X�g

de�ned by ��� on page ��� The �nite stages ��n of the downward hierar�
chy of this operator were relevant to the �nite game� Let W be the set of
relations f�a�	 b��	 � � � 	 �an	 bn�g such that Sy has a winning strategy for the
in�nite game on �A	 a�	 � � � 	 an� and �B	 b�	 � � � 	 bn�� Let EQ be the set of re�
lations f�a�	 b��	 � � � 	 �an	 bn�g such that �A	 a�	 � � � 	 an� ��� �B	 b�	 � � � 	 bn��

Part of the second equality of the following result says that Sy has a
winning strategy for the in�nite game between two models i� they cannot
be distinguished using in�nitary sentences�

��
	 Proposition� �� W  EQ�

Proof� In view of Lemma B��	 it su�ces to show that both W and EQ are
co�inductive post��xed points� Those interested only in the equality W 
EQ �the in�nitary analogue of Theorem ����� are referred to Exercise ���

It is easy to see that W is a post��xed point� Co�inductiveness� assume
that X is a set of local isomorphisms such that X � ��X�� Suppose that
h � X� To see that h �W 	 the strategy of Sy is taking care that for every
position f�a�	 b��	 � � � 	 �an	 bn�g visited in the playing of the game	 he has
h � f�a�	 b��	 � � � 	 �an	 bn�g � X� If he succeeds in doing so	 he wins� That
he can succeed follows from X being a post��xed point�

EQ is also co�inductive� For	 assume that X � ��X�� It follows by
induction on sentences �keeping h variable� that every

h � f�a�	 b��	 � � � 	 �an	 bn�g � X

satis�es
�A	 a�	 � � � 	 an� ��� �B	 b�	 � � � 	 bn��

That EQ is a post��xed point can be shown using the method of proof
of Theorem ����� Note that you do not need Lemma ����	 since in�nite
conjunctions are allowed� a

Exercises

�� Let C be a �countably� in�nite set of constant symbols� Show that the
in�nitary sentence �x

W
c�C x  c does not have a �rst�order equivalent�

Hint� Use Exercise � �

��
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�� Suppose that A  �A	�� is a well�ordering� Recursively de�ne	 for
a � A	 the in�nitary formula �a as �y�y � x �

W
b�a �b�y��� �If you

encounter problems with substituting into an in�nitary formula	 you might
use �y�y � x � �x�y  x �

W
b�a �b��� Thus	 every �a uses two variables

x and y� exactly one occurrence of x is free�� Let �A be the in�nitary
sentence �x

W
a�A �a �

V
a�A �x�a�

Show the following�

�� �A	�� j �a!b" i� b  a	

�� a linear ordering satis�es �A i� it is an isomorph of A�

�� Give a direct proof that W  EQ�
Sketch� ��� By induction with respect to the in�nitary sentence � show
that if Sy�A	B	��	 then A j � � B j �� For atomic sentences	 this
follows from the fact that Sy�A	B	�� implies Sy�A	B	 ��� The induction
steps for the connectives are completely trivial� Finally	 assume that A j
�x��x�� Let a � A be such that �A	 a� j ��c�	 where the new constant
symbol c is interpreted as a in the expansion �A	 a�� Consider a as a �rst
move of Di in the in�nite game� Let an answer b � B be determined by
some winning strategy� Since the game is in�nite	 obviously we have that
Sy��A	 a�	 �B	 b�	��� Therefore	 by induction hypothesis applied to ��c�	
we have that �B	 b� j ��c�� It follows that B j �x��

��� Assume that A and B have the same true in�nitary sentences� The
strategy of Sy consists in playing in such a way that after his n�th move a
position f�a�	 b��	 � � � 	 �an	 bn�g is obtained for which

�A	 a�	 � � � 	 an� ��� �B	 b�	 � � � 	 bn�����

If Sy can take care of this	 he obviously wins� So	 let us check that this
is indeed possible� Suppose that Sy has succeeded in maintaining this
condition up to and including the n�th pair of moves as in ���� Suppose that
Di plays an�� � A� Consider the set � � f� j �A	 a�	 � � � 	 an� j �!an��"g
of formulas satis�ed by this move� Then

�A	 a�	 � � � 	 an� j
�

�!an��"

and hence
�A	 a�	 � � � 	 an� j �xn��

�
��

By assumption	 �B	 a�	 � � � 	 bn� j �xn��
V
�� Let Sy choose bn�� � B

satisfying
V
� in the expanded B� Then obviously	

�A	 a�	 � � � 	 an��� ��� �B	 b�	 � � � 	 bn���	

as desired�

�	 De�ne the quanti�er rank of in�nitary formulas� Connect ��� to quan�
ti�er rank�� equivalence� Can you concoct a matching notion of ��game#

When A  B	 the closure ordinal of � is the Scott rank of A�

��
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�� Show that the Scott rank of the linear ordering � equals �� Give an
example of a model with Scott rank 
 ��

��
� Characteristics� Let A be a model� For every �nite sequence �a 
�a�	 � � � 	 an� from A and every ordinal �	 de�ne the in�nitary quanti�er
rank�� formula !!�a""� in the free variables x�	 � � � 	 xn	 the ��characteristic of
�a in A	 as follows�

!!�a""� is the conjunction of all formulas in x�	 � � � 	 xn satis�
�ed by �a in A that are either atomic or negations of
atomic formulas�

!!�a""� 
�

���

!!�a""�	when � is a limit�

!!�a""��� 
�

b�A

�xn��!!�a	 b""
� � �xn��

�

b�A

!!�a	 b""��

�� Show the following�

�� for all �	 A j !!�a""�!�a"	

�� B j !!�a""�!�b" i� �A	�a� and �B	�b� satisfy the same quanti�er rank  �

formulas	 i� !!�b""�  !!�a""��

If � is the Scott rank of A	 then !!� �""� �
V
�a ��x�!!�a""

� � !!�a""���� is the
Scott sentence of A�

The language L��� is the restriction of L�� that allows conjunctions
and disjunctions over countable sets of formulas only� Note that the Scott
sentence of a countable model belongs to this language�

�
 Show that the Scott sentence of a model axiomatizes its in�nitary the�
ory�

Bibliographic Remarks

Ehrenfeucht�s game is from Ehrenfeucht �� �	 Fra�$ss%e�s formulation is from
Fra�$ss%e ��
��

Proposition ���� and its corollary are due to Immerman and Kozen
�����

Theorem ���� is due to Fagin ����� Immerman �see Immerman ����a	
����b	 ����� has made a detailed study of the relations between complexity
levels and de�nability in logical formalisms of several type�

Proposition ��� is from Fagin ���
� Also	 see Gaifman and Vardi ���
	
Fagin et al� ���� and Ajtai and Fagin ����� For the development of �nite�
model theory	 see Fagin ����� The fact that connectedness is ��

� on �nite
graphs was noted by Fagin� He also showed that any example of a property
of �nite models that is ��

� but not ��
� would entail that P � NP	 and if

such a property exists at all	 then ��colorability �which is NP�complete�
must be an example�

Morley�s Theorem ��� 
� is the starting point for what is known as

��
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classification theory .
The result in Exercise 91 (Karp’s Theorem) is from Karp 1965. Much

more on infinitary logic is in Keisler 1971 and Barwise 1975.
Rosenstein 1982 contains everything you wanted to know about linear

orderings.
See Ebbinghaus and Flum 1995 for a monograph on finite models and

their theory.
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Constructing Models

In Chapters � and �	 several relations between models were introduced by
means of which they could be compared� In the present chapter you will be
introduced to several ways of constructing models� The basic instrument
of �rst�order model theory is the Compactness Theorem of Section ����
This tool is essential for most applications of the diagram method of Sec�
tion ���� The ultraproducts of Section ��� look like magic	 although their
use in model theory is restricted� A re�nement of the compactness proof
produces the Omitting Types Theorem of Section ���� Compactness also
is responsible for the saturated models of Section ��
 that are applied in
Section ����

��� Compactness

The Compactness Theorem is one of the main tools in constructing models
for sets of �rst�order sentences�

A set of sentences is satis�able if it has a model� it is �nitely satis�able
if all its �nite subsets are satis�able�

��� Compactness Theorem �version ��� Every �nitely satis�able set of
�rst�order sentences is satis�able�

Second�order logic is incompact� It is easy to write down a ��
��mon��

sentence � whose only model �up to isomorphism� is the linear ordering
�� �See Exercise ���� Let c be an individual constant and consider the set
f�g � f�n j n � N g	 where �n expresses that c has at least n predecessors�
This set is �nitely satis�able but not satis�able� Also	 in�nitary logic is
incompact� consider the set f

W
n ��ng � f�n j n � N g�

Here are two variations on the Compactness Theorem that are often
needed�

Compactness Theorem �version ��� If � j �� then for some �nite
& � �� & j ��

Proof� If � does not logically follow from some �nite & � �	 then the set

��

��
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� � f��g is �nitely satis�able and therefore	 by Compactness	 satis�able�
So � �j �� a

A set � of formulas is satis�able if there are a model and an assignment
that satis�es every formula from � in the model� A set of formulas is �nitely
satis�able if each of its �nite subsets is satis�able�

The following result says that Compactness also applies to sets of for�
mulas�

Compactness Theorem �version ��� Every �nitely satis�able set of
�rst�order formulas is satis�able�

Proof� Let � be a �nitely satis�able set of L�formulas� The problem is
reduced to Compactness for sentences	 Theorem ���� Choose an injection
h of the set of variables into some set C of new constant symbols� In the
formulas of �	 replace every occurrence of a free variable x by its h�image�
This results in a �nitely satis�able set �� of L�C�sentences� By Compact�
ness	 �� has a model� But then the assignment that maps a variable x to
the interpretation of h�x� in this model satis�es the original formulas of
�� a

The remaining part of this section deals with proving the Compactness
Theorem�

A set of sentences is maximally �nitely satis�able if it is �nitely satis��
able but has no proper extension in the same vocabulary that enjoys this
property�

The germ of �rst�order Compactness is propositional Compactness� and
this is more or less the content of the following lemma�

��	 Lemma� Every �nitely satis�able set of sentences can be extended to
a maximal �nitely satis�able set of sentences�

Proof� Given the properties of the required object	 it appears sensible to
apply Zorn�s Lemma �see Section B� � to the collection of �nitely satis��
able extensions of the given set	 partially ordered by the inclusion relation�
Indeed	 the union of a chain of such extensions will again be �nitely satis�
�able� a

The interest in maximal �nite satis�ability derives from the following
lemma�

��� Lemma� Assume that � is a maximal �nitely satis�able set of sen�
tences� Then for all sentences �� � and sets of sentences &�

�� if & � � is �nite and & j �� then � � ��

�� � � � � � i� �	� � ��

�� �� � � i� � �� ��

Proof� �� Assume that the sentence � logically follows from the �nite

��
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& � �� To see that � � �	 by maximality it su�ces to show that � � f�g
is �nitely satis�able� So let � � � be �nite� it must be shown that ��f�g
is satis�able� Now & � � � � is �nite and hence has a model A� Since
& j �	 A is a model of � as well� Thus	 � � f�g is satis�able�
�� Immediate from ��
�� Exercise � � a

Recall that �De�nition ���� the vocabulary L� simply extends L if L � L�

and L� � L consists of constant symbols only�

��� Lemma� Every �nitely satis�able set � of L�sentences can be ex�
tended to a �nitely satis�able set �� of sentences in a vocabulary L� simply
extending L such that

if �x��x� � �� then for some individual constant c � L�� ��c� � ���

Proof� Add a new constant c	 for each existential L�sentence �x��x�� c	
is called a witness for �� De�ne �� � � � f��c	� j �x��x� � �g� See
Exercise �� for details� a

The interest now is a property that strengthens that of Lemma ����
A set of sentences �� has the Henkin property if	 for every existential
sentence �x��x� in ��	 there exists a constant symbol c such that ��c� �
��� Note the di�erence between the Henkin property and the condition
from Lemma ����

Alternating the two ways of extending a �nitely satis�able set countably
many times	 you will eventually obtain a set that is both �nitely satis�able
and Henkin�

��
 Corollary� Let L be a vocabulary� There exists a vocabulary L� � L

simply extending L such that every �nitely satis�able set of L�sentences
can be extended to a maximal �nitely satis�able set of L��sentences that
has the Henkin property�

Proof� Left as Exercise ��� a

Now	 Compactness follows once you�ve proved�

��� Lemma� Every maximal �nitely satis�able set with the Henkin prop�
erty has a model�

Proof� Let � be maximal �nitely satis�able and Henkin� Here is the basic
Henkin construction of the canonical model A for ��

De�ne the relation � on the set of variable�free terms by

s � t �� �s  t� � ��

From Lemma ����� it follows that this is an equivalence� The universe A of
the required model is the set of equivalence classes of variable�free terms
jtj � fs j s � tg� This universe is provided with structure interpreting the
non�logical symbols of the vocabulary of ��

��
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For every individual constant c	 let its interpretation be cA � jcj�
If f is an n�ary function symbol	 de�ne its interpretation fA � An � A

by fA�jt�j	 � � � 	 jtnj� � jf�t�	 � � � 	 tn�j� Note that this de�nition does not de�
pend on the representatives t�	 � � � 	 tn of the equivalence classes jt�j	 � � � 	 jtnj�
�This again uses Lemma ������� You can now evaluate terms in the struc�
ture A de�ned so far�

Claim � For every variable�free term t� tA  jtj�
Proof� This is Exercise ���

Finally	 relation symbols are interpreted as follows� For n�ary r	 de�ne
its interpretation rA by rA�jt�j	 � � � 	 jtnj� �� r�t�	 � � � 	 tn� � �� Again	 this
de�nition is representative independent by Lemma ������ The required
result follows from the next

Claim �� For every sentence �� A j � � � � ��
Proof� Induction with respect to the number of logical symbols in �� For
atomic �	 the result is immediate from the way relations are de�ned and
from Claim �� The induction proceeds smoothly through the connectives�
this is what Lemma �����'� is good for� Here follows a quanti�er step� If
A j �x��x�	 then for some a � A we have A j �!a"� For some variable
free term t	 a  jtj  tA� By Exercise �	 A j ��t�� Since ��t� contains
one logical symbol less than �x�	 the induction hypothesis applies	 and
you obtain that ��t� � �� However �Exercise  �	 ��t� j �x��x�� and so
�Lemma ������ �x� � �� Conversely	 assume that �x��x� � �� Then �since
� is Henkin� for some c we have ��c� � � as well� By induction hypothesis	
A j ��c�� Thus	 A j �x�� a

Exercises

�� Prove Lemma ������
Hint� If � �� � then by maximality there is a �nite & � � such that &�f�g
is not satis�able� Apply part ��

�� Show that the set �� de�ned in the proof of Lemma ��� is �nitely
satis�able�

�� Prove Corollary ��
�
Hint� Construct an ascending chain of sets of sentences that starts with
the given set by alternating Lemma ��� and ���� Check that the union of
this chain has the required properties�

�� Verify the two claims in the proof of Lemma �� �
Hint� Use term induction for the �rst one�

��� Prove that	 in the model A constructed in the proof of Lemma �� 	
A  fjcj j c an individual constantg� I�e�	 every equivalence class contains
a constant symbol� or equivalently� every element is the interpretation of
a constant symbol�

��
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��� Assume that every model of � satis�es a sentence from �� Show that
a �nite set & � � exists such that every model of � satis�es a sentence
from &�

��	 Assume that � and � have the same models� Show that a �nite & � �
exists such that � and & have the same models�

��� Suppose that the sets of sentences � and � are such that every model
is either a model of � or a model of �� Show that a �nite & � � exists
that has exactly the same models as ��

��� Suppose that � and � are sets of sentences and � is closed under �
and �� The following are equivalent�

�� Any two models of � satisfying the same sentences from � are equiv�
alent	

�� for every sentence � there exists � � � such that � j ��� ���

Hint� For �� �	 put & � f� � � j � j �� �g and show that ��& j ��

��
 Suppose that the sentence � and the set of sentences � are such that
for all models A and B � if A and B satisfy the same sentences from � and
A j �	 then B j �� Show� � is equivalent with a boolean combination of
sentences from � �i�e�	 a sentence that can be obtained from elements of �
using �	 � and ���
Hint� Without loss of generality you may assume that � is closed under
negations and disjunctions� Try & � f� � � j � j �g�

��� Let L be any vocabulary� Show� there is no set E of L�sentences such
that for every L�model A� A j E i� A has a �nite universe�
Hint� Construct	 for n � �	 a sentence Mn such that A j Mn i� A

has at least n elements� Consider	 for such a hypothetical set E	 E �
fM�	M�	M�	 � � �g�

��� �A simple form of Herbrand�s Theorem�� Suppose that �  ��x� is a
quanti�er�free L�formula in one free variable x	 where L contains at least
one constant symbol� Show that the following conditions are equivalent�

�� j �x�	

�� there are �nitely many variable�free terms t�	 � � � 	 tn such that

j ��t�� � 
 
 
 � ��tn��

��� Diagrams

Applications of Compactness often involve diagrams� The diagram of a
model is de�ned via its complete simple expansion� For the notion of a
simple expansion	 see De�nition ���	 page ���

��� Diagrams� Let A be an L�model� Consider the elements of A as new
individual constants� Adding them to L produces the vocabulary LA 

��
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L�A that is a simple expansion of L� The complete 	simple
 expansion of
A is the simple expansion ofA into an LA�model that has the element a � A

itself as the interpretation of the new constant symbol a� The notation for
the complete expansion is �A	 a�a�A�

The elementary diagram ELDIAG�A� of the L�model A is the set of all
LA�sentences that are true in �A	 a�a�A� �Using the notation introduced by
������ we have ELDIAG�A�  Th��A	 a�a�A���

The diagram DIAG�A� of the L�model A is the part of ELDIAG�A�
that contains atomic sentences and negations of atomic sentences�

Thus	 ELDIAG�A� is much bigger than DIAG�A��
Note that every LA�sentence can be written in the form ��a�	 � � � 	 an�

where �  ��x�	 � � � 	 xn� is an L�formula with x�	 � � � 	 xn free and a�	 � � � 	 an
are new individual constants from A �Notation ���	 page 
��

Of course	 the new individual constants from LA that are elements
a � A will be interpreted in any LA�model	 not only in �A	 a�a�A� An
arbitrary LA�model B� can always be viewed as a simple expansion of its
L�reduct B � B� j L that interprets a new constant symbol a � A as
h�a� � B	 where h � A � B is some function from A into B� Then B�

usually is written as �B	 h�a��a�A�
The following lemma tells you in model theoretic terms when h is an

�elementary� embedding	 connecting it with the notion of �elementary�
diagram�

��� Lemma� Suppose that A and B are L�models and that h � A � B�
The following conditions are equivalent�

�� �B	 h�a��a�A is a model of DIAG�A� 	respectively� of ELDIAG�A�
�

�� h is an embedding 	respectively� elementary embedding
 of A in B�

Proof� See Exercise ���� a

Lemma ��� has the following trivial	 but extremely useful consequences�

��� Corollary� Let A be an L�model� The L�reduct of a model of
DIAG�A� 	ELDIAG�A�
 is 	up to isomorphism
 an extension 	elemen�
tary extension
 of A�

