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Preface

This book aims to present a general survey of algebra, of its basic notions and
main branches. Now what language should we choose for this? In reply to the
question 'What does mathematics study?', it is hardly acceptable to answer
'structures' or 'sets with specified relations'; for among the myriad conceivable
structures or sets with specified relations, only a very small discrete subset is of
real interest to mathematicians, and the whole point of the question is to
understand the special value of this infinitesimal fraction dotted among the
amorphous masses. In the same way, the meaning of a mathematical notion is
by no means confined to its formal definition; in fact, it may be rather better
expressed by a (generally fairly small) sample of the basic examples, which serve
the mathematician as the motivation and the substantive definition, and at the
same time as the real meaning of the notion.
v Perhaps the same kind of difficulty arises if we attempt to characterise in terms
of general properties any phenomenon which has any degree of individuality.

fFpr example, it doesn't make sense to give a definition of the Germans or the
French; one can only describe their history or their way of life. In the same way,
it's not possible to give a definition of an individual human being; one can only
pther give his 'passport data', or attempt to describe his appearance and charac-
ter, and relate a number of typical events from his biography. This is the path
lire attempt to follow in this book, applied to algebra. Thus the book accom-
modates the axiomatic and logical development of the subject together with more
descriptive material: a careful treatment of the key examples and of points of
fontact between algebra and other branches of mathematics and the natural
sciences. The choice of material here is of course strongly influenced by the

hor's personal opinions and tastes.


