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We study one-dimensional exact scaling lognormal multiplicative chaos
measures at criticality. Our main results are the determination of the exact
asymptotics of the right tail of the distribution of the total mass of the mea-
sure, and an almost sure upper bound for the modulus of continuity of the
cumulative distribution function of the measure. We also find an almost sure
lower bound for the increments of the measure almost everywhere with re-
spect to the measure itself, strong enough to show that the measure is sup-
ported on a set of Hausdorff dimension 0.

1. Introduction. Multiplicative chaos is a theory developed by Kahane in the
eighties [26, 28, 29]. It deals with multiplicative processes generating martingales,
which take values in the cone of nonnegative Radon measures on σ -compact met-
ric spaces. This theory is based on the lognormal multiplicative chaos proposed
by Mandelbrot to model turbulence [36], as well as the works previously achieved
by Kahane and Peyrière [31] on the simplified model of multiplicative cascades
on trees still proposed by Mandelbrot [35, 37], namely the so-called Mandelbrot
cascades, which assume no lognormality property. The study of random measures
generated by such multiplicative processes also originates from random covering
and percolation theory questions (see [6, 22, 26, 27, 29, 30]). When statistically
self-similar, as it is the case for limits of Mandelbrot cascades, these measures pro-
vide nice illustrations of the so-called multifractal formalism, as well as models in
the study of intermittent phenomena beyond turbulence, like the distribution of
rare minerals in earth [38] or stock exchange fluctuations in finance [39]. Exam-
ples of such measures on Rd possessing continuous (rather than only discrete for
limits of Mandelbrot cascades) scaling properties are some of the Gaussian mul-
tiplicative chaos built by Kahane in [28] or the Lévy multiplicative chaos built by
Fan in [23], the compound Poisson cascades built by Barral and Mandelbrot [10]
and their generalization to the so-called infinitely divisible cascades by Bacry and
Muzy in [5].
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Kahane’s lognormal multiplicative chaos has been recently revisited and com-
pleted in several directions [3, 43, 44]. Also, it is now a central tool in two-
dimensional quantum gravity theory since it provides, through the exponential
of the Gaussian free field, the random measures used to obtain the first rigor-
ous results in direction to the so-called KPZ formula in works by Duplantier and
Sheffield [19, 20], as well as Rhodes and Vargas [42] (see also Benjamini and
Schramm [12] for a one-dimensional version in the framework of Mandelbrot mul-
tiplicative cascades on [0,1]). Nondegenerate limits of lognormal multiplicative
chaos associated with the exponential of the Gaussian free field on the circle have
also been used successfully by Astala, Jones, Kupiainen and Saksman in [4] to
build random planar curves by conformal welding. The families of Gaussian mul-
tiplicative chaos considered in these questions are naturally parameterized by a
continuous parameter β ∈ [0, βc). In the application to quantum gravity, β is in bi-
jection with the so-called central charge; in random energy models, it corresponds
to the inverse of a temperature; in turbulence, it is a measure of the intermittence;
from a purely geometric viewpoint, it is a decreasing function of the Hausdorff
dimension of the associated measure in the Euclidean geometry. At the critical
temperature, and below it, the limit μβ of the martingale μβ,t provided by the
associated multiplicative process vanishes almost surely. For β > βc, it is never-
theless possible to give a sense to the corresponding dual KPZ formula [8, 16] by
considering measures essentially by subordinating a suitable nondegenerate Gaus-
sian multiplicative chaos to some stable Lévy subordinators; this yields an atomic
measure.

At the critical value βc, one needs new results in multiplicative chaos theory.
They were recently obtained by Duplantier, Rhodes, Sheffield and Vargas in [17,
18], inspired by results recently achieved by Aïdékon and Shi in the context of
the martingales in the branching random walk [2]. Thus, it is possible to get a
nontrivial positive measure at the critical temperature as the limit of the signed
measures −dμβ,t

dβ
|β=βc as t → ∞. Moreover, this measure is continuous. We also

mention that like in the context of martingales in the branching random walks
[2], the critical measure can be obtained as limit in probability of μβc,t properly
normalized [18]. During the completion of this paper, corresponding normalization
results [34] were obtained also in the case β > βc. These normalization results
are analogous to those known in the branching random walk and random energy
models frameworks [11, 33, 45].