A typical application of Corollary ��� is the following result�

���� Upward L�owenheim�Skolem�Tarski Theorem� If A is an in�
�nite L�model and jAj� jLj  �� then A has an elementary extension of
cardinality ��

Proof� Choose a set C of new individual constants of power � that is disjoint
from L �A� Consider the set of sentences

� � ELDIAG�A� � f�c  c� j c	 c� � C � c � c�g�

��
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Suppose that � has a model �B	 h�a�	 c�a�A
c�C � By Corollary ���	 B is
�up to isomorphism� an elementary extension of A that clearly must have
cardinality � �� If its cardinality happens to be 
 �	 then by the Down�
ward L�owenheim�Skolem�Tarski Theorem ����	 choose C � B of cardinality
exactly � such that A � C� It follows �by �����	 page ��� that A � C�

So it su�ces to show that � has a model� This follows from Compactness
once you can show that every �nite subset has a model� Therefore	 suppose
that �� � � is �nite� Say	 ��  � �&	 where � � ELDIAG�A� and

& � f�c  c� j c	 c� � C � c � c�g�

Now	 � does have a model� �A	 a�a�A� This model can be expanded into a
model of &� you just have to �nd di�erent interpretations for the �nitely
many constant symbols occurring in the inequalities of &� And this is
unproblematic as	 by assumption	 A is in�nite� a

Here is a simple but nice application of the above material�

���� Universal Formulas� A universal formula is one of the form
�x� 
 
 
 �xn� where � is quanti�er�free� An existential formula is one of
the form �x� 
 
 
 �xn� where	 again	 � is quanti�er�free�

���	 Preservation under Submodels� The formula � is preserved un�
der submodels if for all B	 A � B and a�	 � � � 	 an � A� if B j �!a�	 � � � 	 an"	
then A j �!a�	 � � � 	 an"�

���� Lemma� Every universal formula is preserved under submodels�

Proof� This is Exercise ���� a

Part � of the next result says that the converse of this is almost true�

���� Proposition�

�� Every model of the universal consequences of a theory can be extended
to a model of that theory�

�� every formula that is preserved under submodels has a logical equiva�
lent that is universal�

Proof� �� Suppose that the model A satis�es every universal consequence of
the theory �� By Corollary ���	 a model B � A of � is �up to isomorphism�
the same as a model of DIAG�A� � �� Thus	 it su�ces to show that
DIAG�A�� � has a model� For this	 apply Compactness� If DIAG�A� � �
has no model	 then a �nite & � DIAG�A� exists such that & � � has no
model� Suppose that ��a�	 � � � 	 an� is the conjunction of all sentences in &	
where � is a formula in the vocabulary of � and a�	 � � � 	 an � A� We have
that � j ���a�	 � � � 	 an�	 and hence	 by Exercise � �page ��	

� j �x� 
 
 
 �xn���x�	 � � � 	 xn��

Thus	 �x� 
 
 
 �xn���x�	 � � � 	 xn� is a universal consequence of � and	 there�
fore	 true in A� In particular	 �A	 a�a�A j ���a�	 � � � 	 an�� a contradiction�

��
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�� Assume that the formula �  ��x�	 � � � 	 xn� is preserved under submod�
els� Let � be the set of universal formulas �  ��x�	 � � � 	 xn� that are a
logical consequence of �� First	 � j �� Indeed	 suppose that every for�
mula in � is satis�ed by a�	 � � � 	 an in A� By �	 �A	 a�	 � � � 	 an� extends to
a model of ��a�	 � � � 	 an�� Since � is preserved under submodels	 we have
that A j �!a�	 � � � 	 an"�

Next	 by Compactness	 a �nite �� � � exists such that �� j �� Thus	
the conjunction

V
�� is an equivalent of �� Finally	

V
�� has a universal

equivalent �simply move out universal quanti�ers� and this is the required
sentence� a

Proposition ���� is an extremely simple example of a so�called preserva�
tion result	 that is� a theorem characterizing the sentences preserved under
some algebraic transformation or relation� Such results exist for sentences
preserved under limits of chains	 homomorphic images �cf� Theorem ��

�	
cartesian products	 etc� For one more simple example	 see Exercise �� �

Exercises

��� Prove Lemma ����
Hint� Use Lemma ���
�

��� Suppose that A is an L�model� Show that the following sets have the
same LA�models�

�� DIAG�A�	

�� the set of all quanti�er�free LA�sentences true in �A	 a�a�A
�this contains DIAG�A� as a proper subset�	

�� the set of all LA�sentences true in �A	 a�a�A that have one of the
following �ve forms	 where a	 a�	 a�	 � � � 	 an are new constants from
A	 and c	 f and r are �respectively� constant	 function and relation�
symbols from L�

a� �a  a�	
b� a  c	
c� a  f�a�	 � � � 	 an�	
d� r�a�	 � � � 	 an�	
e� �r�a�	 � � � 	 an�

�this is a proper subset of DIAG�A���

Hint� Show� if h � A� B is such that �B	 h�a��a�A is a model of �a(e	 then
h embeds A in B�

��� Modify the notion of diagram such that the following equivalence
holds� �B	 h�a��a�A is a model of this modi�ed diagram of A i� h is a
homomorphism from A into B�

��� Prove Lemma �����

��
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��	 Show that the model �N 	 �	�	�	 �	 �	 �	 � � �� has a countable proper
elementary extension� Show that every such non�standard model of arith�
metic model has order type � � � 
 ��
Hint� For the �rst part	 choose a fresh constant symbol c and apply Com�
pactness to the set of sentences

Th�N 	 �	�	�	 �	 �	 �	 � � �� � fc � �	 c � �	 c � �	 � � �g�

�Compare the proof of Theorem ������ For the second part	 identify ele�
ments of such a non�standard model if the interval determined by them is
�nite� Then �the interpretations of the constant symbols� �	 �	 �	 � � � form
one equivalence class of type �	 the remaining ones all have type �� they
are themselves ordered in a type that is dense and has no endpoints�

The next two exercises are classical applications of Compactness�

��� A graph �see page ��� is k�colorable if you can color its elements with
colors �	 � � � 	 k in such a way that connected elements are colored di�erently�
Show that if every �nite subgraph of a graph is k�colorable	 then so is the
graph itself�
Hint� Apply Compactness to the set that is the union of the diagram of
the graph and a set of sentences expressing that certain relations form a
k�coloring�

��� Show that every partial ordering extends to a linear ordering� �That
is	 if � partially orders a set A	 then a linear ordering  of A exists such
that for a	 b � A	 a � b implies a  b��

The next exercises describe the relationship between Horn sentences
and submodels of cartesian products�

��
 The cartesian product of models Ai �i � I� is the model A 
Q

i�I Ai	
where A 

Q
i�I Ai �see Section B���	 an individual constant c is inter�

preted as the function cA de�ned by cA�i�  cAi 	 for an n�ary function
symbol f 	 its interpretation is the n�ary function fA over A de�ned by

fA�a�	 � � � 	 an��i�  fAi�a��i�	 � � � 	 an�i��	

and for every n�ary relation symbol r	 its interpretation rA is de�ned by

rA�a�	 � � � 	 an� �� �i � I�rAi�a��i�	 � � � 	 an�i����

Show that

�� if t  t�x�	 � � � 	 xm� is a term and a�	 � � � 	 am � A	 then for all i � I	

tA!a�	 � � � 	 am"�i�  tAi !a��i�	 � � � 	 am�i�"	

�� if �  ��x�	 � � � 	 xm� is an atomic formula and a�	 � � � 	 am � A	 then

A j �!a�	 � � � 	 am"

i� for all i � I	 Ai j �!a��i�	 � � � 	 am�i�"�

�	
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��� In the logic programming literature	 a Horn sentence is a univer�
sal quanti�cation of a disjunction of formulas that are atomic or negated
atomic	 but among which at most one formula is �unnegated� atomic� If
there is an unnegated disjunct present	 such a sentence can be written as
��
V
)� ��	 where � and the elements of ) are atoms�
Show that Horn sentences are preserved under cartesian products�
Since Horn sentences are universal	 they are also preserved under sub�

models� Show that

�� every model of the Horn consequences of a theory can be embedded
in a product of models of that theory	

�� every sentence that is preserved under submodels of products has a
Horn equivalent�

Sketch� �� Suppose that B satis�es all Horn consequences of T � Write
DIAG�B�  P � N 	 where P contains the atoms and N the negations of
atoms from DIAG�B��
Claim� For every L � N there is a model BL of T � P � fLg�
Proof� Suppose that L  ��� If T � P � fLg has no model	 then	 by
Compactness	 there exists a �nite Q � P such that T j

V
Q� �� Thus	

T j �x 
 
 
 �
�

Q� � ���	

where Q� and �� are obtained form Q and � by replacing constants from
A by new variables x	 � � � Thus	 �x 
 
 
 �

V
Q� � ��� is a Horn consequence

of T and consequently holds in B� Contradiction�
Now	 check that the product model

Q
L BL satis�es DIAG�B��

��� Ultraproducts

The ultra�lters of the next de�nition can be used to construct a curious
species of models� ultraproducts� Roughly	 these are quotients of cartesian
products of models �see Exercise ��
�	 where the congruence is induced by
an ultra�lter over the index set�

���
 Fip� Filters� Ultra�lters� A collection F of subsets of a set I
has the �nite intersection property ��p� if no intersection of �nitely many
elements of F is empty�

F is a �lter if

�� I � F 	

�� X � F �X � Y � I � Y � F 	 and

�� X	Y � F � X � Y � F �

A �lter F over I is an ultra�lter if for all X � I	 X � F i� I �X �� F �

For the fact that every �p collection can be extended to an ultra�lter	 see
Exercise ����

�


For personal use



Constructing Models � ��

By convention� I is the intersection of the empty subcollection of F �
Thus� for a �p collection to exist� I should be non�empty� Note that a �p
collection can very well have an empty intersection itself� An example is
the collection of all sets I � fig �i � I� where I is an in�nite set�

You can think of the sets in a �lter over I as in some sense �big	� An
ultra�lter partitions the subsets of I into �big	 and �small	 sets�

���� Reduced Products� Ultraproducts� and Ultrapowers� Sup�
pose that fAi j i � Ig is an indexed set of L�models and F a collection of
subsets of I that is a �lter� The following de�nes an L�model A 


Q
F Ai�

the reduced product � of the models Ai modulo F �
De�ne the relation � on the cartesian product

Q
i�I Ai by

h � j �� fi � I j h�i� 
 j�i�g � F

�h coincides with j on a �big	 set�� This relation is an equivalence� see
Exercise ��� For the universe A of the model to be constructed� take the
quotient

Q
i�I Ai� �� that is� the collection of equivalence classes jhj �


fj j j � hg�
To describe the L�structure over A� it is convenient to employ ��

notation� If� for every i � I� F �i� is the description of an object� then
�i�F �i� is a notation for the function F that assigns to every i the object
F �i��

Now� let c be an individual constant from L that is interpreted in Ai

as cAi � Its interpretation cA in A is de�ned as

cA �
 j�i�cAi j�

Next� let f be an n�ary function symbol from L that is interpreted in Ai

as fAi � Its interpretation fA over A is de�ned by

fA�jh�j� � � � � jhnj� �
 j�i�fAi�h��i�� � � � � hn�i��j�

By Exercise ��� this de�nition does not depend on the representatives
h�� � � � � hn chosen in the equivalence classes jh�j� � � � � jhnj�

Finally� let r be an n�ary function symbol from L that is interpreted in
Ai as r

Ai � Its interpretation rA over A is de�ned by

rA�jh�j� � � � � jhnj� �� fi � I j rAi�h��i�� � � � � hn�i��g � F�

Again by Exercise ��� this de�nition does not depend on the representa�
tives h�� � � � � hn chosen in the equivalence classes jh�j� � � � � jhnj�

This completes the de�nition of the reduced product
Q

F Ai� If F hap�
pens to be an ultra�lter� the reduced product is called an ultraproduct� If
all factor models Ai are the same� a reduced �ultra� product is called a
reduced �respectively� ultra� power�

The following result describes the fundamental relationship that exists
between the evaluation of terms and formulas in an ultraproduct and its
factors�

��
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���� Fundamental Theorem� Suppose that A 

Q

F Ai is an ultraprod�
uct and jh�j� � � � � jhnj a sequence of elements from A�

�� For every term t 
 t�x�� � � � � xn��

tA�jh�j� � � � � jhnj� 
 j�i�tAi �h��i�� � � � � hn�i��j�

� for every formula � 
 ��x�� � � � � xn��

A j
 ��jh�j� � � � � jhnj� � fi � I j Ai j
 ��h��i�� � � � � hn�i��g � F�

�� for every sentence ��

A j
 � � fi � I j Ai j
 �g � F�

Proof� Part � is proved by a straightforward term induction and does not
need F to be ultra� Part  is proved by induction on �� The atomic case
follows from � and the way interpretations for relation symbols have been
de�ned� the cases for the connectives follow from the �lter properties �in
particular� the case for negation needs that F is ultra�� Here follows the
case for the existential quanti�er�
�i� Assume that A j
 �x���jh�j� � � � � jhnj�� For instance�

A j
 ��jh�j� jh�j� � � � � jhnj��

By induction hypothesis�

fi � I j Ai j
 ��h��i�� h��i�� � � � � hn�i��g � F�

Note that
fi � I j Ai j
 ��h��i�� h��i�� � � � � hn�i��g

is a subset of fi � I j Ai j
 �x���h��i�� � � � � hn�i��g� Thus�

fi � I j Ai j
 �x���h��i�� � � � � hn�i��g � F�

�ii� Assume that X �
 fi � I j Ai j
 �x���h��i�� � � � � hn�i��g � F � By the
Axiom of Choice� choose the function h� in

Q
i�I Ai in such a way that if

i � X� then
Ai j
 ��h��i�� h��i�� � � � � hn�i��g�

Thus�
X � fi � I j Ai j
 ��h��i�� h��i�� � � � � hn�i��g�

Therefore�
fi � I j Ai j
 ��h��i�� h��i�� � � � � hn�i��g � F�

By induction hypothesis� A j
 ��jh�j� jh�j� � � � � jhnj�� Thus�

A j
 �x���jh�j� � � � � jhnj��

See Exercise �� for further details� a

As a corollary of this result� here follows an ultra short proof for the
Compactness Theorem� It shows that you can construct a model for a
collection of sentences directly � by taking a suitable ultraproduct of models
of �nite subsets of the collection�

��
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Proof of Theorem ���� Suppose that � is a set of sentences such that every
�nite � � � has a model A�� Let I be the set of these �nite subsets ��
What we look for is an ultra�lter F over I such that

Q
F A� j
 �� Now�

what is needed of F� Let � � � be arbitrary� By Theorem ������� in order
that

Q
F A� j
 � �where F is still hypothetical�� it su�ces to have that

f� j A� j
 �g � F � Note that for every � � I� A� j
 �� Thus� � � �
implies A� j
 �� and therefore f� j � � �g � f� j A� j
 �g�

Conclusion� it just su�ces to have all sets b� �
 f� j � � �g �� � ��
in the ultra�lter� And that this is possible follows from the�

Claim� The collection fb� j � � �g has the �p�
Proof� The �extremely simple� veri�cation should not take you longer than�
say� �� seconds� However� if this ba�es you� you can �nd the solution in
Exercise ���� a

Thus� by Exercise �� there is indeed an ultra�lter F that contains everyb�� and the proof is complete� a

Apologies for the fact that the essential ingredient for this proof� Ex�
ercise �� according to its second hint � should be solved by means of
Compactness�

���� Canonical embedding� Suppose that
Q

F A is the ultrapower of
the model A that is determined by an ultra�lter F over the set I� The
canonical embedding of A into

Q
F A is the function j de�ned by j�a� �


j�i�aj� It maps an element a to the equivalence class of the constant function
i �	 a�

���� Lemma� Every canonical embedding is elementary�

Proof� By Theorem �����
Q

F A j
 ��j�a��� � � � � j�an�� holds i�

fi j A j
 ��a�� � � � � an�g � F �

the latter condition amounts to A j
 ��a�� � � � � an�� a

Exercises

��� Suppose that I is a set� Show� if X � I� then fY � I j X � Y g is a
�lter� Show that this is an ultra�lter i� X is a singleton�

��� Assume that F is a �p collection of subsets of I� Show that the
collection of subsets X of I such that for some �nite Y�� � � � � Yn � F �

Y� 
 � � � 
 Yn � X�

is a �lter�

��� Suppose that F is an ultra�lter over I� Show that if X��� � ��Xn � F �
then for some i� Xi � F �

�	
 Show that the collection of sets that are closed and unbounded in
some uncountable regular initial number is a �lter�

��
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�	� Show that ultra�lters are the same as maximal �p collections�

�		 Show that every �p collection F over a non�empty set I can be ex�
tended to an ultra�lter�
Hints�
�� The result of Exercise �� suggests using Zorn�s Lemma�
� Here follows a sketch that employs Compactness� Note that if

T
F

is non�empty� then �by Exercise ���� it is very easy to �nd the required
ultra�lter� pick any i �

T
F and consider fX � I j i � Xg� By the

way� an ultra�lter of this form is called principal� But� as was illustrated
above� you might easily have that

T
F 
 � The trick now is that from

a certain perspective
T
F still happens to be non�empty� Consider the

model A �
 �P�I����
�� �X�X�I � where P�I� 
 fX j X � Ig is the
collection of all subsets of I and ��
�� denote set inclusion� intersection
and complementation with respect to I�

Show that A has an elementary extension B that has an element b � B
such that B j
 b �
  � �y�b � y � b � y�� �so� from the perspective of B�
b behaves like a one�element set� and such that for all X � F � B j
 b � X
�from the perspective of B� the one element in b is in every X � F ��

Although of course b is not really a one�element set� it still yields the
required ultra�lter� show that the collection of X � I for which B j
 b � X
satis�es all requirements�

�	� Show that the relation � de�ned in De�nition ���� is indeed an equiv�
alence relation �i�e�� re exive� symmetric� and transitive��
Hint� For instance� transitivity� assume that h � j and j � k� That is�
fi � I j h�i� 
 j�i�g� fi � I j j�i� 
 k�i�g � F � Note that

fi � I j h�i� 
 j�i�g 
 fi � I j j�i� 
 k�i�g � fi � I j h�i� 
 k�i�g�

Thus� by the �lter properties� fi � I j h�i� 
 k�i�g � F � i�e�� h � k�

�	� Show that� in De�nition ����� the de�nition of the interpretation of
function and relation symbols in the reduced product does not depend on
the representatives chosen in the equivalence classes that occur as argu�
ments�
Hint� Compare the example given in Exercise ���

�	� Suppose that F is the principal ultra�lter over I that is determined
by i� � I� that is� F 
 fX � I j i� � Ig� Show that

Q
F Ai

�
 Ai� �

�	� Suppose that F is the �lter fIg over I� Show that
Q

F Ai
�

Q

i�I Ai�
�Cf� Exercise �����

�	� Suppose that F is a �lter over I� Show that
Q

F Ai is a homomorphic
image of

Q
i�I Ai�

��
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�	� Show that if every model Ai has at most n elements� then every ultra�
product

