# BASIC PARTIAL DIFFERENTIAL EQUATIONS

## David Bleecker George Csordas

Department of Mathematics University of Hawaii Honolulu, Hawaii



### TABLE OF CONTENTS

| Preface                                                                                              | ix  |  |  |
|------------------------------------------------------------------------------------------------------|-----|--|--|
| 1. Review and Introduction                                                                           |     |  |  |
| 1.1 A Review of Ordinary Differential Equations                                                      | 2   |  |  |
| 1.2 Generalities About PDEs                                                                          | 23  |  |  |
| 1.3 General Solutions and Elementary Techniques                                                      | 44  |  |  |
| 2. First–Order PDEs                                                                                  |     |  |  |
| 2.1 First-Order Linear PDE s (Constant Coefficients)                                                 | 58  |  |  |
| 2.2 Variable Coefficients                                                                            | 74  |  |  |
| 2.3 Higher Dimensions, Quasi-linearity, Applications                                                 | 92  |  |  |
| 2.4 Supplement on Nonlinear First–Order PDEs (Optional)                                              | 111 |  |  |
| 3. The Heat Equation                                                                                 |     |  |  |
| 3.1 Derivation of the Heat Equation and Solutions of the Standard<br>Initial/Boundary–Value problems | 122 |  |  |
| 3.2 Uniqueness and the Maximum Principle                                                             | 140 |  |  |
| 3.3 Time–Independent Boundary Conditions                                                             | 157 |  |  |
| 3.4 Time-Dependent Boundary Conditions                                                               | 172 |  |  |
| 4. Fourier Series and Sturm-Liouville Theory                                                         |     |  |  |
| 4.1 Orthogonality and the Definition of Fourier Series                                               | 188 |  |  |
| 4.2 Convergence Theorems for Fourier Series                                                          | 207 |  |  |
| 4.3 Sine and Cosine Series and Applications                                                          | 237 |  |  |
| 4.4 Sturm-Liouville Problems                                                                         | 258 |  |  |

#### 5. The Wave Equation

| 5.1 | The Wave Equation – Derivation and Uniqueness        | 282 |
|-----|------------------------------------------------------|-----|
| 5.2 | The D'Alembert Solution of the wave equation         | 299 |
| 5.3 | Inhomogeneous Boundary Conditions and Wave Equations | 320 |

#### 6. Laplace's Equation

| 6.1 | General Orientation                                               | 341         |
|-----|-------------------------------------------------------------------|-------------|
| 6.2 | The Dirichlet Problem for the rectangle                           | <b>3</b> 51 |
| 6.3 | The Dirichlet Problem for Annuli and Disks                        | 366         |
| 6.4 | The Maximum Principle and<br>Uniqueness for the Dirichlet Problem | 385         |
| 6.5 | Complex Variable Theory with Applications                         | 398         |

#### 7. Fourier Transforms

| 7.1 | Complex Fourier Series                                            | 419 |
|-----|-------------------------------------------------------------------|-----|
| 7.2 | Basic Properties of Fourier Transforms                            | 431 |
| 7.3 | The Inversion Theorem and Parseval's Equality                     | 447 |
| 7.4 | Fourier Transform Methods for PDE's                               | 458 |
| 7.5 | Applications to Problems on Finite and<br>Semi–Infinite Intervals | 482 |

#### 8. Numerical Solutions. An Introduction.

| 8.1 The O Symbol and Approximation of Derivatives        | 504 |
|----------------------------------------------------------|-----|
| 8.2 The Explicit Difference Method and the Heat Equation | 515 |
| 8.3 Difference Equations and Round-off Errors            | 533 |
| 8.4 An Overview of Some Other Numerical Methods          | 548 |

#### Table of Contents

#### 9. PDEs in Higher Dimensions

| 9.1 | Higher–Dimensional PDEs – Rectangular Coordinates    | 561 |
|-----|------------------------------------------------------|-----|
| 9.2 | The Eigenfunction Viewpoint                          | 577 |
| 9.3 | PDEs in Spherical Coordinates                        | 591 |
| 9.4 | Spherical Harmonics, Laplace Series and Applications | 608 |
| 9.5 | Special Functions and Applications                   | 636 |
| 9.6 | Solving PDEs on Manifolds                            | 654 |

### Appendix

| A.1 The Classification Theorem  | A1   |  |
|---------------------------------|------|--|
| A.2 Fubini's Theorem            | A–5  |  |
| A.3 Leibniz's Rule              | A7   |  |
| A.4 The Maximum/Minimum Theorem | A–15 |  |
| A.5 Table of Fourier Transforms | A–17 |  |
| A.6 Bessel Functions            | A–18 |  |
| References                      | R1   |  |
| Selected Answers                |      |  |
| Index of Notation               |      |  |
| Index                           |      |  |