This paper is dedicated to the study of some properties of such critical lognormal
multiplicative chaos measure. We concentrate on the exactly scale-invariant one-
dimensional construction. Our main results are the determination of the asymptotic
behavior of the tail of the distribution of the total mass of the measure, a bound for
the modulus of continuity of the measure for which the previous tail asymptotic
behavior is crucial, and an estimate from below of the measure increments almost
everywhere with respect to the measure, which completes the estimation provided
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by the modulus of continuity and goes beyond the simple fact that the measure has
Hausdorff dimension 0; see Theorems 1, 2 and 4 below.

As a motivation to study the exactly scale invariant measure, let us note that
the Gaussian field used to construct the exactly scale invariant measure in one
dimension is simply the Gaussian free field restricted to a line segment. Thus,
the measure can be viewed as a boundary measure of Liouville quantum gravity
(see, e.g., [20]) and conjecturally as the boundary measure of random planar maps
mapped to the upper half-plane. Moreover, while the results are mainly stated for
the one-dimensional exactly scale invariant measure, we expect similar results to
hold quite generally for Gaussian multiplicative chaos measures in any dimension.
In Section 5, we finish the paper with a discussion of extensions of our results to a
higher-dimensional setting.

1.1. Definitions and notation. In this section, we fix notation and give the pre-
cise definitions of the objects studied in this paper. Formally, the one-dimensional
lognormal multiplicative chaos measures μβ are random measures given by

μβ(dx) = eβX(x)−(β2/2)EX(x)2
dx,(1)

where (X(x))x∈R is a logarithmically correlated centered Gaussian field, that is, a
centered Gaussian process with

EX(x)X(y) ∼ log
1

|x − y| as |x − y| → 0.

However, the logarithmic singularity of the correlation kernel implies that the re-
alizations of X are not smooth enough to be functions, but must instead be defined
as random distributions. To overcome this major technical obstacle, in Kahane’s
theory of multiplicative chaos one gives a rigorous meaning to the expression (1)
by considering nonsingular approximations Xt to the field X, defining the mea-
sures μβ,t corresponding to these regularizations and then taking the weak limit of
the measures μβ,t as the approximation parameter is taken to infinity. In this way,
one completely avoids the problem of defining the exponential of a distribution.

We mainly concentrate on the exactly scale invariant construction. This scal-
ing property, to be defined below, is central to the proof of Theorem 1. The one-
dimensional exactly scale invariant construction is most easily understood through
the following geometric construction, originally due to Bacry and Muzy [5].

Let λ denote the hyperbolic area measure on the upper half-plane, that is,

λ(A) =
∫
A

dx dy

y2 for all A ⊂ R×R+.

For x ∈ R and t ∈ R+, let Ct (x) denote the set

Ct (x) = {(
x′, y′)|y′ > max

(
2
∣∣x′ − x

∣∣, e−t ), ∣∣x′ − x
∣∣< 1

2

}
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and for a compact interval I ⊂R of length less than or equal to 1, denote

Ct (I ) = ⋂
x∈I

Ct (x).

Note that for t ≥ log 1/|I | we have Ct (I ) = Clog 1/|I |(I ). Next, let W denote the
white noise on R × R+ with control measure λ. We consider W a random real
function on the Borel sets of R × R+ with finite λ-measure characterized by
the following properties: for all disjoint Borel sets A,B ⊂ R × R+ such that
λ(A),λ(B) < ∞:

(1) W(A) is a centered Gaussian random variable with variance λ(A),
(2) the random variables W(A) and W(B) are independent, and
(3) almost surely we have W(A ∪ B) = W(A) + W(B).

Define

Xt(x) = W
(
Ct (x)

)
for all x ∈ R, t ∈ [0,∞).