Q
F Ai has at most n elements� Give an example of an ultraproduct

of �nite models that is in�nite�

�	� Complete the proof of Theorem �����

��
 Show that the collection fb� j � � �g that occurs in the ultraproduct
proof of the Compactness Theorem is �p�
Hint� If ��� � � � � �n � �� then f��� � � � � �ng � c�� 
 � � � 
 c�n�
��� Show that if A is �nite and F ultra� then

Q
F A

�
 A�

��	 Consider the linear ordering � 
 �N � ��� Let F be an ultra�lter over
N that contains the �p collection of all sets fn� n ! �� n ! � � � �g� Build
the ultrapower A �


Q
F �� A is a linear ordering� Let j be the canonical

embedding from � into A� Show that for every n� j�n� is the n�th element
of A�

Let h �
 �n�n be the identity function on N � Show that for every n � N �
A j
 j�n� � jhj� �Thus� A does not have order type ���

Investigate the position of other equivalence classes of functions in A�
Show that the order type of A has the form �! 	 � 
� where 
 is a dense

type without endpoints�

��� Show that an ultrapower
Q

F � is isomorphic to its base model � i� the
ultra�lter F is ��complete� that is� for all X��X��X�� � � � � F �

T
nXn � F �

Hint� �Only if�� If X��X��X�� � � � � F but
T
nXn �� F � let h � I 	 N be

such that if i � X� 
 � � �Xn�� and i �� Xn� then h�i� 
 n� Show that jhj
cannot be the n�th element in the ordering of the ultrapower for any n � N �

�If�� Show that the ordering of the ultrapower is well�ordered �has no
in�nite descending sequence jh�j � jh�j � jh�j � � � ���

��� Assume that A � B� Show that A can be elementarily embedded into
an ultrapower of B�
Hint� For every �nite � � ELDIAG�A�� there is a simple expansion B�
of B that is a model of �� Thus� ELDIAG�A� has a model of the formQ

F B��

��� Suppose that the vocabulary of A does not contain individual con�
stants or function symbols� Show that A can be embedded into an ultra�
product of its �nite submodels�

��� If � is a set of sentences� then Mod��� �
 fA j A j
 �g� Let K be
class of models� Show the following�

�� There exists a set of sentences � such thatK 
 Mod��� i�K is closed
under ultraproducts and equivalence� i�e�� �i� every ultraproduct of
models from K is in K� and �ii� every equivalent of a model in K is
in K�

��
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� There exists a sentence � such that K 
 Mod�f�g� i� both K and
its complement are closed under ultraproducts and equivalence�

Hint� By Compactness�  follows from ��

��� Suppose that A � B� Show that there is an elementary embedding
h from B into an ultrapower of A� such that the restriction h j A of this
embedding to A coincides with the canonical embedding from A into the
ultrapower�

��� Suppose that A� � A� � A� � � � � is a strictly ascending chain
of models with limit A� Let F be a �lter over N that contains all sets
fn� n! �� n! � � � �g� Show that A can be embedded in

Q
F Ai�

By Theorem ����� all �rst�order sentences are preserved by ultraprod�
ucts� The next exercise states that ��

��sentences are preserved as well�

��� Suppose that the ��
��sentence " �De�nition ���� page ��� is satis�ed

by every factor Ai of the ultraproduct
Q

F Ai� Show that
Q

F Ai j
 "�

��� Omitting Types

The proof of the Compactness Theorem above is a rather crude applica�
tion of the Henkin construction� A more re�ned argument produces the
Omitting Types Theorem�

From now on all vocabularies will be countable�

��	
 Types� A k�type is a set  
 ��x� of formulas in the free variables
�x 
 �x�� � � � � xk�� A ��type often is called simply a type�

If some sequence �a from A satis�es all formulas of the type  in A� then
A is said to realize  � A omits  if it is not realized in A�

A type is a type of the theory # if it is realized in a model of #� It is a
type of A if it is a type of Th�A��

A type  of # is principal if there is a formula � 
 ���x� $ a generator
of  $ satis�able in a model of # and such that # j
 �� 	

V
� �i�e��

# j
 � 	 � for all ���� It is a principal type of A if it is principal with
respect to Th�A��

�It is helpful to realize that there exists a parallel $that can be made
precise$ between the notions of �principal� type and �principal� �lter ��

Note that a model does not need to realize each one of its types� Exam�
ple� A 
 �N � �� �� � � � ���  
 fx �
 �� x �
 �� x �
 � � � �g� However� a model
does always realize its principal types� �If � is a generator of some type of
A� then A j
 ��x���

In order that the reader becomes more familiar with the notion of type�
he is urged to check the details of the following lemma�

��	� Lemma� For a type  
 ��x� in the vocabulary of a model A� the
following are equivalent�

��
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��  is a type of A� i�e��  is realized in some B � A�

�  is �nitely satis�able in A�

��  is a type of ELDIAG�A�� i�e��  is realized in some B � A�

Proof� � � � Suppose that ��� �b satis�es  in B � A� If  � �  is �nite�
then B j
 ��x

V
 �� Since B � A� we have that A j
 ��x

V
 � as well� Thus�

 holds�
� �� Suppose that ��  is �nitely satis�able in A� Then �ELDIAG�A�
is �nitely satis�able� By Compactness�  is realized in some B � A�
�� �� Trivial� a

��		 Omitting Types Theorem� Suppose that # is a satis�able set of
sentences and T is a countable set of types that are non�principal with
respect to #� Then # has a �countable	 model omitting every type from T �

Proof� Let L be the countable vocabulary involved� Choose a countable
set C of fresh individual constants� Put L� �
 L�C� Construct a maximal
satis�able set #� � # with the Henkin property such that if  
 ��x� � T
and �c is a sequence from C that has the same length as �x� then � �  exists
such that ����c� � #�� It follows from Exercise ��� that the canonical model
for #� omits all types from T �

#� is the limit of a sequence #� 
 # � #� � #� � � � � that is constructed
as follows� Fix enumerations of �i� all L��sentences and �ii� of all pairs ���c�
where  
 ��x� � T and �c is a sequence of appropriate length from C� #n��
is obtained by adding one� two or three sentences to #n as follows�

�� Add the n�th L��sentence of the �rst enumeration if this does not
result in unsatis�ability� �This produces maximal satis�ability of
#���

� If the n�th L��sentence is added at step � and has the form �x��x��
choose a c � C that does not occur in � or in a sentence from #n
�such a c exists� since #n�# is �nite� and add ��c�� �This ascertains
that #� has the Henkin property��

�� If ���c� is the n�th pair from the second enumeration� add a sentence
����c�� where � �  is such that this addition preserves satis�ability�
�This results in a canonical model omitting all types from T ��

Since in �� c is fresh and �x� � #n� addition of ��c� does not spoil
satis�ability�

Finally� it must be shown that� in ���� such a � �  always exists�
Let � be the conjunction of all sentences added to # up to that point of
the construction� Write � 
 
��c� �a�� where �a is the sequence of constant
symbols from C in � that are not in �c� �Not every constant from �c need
actually appear in ��� If the addition of ����c� results in an unsatis�able
set� then

# j
 
��c� �a�	 ���c��

��
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Thus �since the constants from �a do not occur in # or in ���c�� by Exercise �
�page ��

# j
 ��y
��c� �y�	 ���c�

and so �again by Exercise ��

# j
 ��x���y
��x� �y�	 ���x���

If this holds for every � �  � then clearly ��y
��x� �y� is a generator of  �
unless it is not satis�able in a model of #� However� by construction� � is
satis�able in a model of #� and hence ��y
��x� �y� is satis�able in a model of
# as well� a

In the above proof� there is nothing that is really typical for �rst�order
logic� The same construction proves the result for countable fragments of
in�nitary logic�

Suppose that the binary relation symbol � is in L� The Collection
Principle is the set of all formulas of the form

�x � a �y � 	 �b �x � a �y � b ��

where � is a formula not containing b freely� For example� the standard
model of arithmetic� ordered in type �� is a model of the Collection Prin�
ciple� More generally� every ordered model that has a regular order type
satis�es Collection�

B is an end extension of A if for all a�A it holds that

b � B � b � a � b � A

that is� no element of A gets a new ��predecessor in B�

��	� Proposition� Every countable linearly ordered model of Collection
has a proper elementary end extension�

Proof� Let A be a countable linearly ordered model of the Collection Prin�
ciple� Let E be the elementary diagram of A and c a fresh individual
constant� Put O �
 fa � c j a � Ag� What we want is a model of E � O
that omits every type

a �
 fx � ag � fx �
 b j b � ag�

By the Omitting Types Theorem� it su�ces to show that these types are
non�principal with respect to E � O� Assume that ��x� c� generates a�
Then� for b � a�

E �O j
 ��x� c�	 b �
 x�

hence E �O j
 ���b� c�� By Compactness there are �nitely many a�� � � � �
ak � A such that E j
 a�� � � � � ak � c	 ���b� c�� Let m be the maximum
of a�� � � � � ak� Then� E j
 m � c	 ���b� c�� and hence

E j
 m � y 	 ���b� y��

��
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Concluding� in A it holds that for all a � A� �x � a�m�y � m���x� y��
By Collection� there exists m� � A such that

�x � a �m � m� �y � m ���x� y��

and hence� �x � a �y � m� ���x� y�� But then

E �O j
 �x � a ���x� c��

i�e�� E � O j
 ��x� c� 	 �x � a� However� we also have that E � O j

��x� c� 	 x � a� Thus� ��x� c� is not satis�able in a model of E � O� a
contradiction� a

L%owenheim�Skolem theorems are about cardinals of universes� Two�
cardinal theorems consider the cardinal of the universe together with the
cardinal of a designated unary relation�

Here is the simplest of examples� Suppose that U � L is a unary relation
symbol�

��	� Vaughts Two�cardinal Theorem� If A is a model in which

�� � jUAj � jAj�

then A has an elementary equivalent B such that

jBj 
 �� and jUBj 
 ���

Proof� By the Downward L%owenheim�Skolem theorem� you can cut down
the cardinality of jAj to the �rst cardinal � jUAj� keeping UA �xed� So�
without loss of generality� you may assume that already jAj itself is of this
power�

Let � be a new binary relation symbol� Choose a well�ordering �A of
A of initial type� Since successor cardinals are regular �see Section B����
�A� �A� satis�es a Collection Principle consisting of all formulas

�x�U �y � 	 �b �x�U �y � b ��

�To make things slightly more readable� x � U is written instead of U�x���
Let �B� �B� be a countable equivalent of �A� �A�� The proof method

of Proposition ��� shows that  
 fU�x�g � fx �
 b j b � UBg is a non�
principal type of the theory # that consists of the elementary diagram of
�B� �B� plus all sentences b � c �b � B� c a fresh constant�� By the
Omitting Types Theorem ��� # has a countable model �C� �C� that omits
 � Clearly� �C� �C� is a countable proper elementary extension of �B� �B�
that has the same interpretation of U � Repeating this� we construct an
elementary chain of length �� of countable models� while keeping the inter�
pretation of U �xed along the chain� The limit of this chain is the required
model�

Here follows the argument that  is non�principal with respect to
#� Suppose that ��x� c� would be a generator� Then in particular�

�	
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# j
 ���b� c� for b � UB� Fix a b � UB� By Compactness� for some
b�� � � � � bn � B we have that

ELDIAG�B� �B� � fb�� � � � � bn � cg j
 ���b� c��

Thus� �for x �
 b and y the maximum of b�� � � � � bn� �B� �B� j
 �x �
U �y �z � y ���x� z�� By Collection� for some b�

�B� �B� j
 �x � U �y � b �z � y ���x� z��

and so �B� �B� j
 �x � U �z � b ���x� z�� But then� # j
 �x � U���x� c��
i�e�� # j
 ��x� c� 	 x �� U � Also� # j
 ��x� c� 	 x � U � Hence� ��x� c�
cannot be satis�able in a model of #� a

��	� Prime models� A model is prime if it does not realize any of its
non�principal types�

��	� Proposition� Every two equivalent prime models are partially iso�
morphic�

Proof� Suppose that A and B are equivalent prime models� The strategy of
Sy is to make sure that after his n�th move a position f�a�� b��� � � � � �an� bn�g
is reached such that �A� a�� � � � � an� � �B� b�� � � � � bn�� To see that Sy has an
�n!���st move� assume that Di plays an�� � A� Consider the �n!���type

 �
 f� j A j
 ��a�� � � � � an���g

of �a�� � � � � an��� in A� Let � 
 ��x�� � � � � xn��� generate this type� Note
that A j
 �xn����a�� � � � � an�� �For� A j
 ��a�� � � � � an�� Otherwise� �� �  �
hence Th�A� j
 �	 ��� Th�A� j
 ��� and � would not be satis�able in a
model of Th�A��� By induction hypothesis� B j
 �xn����b�� � � � � bn�� As a
counter�move for Sy choose bn�� � B such that B j
 ��b�� � � � � bn���� a

��	� Corollary� Every two countable� equivalent prime models are iso�
morphic�

Proof� This is immediate from Proposition ��� and Theorem ���&� a

Recall that a complete theory is a set of sentences that �De�nition �����
page ���� has but one model up to equivalence� it is ���categorical if� up
to isomorphism� it has only one countable model� For an example� see
Corollary ����� page ���

��	� Theorem� Let # be a complete theory in a countable vocabulary�
The following are equivalent�

�� # is ���categorical�

� all types of # are principal�

�� for every k� there are only �nitely many formulas � 
 ��x�� � � � � xk�
pairwise inequivalent with respect to #�

�� every model of # is prime�

�
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Proof� ��� If # has a non�principal type� there is one countable model
that realizes it and one that omits it� and these models cannot be isomor�
phic�
��� Assume that  holds� but that � doesn�t� By Zorn�s Lemma� every
type of # is subtype of a maximal one �cf� Lemma ����� page ����
Claim� # has in�nitely many maximal k�types�
For suppose not� Let ��� � � � � �n be the generators of these types with
x�� � � � � xk free� Then every formula in these free variables has an equivalent
that is a disjunction of �nitely many �i� There are 

n such formulas� This
proves the Claim�

Choose a generator for each of those in�nitely many types� The set of
negations of these generators is a non�principal type� See Exercise ����
��� Let  be a non�principal type� Without loss of generality it can be
assumed that  is maximal� Pick �� �  � By assumption� �� is not a
generator of  � therefore �� �  exists such that �� � ��� is satis�able in
a model of #� By maximality� �� � �� �  � but again� this cannot be a
generator� Thus� �� �  exists such that �� � �� � ��� is satis�able in
a model of #� Repeating this argument produces in�nitely many pairwise
incomparable formulas �� � ���� �� � �� � ���� �� � �� � �� � ����� � � �
all satis�able in a model of #�
��� Trivial�
���� By Corollary ���� a

Fixed point logic� Assume that � 
 ��x�� � � � � xk� is an L� frg�formula
that is r�positive �see page �� every occurrence of r in � is in the scope
of an even number of negation symbols and � does not contain 	 or ���
Let A be an L�model� Then � induces a �elementary� monotone operator
# 
 #� � P�Ak� 	 P�Ak� �which maps k�ary relations over A to k�ary
relations� de�ned by

#�S� �
 f�a�� � � � � ak� � Ak j �A� S� j
 ��a�� � � � � ak�g�

�That # is monotone� i�e�� that S� � S� � Ak implies #�S�� � #�S��� is
due to � being r�positive�� Let #� 
 #�� be the least �xed point of this
operator� �See Section B����

Fixed�point logic accommodates a notation for such least �xed points�
More precisely� it has the following formula�formation rule�

if � 
 ��x�� � � � � xk� y�� � � � � ym� is an L � frg��xed�point formula con�
taining the k�ary relation symbol r positively with x�� � � � � xk� y�� � � � � ym
free� then

�z�� � � � � zk� � �rx� � � �xk�

is an L��xed�point formula with z�� � � � � zk� y�� � � � � ym free�

��
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The semantics of �xed�point formulas is given by the least �xed point
interpretation that stipulates �c � �r�x���x��a� to be true of A i� �c is in the
least �xed point of the operator de�ned by ���x��a��

The �xed�point operator � can be used to express properties that are
not �rst�order expressible� For instance� z � �rx��y�y � x	 r�y��� de�nes
the set of standard integers in any non�standard model of arithmetic� More
generally� it de�nes the well�founded part $ the largest well�founded initial
$ of a model �Exercise ��� see Section B���� However�

��	� Proposition� Over an ���categorical theory� every �xed�point for�
mula has a �rst�order equivalent�

Proof� The �nite stages of the least �xed point hierarchy corresponding to
a de�nable operator are �rst�order de�nable �use the recursive de�nition��
But then� by Theorem ��&��� there can only be �nitely many of them�
Thus� the hierarchy has a �nite closure ordinal and the least �xed point is
de�nable� a

This proposition has been used to extend the so�called 
���law from
�rst�order logic to �xed�point logic� This law says that for every purely
relational sentence � of these languages $ as well as a couple of others $
the fraction of models with universe f�� � � � � ng that satisfy � either tends
to � or to � when n approaches in�nity�

Exercises

��
 Suppose that A is a countable model that is prime and that B � A�
Show that A can be elementarily embedded into B�
Hint� Fix an enumeration A 
 fa�� a�� a�� � � �g� Find b�� b�� b�� � � � � B such
that for every n� �A� a�� � � � � an��� � �B� b�� � � � � bn���� The correspondence
ai �	 bi is the required embedding�

��� Fill in the details of the proof of Theorem ��&� ��� Prove the Claim�
and the fact that the negations of all generators form a non�principal type
of #�
Hint� If  
 �x�� � � � � xk� is a maximal type of # and � 
 ��x�� � � � � xk� ��
 � then �� �  �

��	 Show that the �xed point formula z � �rx��y�y � x	 r�y��� de�nes
the well�founded part �the largest subset of the universe on which � is
well�founded� of any model�

��� Saturation

A saturated model realizes many types� More precisely�

���
 Saturation� A model A is saturated if every simple expansion
�A� a�� � � � � an� of A with �nitely many elements a�� � � � � an � A realizes
all its ��types�

��
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�The concept de�ned is usually referred to as ��saturation� indicating the
limitation to simple expansions with �nitely �� �� many elements� But we
shall not consider ��saturation for � � ���

The restriction to ��types in De�nition ���� can be lifted�

���� Lemma� If A is saturated� then for all k� every simple expansion
�A� a�� � � � � an� of A with �nitely many elements a�� � � � � an � A realizes all
its k�types�

Proof� We argue by induction on k� Suppose that  
 �x�� � � � � xk� is a
�k!���type of a simple expansion A� of A with �nitely many elements� Let
� 
 ��x�� � � � � xk� be the set of all �nite conjunctions of formulas from  �
Then � is a �k!���type as well� Consider f�x�� j � � �g� This is a k�type
of A� and by induction hypothesis it is satis�ed by elements a�� � � � � ak � A�
Now ��x�� a�� � � � � ak� is a type of �A�� a�� � � � � ak�� But� A

� is saturated as
well� Thus� ��x�� a�� � � � � ak� is satis�ed by an element a � A� But then�
�a� a�� � � � � ak� satis�es  � a

���	 Proposition� Every two equivalent saturated models are partially
isomorphic�

Proof� Suppose that A and B are two equivalent saturated models� The
strategy of Sy consists in taking care that after the n�th pair of moves
�an� bn�� he obtains �A� a�� � � � � an� � �B� b�� � � � � bn�� To see that he has a
next move� assume that Di plays an�� � A� Consider the type

�x� �
 f� j �A� a�� � � � � an� j
 ��an���g

of an�� in �A� a�� � � � � an�� By hypothesis�  is a type of �B� b�� � � � � bn�� As
a counter�move of Sy� take bn�� satisfying this type� a

���� Proposition� Every countable saturated model has an equivalent that
is prime�

Proof� Omit all non�principal types of elements of the model� a

���� Uniqueness of countable saturated models� Every two count�
able equivalent saturated models are isomorphic�

Proof� Immediate from Proposition ��� and Theorem ���&� a

The following is mainly concerned with types that are maximal� A few
basic properties of maximal types are listed in the next lemma�

���� Lemma�Let A be a model�

�� Every type of A extends to a maximal type�

� The type  
 �x�� � � � � xn� of A is maximal i for all � 
 ��x�� � � � �
xn�� � �  or �� �  �

�� If �x� a�� � � � � an� is a maximal type of �A� a�� � � � � an�� then �x� x��
� � � � xn� is a maximal type of A�

��
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�� A is saturated i every simple expansion of A with �nitely many
elements realizes all its maximal ��types�

Proof� Exercise ���� a

���� Existence of Countable Saturated Models�If a complete theory
has only countably many maximal types� then it has a countable saturated
model�

Proof� Suppose that T is a complete theory that only has countably many
maximal types� It su�ces to show that every countable model of T has
a countable saturated elementary extension� Thus� let A� be a countable
model of T � Construct an elementary chain A� � A� � A� � � � � of
countable models such that for all n � N �

if �x� y�� � � � � yk� is a maximal type of T and a�� � � � � ak � An are such
that �x� a�� � � � � ak� is a type of �An� a�� � � � � ak�� then �x� a�� � � � � ak�
is realized in �An��� a�� � � � � ak��

Such a construction is possible by assumption� Compactness� and Down�
ward L%owenheim�Skolem Theorem� Now the limit A �


S
nAn of this

chain is countable and saturated� if a�� � � � � ak � A and �x� a�� � � � � ak� is a
maximal type of �A� a�� � � � � ak�� then� for some n � N � a�� � � � � ak � An and
�x� a�� � � � � ak� is a maximal type of �An� a�� � � � � ak�� Thus� �x� y�� � � � � yk�
is a maximal type of T � By construction� �x� a�� � � � � ak� is realized in
�An��� a�� � � � � ak� and in �A� a�� � � � � ak�� a

A remarkable result using lots of the previous material is the following�

���� Vaughts Theorem� No complete theory has �up to isomorphism	
exactly two countable models�

Proof� Suppose that A and B are the only two countable models of the
complete theory T � Then since every type of T is realized in a countable
model� T cannot have uncountably many maximal �non�principal� types�
So� T has a countable model omitting all non�principal types� say� A � Also�
by Theorem ����� T has a countable saturated model� This cannot be A
as then� by Theorem ��&� T would be ���categorical� So� this must be B�
Since A ��
 B� B realizes some non�principal type  � Suppose that b � B
satis�es  � Consider T � �
 Th��B� b��� T � has the saturated model �B� b��
Therefore� it cannot have uncountably many maximal types� Therefore� it
has a countable model omitting all non�principal types� say� �C� c�� C cannot
be �
 A since it realizes  � Thus� C �
 B and �C� c� is saturated� Since T �

has a model �C� c� that is both saturated and omits all non�principal types�
all types of T � are principal� and therefore �again by Theorem ��&� T � has
�nitely many n�types for each n� However�  is a non�principal n�type of T �
so �by Theorem ��& or its proof� T has in�nitely many maximal n�types�
And every type of T extends to a type of T �� a

��
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See Exercise ��� for a complete theory with exactly three countable models�

Exercises

��� Show�

�� Finite models are saturated�

� The linear orderings � and � are saturated�

�� The linear orderings �� 	 and � ! 	 are not saturated�

�� The models of an ���categorical theory are saturated�

�� Linear orderings of type 	 � � realize all their types but are not satu�
rated� orderings of type 	 � � are saturated�

��� �Compare Exercise ����� Suppose that A � B� where A is countable
and B saturated� Prove that A can be elementarily embedded into B�

��� Show that the following models do not have countable saturated equiv�
alents� In fact� every saturated equivalent of one of these models must have
cardinality at least �� �

�� The simple expansion of the linear ordering � of the rationals with
all rationals as constants�

� the model of arithmetic �N �!����

Hint� �� For every irrational r� the type r �
 fq � x j q � rg�fx � q j r �
qg is �nitely satis�able in this model� However� if r� � r� are irrationals�
then �since for some rational q� r� � q � r�� r� and r� cannot be realized
by the same element�
� For every set X of primes� consider the type f�p divides x	j p � Xg�f�p
does not divide x	j p is a prime not in Xg�

��� Prove Lemma �����

��� Let A 
 �Q � �� n�n�N and T 
 Th�A��
Show that B 
 �Q � ��� �

n��
�n�N and C 
 �Q � �� qn�n�N �where fqngn�N is

a strictly ascending sequence of rationals that converges to some irrational�
are two more countable models of T �
Show that� up to isomorphism� these are the only countable models of T �
Which one is saturated� Which one is prime�

��� Show� if a theory has� up to isomorphism� only countably many count�
able models� then it has a saturated model�

��� Recursive Saturation

The Uniqueness Theorem ���� is the main reason for the usefulness of
countable saturated models� Unfortunately� not every satis�able theory
has a countable saturated model� even if its vocabulary is countable� see
Exercise ��� for some examples� Fortunately� there is a useful alternative
to saturation� recursive saturation� For this notion to make sense� it is

��
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easiest to assume from now on that all vocabularies are �nite� �More gen�
erally� you can allow countably in�nite vocabularies but require them to
be recursively presented� This means that you can decide� for each non�
logical symbol� whether it is a constant� function� or relation symbol� and
in the latter two cases you must be able to compute its arity�� Since we
shall apply Ehrenfeucht games� usually you need to assume them not to
contain function symbols �though several results below are true for other
vocabularies��

The notion of recursive saturation is obtained from ordinary saturation
simply by restricting to computable types� For the notion of a computable
sequence of formulas� see De�nition A��� �page ����

���� Recursive Saturation� A model A is recursively saturated if for
every computable sequence of formulas

�x�� � � � � xn� 
 f�i�x�� � � � � xn� j i � N g

and a�� � � � � an � A� if for every n � N � A j
 �x�
V
i�n �i�a�� � � � � an�� then

�x�� a�� � � � � an� is satis�able in �A� a�� � � � � an��

The above seems to de�ne recursively enumerable �or computable� sat�
uration instead of recursive �or decidable� saturation� However� every com�
putable sequence of formulas f�i j i � N g is logically equivalent with the
set f

V
i�n �i j n � N g� which happens to be decidable� This observation is

known as Craig�s trick� �For the proof� see Exercise ����� Therefore� these
notions actually amount to the same thing�

Note that if  
 �x�� a�� � � � � an� 
 f�i�x�� j i � N g� then the condition
of De�nition ���& becomes �putting �i �
 ��i�

�a � A �iA j
 �i�a� � �n �a � A �i � nA j
 �i�a��

In the following� it usually does not matter a great deal whether you
know exactly what computable or recursive enumerability is about� What
is used is� that

�� there are but countably many computable types �since the number
of computer programs is countable��

� certain simple types �for instance� singletons� are computable� and

�� certain simple operations applied to computable types produce com�
putable types�

As an example of ���� by the argument of Lemma ����� again it does not
matter whether in the de�nition you replace the one variable x� by a �nite
sequence� There are but two places where more is required than just ���'
����

���� Existence of countable recursively saturated models� Every
satis�able theory has a countable recursively saturated model�

��
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First proof� Let T be a satis�able theory in the countable vocabulary L�
Simply extend L by adding a countably in�nite set C of new individual
constants� Let �� �� �� � � � enumerate all sets  
 �x� c�� � � � � ck� of L �
C�formulas involving a �nite number of constants c�� � � � � ck of C where
�x� x�� � � � � xk� is a computable type of L� Construct a sequence T� �

T� T�� T�� � � � by

Tn�� 


�
Tn � n�c� if this set is satis�able
Tn otherwise�

Here� n�c� is the set obtained from  by substituting c for x in every
formula� In the �rst alternative� the witness c must be chosen not to occur
in a formula from Tn � n in order to preserve satis�ability of the resulting
union� Now

S
n Tn is maximally satis�able� has the Henkin property� and

the induced canonical model is countable and recursively saturated� Indeed�
satis�ability is trivial�

As to maximal satis�ability� suppose that
S

n Tn � f�g is satis�able�
The singleton f�g is a computable type �that has no free variables but
may have new constant symbols�� Say� n 
 f�g� Then obviously Tn � n
is satis�able� and so � � Tn���

Henkin� suppose that �x��x� �
S

n Tn� The singleton f��x�g surely is
some computable type n� This shows that some instance ��c� is in Tn���

Finally� the canonical model A is countable by construction� It is also
recursively saturated� if �x�� � � � � xn� is computable and a�� � � � � an is a
sequence of elements in this model� then� by Exercise ���� there are constant
symbols ci such that ai 
 cAi � For some n� n 
 �x�� c�� � � � � cn�� If this
is �nitely satis�able in A� then clearly Tn � n�c� �c chosen as indicated�
is satis�able� hence cA satis�es this type in A� a

Second proof� By means of the following lemma�

���
 Lemma� Every countable model has a countable recursively saturated
elementary extension�

Proof� A slight modi�cation of the proof for Theorem ���� �page ��� suf�
�ces� Let A be a countable model� Using Compactness and Downward
L%owenheim�Skolem� construct an elementary chain A� 
 A � A� � A� �
� � � of countable models such that for every n� every computable type
�x� y�� � � � � yk� and every a�� � � � � ak � An� if �x� a�� � � � � ak� is a type of
�An� a�� � � � � ak�� then it is realized in �An��� a�� � � � � ak�� The limit of this
chain is the required model� a

Third proof � a sketch� really First� some
Terminology� LetM � �M� �� be a model of �say� Zermelo�Fraenkel� set theory
M is ���� non�standard if its set of natural numbers is not exhausted by

its standard integers 
� �� �� � � �� but there are non�standard integers as well In

��
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other words� the set of natural numbers of M is not ordered in type � Since
for each standard n the sentence �x�x � n �

W
i�n

x � i� must be satis�ed�
the non�standard integers come after all the standard ones �and of course� after
these� the in�nite ordinals of M are still to follow�

In the proof of Lemma ��� below you will see that it is very easy to produce
such non�standard models using Compactness

Here is a simple result about such non�standard models

���� Overspill� If M is a non�standard model of set theory in which � is

satis�ed by every standard integer� then � is also satis�ed by some non�standard

integer�

Proof� If not� � de�nes the set of standard integers of M Thus�

M j� ��
� � �n���n�� ��n� ����

By mathematical induction in M� M j� �n��n�� a contradiction� since M is
non�standard a

You may never have thought about this before� but all models discussed here
�live� in the set theoretic universe �V���� which is � except for the fact that V
is not a set � some giant ZF�model Just as all models live in �V���� you can
imagine models living in some other �in particular� non�standard� ZF�model

Let L be a ��nite� vocabulary There is a straightforward computable trans�
lation that transforms any L�formula � into a set�theoretic formula �x with one
more free variable x such that if the L�model A lives in the ZF model M and �

is an A�assignment� then A j� ���� i� M j� �A��� �See Exercise ��� for more
explanations�

���� Proposition� Every model that lives in a non�standard model of set theory

is recursively saturated�

Assuming this� the existence theorem follows from one more lemma�

���� Lemma� Every satis�able theory has a model that lives in a countable

non�standard model of set theory�

Proof� Suppose that T is satis�able Then T has a model A that� by necessity�
lives in the set theoretic universe �V��� Consider the following set of formulas
written in the language of set theory with extra constant symbols A and c �the
construction is not di�erent from that in Exercise ���� page ����

f�A j � � Tg � faxioms of set theoryg

� fc is a natural numberg

� fc �� 
� c �� �� c �� �� � � �g�

Every subset of this that contains �nitely many inequalities c �� n only is satis�ed
in a �model� �V���A� n� for a suitable natural number n In particular� this set is
�nitely satis�able Now� apply Compactness and Downward L�owenheim�Skolem
to get the required non�standard model See Exercise ��� a

For an ultraproduct proof of this result� see Proposition ��� �page ���
What is problematic here is hidden in Proposition ���

��
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Proof�sketch for ��� Suppose that A lives in the non�standard model M Let
	�x� � f�i�x� j i � N g be a computable type of A �For ease of exposition�
parameters are suppressed� That is� for every n � N �

�a�A �i � nA j� �i�a�����

Now� rewrite this as a statement about M�

Warning� this needs suitable set�theoretic de�nitions of 	 and the relation j�
in M To obtain such a de�nition for j�� see �	 page � Here� suitable means
that these de�nitions express what they should on arguments that are standard
Computable functions do have such de�nitions Suitability of a de�nition of j�
is expressed by the Tarski adequacy requirement

Looking at ��� as a statement about M� you can apply Overspill ���� ���
must hold for some non�standard integer n as well Let a � A be an element
satisfying ��� for this non�standard n Since every standard integer is less than
n� a satis�es 	 in A a

This ends the sequence of proofs for ����� a

The proof of the main Lemma ��� for the Uniqueness Theorem employs
types that $depending on the models$ possibly are not computable� For
recursively saturated models� a weaker result holds� which nevertheless is
quite useful� Explaining this needs the notion of a model pair of two models
A� andA�� This is some complex model� appropriately de�ned� from which
the two components A� and A� may be retrieved again in the sense of
Lemma ����� Several adequate de�nitions of this notion are possible� each
with its own merits and drawbacks� One implementation of this idea when
no function symbols are around is the following�

���� Model Pairs� Suppose that L� and L� are disjunct vocabularies�
Choose new unary relation symbols U� and U�� The model pair of the
L��model A� and the L��model A� is a L� �L� � fU�� U�g�model �A��A��
with universe A� � A�� such that Ai is the interpretation of Ui and the
submodel with universe Ai of the Li�reduct of �A��A�� is Ai �i 
 �� ��

The requirement that the vocabularies be disjoint can be lifted� In the
case that L� and L� overlap� in particular� if L� 
 L� 
 L� a copy L� of L
has to be formed and one of the models has to be considered an L��model�

The sense in which the component models may be retrieved from the
pair is the following� �Compare the translation � �	 �x from L�formulas
to set�theoretic formulas considered above��

���� Lemma� There are computable transformations � and � mapping
L�� respectively L��formulas to L� � L� � fU�� U�g�formulas such that for
all Ai�assignments � and Li�formulas �� �A��A�� j
 �i��� i Ai j
 �����
�i 
 �� 	

�	
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Proof� The formula �i 
 �Ui is obtained by relativising quanti�ers to Ui�
see Exercise ���� a

Sometimes� you can manage so that A� 
 A�� and the extra Ui and
relativization are not needed to form a model pair version that is suitable�

The drawback� that you cannot use function symbols� can always be
lifted in practice� since it is possible to replace functions by their graphs�

Whatever the details of the implementation� the following weakened
version of Proposition ��� holds�

���� Proposition� If A� and A� are elementarily equivalent models such
that �A��A�� is recursively saturated� then A� and A� are partially isomor�
phic�

Proof� Let L be the vocabulary involved� Again� the strategy of Sy is
to make sure that� after the n�th pair of moves �an� bn� has been played�
�A�� a�� � � � � an� � �A�� b�� � � � � bn�� To see that Sy has an �n! ���st move�
assume that Di plays an�� � A�� The argument in the proof of ��� is
not valid here as the type employed may not be computable� However�
there is the following trick� which uses the fact that both models form one
recursively saturated pair� Let  
 �x�� � � � � xn��� y�� � � � � yn��� be the
computable type

fU��yn���g �

f���x�� � � � � xn���	 ���y�� � � � � yn��� j � 
 ��x�� � � � � xn���g�

Put  � 
  ��yn��� �
 �a�� � � � � an��� b�� � � � � bn� yn���� Every �nite subset
of  � is satis�ed in the model pair �A��A��� �For� if "��a�� � � � � an��� is
the set of true in A� sentences ���a�� � � � � an��� that are left�hand side of
implications in some �nite � �  �� then

A� j
 �xn��
�

"��a�� � � � � an� xn����

hence A� j
 �xn��
V
"��b�� � � � � bn� xn���� and any bn�� � A� such that

A� j

V
"��b�� � � � � bn��� satis�es ���

By recursive saturation� let bn�� satisfy  �� Then

�A�� a�� � � � � an��� � �A�� b�� � � � � bn���� a

Similarly�

���� Proposition� If A� and A� are models such that every positive
sentence true in A� is satis�ed in A� and �A��A�� is recursively saturated�
then A� and A� are partially homomorphic�

���� Pseudo�uniqueness of Recursively Saturated Models� If A�

and A� are elementarily equivalent countable models such that �A��A�� is
recursively saturated� then A�

�
 A��

Proof� Immediate from Proposition ���� and Theorem ���&� a

�
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Of course� you also have�

���� Proposition� If A� and A� are countable models such that every
positive sentence true in A� is satis�ed in A� and �A��A�� is recursively
saturated� then A� is a homomorphic image of A��

Proof� Immediate from Propositions ���� and 	�
�� a

Exercises

��� Suppose that A � B� where A is countable and where the model pair
�A�B� is recursively saturated� Prove that A can be elementarily embedded
into B�

��� �Craig�s trick�� Suppose that f�i j i � N g is a computable enumera�
tion of formulas� Show that the set f

V
i�n �i j n � N g is decidable that is�

describe a decision procedure for it�
Note that� by this trick� every theory with a computably enumerable

axiomatisation also has a decidable axiomatisation�
Hint� Let � be an arbitrary formula� Suppose it is a conjunction of m
conjuncts� To check whether � is in f

V
i�n �i j n � N g� you only need to

generate the �rst m elements of f�i j i � N g�
�It is a fundamental result of Recursion Theory � if not its raison

d��etre � that some computably enumerated sets are not decidable� To
decide whether a formula is in it� you may not be able to do better than
just compute its enumeration and if your formula� in fact� happens to be
not in it� you will never know for sure��

��� Show that if M is a non�standard model of set theory in which � is
satis�ed by arbitrarily large standard integers� then � is satis�ed by some
non�standard integer as well�

��� The proof of Lemma ���	 has the defect that �as has been explained
in Chapter � on page �� there is no way to talk about satisfaction in the
proper class �model� �V���A�� Give a proof that does not use this�
Hint� The set of sentences employed in the proof must be consistent� By
the Completeness Theorem A��� �or A��� page ���� for �rst�order logic� it
has a model�

��� The relativization �U is obtained from � by replacing quanti�cations
�x� by �x�U�x�� ��� and �x� by �x�U�x����� �Compare this with the
trick used in Exercise 
���

Suppose that A is an L�model� that U �� L and that B 	 A is the
universe of a submodel B 	 A� Show that for all L�formulas � and B�
assignments �

B j� ���� 
 �A� B� j� �U ���

where U is interpreted by B in �A� B��

��� Give more precise de�nitions of the notion of living in and the trans�

��
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lation � �� �x �for formulas � not containing x� such that if the L�model A
lives in the set�theoretic modelM and � is anA�assignment� thenA j� ����
i� M j� �A����
Hint� Suppose that� for simplicity� L � frg� where r is a ternary relation
symbol� Choose variables y and z not in �� Let �� be the set�theoretic
formula obtained from � by �i� replacing quanti�ers �u and �v by �u � y

respectively� �v � y� and �ii� replacing atoms r�u� v� w� by the set�theoretic
formula �u� v� w� � z� Now �x expresses that for some set y and some
ternary relation z over y� x is the model �y� z�� whereas �� holds�

��� Assume that V 	 A is not �rst�order de�nable �De�nition 	���� on
the L�model A and that �A� V � is recursively saturated� Show that a � V

and b � A� V exist such that �A� a� � �A� b��
Hint� Show that the recursive type fU�x��U�y�g � f��x� � ��y� j � is
an L�formulag is �nitely satis�able in �A� V � �U the symbol for V ��

Exercise �

 can be used to prove the following result� A �rst�order
de�nition over a model is a parametrical one if it employs an assignment
over the model involved� Thus� ��x� y�� � � � � yn� de�nes the set fa � A j
A j� ��a� a�� � � � � an�g over A� using the parameters a�� � � � � an�

���� Chang	Makkai Theorem� If V 	 A is not parametrically �rst�
order de�nable on the countable model A and �A� V � is recursively satu�
rated� then there exist ����many sets V � 	 A such that �A� V �� �� �A� V ��

Example� If A is a proper elementary extension of the standard model of
arithmetic� then N is not parametrically �rst�order de�nable in A � There�
fore� any countable recursively saturated equivalent of �A� N � has ����many
initial elementary submodels�

Exercises

��
 � Prove Theorem ��
��

��� Give an example of a model pair of �equivalent� recursively saturated
models that itself is not recursively saturated�
Hint� Choose a model with uncountably many types and two recursively
saturated equivalents that do not realize the same ones�

��� Applications

The following result is Robinson�s Consistency Theorem�

���� Consistency Theorem� Suppose that T� and T� are sets of L��
respectively L��sentences and that L � L� � L�� If there is no L�sentence
� such that both T� j� � and T� j� �� then T��T� has a �L��L���model�

Proof� Assume the conditions of the theorem�
Claim� Without loss of generality� it may be assumed that T� � T� is a
complete L�theory�

��
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Proof� De�ne T �
� �� T� � f� j � is an L�sentence s�t� T� j� �g� By

Compactness and assumption� T �
� is satis�able� Let A j� T �

�� Put

T �� Th�A j L��

the set of L�sentences true in A� Then T��T is satis�able �by A �� T��T is
satis�able �otherwise� by Compactness� for some � � Th�A j L� you would
have T� j� �� hence� � � T �

��� T � �T� � T � � �T� � T � is complete� and
there is no L�sentence � such that both T� � T j� � and T� � T j� ��

Now� let �A��A�� be a countable recursively saturated model pair such
that A� j� T� and A� j� T�� Since T� � T� is a complete L�theory� we have
that the L�reducts of A� and A� are equivalent� A� j L � A� j L� By
pseudo�uniqueness� A� j L �� A� j L� But then the isomorphism can be
used to copy �say� the �L��L��structure from A� to A�� thereby expanding
A� to the required model of T� � T�� a

Theorem ��
� has two well�known corollaries that were originally ob�
tained independently� using no model theory at all� The �rst one is the
Interpolation Theorem�

���� Interpolation Theorem� If j� �� � ��� then there exists � �an
interpolant	 such that j� �� � �� j� �� ��� and every non�logical symbol
of � occurs in both �� and ���

Proof� Apply Theorem ��
� to T� �� f��g� T� �� f��g and their re�
spective vocabularies� An interpolant is the same as a sentence � in the
common part of these vocabularies such that T� j� � and T� j� �� a

���� Corollary� Disjoint ��
��classes of models can be separated by an

elementary class
 every ��
��class of models is elementary� a

The L � frg�theory T de�nes the relation symbol implicitly if every
L�model has at most one L � frg�expansion that is a model of T � and it
de�nes r explicitly if for some L�formula � � ��x�� � � � � xk� �the de�ning
formula��

T j� �x� � � � �xk�r�x�� � � � � xk�� ��

�that is� � de�nes the interpretation of r in every model of T �� Long ago�
Padoa made the trivial but useful observation that a relation symbol that
is not de�ned implicitly cannot be de�ned explicitly� Beth showed that
this method of proving non�explicit de�nability is �complete�� i�e�� if T
does not de�ne r explicitly� this can always be demonstrated by giving two
models witnessing non�implicit de�nability of r by T � This result is known
as the De�nability Theorem�

���� De�nability Theorem� If T de�nes r implicitly� then T de�nes r
explicitly�

Proof� Assume that the L � frg�theory T de�nes r implicitly� Let T � be
the L�fr�g�theory obtained from T by replacing the symbol r by r�� Then

��
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the hypothesis can be rendered as T � T � j� �x�r�x� � r��x��� Choose a
fresh individual constant c� Then we also have T � T � j� r�c�� r��c�� By
Compactness� choose a conjunction � of T �sentences such that

f����g j� r�c�� r��c��

�Of course� �� is the translated ���
Rewriting� you obtain j� � � r�c� � ��� � r��c��� By Interpolation�

obtain an L � fcg�sentence � � ��c� such that

j� � � r�c�� ��c����

and
j� ��c�� ��� � r��c����	�

By ���� T j� �x�r�x�� ��x�� by �	�� T j� �x���x�� r�x��� Therefore� �
explicitly de�nes r in T � a

Note that if B is a homomorphic image of A� then every positive sen�
tence true in A is satis�ed by B� positive sentences are preserved by ho�
momorphisms� Using the modi�cation Eh of the Ehrenfeucht game that
is adequate with respect to positive formulas� you obtain a converse� the
Homomorphism Theorem�

���� Homomorphism Theorem� Every sentence preserved by homo�
morphisms has a positive equivalent�

Proof� Assume that � is preserved by homomorphisms� Put P �� f� j
� is positive and j� � � �g� By Compactness� it su�ces to establish
P j� �� Arguing by contradiction� assume that P � f�g has a model B�
Let N � NB be the set of sentences � where � is a positive sentence not
satis�ed by B�
Claim� N � f�g is satis�able�
Proof� Otherwise �by Compactness� � j� �� � � � � � �n for �nitely many
positive �i false in B� But then �� � � � � � �n � P � contradicting the
assumption on B�

The claim shows that a countable recursively saturated model pair
�A�B� exists such that B satis�es P � f�g and A satis�es NB � f�g�
By Proposition ����� B is a homomorphic image of A� By assumption on
�� it follows that B j� �� Contradiction� a

���
 Resplendency� The L�model A is called �strongly	 resplendent if for
every computable type � � ��x�� � � � � xn� in a vocabulary L� that expands
L with at most �nitely many new symbols� and all a�� � � � � an � A the
following holds�

if some elementary extension of �A� a�� � � � � an� can be expanded to an
L� � fa�� � � � � ang�model of ��a�� � � � � an�� then �A� a�� � � � � an� itself can
be so expanded�

��
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�In the usual de�nition of this notion� the type � is a singleton��
Note that recursive saturation coincides with the special case of resplen�

dency where L� � L consists of exactly one constant symbol� Thus

���� Corollary� Every resplendent model is recursively saturated� a

The hypothesis of the condition of the de�nition of resplendency has a
number of equivalents� summed up by the following lemma�

��� Lemma� Let A� L� and � be as in De�nition ���� Then the follow�
ing conditions are equivalent�

�� some elementary extension of �A� a�� � � � � an� can be expanded to a
model of ��a�� � � � � an��

�� ELDIAG�A� � ��a�� � � � � an� is satis�able�

	� Th��A� a�� � � � � an�� � ��a�� � � � � an� is satis�able�

�� for every L�formula � � ��x�� � � � � xn� s�t� � j� �� A j� ��a�� � � � � an��

Proof� Left as Exercise ���� a

���� Theorem� Every countable recursively saturated model is resplen�
dent�

Proof� In fact� you can make sure that the required expansion is recursively
saturated again� �Without this requirement the proof below can be simpli�
�ed in that you only need to enumerate sentences instead of types�� This
is another modi�cation of the Henkin argument�

Using formulation ��
���� assume that A is a countable recursively satu�
rated L�model� that L 	 L�� and that T is a computable set of L��sentences
the L�consequences of which are valid in A � �We don�t mind the param�
eters from A in T � if A is recursively saturated� then so are its simple
expansions using �nitely many elements��

You �nd a recursively saturated L��expansion of A satisfying T as fol�
lows� Fix an enumeration of all sets � � ��x� a�� � � � � ak� where ��x� y�� � � � �
yk� is a computable set of L��formulas and a�� � � � � ak � A� Construct

T� � T 	 T� 	 T� 	 � � �

and
A� � � 	 A� 	 A� 	 � � � 	 A

such that for all n�

�� An is �nite and Tn is a computable set of L��An�sentences all L�An�
consequences of which are satis�ed by the L�An�expansion �A� a�a�An
of A �

�� if � � ��x� a�� � � � � ak� is the n�th set of the enumeration� then either
for some a � A� ��a� a�� � � � � ak� 	 Tn��� or for some �nite � � 	 � �
�x

V
� ��x� a�� � � � � ak� � Tn���

��
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Assume that this construction can be carried out� Let T � be the set of
logical L �A�consequences of some Tn� Then�

a� T � is satis�able �by ���

b� T � is maximally satis�able�
For� assume that � �� T � is an L� � A�sentence� Suppose that � �
fx � x��g is the n�th set� By �� �x� � Tn�� therefore� � � T ��

c� T � has the Henkin property�
For� if �x��x� � T �� consider � � f��x�g and use ��

d� ELDIAG�A� 	 T �� �By � and b��

Thus� the canonical model of T � is �up to isomorphism� an L��expansion
of A � It is recursively saturated by ��

To see that you can carry out the construction� let ��x� a�� � � � � ak� be
the n�th set� Put B �� An � fa�� � � � � akg� Consider

	�x� �� f��x� j � is an LB�formula such that Tn � ��x� j� ��x�g�

Tn � � is computable� Therefore� by the Completeness Theorem from Ap�
pendix A �see Lemma A����� 	 is computable as well� Since A is recursively
saturated� there are two possibilities�

�i�� 	 is satis�ed by some element a � A in �A� b�b�B � De�ne

Tn�� �� Tn � ��a� a�� � � � � ak�

and An�� �� B � fag� Now the �rst alternative of � above is satis�ed�
We check that � holds as well� Assume that Tn�� j� ��a� where ��x�
is an LB�formula� If a �� B� then Tn � ��x� j� ��x�� ��x� � 	� and
�A� b�b�An�� j� ��a�� If a � B� then we have� nevertheless� that

Tn � ��x� j� �x � a� ��x���

thus �x � a� ��x�� � 	� and in �A� b�b�An�� the formulas �a � a� ��a��
and ��a� are satis�ed�

�ii�� For some �nite 	� 	 	� �A� b�b�B j� �x
V
	�� By Compactness�

choose a �nite � � 	 � such that Tn � � ��x� j�
V
	�� De�ne

Tn�� �� Tn � f�x
�

� �g and An�� �� An�

Now� the second alternative of � is satis�ed� We check that � holds� Assume
that Tn�� j� � where � is an LB�sentence� Then Tn logically implies
�x

V
� � � � and �by choice of � �� �x

V
	� � �� By �� this is valid in

�A� a�a�B � Thus� �A� a�a�B j� �� a

��
� Lemma� Every resplendent model lives in some non�standard model
of set theory�

Proof� �Sketch�� Let A be resplendent� Choose a superset V � A of A such
that V�A has the same power asA �if A is in�nite� or is in�nite �otherwise��
Then the model pair �V�A� is resplendent as well� By Lemma ���	� some

��
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elementary extension of A lives in a non�standard model of set theory� By
resplendency of �V�A�� A itself lives in such a model �V� 
�A�� a

��
� Corollary� For a countable model A� the following are equivalent�

�� A is recursively saturated�

�� A is resplendent�

	� A lives in a non�standard model of set theory�

Proof� Use Theorem ��
�� Lemma ���� and Proposition ����� a

An argument similar to the one for Lemma ���� produces the follow�
ing result� For the notion of an ��complete ultra�lter� see Exercise �		
�page �
��

��
� Proposition�Every ultraproduct that uses a non���complete ultra�l�
ter lives in a non�standard model of set theory�

Proof� Let A �
Q

F Ai� where F is a non���complete ultra�lter� Consider
the giant models Vi � �V���Ai� that simply expand the set�theoretic uni�
verse �V��� with a constant Ai� These form an ultraproduct

Q
F �V���Ai�

that� by the method of Exercise �		� is seen to be non�standard� Note that
A is �isomorphic to� its element j�i�Aij� a

Here is an application to elementary monotone operators� The relevance
for �xed point logic is restricted� the expansion of a resplendent model with
just one �xed point need not be resplendent any longer�

��
� Proposition� Let M be a non�standard model of set theory� If �
is an M�de�nable monotone operator� then both upward and downward
closure ordinals of � are at most ��

Proof� For instance� consider the least �xed point �� of �� Since ��� 	 ���
by ��induction it su�ces to show that ������ 	 ���� Working towards
a contradiction� assume that a � ������ � ���� In M� �re�construct the
�xed point hierarchy for � over all of M�s natural numbers �standard and
non�standard�� Since � is de�nable over M� it does not matter how you
read ��n �as de�ned over M or not� for n standard� Let m � M be any
non�standard integer� Then m�� is non�standard as well� For all standard
n� n  m� �� and hence ��n 	 ���m� �� therefore�

��� �
�

n

��n 	 ���m� ��

and
a � ������ 	 �����m� ��� � ��m�

Since �by assumption on a� for all standard n� a �� ��n� by Overspill ����
there exists a non�standard m such that a �� ��m� a contradiction� a

��
� Corollary� The Scott rank of a model that lives in a non�standard
model of set theory is at most ��

��
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Compare the next result to Proposition �����

��
� Corollary� If A � B and the model pair �A�B� lives in a non�
standard model of set theory� then A and B are partially isomorphic�

Proof� By Proposition 	�
�� the set of positions in which Sy has a winning
strategy for the in�nite game is a greatest �xed point of an operator that
is easily seen to be de�nable� a

Example� It is not true that models of Scott rank at most � always live
in a non�standard model of set theory� For instance� the linear ordering �
does not live in a non�standard model but does have Scott rank ��

Proposition ���	 has an obvious generalization to the case of set�
theoretic models that have non�well�founded ordinals but where non�well�
foundedness only starts at an ordinal � ��

Lindstr�om�s Theorem is the following result�

��

 Lindstr�om�s Theorem� First�order logic is a maximally expressive
logic for which Downward L�owenheim�Skolem� and Compactness Theorems
hold�

Proof� Of course� the wording of this result is far from precise� For
instance� we have not de�ned the general notion of a logic� Nevertheless�
we hope to transmit the gist of the result by the following proof�

Logic�
a scheme Z that for any vocabulary L determines a set Z�L� of sentences
and a satisfaction relation j� between L�models and Z�L��sentences such
that

� isomorphic models have the same Z�theory
�note that for the logics discussed here it is straightforward to gener�
alize Theorem ��	��

� syntactical transformations familiar from �rst�order logic� such as
renaming of symbols� relativization etc�� are de�ned for Z�sentences
as well �and have the usual semantic properties��
�In fact� what you need is Exercise �
� for Z��

Furthermore� assume maximality�

� Z accommodates the usual propositional connectives �with their
usual semantic properties��

� every �rst�order sentence is a Z�sentence as well �and has its usual
meaning��

By the Downward L�owenheim�Skolem theorem for Z is meant that every
countable satis�able set of Z�sentences has a countable model� Compact�
ness is taken in the usual formulation�

��
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Examples� ��
��mon� satis�es downward L owenheim�Skolem and Com�

pactness� but has no negation in�nitary logic with countable conjunctions
and disjunctions satis�es downward L owenheim�Skolem but is incompact�
and the same goes for �xed�point logic�

��
� Proposition� Fixed�point logic satis�es the downward L�owenheim�
Skolem Theorem�

Proof� Suppose that A satis�es the �xed�point sentence �� Of course� A
lives in the set theoretic universe �V��� which contains all ordinals needed
to calculate the �xed point hierarchies up to closure for the operators re�
ferred to by �� Let V � � V be a countable elementary subsystem containing
A as an element� The part of A contained in V � is the required submodel
A� of A satisfying �� �Note that the ordinals of V � su�ce to build the
hierarchies over A� up to closure� as V � � V �� a

What is shown is the following� assuming Z to be a logic with the
required properties�

Claim� Every two elementarily equivalent models satisfy the same Z�
sentences�

Corollary� Every Z�sentence has a �rst�order equivalent�

Proof of Corollary� �Compare Exercise ����� Suppose that ! is a Z�
sentence� Let � be the set of its �rst�order consequences� If you can show
that � j� !� then �by Z�compactness� ! follows from a �nite subset � 	 ��
and hence ! has the equivalent

V
�� So� assume that A j� �� Suppose that

A j� !� Then Th�A� j� !� For� if B j� Th�A�� then B � A� and hence
B j� ! by the Claim� By Z�compactness� for some �nite � 	 Th�A� you
have � j� !� Thus� ! j� 

V
�� 

V
� � �� A j� 

V
�� contradicting

� 	 Th�A�� a

Proof of the Claim� Assume that A and B are elementary equivalent L�
models� but that ! is a Z�sentence true in A but false in B � Since Z
accommodates the required syntactic transformation � �� �x� all of this
can be expressed as statements about the �model� �V���A�B�� here� we
have truth of all ZF�axioms� all equivalences �A � �B �� a �rst�order
L�sentence�� !A and !B�

From Compactness and Downward L owenheim�Skolem applied to this
set of Z�sentences� plus a type that enforces a non�standard integer� you
obtain a countable non�standard model of set theory in which live elemen�
tary equivalent models A and B that are distinguished by !� Now either
via Proposition ���� or Corollary ���
 applied to the model pair �A�B�� by
pseudo�uniqueness you obtain that A �� B � contradicting the �rst basic
assumption on Z�

For a more direct proof� see Exercise ��
� a

�	
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Exercises

�� Lyndon�s strengthening of the Interpolation Theorem ��
� states that
if j� �� � ��� then there exists an interpolant � with the extra property
that every non�logical relation symbol that occurs positively �negatively�
in � occurs positively �negatively� in both �� and ��� Prove this�

The extra requirements on occurrences of relation symbols cannot be
extended to constant or function symbols� Construct examples that illus�
trate this�
Hint� Lyndon�s result can be obtained as a corollary to ��
�� Use the fact
that if r only occurs positive in � and �� is obtained from � by replacing
r by the new symbol r�� then �by monotonicity� j� � � �xr��x� � ���
Similarly� if r only occurs negatively� then j� �� � �xr�x�� ��

��� � Show that every model of the positive logical consequences of a
theory is elementary submodel of the homomorphic image of a model of
that theory�

�
� In the context of �xed�point logic it was remarked that if � is an r�
positive L�frg�sentence� A an L�model and S� 	 S� 	 A� then �A� S�� j� �

implies �A� S�� j� ��
Now assume that � is an L� frg�sentence with this preservation prop�

erty� Show that it has an r�positive equivalent�
Hint� For a start� use the game Er�pos and Proposition 	�
��

�
� Prove Lemma ��
��

�
� Let T be an L � frg�theory with the property that for every model
�A� R� j� T �where A is an L�model and R interprets r�� every automor�
phism of A is an automorphism of �A� R� as well� Show that a �nite set !
of L�formulas exists such that whenever �A� R� j� T � then R is de�ned on
A by some formula from !�
Hint� Apply Exercise �

�

�
� Assume that B 	 A is �rst�order de�nable in the resplendent model
A� Show that B is �nite or jBj � jAj�

�
� Show that every in�nite resplendent linearly ordered model embeds
��

�
� Complete the following direct proof of Lindstr om�s Theorem� that is�
assuming that A � B� show that A and B satisfy the same Z�sentences
�under suitable conditions on the logic Z��

Suppose that A � B and� moreover� that the Z�sentence ! is satis�ed
in A but not in B� For n a natural number� consider the expanded model
pair Mn � �A�B� R�� � � � � Rn�� where the �i�ary relations Ri 	 Ai � Bi

�i � �� � � � � n� are de�ned by

Ri�a�� � � � � ai� b�� � � � � bi� �� �A� a�� � � � � ai� �
n�i �B� b�� � � � � bi��
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The model Mn satis�es sentences expressing that

�� ! is true in A but false in B�

�� if i � n and Ri�a�� � � � � ai� b�� � � � � bi� holds� then f�a�� b��� � � � � �ai� bi�g
is a local isomorphism between A and B�

	� a� R� �which has � arguments� is true �of the empty sequence��
b� if i  n and Ri�a�� � � � � ai� b�� � � � � bi� holds� then for all a � A

there exists b � B such that Ri���a�� � � � � ai� a� b�� � � � � bi� b�� and
vice versa�

By the Downward L owenheim�Skolem and Compactness Theorem for Z�
there is a countable complex �A�B� R�� R�� R�� � � �� with an in�nite sequence
R�� R�� R�� � � � that satis�es these requirements for every i� By requirements
� and 	 it follows that A �� B� However� this contradicts requirement ��

Bibliographic remarks

The proof of Compactness is a modi�cation of the Henkin proof of the
Completeness Theorem from Appendix A�

Exercise ��� is due to Szpilrajn� Exercise ��	 to Erd os and de Bruijn�
Results such as these can already be carried out using Compactness for
the propositional calculus� The crucial set of propositional formulas for
Exercise ��	 in the context of �nite graphs is instrumental in obtaining
a polynomial reduction of the graph�colorability problem to propositional
satis�ability�

The notion of a Horn formula is due to Alfred Horn �On sentences which
are true of direct unions of algebras� Journal of Symbolic Logic �����"����
though his notion is more general� The de�nition used here comes from
logic programming theory�

Theorem ���� goes back to #Los� ���

��
Two sources for Theorem ���� are Ryll�Nardzewski ��
� and Svenon�

ius ��
��
A elegant introduction to �"� laws is Gurevich ����� An original source

is Fagin ����� For the �"��law for �xed�point logic� see� for instance�
Blass et al� ���
�

On the class of �nite models with ordering� the subclasses that have a
polynomial time decision problem coincide with those de�nable by a �xed
point formula� �Fagin and Immerman� independently��

For the curious history of recursively saturated models �via in�nitary
admissible languages�� see Barwise and Schlipf ����� This is also the source
for the notion of resplendency�

The Consistency Theorem ��
� is due to A� Robinson�
The Interpolation Theorem ��
� is from Craig ��
�� For the De�nabil�

ity Theorem ��
�� see Beth ��
	� The three results were found indepen�

	�
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dently and proved by quite different means. (Craig used proof theory and
Beth employed his tableaus.)

The Homomorphism Theorem 4.55 is due to Lyndon 1959b.
Theorem 4.59 is due to Ressayre 1977.
Theorem 4.66 is from Lindström 1969. The proof in the text is in

the spirit of Friedman’s rediscovery of this result; the one indicated in
Exercise 165 is closer to the original. In Doets 2001 the method of this
exercise is applied to obtain the other classical theorems of this chapter
such as interpolation.

A general reference for the abstract notion of a logic is Barwise 1985.
The Lyndon Interpolation Theorem from Exercise 158 is from Lyndon

1959a.
The result in Exercise 162 is due to Svenonius.
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Deduction and Completeness

The subject of this appendix� the Completeness Theorem for �rst�order
logic �with respect to a system of natural deduction�� does not properly
belong to model theory� The reasons to include it here are �i� the method
of proof is a simple modi�cation of the one used in Section ���� and �ii� its
addition makes the book more self�contained as a �rst�order logic text�

The Completeness Theorem and its companion� the Soundness Theo�
rem� show that there is an adequate combinatorial approach to the notion
of logical consequence that is close to the usual notion of a mathematical
proof� Cf� A��� for a further elaboration of the meaning of these results�

Completeness and soundness show that a ��rst�order� sentence follows
logically from certain ��rst�order� sentences if and only if it has a proof
from those sentences� in a suitable system of deduction� This appendix
explains a system of natural deduction� which is based on the following
choice of logical primitives�

� � �falsum�� which stands for a �by de�nition� false sentence�

� � and �� implication and conjunction�

� �� the universal quanti�er�

Other logical constants are assumed to be de�ned from these� by

� �� �� �

�� � �� ��� �� � �� � ��

� � � �� �� �

�x� �� �x��

Formally� a derivation is a tree of formulas� constructed according to
certain derivation rules� Every logical constant has its own rules usually�
an introduction and an elimination rule� The root of such a tree is the
conclusion of the derivation� that is� the formula proved by it� The leaves
of the tree are its hypotheses � except when such a leaf has been discharged�

	�

	�
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A�� Rules of Natural Deduction

The following table visually presents the rules for ����� and �� In them�
the derived formula has been put under a horizontal bar� Discharge of
hypotheses �in the ��rule and the ��introduction rule� is indicated by
putting the formula between square brackets � and ��

introduction elimination
��� ��

� none
���
�
�

���

�
��� � �� �

� �

�� �

� � � � � � � � �

� � � � �

� ��x� �x ��x�

�x ��x� ��t�

The precise de�nition of what constitutes a derivation involves the no�
tion of an identity axiom�

A�� Identity Axioms� These are all formulas of one of the following
shapes� Here� t� s� u� s�� � � � � sn� t�� � � � � tn are arbitrary terms �variables
allowed�� f is an n�ary function symbol and r is an n�ary relation symbol�

�� t � t�

�� s � t� t � s�

	� s � t� �t � u� s � u��

�� s� � t� � �� � � �sn � tn � f�s�� � � � � sn� � f�t�� � � � � tn�� � � ���


� s� � t� � �� � � �sn � tn � �r�s�� � � � � sn�� r�t�� � � � � tn��� � � ���

A�� Lemma� Identity axioms are logically valid�

Proof� This is Exercise ���� a

Now follows the precise� inductive de�nition of what constitutes a
derivation�

A�� Derivation� Conclusion� Hypotheses� their Discharge�

��� A tree consisting of a single formula is a �rudimentary� derivation�
The conclusion of such a derivation is the formula itself� Similarly� its
only hypothesis is the formula itself� unless this formula is an identity
axiom� in which case the derivation has no hypotheses�

	�
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��E� ���elimination� If D is a derivation with conclusion � � �� then the
two trees obtained from D by putting � respectively � underneath
as a new root are also derivations� The �rst has conclusion �� the
second has conclusion �� The hypotheses of these new derivations
are the same as those of D�

��I� ���introduction� If D� and D� are derivations with conclusions � and
� �or vice versa�� then the tree obtained by joining D� and D� with
� � � as a new root is also a derivation� The conclusion of this
derivation is � � �� Its hypotheses are those of D� plus those of D��

��E� �MP� Modus Ponens� ��elimination� If D� and D� are derivations
with conclusions � respectively �� � �or vice versa�� then the tree
obtained by joining D� and D� with � as a new root is also a deriva�
tion� Its conclusion is �� Its hypotheses are those of D� plus those of
D��

��I� �D� Deduction�rule� ��introduction� If D is a derivation with conclu�
sion �� and � is an arbitrary formula� then the tree obtained from D
by putting � � � below it as a new root is also a derivation� The
conclusion of this tree is �� �� Its hypotheses are those of D minus
� � is said to be discharged�

��� �RAA� Reductio ad Absurdum ��rule� Suppose that D is a deriva�
tion with conclusion � and let � be an arbitrary formula� The tree
obtained from D by putting � beneath it as a new root is also a
derivation� Its conclusion is �� Its hypotheses are those of D� minus
� �� �� ��� Again� � is said to be discharged�

��I� �G� Generalisation� ��introduction� Let D be a derivation with con�
clusion � and x a variable that is not free in a hypothesis of D� The
tree obtained from D by putting �x� underneath as a new root is
also a derivation� Its conclusion is �x�� Its hypotheses are the same
as those of D�

��E� �I� Instantiation� ��elimination� Let D be a derivation with conclu�
sion �x��x� and let t be a term that is substitutable for x in �� �Cf�
Exercise �� page ��� The tree obtained from D by putting ��t� un�
derneath as a new root is also a derivation� Its conclusion is ��t�� Its
hypotheses are the same as those of D�

Warning for the restrictions on the application of ��rules� The one on
generalisation looks simple� but it is easily overlooked� The reason is that
the rule is applied at the bottom of a derivation tree� whereas you have to
check whether the relevant variable is not free high up the tree�

A�� Example Derivations�

�� � � ��z�� y is not free in ��z� and is substitutable for z in �� A
derivation of �y��y� with hypothesis �z��z��

	�
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�z��z�
I

��y�
G

�y��y�

�� A derivation without hypotheses of �x�y�r�x�� r�y���
N�B�� � has been de�ned as �� and  � � � in turn has been de�ned as
� � � � �� The formula derived therefore really is

�x��y�r�x�� r�y�� ��� ��

Hypotheses discharged and the rule that accomplishes the discharging have
been labeled by the same number�

�r�x��� �r�x���
MP

�
RAA

r�y�
D��

r�x�� r�y�
G

�y�r�x�� r�y��

��x��y�r�x�� r�y�� � ����
I

�y�r�x�� r�y��� �
MP

�
RAA��

r�x�
G

�xr�x�
I

r�y�
D

r�x�� r�y�
G

�y�r�x�� r�y��

��x��y�r�x�� r�y��� ����
I

�y�r�x�� r�y�� � �
MP

�
D��

�x��y�r�x�� r�y�� � ��� �

This example is rather arti�cial � but of course� so is the derived formula�

Suppose� furthermore� that the variable x is not free in the formula ��
Below follow �	a$b� the provable equivalence of

�x��x�� � with �x���x�� ���

and �	b$c� that of

�x��x�� � with �x���x�� ���

There is nothing against trying yourself �rst%

	a� Here follows a derivation of �x��x�� � that uses the formula

�x���x�� ��

as a hypothesis�

	�
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�x���x�� ��
I

��x�� � ���x���
MP

� ����
MP

�
D��

��x�
G
�x��x� ��x��x���

MP
�

RAA��
�

D��

�x��x�� �

	b� Likewise� a derivation of �x���x�� �� with hypothesis �x��x�� ��

��x��x���
I

��x� ���x���
MP

�
D��

�x��x� �x��x�� �
MP

�
D��

��x�� �
G
�x���x�� ��

	c� Likewise� a derivation of �x��x�� � with hypothesis �x���x�� ���

��x��x���
I

��x� ���x�� ���
MP

�
D��

�x�� �
D��

��� ��� ��x�� ��
G
�x���� ��� ��x�� ���

This derivation is completed by derivation 	a �where the roles of � and
� from 	a now are being played by � � � and �x� � ��� plus one
application of modus ponens� involving the hypothesis�

	d� Likewise� a derivation of �x���x� � �� with hypothesis �x��x� � ��
Start as follows�

��x��� ����
G

��� ��

Using only propositional rules� �rst pursue with a derivation of �� and next
with a derivation of ��

	�
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���� ����
MP

�
D

�
D��

�� �

���
��� ��

MP
�

RAA�� �

����
D

�� �

���

��� ��
MP

�
RAA��

�

These newly derived formulas allow the following closing�o� �which is not
a derivation in itself� so the application of generalisation is allowed%��

���
�

G
�x� �x�� �

MP
�

���
�

MP
�

D��

�x��� ��

Exercises

�

 Prove Lemma A���

�
� Because of the restriction on the Instantiation Rule �E� the following
con�guration is not a derivation�

�x�y��x� y�
I

�y��y� y�

Produce a correct derivation with conclusion �y��y� y� and hypothesis
�x�y��x� y��
Hint� You may need �ve steps�

�
 Produce derivations without hypotheses for the following list of for�
mulas�

�� �x�y! �� �y�x!�

�� �x�!� &� �� ��x!� �x&� �x�!� &� �� ��x!� �x&��

	� �x�y! �� �y�x! �x�y! �� �y�x!�

�� �x�! �&� �� ��x! � �x&��

�
� Produce derivations without hypotheses for the following formulas�

�� �x�y�r�x�� r�y���

�� �x�y�r�y�� r�x���

	� �x�y�r�y�� r�x���

�� �x�y�r�y� x�� r�x� x���

Hint� As to 	� cf� Example A�����

A�� Derivable From� The formula � is derivable from the set of formulas
� if there is a derivation of which � is the conclusion� whereas all hypotheses
are members of �� Notation� � � ��

	�
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Notations like � �� ��� � � � � �n � �� and �� � � � are used to indicate
that � � �� f��� � � � � �ng � � and � � f�g � �� respectively�

Strictly speaking� this de�nition is relative to a given vocabulary� Thus�
more precise is� the notation � �L � �where L is some vocabulary� presup�
poses that � � f�g is a set of L�formulas� and indicates that a derivation
of � from � exists which consists entirely of L�formulas�

Exercises

��� �Elimination rule for ���

�� Suppose that ����x� � � and that x is not free in � or in a formula
of �� Show that ���x��x� � ��

�� Suppose that �� ��x� � � and that x is not free in � or in a formula
of �� Show that ���x��x� � ��

��� Suppose that the term t is substitutable for x in ��x�� Show that
��t� � �x��x� and that ��t� � �x��x��

��� Suppose that t � t�x� and that t� and t� are substitutable for x in
��x�� Show that

�� t� � t� � t�t�� � t�t���

�� t� � t�� ��t�� � ��t���

��� In Example A���� you �nd a derivation of �y��y� from �x��x� that
involves a generalisation with respect to y� Suppose that � � �x��x�� and
that y is substitutable for x in �� Show that � � �y��y� � even if y is free
in a formula of ��

��� Which one of the two sentences

�� �x�r��x� � r��x�� � ��xr��x� � �xr��x���

�� �x�y�r��x� � r��y�� � ��xr��x� � �yr��y��

is logically valid' Produce a derivation which has no hypothesis�

��� �Prenex Normal Forms�� A prenex �normal	 form is a formula which
begins with a sequence of quanti�ers �the pre�x � after which a quanti�er�
free formula �the matrix � follows� �Since � has been de�ned here as �
one should in fact say� a pre�x is a sequence of universal quanti�ers and
negation symbols��

Prenex Normal Form Theorem� Every formula has an equivalent in
prenex normal form�

�For equivalent you can read both logical and provable equivalence here��
Show this�
Hint� The proof of provable equivalence uses Example A���	�

		

For personal use



�

 � Basic Model Theory

A�� Soundness

A�
 Lemma� Suppose that D is a derivation� A a model and � an A�
assignment� If � satis�es every hypothesis of D in A� then it also satis�es
the conclusion of D in A�

Proof� Argue by induction with respect to derivations� Here are a few
examples�
�� D � f�g is rudimentary�
�i� � is hypothesis of D� Trivial�
�ii� � is an identity axiom� By Lemma A��� identity axioms are logically
valid�
�� The last rule that is applied in D is RAA�
For instance� D is formed from a subderivation that derives � by putting �
underneath and discharging �� By induction hypothesis� you may assume
that every assignment that satis�es the hypotheses of this subderivation
also satis�es �� This in fact means that no assignment can satisfy all
hypotheses of the subderivation� as� by de�nition� no assignment satis�es
�� Now suppose that the assignment � satis�es all hypotheses of D in
the model A� It cannot satisfy � �since otherwise� all hypotheses of the
subderivations are satis�ed�� Therefore� it satis�es ��
	� The last rule that has been applied in D is �E�
For instance� the conclusion ��t� is drawn by means of �E from the next�
to�last formula �x��x� of D� and t is substitutable for x in �� According
to the induction hypothesis �applied to the subderivation of D that derives
�x��x��� �x��x� is satis�ed by � in A� Now use that �x��x� j� ��t�� �Cf�
Exercise �� page ���
�� The last rule applied in D is �I�
For instance� the conclusion �x��x� of D is drawn using �I from the next�
to�last formula ��x� of D� whereas x is not free in a hypothesis of the
subderivation of D that derives ��x�� Suppose that � satis�es every hy�
pothesis of D inA� We want to show thatA j� �x����� I�e�� for an arbitrary
element a of the universe of A it must be shown that A j� ���xa�� where �

x
a

is the modi�cation of � that maps x to a �cf� De�nition ���� page 
�� As x
is not free in a hypothesis of D� it follows that these hypotheses are satis�
�ed by �xa as well �cf� Exercise �� page ��� An application of the induction
hypothesis to �xa and the subderivation shows that A j� ���xa�� a

A�� Soundness Theorem� � � � � � j� ��

Proof� Immediate from Lemma A��� a

��
 Exercise� Consider the set f�� �
�
� �g as a set of truth values

�� �False� � �True� �

�
��In between��� De�ne the truth value of �� � to

be � if the truth values of � is � that of � and let it be the truth value of

�
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� otherwise� � always obtains value �� the value of � � � is the minimum
of those of � and ��

Check that the propositional rules remain sound if RAA is modi�ed
in such a way that it no longer is capable of discharging hypotheses� I�e��
if D is a derivation in which only propositional rules have been applied
that derives � from � and in which no hypothesis is discharged under
an application of RAA� and � is a truth assignment 	allowing �

�

� then

minf�	�
 j � � �g � �	�
 	where �	�
 is the truth value of � that is
calculated by means of �
�

Show that every derivation of ��p � p 	where p is any atom not
involving �
 discharges a hypothesis using RAA�

A�� Completeness

A���� Consistency

A�� Consistency� A set of sentences � is consistent if � �� ��

Note that from an inconsistent set you can 	by RAA
 derive every
formula�

Also note� the following bears no relation to Theorem ���� although
both results carry the same name�

A�� Consistency Theorem� Every consistent set of sentences has a
model�

Proof� Cf� Subsection A����� a

A��� Completeness Theorem�A sentence that logically follows from a
set of sentences can also be derived from that set� � j� � 	 � � ��

Proof� See Exercise ���� a

A��� Corollary� � j� � 
 � � ��

Proof� Theorems A�� and A���� a

A��� Positive and Feasible Decision Methods� The notion of a log�
ically valid sentence is positively decidable� This means� there is an algo�
rithmic method � one that can� at least in principle� be carried out by a
computer � that allows you to ascertain logical validity of a formula in
the case that� indeed� the formula is logically valid� However� the method is
of no use when confronted with formulas that are not logically valid� The
method is based on Theorem A���� Thus� if you want to know whether a
given sentence happens to be logically valid� all you need to do is to gener�
ate 	or to have generate
 in some systematic order� all possible derivations
and to check whether one of them constitutes a hypothesis�free derivation
of the sentence in question�

If your sentence is indeed logically valid� this method lets you know for
sure� Unfortunately� if your sentence is not logically valid� you will never

���
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become aware of this fact� For� you will never be sure that� some day� a
derivation of the required form will turn up�

A similar observation holds for the notion of being a logical consequence
of a given concrete 	more precisely� recursively enumerable
 set of axioms�

An obvious question now is� whether this partial decidability result can
be complemented by a method that allows you to ascertain non�logical
validity in the same sense� If that would be possible� you could use com�
puters to search for proofs 	at least� in principle
� However� the Theorem
of Church 	����
 states that this is impossible�

Logical validity for propositional formulas 	that do not contain quan�
ti�ers
 is decidable� for this� you only need to construct the truth table
of the formula and inspect its last column� 	Searching proof trees is not
necessary here�
 However� when your formula is composed using many
atoms� this truth�table method may not be feasible� the truth table of an
n�atom formula has �n rows� hence the time necessary to construct it is
an exponential function of the length of the formula� Algorithmic methods
are considered feasible only if they produce the required answer within an
amount of time that is a polynomial function of the length of the input
	i�e�� the number of steps in the algorithmic computation is bound by a
certain �xed power of the length of the input
� This requirement de�nes
the class P of polynomial problems� Satis�ability of propositional formu�
las is an example of a so�called NP problem� Cf� Theorem ���� and the
explanation preceding it� The single most important open question for
over � years in complexity theory 	P � NP�
 is whether NP problems
like propositional satis�ability admit of a polynomial algorithmic solution�
Propositional satis�ability happens to be NP�complete� which means that
a polynomial solution for this special case can be transformed into a poly�
nomial solution for any other of the many problems in NP� The informed
guess is that propositional satis�ability is not polynomially solvable� but a
proof of this is still lacking�

A��� Computable sequence� A set of formulas is computable if there
is an algorithmic method with which you can generate its elements one by
one� An enumeration ��� ��� ��� � � � that is algorithmically produced is
called a computable enumeration�

This notion of computability coincides with positive decidability� In�
deed� to positively decide membership in a computable set� you just have
to generate it and look whether the the object in question turns up� Con�
versely� if a set 	of formulas
 is positively decidable� you can obtain a com�
putable enumeration of its elements 	at least� if there are any
 by the
following method� Suppose that ��� ��� ��� � � � is an enumeration of all for�
mulas� During one minute 	say
� let the computer �gure out whether ��

is in the set� If the answer is positive� let �� be the �rst element of the

���
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enumeration to be constructed� Otherwise� give the computer two minutes
to �gure out whether �� is in the set� and the same amount of time to look
into this question with respect to ��� As soon as you get a positive answer�
you have a next element of the enumeration� Next� give the computer three
minutes to see whether �� is in the set 	if this is still undecided
� three
minutes to see whether �� is in it 	likewise
 and three minutes to work on
this question with respect to ��� Going on this way� eventually all members
of the set will be found and enumerated�

By the above discussion� the following is immediate�

A��	 Lemma� If � is computable� then so is f� j � j� �g�

Exercises

�

 Show that every set of sentences with a model is consistent�
Hint� Apply the Soundness Theorem�

�
� Derive the Consistency Theorem from the Completeness Theorem�

�
� Derive the Completeness Theorem from the Consistency Theorem�
Hint� Assume that � �� �� Use the rule RAA to show that � � f��g is
consistent�

��� Prove the Compactness Theorem using Corollary A��� 	which com�
bines Consistency and Soundness Theorems
�

��� Cf� the discussion in A���� Describe a feasible decision method for
satis�ability of propositional formulas in disjunctive normal form� 	So� if
P �� NP� then calculating disjunctive normal forms cannot be feasible�


A���� Consistency Theorem

This section contains a proof of the Consistency Theorem A��� The Com�
pleteness Theorem A��� follows by Exercise ���� The proof is obtained from
the one for the Compactness Theorem by replacing ��nitely satis�able� by
�consistent�� In some places� this modi�cation requires some rewriting�

Proof of the Consistency Theorem� Suppose that � is a consistent set of
sentences� By Lemma A��� there is a maximally consistent Henkin set
� � �� By Lemma A���� � has a model� and therefore � has a model as
well� a

A��� Maximally Consistent� Henkin� A consistent set of sentences
	in a given vocabulary
 is maximally consistent if it is not a proper subset
of a 	di�erent
 consistent set of sentences in the same vocabulary�

Recall that a set of sentences � is Henkin if for every existentially
quanti�ed sentence x�	x
 � � there is a constant symbol c such that
�	c
 � ��

Note that the notion of maximal consistency is relative to a vocabulary� just
like the notion of maximal �nite satis�ability� Otherwise� no maximally

���
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consistent set would exist� if � is consistent and c a constant symbol not
in a sentence from �� then � is a proper part of the set �� fc � cg which
is consistent as well�

A�� Lemma� Every consistent set of sentences has a maximally consis�
tent superset that is Henkin �be it in an extended vocabulary��

A��
 Lemma� Every maximally consistent set of sentences that is Henkin
has a model�

The proofs of these lemmas require a number of other ones�

A��� Lemma� Every consistent set of sentences has a maximally consis�
tent superset�

Proof� Cf� the proof of Lemma ���� Apply Zorn�s Lemma to the collection
of consistent supersets� ordered by inclusion� a

Compare the next Lemma to Lemma ����

A��� Lemma� Every consistent set � of L�sentences can be extended to
a consistent set �� of sentences in a vocabulary L� simply extending L such
that

if x�	x
 � �� then for some individual constant c � L�� �	c
 � ���

Proof� Add a new constant c� 	a witness
 for each existential L�sentence
x�	x
 and de�ne �� �� �� f�	c�
 j x�	x
 � �g� It must be shown that
�� is consistent� This is slightly harder than the corresponding detail in
the proof of Compactness� Again� a lemma is needed�

A��� Lemma� Suppose that � is a set of sentences� that � � �	x
� that
c does not occur in � or in a sentence of �� and that �� �	c
 � �� Then
��x�	x
 � ��

Proof� Assume that D is a derivation of � from � en �	c
� Choose a
variable z that does not occur in � or in a formula in D� In every formula
of D� replace c by z� The result is a derivation D� of � from � and �	z
�
	To see this� use induction on D�


Extend D� as follows�

� ��	z
��

	the derivation D�


�
D��

��	z

G

�z��	z

I

��	x

G

�x��	x
 x�	x

MP

�
This is a derivation of � from � and x�	x
�

���
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For the remainder of the proof� see Exercise ���� a

The proof of Lemma A��� is resumed�
A derivation of � from �� can only use �nitely many sentences as hy�
potheses� Therefore� assume that �� ��	c�
� � � � � �m	cm
 � �� Applica�
tion of Lemma A��� to � �� � � f��	c�
� � � � � �m��	cm��
g and � ��
�m shows that �� ��	c�
� � � � � �m��	cm��
�xm�m	xm
 � �� However�
xm�m	xm
 � �� Therefore� �� ��	c�
� � � � � �m��	cm��
 � ��

In the same way� ��	c�
� � � � � �m��	cm��
 are eliminated one by one�
Eventually� you �nd that � � �� But this contradicts the consistency of
�� a

Proof of Lemma A��	� Alternate Lemmas A��� and A��� in�nitely often�
Cf� Exercise ���� a

Compare the next result to Lemma ����

A��� Lemma� Suppose that � is maximally consistent and Henkin� Then�

�� � � � 	 � � ��

�� � �� ��

�� �� � � 
 � �� ��

�� � � � � � 
 ��� � ��

� �� � � � 
 � �� � or � � ��

�� x�	x
 � � 
 c 	�	c
 � �
�

�� �x�	x
 � � 
 �c 	�	c
 � �
�

Proof� �� If � � �� then � � f�g is consistent�
�� If � �� �� then� by maximality� we have that �� � � � and hence
	Deduction rule
 that � � ���

See Exercise ��� for the remaining parts� a

Proof of Lemma A��
� Compare the proof of Lemma ����
Suppose that � is maximally consistent and Henkin� De�ne the relation �
on the set of variable�free terms by

s � t � s � t � ��

The universe A of the model A for � to be constructed is the set of equiv�
alence classes jtj �� fs j s � tg�

Over this universe we have to de�ne constants� functions and relations
corresponding to the constant� function and relation symbols of the vocab�
ulary of ��
� Constants�
The interpretation cA of a constant symbol c is the corresponding equiva�
lence class jcj�

���
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� Functions�
Suppose that f is an n�ary function symbol� Its interpretation in A is
de�ned by fA	jt�j� � � � � jtnj
 �� jf	t�� � � � � tn
j�

It must now be veri�ed that the 	value of
 the right�hand side of this
de�nition of fA does not depend on the representatives chosen� Suppose
that jsij � jtij 	i � �� � � � � n
� That is� si � ti� i�e�� si � ti � � 	i �
�� � � � � n
� Then by Lemma A��� we have that f	s�� � � � � sn
 � f	t�� � � � � tn
 �
� 	using an appropriate identity axiom
� i�e�� f	s�� � � � � sn
 � f	t�� � � � � tn
�
hence jf	s�� � � � � sn
j � jf	t�� � � � � tn
j�

Although the model A is not yet completely de�ned� you can already
evaluate variable�free terms in it�

A��� Lemma� If t is a variable�free term� then tA � jtj�

Proof� See Claim � of the proof of Lemma ���� a

� Relations�
Suppose that r is an n�ary relation symbol� Its interpretation in A is
de�ned by rA	jt�j� � � � � jtnj
 �� r	t�� � � � � tn
 � �� Again it must be veri�ed
that 	the truth of
 the right�hand side of this de�nition does not depend
on the representatives chosen�

Finally� the proof is completed by the

Claim� For every sentence � we have that A j� � i� � � ��

Proof� Almost identical to the one of Claim � in the proof of Lemma ����
For the remaining details� cf� Exercise ��� a

Exercises

��� Fill in the details of the proof of Lemma A���� Why is the set con�
structed consistent� Why is it maximally consistent� Why is it Henkin�
Hint� For the last two questions� a sentence of this set already belongs to
the vocabulary of a certain stage in the construction�

��� In the proof of Lemma A��� you need� at the instantiation�step� that
x is substitutable for z in �	z
� Why is that true� Why has c not been
replaced by x immediately in D to obtain D��
Hint for the last question� Problems both with instantiation and generali�
sation steps in D�

��	 Complete the proof of Lemma A����
Hint� Part � requires that ��x� � ��x����

��� Complete the proof of Lemma A���� Verify that the de�nition of
relations is independent of the representatives� Complete the proof of the
Claim�
Warning� The logical constants here are �� �� � and ��

���

For personal use



Deduction and Completeness � ���

�� In the proof of the Consistency Theorem it looks as if only variable�
free identity axioms are being used� Why do you need identity axioms that
contain variables�

��
 � Consider � as a primitive� non�de�ned connective� Construct rules
for � that are sound and complete�

��� � Consider � as a primitive� non�de�ned connective� Construct rules
for � that are sound and complete�

��� In mathematical arguments the following pattern is often used� On
the basis of a premise x�	x
 one chooses an object c for which �	c
 holds�
The rest of the argument uses this object� nevertheless� the �nal conclusion
is supposed to follow on the basis of x�	x
 alone� Justify this pattern�

I�e�� suppose that c does not occur in � or in a formula of � and that
�� �	c
 � �� Show that ��x�	x
 � ��

This generalizes Lemma A���� Avoid using the Completeness Theorem�
Hint� Use Example A����a�

��� In mathematical arguments one sometimes �nds the following pat�
tern� On the basis of a premise �xy�	x� y
 one postulates the existence
of a function f such that �x�	x� f	x

 holds� The argument exploits this
function� Nevertheless� the �nal conclusion is supposed to hold on the basis
of the original premise� Justify this pattern�

I�e�� suppose that f does not occur in � or in a formula of �� that f	x

	or x
 is substitutable for y in �	x� y
� and that ���x�	x� f	x

 � �� Show
that ���xy�	x� y
 � ��
Hint� Use the Completeness Theorem� By Exercise ��� to any model A
of �xy�	x� y
 a 	Skolem
 function f � A � A can be found such that
	A� f
 j� �x�	x� f	x

 	where f is taken as interpretation of f
�

Bibliographic Remark

The Completeness Theorem 	be it for a di�erent deduction apparatus

is due to G�odel� The� now classical� method of proof used here is from
Henkin �����
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B

Set Theory

This appendix summarizes the set�theoretic preliminaries that you are sup�
posed to be familiar with when reading this book� But do not let it frighten
you� most of the previous chapters use only very little�

B�� Axioms

The standard system of �rst�order set�theoretic axioms is ZF� Zermelo�
Fraenkel set theory� It has two primitives� the notion of a set� and the
relation to be a member of � denoted by ��

Usually� it is not too important what these axioms are about� The
Extensionality Axiom states that sets with the same elements are equal�
Most other axioms express that certain well�determined sets exist� For
instance� to every two objects a and b there is the set fa� bg the elements of
which are exactly a and b 	Pairing Axiom
� every set a has a sumset

S
a �S

x�a x 	Sumset Axiom
 and a powerset P	a
 � fb j b � ag 	Powerset
Axiom
� Furthermore� a well�de�ned part fx � a j E	x
g of a set a always
constitutes a set 	its elements are those of a that satisfy the condition
E
 	Zermelo�s Aussonderung Axiom� weakening Cantor�s Comprehension
Principle that was found contradictory
 and the image of a set under a
well�de�ned operation always constitutes a set 	the Replacement Axiom�
the Fraenkel�Skolem addition to the Zermelo axioms
�

Every now and again� classes or collections are mentioned� such as the
class of all sets� the class of all ordinals� etc� These objects are always
assumed to be given by a de�ning property that determines membership
in the class� Often 	as is the case for the two examples mentioned
 these
things are not sets 	they are proper
�

B�� Notations

The symbols �� �� � and � are used for set inclusion� union� intersection
and set di�erence� The cartesian product A � B of A and B is the set of
all pairs 	a� b
 where a � A and b � B� More generally� the product of the

��	

��	
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sets Ai 	i � I
� notation�
Q

i�I Ai� is ff � I �
S

i�I j �i � I	f	i
 � Ai
g�
If for all i� Ai � A� the product is a power AI � the set of all functions from
I to A�

Familiar examples of sets are N � f�� �� �� � � �g� the set of natural num�
bers� Z� the set of integers� Q the set of rationals� and R � the set of reals�

Often� a natural number n is identi�ed with the set of its predecessors
f�� � � � � n��g� This has the convenient e�ects that a natural number n has
exactly n elements� and that the ordering coincides with membership�

B�� Orderings

A relation � on a set A is a partial ordering if it is

� re
exive� for all a � A� a � a�

� antisymmetric� for all a� b � A� if a � b and b � a� then a � b�

� transitive� for all a� b� c � A� if a � b and b � c� then a � c�

Such a partial ordering is linear if� additionally� for all a� b � A� a � b or
b � a�

Sometimes� instead of these re exive orderings� their irre exive partners
are used� The de�ning properties for an irre exive ordering � of A are
irre
exivity 	for no a � A� a � a
 and transitivity�

Orderings 	A��
 constitute examples of models� for which we have the
notion of isomorphism� An equivalence class of orderings under isomor�
phism is called an order type�

The following order types arise frequently�

� n� the order type of all n�element linear orderings�

� �� the order type of N under its usual ordering�

� similarly� �� 	 and 
 denote the order types of Z� Q and R � respec�
tively� under their usual ordering�

Notation� We make a habit of confusing an ordering with its type� Thus�
e�g�� � � 	N � �
 	or � � 	N ��
� whatever is convenient
�

If 	A��
 is an ordering� its upside down version 	A��
 is an ordering
as well� It is denoted by 	A��
��

If 	A��
 and 	B��
 are orderings on disjoint sets A and B� you can
form their ordered sum 	A��
 ! 	B��
� which is A � B ordered by the
relation that is the union of �� �� and A�B 	the relation in which every
a � A precedes every b � B
� Thus� � � �� ! ��

More generally� you can form arbitrary ordered sums as follows�
P

i�I �i

is the ordered sum of 	possibly in�nitely many
 pairwise disjoint orderings
	or copies of those
 �i 	i � I
 in which the ordering is dictated by that
of I� Thus� if �i � 	Ai� �i
 and � is the ordering of I� then the ordering
relation of

P
i�I �i is 	

S
i �i
 �

S
i�j	Ai �Aj
�

���
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A product � � � is de�ned as a sum of pairwise disjoint copies of � over
an index set that is ordered in type ��

B�� Ordinals

A relation  is well�founded on U if every non�empty subset X of U has
an �minimal element� that is� an element x � X such that for no y � X

we have that yx� Equivalently� the following induction principle holds�
if X � U is such that �u � U	�xu	x � X
 	 u � X
� then X � U �
Equivalently still�  is well�founded on U if there are no in�nite sequences
� � � u�u�u��

A well�ordering is a linear ordering that is well�founded� Examples of
well�orderings are �nite linear orderings and �� The orderings �� 	 and 


are not well�orderings�
Suppose that � well�orders the set A� If A is non�empty� it must have

a least element� say �� If A �� f�g� then A � f�g has a least element� say
�� Etc�� if A is in�nite� it must have elements �� �� �� �� � � � in that order�
Possibly� A �� f�� �� �� � � �g� in which case there is a least element � in
A�f�� �� �� � � �g� Going on with a self�explaining notation� we may �nd the
following sequence of elements in A�

�� �� �� �� � � � � �� � ! �� � ! �� � � � � � ! � � � � �� � � � ! �� � � � � � � ��
� � � � � � � � ��� � � � ��� � � � � ��� � � � � ��� � � � � ��

�

� � � �

An ordinal is the type of a well�ordering� The notations used in the
above sequence are generally used to denote ordinals�

Ordinals of �nite orderings are usually identi�ed with the corresponding
natural numbers� As is the case with the natural numbers� it is convenient
to identify an ordinal with the set of its predecessors� 	In fact� this trick
� due to von Neumann � provides a clever way to de�ning the notion of
an ordinal in ZF set theory�


Every non�zero ordinal is either a successor 	of an immediate predeces�
sor
 or a limit� The �rst limit is �� a few next ones are � � �� � � �� � � � � ���

Every ordinal � below �� can be uniquely written in the Cantor Normal
Form

� � �n� �m� ! � � �! �nk �mk�

where the ni and mi are natural numbers and n� � � � � � nk�
A class of ordinals is closed if it contains every limit 	i�e�� union