For a fixed t > 0, the covariance structure of the process (Xt(x))x∈R can be com-
puted to be

EXt(x)Xt(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t + 1 − et |x − y|, |x − y| < e−t ,

log
1

|x − y| , e−t ≤ |x − y| ≤ 1,

0, 1 < |x − y|.
For any interval I ⊂R of length less than or equal to 1 and x ∈ I , we denote

Xt(I ) = W
(
Ct (I )

)
and XI

t (x) = W
(
Ct (x) \ Ct (I )

)
to obtain the decomposition Xt(x) = Xt(I ) + XI

t (x), where Xt(I ) is independent
of the process (XI

t (x))x∈I . Since Ct (I ) = Clog 1/|I |(I ) for t ≥ log 1/|I |, we denote
X(I) := Xlog 1/|I |(I ). Owing to the geometry of the construction, the field (Xt(x))

satisfies the following scale invariance property: for all intervals I ⊂ R and e−t <

|I | < 1, we have(
Xt(x)

)
x∈I = (

Xt(I ) + XI
t (x)

)
x∈I

d= (
Xt(I ) + X′

t−log |I |
(
x/|I |))x∈I ,(2)

where X′ is an independent realization of the field X. For the reader’s convenience,
we give the geometric explanation for this scaling property in the Appendix.

For β ∈ (0,
√

2), we construct the measures μβ,t on the unit interval by setting

μβ,t (I ) =
∫
I
eβXt (x)−(β2/2)EXt (x)2

dx(3)

for all intervals I ⊂ [0,1]. This construction fits into the framework of Kahane’s
theory of multiplicative chaos [26], which implies that almost surely the limit μβ =
limt→∞ μβ,t exists in the sense of weak convergence of measures and that the limit
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measure satisfies μβ(I) > 0 for all intervals I ⊂ [0,1]. The scaling property (2)
implies that the measures μβ are exactly scale invariant, especially that

μβ(I)
d= |I |eβX(I)−(β2/2)EX(I)2

μ′
β

([0,1]) for all intervals I ⊂ [0,1],(4)

where μ′
β is an independent realization of μβ and X(I), defined as above, is a

centered Gaussian random variable of variance log 1
|I | .

Kahane’s work also implies that the corresponding construction for β ≥ √
2

results in degenerate limit measures, that is, the limit measure will be almost surely
null. However, the exact scaling relation above makes sense for all β > 0. It has
recently been shown by Duplantier, Rhodes, Sheffield and Vargas [17] that by
defining for each interval I ⊂ [0,1]

μ√
2,t

(I ) = − d

dβ

∣∣∣∣
β=√

2
μβ,t (I )

(5)
=
∫
I

(√
2(t + 1) − Xt(x)

)
e
√

2Xt (x)−EXt(x)2
dx

one obtains a nondegenerate almost sure weak limit μ√
2 = limt→∞ μ√

2,t
for

which μ√
2(I ) > 0 almost surely for all intervals I ⊂ [0,1]. As in the case of

branching random walks (or equivalently, multiplicative cascades), this derivative
turns out to be the correct replacement for the measures (3) in the case β = √

2, at
the very least in the sense that μ√

2 is nontrivial and turns out to satisfy the exact
scaling property: as detailed in the Appendix, we have especially

μ√
2(I )

d= |I |e
√

2X(I)−EX(I)2
μ′√

2

([0,1]) for all intervals I ⊂ [0,1].(6)

In defining the lognormal multiplicative chaos measure for the critical parame-
ter value β = √

2, the peculiar normalizing factor (
√

2(t + 1) − Xt(x)) may also
be replaced by a normalization that is deterministic and also independent of x. In-
spired by the arguments of Aïdékon and Shi [2] in the case of branching random
walks, Duplantier, Rhodes, Sheffield and Vargas [18] recently proved that there
exists a deterministic constant c > 0 such that for every interval I ⊂ [0,1] one has

√
t

∫
I
e
√

2Xt (x)−EXt(x)2
dx → cμ√

2(I ) in probability as t → ∞.(7)

Before moving on to the statements of our results on the fine properties of μ√
2,

we make a final comment on the scale invariance properties of multiplicative chaos
measures. In [17] and [18], the authors deal primarily with a slightly different
construction, the �-scale invariant lognormal multiplicative chaos measures. In
terms of the geometric construction presented here, a �-scale invariant random
measure is obtained by replacing the field (Xt(x)) in (3), (5) or (7) by the field
(Xt(x) − X0(x)). Since we will make use of this construction in the proof of The-
orem 2, we have included details on �-scale invariance in the Appendix. However,
as also noted in the papers themselves, the proofs of the convergence results in
[17] and [18] are insensitive to these differences.



2210 J. BARRAL ET AL.

1.2. Main results. We will make use of the following result of Duplantier,
Rhodes, Sheffield and Vargas [18], which is a corollary of the deterministic nor-
malization (7).

THEOREM A. For all h ∈ (0,1), E(μ√
2([0,1])h) < ∞.

The first of our main theorems is a strengthening of this result, and analogous to
the theorem of Buraczewski [14] on the fixed points of the smoothing transform.

THEOREM 1. The tail probability of μ√
2 has the asymptotic behavior

lim
λ→∞λP

(
μ√

2

([0,1])> λ
)= c1,

where the constant is given explicitly by

c1 = 2

log 2
Eμ√

2

([0,1/2]) log
(

1 + μ√
2([1/2,1])

μ√
2([0,1/2])

)
< ∞.

This theorem allows one to get detailed information on the geometric properties
of the measure μ√

2. The following result is analogous to our earlier result [9] on
multiplicative cascades.

THEOREM 2. For any interval I ⊂ [0,1] and γ < 1
2 ,

μ√
2(I ) ≤ C(ω)

(
log

(
1 + |I |−1))−γ

,(8)

where C(ω) > 0 is an almost surely finite random constant.

The proof of this theorem is inspired by the earlier result, but as the correla-
tions of the field X in the construction of μ√

2 are much more intricate than in
the branching random walk underlying the cascade measures, more involved argu-
ments are needed.

REMARK 3. We note that this result gives another proof for the result of [17]
stating that almost surely, μ√

2 has no atoms.

We also get a bound on the appropriate Hausdorff gauge function to measure
the size of the smallest Borel sets fully supporting μ√

2. We have the following
result.

THEOREM 4. Denote fα(n) = exp(−√
6 log 2

√
n(logn + α log logn)) for

α > 1
3 . Almost surely,

μ√
2

({
x :μ√

2

(
In(x)

)≥ fα(n) for all but finitely many n
})= μ√

2

([0,1]),
where In(x) ⊂ [0,1] is the dyadic interval of length 2−n containing x.
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The proof uses large deviations estimates exploiting both the exact scaling prop-
erty of μ√

2 and the tail probabilities given by Theorem 1. This theorem implies
the weaker claim that almost surely there exists a set of full μ√

2-measure that has
Hausdorff dimension 0, a fact that we state as Corollary 24.

For the log-normal critical Mandelbrot measure μ on trees, we establish in
[9] that μ({x :μ(In(x)) ≤ ψ(n) for all but finitely many n}) = μ([0,1]), for all
functions ψ(n) = n−k , k ≥ 1. In particular, the modulus of continuity (shown
to be optimal) does not capture the measure increments behavior μ-almost
everywhere—indeed, this is something one would expect of any multifractal mea-
sure. The proof exploits fine information about the renormalization theory for the
low temperature measures μβ,n. Establishing this result in the present setting re-
mains a challenge, as does proving the optimality of the bound provided by Theo-
rem 2.