S
��� ��

of its elements ��� it is unbounded if it contains arbitrarily large ordinals�
A class of ordinals is closed below 	or in
 an ordinal � if it contains every
union of its elements that is � � and it is unbounded below � if it contains
arbitrarily large ordinals � ��

���
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B�� Cardinals

Sets are equinumerous if there is a one�to�one correspondence between their
elements� A cardinal is an equivalence class modulo this relation� The
cardinal of a set A is denoted by jAj�

The cardinal of an n�element set is usually identi�ed with the corre�
sponding natural number 	and ordinal
� An initial number is an in�nite
ordinal that is not equinumerous with a predecessor� The initials in their
natural order are �� � �� ��� ��� � � � � ��� � � � The �rst initial � is countable�
the next one� ��� uncountable�

All ordinals in the listing displayed in Section B�� are countable� The
�rst uncountable ordinal �� is 	very much
 bigger than

� � �� ��� ��� ��
�

� � � � �

The cardinals of these initials 	and� more generally� of in�nite well�ordered
sets
 are alephs� The �rst few alephs are ��� ��� ��� � � � � ��� � � �

Cardinals can be summed� multiplied and raised to a power� Assuming
the Axiom of Choice 	see Section B��
� all in�nite cardinals are alephs and
the �nite versions of these operations are essentially trivial� if � and 
 are
in�nite cardinals� then �! 
 � � � 
 � max	�� 

�

A cardinal � and the corresponding initial ordinal � is regular if it
cannot be written as a sum of smaller cardinals using an index set of smaller
power� All alephs"initials with a non�limit index are regular� A regular
aleph �� with a limit index � is called inaccessible� it is strongly inaccessible
if� additionally� it exceeds all powers �� for � � �� �

B�� Axiom of Choice

A function on the set of non�empty sets A is a choice function for A if
it assigns to every set in A an element in that set� The Axiom of Choice
states that every set of non�empty sets has a choice function�

There are many well�known equivalents of this principle� One that is
usually very convenient is the

B�� Lemma of Zorn� Suppose that the non�empty set A is partially
ordered by � in such a way that every chain has an upper bound� Then A

has a ��maximal element� a

Here� B � A is a chain if it is linearly ordered by �� b is an upper bound
of B if for all x � B� x � b� and a � A is maximal if for no x � A� a � x�

B�	 Inductive De
nitions

Let A be a set� A function � � P	A
 � P	A
 � mapping subsets of A to
subsets of A� is called an operator over A� Such an operator is monotone
if X � Y � A 	 �	X
 � �	Y 
�

���
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B�� Fixed Points� Let � � P	A
 � P	A
 be an operator� A subset
K � A of A is called

�� ��closed or pre��xed point of � if �	K
 � K�

�� ��supported or post��xed point of � if K � �	K
�

�� �xed point of � if �	K
 � K�

�� ��inductive if it is included in every ��closed set�

�	X
 � X 	 K � X�

� ��co�inductive if it contains every ��supported set�

X � �	X
 	 X � K�

An example of a monotone operator over N is the one that sends a set
X to f�g � fn ! � j n � Xg� N is the only pre��xed point� but there are
plenty of post��xed points� Mathematical Induction says precisely that N
is inductive�

It is usually the least �xed point that is of interest� For instance� the sets
of terms and formulas of a given vocabulary are least �xed points of suitable
monotone operators over the set of expressions� another example occurs in
the proof of Lemma ����� The least �xed point of an operator is said to
be inductively de�ned by it� The notion of Ehrenfeucht game provides a
natural operator � where the greatest �xed point is the interesting object�
see the de�nition of � immediately after Lemma �����

B�� Lemma�

�� There is at most one inductive pre��xed point and at most one co�
inductive post��xed point�

�� Inductive pre��xed points and co�inductive post��xed points of a mo�
notone operator are �xed points�

Proof� The claims from the �rst sentence are obvious� Now assume that
I is an inductive pre��xed point of �� Then �	I
 � I� By monotonicity�
�	�	I

 � �	I
� that is� �	I
 is a pre��xed point� By induction� I � �	I
�
Therefore� I is a �xed point� The proof for co�inductive post��xed points
is similar� a

By this lemma� inductive pre��xed points are the same as inductive
�xed points and as least �xed points� Similarly� co�inductive post��xed
points� co�inductive �xed points and greatest �xed points all amount to
the same thing�

B�	 Proposition� Every operator that is monotone has an inductive and
a co�inductive �xed point�

Proof� Let I be the set of a � A that are in every pre��xed point� If
�	X
 � X� then I � X� thus 	by monotonicity
 �	I
 � �	X
 and it
follows that �	I
 � X� Therefore� �	I
 � I� Obviously� I is ��inductive�

���
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The co�inductive post��xed point consists of the set of a � A that are
in some post��xed point� a

Both inductive �xed point and co�inductive �xed point can be approxi�
mated using the so�called upward or least �xed point hierarchy� respectively�
the downward or greatest �xed point hierarchy� The upward hierarchy con�
sists of the sequence of sets ��� 	� an ordinal
 recursively de�ned as follows�

��� � �

��	�! �
 � �	���


��� �
�

���

���� if � is a limit ordinal�

The downward hierarchy consists of the sets ��� recursively de�ned in a
similar way� but now starting from A instead of � and taking intersections
at limits�

B�� Proposition� Let � be monotone� �� ��
S
	 ��� is the least �xed

point of � and �� ��
T
	 ��� is its greatest �xed point�

Proof� Let I be the least �xed point� Then ��� � � � � � ��� � � � � � I� and
so �� � I� Obviously� there is an ordinal � of power at most jAj for which
��� � ��	�! �
� The least � for which this holds is the 	upward
 closure
ordinal of � and we have that �� � ��� and� by ��induction� I � ��� a

Example� Let  be a relation on U � De�ne the monotone operator � over
U by �	X
 �� fx � U j �yx	y � X
g� The least �xed point of � is the
well�founded part of U � that is� the largest initial part of U on which  is
well�founded�

In ZF set theory it is also possible to consider operations over proper
classes� that map subclasses to subclasses�

An important example of such an operation is the powerclass operation
that maps a class to the class of its subsets� The stages of the least �xed
point hierarchy of this operator are usually called partial universes and
denoted by V	� This cumulative hierarchy has no closure ordinal� every
V	�� has elements 	such as the previous stage V	 and the ordinal �
 that
are not yet in V	�

The constructible hierarchy fL	g modi�es the previous one in that a
next stage L	�� does not consist of all subsets of the previous L	� but only
of those that are parametrically �rst�order de�nable in the model 	L	��
�

The least �xed point of the powerclass operator is the well�founded part
of the universe� The Regularity Axiom of ZF expresses that this coincides
with the universe itself�

If 
 is an initial number of strongly inaccessible cardinality� it follows
by induction that for � � 
� jV	j � jV
j and� hence� that jV
j � j
j�

���
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B�� Ramsey�s Theorem

B� Pigeon�hole Principle� If f � A � I� where A is in�nite and I is
�nite� then in�nitely many a � A will be mapped to the same i � I�

Proof� Suppose that every set Ai �� fa � A j f	a
 � ig were �nite� Then
A �

S
iAi is a �nite union of �nite sets� However� a �nite union of �nite

sets must be �nite� 	Induction on the number of elements of the index
set�
 a

The following classical result about trees is an easy application of
the Pigeon�hole Principle� A tree is a partial ordering 	T��
 with a
least element r 	the root of the tree
 such that every subset of the form
fx � T j x � tg 	t � T 
 is �nite and linearly ordered by �� Such a tree splits
�nitely if every element has at most �nitely many immediate successors�
A branch is a maximal linearly ordered subset t� � r � t� � t� � � � ��

B�
 K�onig�s Lemma� Every �nitely splitting in�nite tree has an in�nite
branch�

Proof� The required branch t� � r � t� � t� � � � � is found by picking 	for
n � �� �� �� � � �
 an immediate successor tn�� of tn with the property that
ft � T j tn�� � tg is in�nite� Since the tree is �nitely splitting and in�nite�
such an immediate successor exists by the pigeon�hole principle� a

The next application of the Pigeon�hole Principle is more complicated�

B�� Ramsey�s Theorem� If f maps the n�element subsets of an in�nite
set A to the elements of a �nite set� then there exists an in�nite subset of
A the two�element subsets of which have the same f �image�

Proof� Induction with respect to n� The case for n � � coincides with the
Pigeon�hole Principle� Here follows the case for n � ��

The proof starts with the construction of two in�nite sequences� a se�
quence a�� a�� a�� � � � � A� and a decreasing sequence A� � A� � A� � � � �
of subsets of A� 	The second sequence has a role in the construction of the
�rst one only and will be disregarded afterwards�

To begin with� take A� �� A� and a� � A� arbitrarily�

Consider the map on A� � fa�g de�ned by a ��� f	fa�� ag
� By the
Pigeon�hole Principle there exists an in�nite subset A� � A� � fa�g of
elements all having the same image� Let a� be an arbitrary element of A��

Next� de�ne a map on A� � fa�g by a ��� f	fa�� ag
� Again� there is
an in�nite subset A� � A� � fa�g of elements all with the same image�

Continue in this fashion� Note that eventually we have� for the sequence
a�� a�� a�� � � � that� if i � j � k� then 	since aj � ak � Ai��
 f	fai� ajg
 �
f	fai� akg
� I�e�� the f �value of a two�element subset of fa�� a�� a�� � � �g
only depends on the element that has the least index�

De�ne a last map on fai j i � N g by ai ��� f	fai� ai��g
�

���
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By a �nal application of the Pigeon�hole Principle� obtain an in�nite
set H � A of elements with the same image� This set has the desired
property� indeed� if ai� aj � ak� al � H� i � j en k � l� then we have that
f	fai� ajg
 � f	fai� ai��g
 � f	fak� ak��g
 � f	fak� alg
� a

B� Games

You are undoubtedly familiar with several examples of two�person games�
The following de�nitions involving the tree of all positions of a given game
try to make the intuitive notion more precise�

A �nite two�person game � where one can only win or lose and a draw
is impossible � can be given as a tree�like structure on the set T of positions
that occur in all possible plays of the game� There is an initial position
r � T � For every non��nal position t � T it is determined whose turn it
is to move and to which positions the player whose turn it is can move to�
The notation t �� t� indicates that� in position t� the player whose turn it
is can move to t�� In �nal positions the game is over� no move is possible�
and one of the players is designated as the winner� A play of the game is a
maximal sequence of positions t� � r� t�� t�� � � � that starts at r and is such
that every transition ti �� ti�� is a legal move�

Games you play in daily life are �nite in the sense that all plays have
�nite length� However� also an in�nite game will be considered� This
means that no �nal positions exist and every play of the game continues
inde�nitely� In this case it is the plays themselves that are partitioned into
those in which the �rst player has won and those in which the second player
has won�

B�� Strategies� A strategy for one of the players is a prescription how to
play� A strategy is winning if� by following it� you win every play of the
game� no matter your opponent�s moves�

B��� Determinacy of Finite Games� For every �nite game� exactly
one of the players has a winning strategy�

Proof� First� the two players cannot both have a winning strategy�
Next� let WinX � the winning set for X� be the set of positions in which

player X has a winning strategy 	for the remaining part of the game
�
Proposition B��� asserts that the root position r is in exactly one of these
winning sets� To prove this� something stronger will be shown� namely�

Claim� The winning sets form a partition of T �

Proof� Note �rst that the sets WinX can be inductively de�ned by the
following rules�

	�
 If X is designated as winner in the �nal position t� then t �WinX �

	�a
 if it�s X�s turn to move in t and for some move t �� t�� t� � WinX �
then 	since X can move to t� and win
 t �WinX �

���
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	�b
 if it isn�t X�s turn to move in t and for all moves t �� t�� t� � WinX �
then 	since his opponent cannot help moving to some t� � WinX

t �WinX �

By assumption� there are no in�nite plays� Thus 	see Section B��
� we can
argue by induction along the 	converse
 relation t �� t��
	i
 t is a �nal position�
This case is trivial� since by assumption� the �nal positions are partitioned
in those won by the �rst and those won by the second player�
	ii
 t is not �nal�
By induction hypothesis� if t �� t� is a move� then t� is in exactly one of the
winning sets� Assume that it�s X�s turn to move in t�
	iia
 For some move t �� t�� t� �WinX � Then by 	�a
� t �WinX �
	iib
 For no move t �� t�� t� � WX � By induction hypothesis� for all such
t�� t� �WY � where Y is the other player� Then by 	�b
� t �WinY � a

The argument of this proof does not take into account that all plays
have the same length� You can apply it 	as did Zermelo
 to the game of
chess and conclude that either white or black #has$ a strategy with which
he cannot loose� The version of this result for in�nite games still holds if
you assume the game to be open� A set of plays is open if every play in it
has a �nite initial such that all plays that prolong this initial are also in
the set� The game is open if there is a player whose set of winning plays is
open�

��� Exercise� Show that open games are determined�
Hint� Assume 	�
 that it is the �rst player whose set of wins is open
and suppose 	�
 that the second player does not have a winning strategy�
Consider the strategy for the �rst player that consists in trying to avoid
positions in which the second player has a winning strategy� Show� by
assumption 	�
� the �rst player can indeed avoid those positions� and by
assumption 	�
� doing so he must win�

Bibliographic Remarks

For an introduction to inductive de�nitions� see Aczel ����� The least �xed
point result goes back to Tarski ���

Ramsey�s Theorem B�� is from Ramsey �����
Determinacy of open games is due to Gale and Stewart ���� The

strongest determinacy result that is provable in ZF is due to Martin� it says
that Borel games 	where one of the players has a winning set that is Borel
in the topology described
 are determined� The Axiom of Determinacy
states that every game 	with a tree of �nite degree
 is determined� This
curious assumption contradicts the Axiom of Choice and implies that all
sets of reals are Lebesgue measurable� 	Weakenings of this axiom stronger

���

For personal use



��
 � Basic Model Theory

than Borel determinacy can leave some of AC intact and are related to
large cardinals�
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Set Theory

�� membership� ���
fa� bg� unordered pair� ���S
A� union� ���

P�A�� powerset� ���
fx � A j E�x�g� set of x � a satisfying E� ���
A � B� �possibly non�proper� subset of� ���
�� �� �� union� intersection� di�erence� ���
�a� b�� ordered pair� ���
A�B�

Q
i�I

Ai� cartesian product� ���� ���

AI � power� ���
N � f�� �� �� � � �g� natural numbers� ���
Z� Q � R � sets of integers� rationals and reals� ���
n� order type of n�element linear orderings� ���
�� �� �� �� order types of natural nrs� integers� rationals� reals� ���
��� converse order type� ���
� � 	� sum of orderings �types�� ���P

i�I
�i� idem� ���

� � 	� product of orderings �types�� ���
��� ��th initial� ���
��� ��th aleph� ���
�	�� �
�� ��th approximation least and greatest �xed point� ���
V�� L�� cumulative and constructible hierarchy� ���

Other

�� identity� �
�� �� � �� �� negation� conjunction� disjunction� implication� equivalence� �
�� �� universal and existential quanti�er� �V

��
W

�� generalized conjunction and disjunction� �� �
� �


A� interpretation of 
 in A� �
tA�� � value of t in A relative �� 

A j� ��� � � satis�es � in A� 

t�t�� � � � � tn�� ��t�� � � � � tn�� substitution notations� 
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A j� �� j� �� � j� �� 
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A � B� equivalence� ��
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A � B� elementary submodel� ��
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a
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��x� ��

!�

�� !�
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Th�A�� theory of A� ��
Th�K�� theory of K� ��
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A ��� B� in�nitary equivalence� �
���a  �� characteristic� ��
L���� ��

�A� a�a�A� complete simple expansion� 

ELDIAG�A�� DIAG�A�� diagrams� 

�B� h�a��a�A� 


Q
i�I

Ai� product of models� �Q
F
Ai� ultraproduct� �

Mod�"�� model class� 

�A�B�� model pair� ��

�� falsum� ��

�E� �I� MP� �E� D� �I� RAA� logic rules� ��	
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László Csirmaz, Dov M. Gabbay, and Maarten de Rijke, editors

This volume is a collection of papers based on presentations given at 
Logic Colloquium ’92. The contributions focus on the interaction 
between formal systems in logic and algebra. It contains both an 
up-to-date introductory overview of the area, as well as more special-
ized case studies, and papers on closely related fields.
336 p. ISBN: 1-881526-97-6 (cloth) ; 1-881526-98-4 (paper)
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Meaning and Partiality
Reinhard Muskens

Philosophers, logicians, linguists and other researchers in artificial 
intelligence will find the development of a theory of meaning in 
ordinary language in this volume useful. The theory set forth by 
Muskens is strictly formalised on the basis of formal logic and this 
volume contributes to the general discipline of Formal Semantics. 
Within this field it offers a synthesis between two leading  para-
digms, Montague Semantics and Situation Semantics.
152 p. ISBN: 1-881526-80-1 (cloth) ; 1-881526-79-8 (paper)

Logic and Visual Information
Eric M. Hammer

This book examines the logical foundations of visual information: 
information presented in the form of diagrams, graphs, charts, 
tables, and maps.  The importance of visual information is clear from 
its frequent presence in everyday reasoning and
communication, and also in computation.
136 p. ISBN: 1-881526-87-9 (cloth) ; 1-881526-99-2 (paper)

Partiality, Modality, and Nonmonotonicity
Patrick Doherty, editor

This edited volume of articles provides a state of the art description 
of research in logic based approaches to knowledge representation 
which combines approaches to reasoning with incomplete 
information that include partial, modal, and nonmonotonic logics. 
The collection contains two parts: foundations and case studies. The 
foundations section provides a general overview of partiality, 
multivalued logics, use of modal logic to model partiality and 
resource-limited inference, and an integration of partial and modal 
logics. The case studies section provides specific studies of issues 
raised in the foundations section.
312 p. ISBN: 1-57586-031-7 (cloth) ; 1-57586-030-9 (paper)

For personal use



Another title of interest:

Vicious Circles

Jon Barwise and Larry Moss

The subject of non-wellfounded sets 
came to prominence with the 1988 
publication of Peter Aczel’s book on the 
subject. Since then, a number of 
researchers in widely differing fields have 
used non-wellfounded sets (also called 
“hypersets”) in modeling many types of 
circular phenomena. The application 
areas range from knowledge representa-
tion and theoretical economics to the 
semantics of natural language and 
programming languages.

Vicious Circles offers an introduction 
to this fascinating and timely topic. 
Written as a book to learn from, theoreti-
cal points are always illustrated by 
examples from the applications and by 
exercises whose solutions are also 
presented. The text is suitable for use in a 
classroom, seminar, or for individual 
study.

In addition to presenting the basic 
material on hypersets and their applica-
tions, this volume thoroughly develops 
the mathematics behind solving systems 
of set equations, greatest fixed points, 
coinduction, and corecursion. Much of 
this material has not appeared before. 
The application chapters also contain 
new material on modal logic and new 
explorations of paradoxes from seman-
tics and game theory.
396 p. ISBN: 1-57586-009-0 (cloth) ;
1-57586-008-2 (pbk.)
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