2. Tail probabilities. The proof of Theorem 1 follows the same idea as the
earlier closely related results of Durrett and Liggett [21], Guivarc’h [25], Liu [32],
Buraczewski [13, 14] and Barral and Jin [7]: one uses the smoothing transform (or
in the case of multiplicative chaos, a similar distributional equation with more de-
pendencies) to derive a Poisson equation satisfied by the quantity one is interested
in, and then analyzes the behavior of the solutions of the Poisson equation at infin-
ity. A key point in the derivations of the Poisson equations in all these proofs is the
use of an alternate probability measure (the Peyrière probability), the idea of which
goes back to the seminal paper of Kahane and Peyrière [31]. While using quite dif-
ferent kinds of methods, we also point out the result of Fyodorov and Bouchaud
([24]), where in the specific case of the Gaussian free field restricted to the unit
circle, an explicit probability distribution for μβ([0,1]) is obtained (though non-
rigorously).

We also note that our form of the tail is related to the freezing transition sce-
nario: it is believed (see, e.g., [15]) that a freezing transition occurs in essentially
any logarithmically correlated random energy model and one universal feature of
these models is that at the critical point, the Laplace transform should be of the
form 1 −E(exp(−e−βcxμβc([0,1]))) � xe−βcx as x → ∞. This is consistent with
the tail P(μβc([0,1]) > x) � x−1 being universal.

In this section, we denote μ := μ√
2 and Y := μ([0,1]). The variable Y may be

written as the fixed point of a “nonindependent smoothing transform” as follows:

Y = μ
([0,1])

= μ
([0,1/2])+ μ

([1/2,1])
(9)

=: 1
2e

√
2X([0,1/2])−EX([0,1/2])2

Y0 + 1
2e

√
2X([1/2,1])−EX([1/2,1])2

Y1

=: W0Y0 + W1Y1.

Note that this requires that μ({1
2 }) = 0 almost surely. To see this, simply note

that by the scaling relation (6) and Theorem A we have, for any given h ∈ (0,1),
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Eμ([1
2 − ε, 1

2 + ε])h → 0 as ε → 0. By the exact scale invariance property (6) of

μ we have Y0 ⊥ W0, Y1 ⊥ W1 and Y0
d= Y

d= Y1. Note, however, that Y0 is not
independent of either Y1 or W1.

We then define the version of Peyrière probability that is most convenient for
our needs.

DEFINITION 5. Let (�,F,P) denote the probability space on which μ is de-
fined and define a probability space (� × {0,1},F × σ({0,1}),Q) by setting

EQf (ω, j) = E
(
W0(ω)f (ω,0) + W1(ω)f (ω,1)

)
for all bounded F ×σ({0,1})-measurable functions f :�×{0,1}. Define the ran-
dom variables Ỹ , W̃ and B̃ on this probability space by setting

Ỹ (ω, j) = Yj (ω), W̃ (ω, j) = Wj(ω)

and

B̃(ω, j) =
{

W1(ω)Y1(ω), j = 0,
W0(ω)Y0(ω), j = 1.

For an intuitive idea of what the measure Q does, consider the random proba-
bility measure on [0,1] defined by μ(dx)

μ([0,1]) . Then W0 can be seen as the (random)

probability that a point sampled according to this measure is in [0, 1
2 ] and similarly

for W1. So Q can be seen as a probability distribution that is obtained by weighting
with the information of which half of [0,1] a point sampled according to μ is in.

We state the essential properties of the variables defined above as the following
lemma.

LEMMA 6. The following statements hold:

(1) W̃ and Ỹ are independent.
(2) Ỹ (under Q) has the same law as Y (under P).
(3) − log W̃ is a centered Gaussian with variance 2 log 2.

PROOF. Let f,g :R �→ R be bounded and continuous. By direct computation
and the independences W0 ⊥ Y0 and W1 ⊥ Y1,

EQf (W̃ )g(Ỹ ) = E
(
W0f (W0)g(Y0) + W1f (W1)g(Y1)

)
= 2

(
EW0f (W0)

)(
Eg(Y0)

)
.

By taking g ≡ 1, we see that EQf (W̃ ) = 2EW0f (W0), and taking f ≡ 1 yields
EQg(Ỹ ) = Eg(Y0) = Eg(Y ). Thus, (2) holds, and moreover,

EQf (W̃ )g(Ỹ ) = EQf (W̃ )EQg(Ỹ ),

which means that W̃ and Ỹ are independent as claimed in (1).
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The law of − log W̃ is easy to identify by computing the moment generating

function. Since W0
d= W1

d= 1
2e

√
2 log 2N−log 2, where N is a standard Gaussian,

EQet(− log W̃ ) = EQW̃−t = E
(
W 1−t

0 + W 1−t
1

)
= 2E2−(1−t)e(1−t)

√
2 log 2N−(1−t) log 2 = 22t−1+(1−t)2

= et2 log 2. �

Define the measure ν on the positive real axis by setting∫
f dν = EYf (Y ) = EQỸ f (Ỹ )(10)

for all continuous functions f :R+ → R with compact support. The asymptotics
of this measure will be determined through the functions

Fα,β(x) = ν
((

αex,βex]) for 0 < α < β.

In terms of Fα,β , the statement of Theorem 1 is essentially equivalent to the fol-
lowing proposition.

PROPOSITION 7. Let Fα,β be defined by ν as above. Then

lim
x→∞Fα,β(x) = c1 log

β

α
,

where

c1 = 2

log 2
Eμ

([0,1/2]) log
(

1 + μ([1/2,1])
μ([0,1/2])

)
< ∞.

The first step toward the proof of the proposition above is deriving the Poisson
equation satisfied by Fα,β . Let τ denote the law of − log W̃ . By using the indepen-
dence of W̃ and Ỹ , we get

τ ∗ Fα,β(x) =
∫
R
EQỸ1{Ỹ∈(αex+y,βex+y ]}τ(dy)

= EQỸ1{W̃ Ỹ∈(αex,βex ]}
= Fα,β(x) +EQỸ1{W̃ Ỹ∈(αex,βex ]} −EQỸ1{Ỹ∈(αex,βex ]},

where the convolution of the measure τ with a function F :R →R is defined by

τ ∗ F(x) =
∫
R

F(x + y)τ(dy) =
∫
R

F(x − y)τ(dy).
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By using part (2) of Lemma 6, the distributional equation (9) and the definitions of
the variables W̃ , Ỹ and B̃ , the term EQỸ1{Ỹ∈(αex,βex ]} above may be expressed as

EQỸ1{Ỹ∈(αex,βex ]}
= EY1{Y∈(αex,βex ]}
= E

(
W0Y01{αex−W1Y1<W0Y0≤βex−W1Y1} + W1Y11{αex−W0Y0<W1Y1≤βex−W0Y0}

)
= EQỸ1{αex−B̃<W̃ Ỹ≤βex−B̃}.

The previous computations imply that Fα,β satisfies the Poisson equation

Fα,β(x) − τ ∗ Fα,β(x) = ψα,β(x)(11)

with the function ψα,β given by

ψα,β(x) = EQỸ1{αex−B̃<W̃ Ỹ≤βex−B̃} −EQỸ1{αex<W̃ Ỹ≤βex}.(12)

The desired results on the solutions of this Poisson equation at infinity could be
achieved almost exactly in the same way as in Buraczewski [13], that is, by build-
ing on the general theory developed by Port and Stone [40]. The following propo-
sition is originally due to Buraczewski, but we prefer to give it a self-contained
proof of independent interest that uses only elementary Fourier analysis.

PROPOSITION 8. Let ν be a locally finite (nonnegative) Borel measure on
[0,∞) that grows at most polynomially in the sense that there exist γ,C > 0 such
that

ν
(
(0, x])≤ C(1 + x)γ for all x ≥ 0.

Define the functions

Fα,β(x) = ν
((

αex,βex]) for all 0 < α < β

and assume that for each α,β the function ψα,β :R →R is a bounded and contin-
uous function indexed by the parameters α and β that satisfies∫ ∞

−∞
(
1 + |x|)2∣∣ψα,β(x)

∣∣dx < ∞
and ∫ ∞

−∞
ψα,β(x)dx = 0.

Denote

Cα,β =
∫ ∞
−∞

xψα,β(x)dx

and assume that the map (α,β) �→ Cα,β is continuous. Finally, let τ be a Gaussian
measure on R, that is, τ is the law of a centered Gaussian random variable with
variance σ 2 > 0.
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Then, if Fα,β satisfies the Poisson equation

Fα,β − τ ∗ Fα,β = ψα,β,

it has the asymptotics

lim
x→∞Fα,β(x) = 2

σ 2 Cα,β.

We split our proof of this proposition into two lemmas and a finalizing convo-
lution argument.

LEMMA 9. Let the function F :R→R be bounded from below and satisfy

lim
x→−∞F(x) = 0.

Assume also that F grows at most exponentially at infinity3 and solves the Poisson
equation

F − τ ∗ F = ψ,(13)

where τ ∼ N(0, σ 2) is as in Proposition 8 and ψ :R→R satisfies∫ ∞
−∞

(
1 + |x|)2∣∣ψ(x)

∣∣dx < ∞,

∫ ∞
−∞

ψ(x)dx = 0 and lim
x→±∞ψ(x) = 0.

Then F has the asymptotics

lim
x→∞F(x) = 2

σ 2

∫ ∞
−∞

xψ(x)dx.(14)

PROOF. To shorten the notation, we denote
∫∞
−∞ xψ(x)dx = A.

We start by proving that equation (13) has some bounded solution F1 that has
the desired asymptotics

lim
x→−∞F1(x) = 0 and lim

x→∞F1(x) = 2

σ 2 A.(15)

We first consider the case A = 0. Then our assumptions imply that the Fourier
transform of ψ satisfies [our convention for the Fourier transform of ψ ∈ L1(R) is
ψ̂(ξ) = ∫

R e−ixξψ(x)dx]

ψ̂ ∈ C2(R) ∩ L∞(R) and ψ̂(0) = ψ̂ ′(0) = 0.

As 1 − τ̂ (ξ) = 1 − exp(−σ 2ξ2/2) is smooth with zero of order 2 at the origin we
may directly define F1 in the distribution sense through

F̂1(ξ) := ψ̂(ξ)

1 − e−σ 2ξ2/2
= ψ̂(ξ) +

(
ψ̂(ξ)

ξ2

)(
ξ2e−σ 2ξ2/2

1 − e−σ 2ξ2/2

)
=: ψ̂(ξ) + F̂2(ξ).

3The assumption of exponential growth is used only to ensure that the convolution with τ is well
defined.
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Since obviously F̂2 ∈ L1, we have limx→±∞ F2(x) = 0 by the Riemann–Lebesgue
lemma, and the same follows for F1 by the assumption on ψ .

In order to construct a solution F1 in the general case A �= 0, first define
ψ0 = F0 − τ ∗ F0 with F0 = χ(0,∞), with χ referring to the indicator function
of a set. Directly from the definition we see that ψ0 ∈ L∞(R) and that ψ0 decays
exponentially as x → ±∞, so that it satisfies the moment conditions of the lemma,
and moreover ψ̂0 ∈ C∞. Also, F̂0(ξ) = πδ0 − iξ−1 (here ξ−1 is understood as a
principal value distribution). Since 1 − τ̂ (ξ) = σ 2ξ2/2 + O(ξ3), we see that

ψ̂0(ξ) = − iσ 2

2
ξ + O

(
ξ2)

at the origin. Hence,∫ ∞
−∞

ψ0(x)dx = ψ̂0(0) = 0 and
∫ ∞
−∞

xψ0(x)dx = iψ̂ ′
0(0) = σ 2

2
.

Thus, in the case A �= 0 we define F1 by finding the solution for the Poisson
equation (13) with the right-hand side ψ̃ = ψ − 2

σ 2 Aψ0 and then adding 2
σ 2 AF0.

At this point, it is clear that the solution obtained this way is bounded and has the
desired behavior at ±∞.

Let us finally assume that F and ψ are as in the theorem. Let F1 be the bounded
solution of (13) constructed above, so that F1 satisfies the conclusion of the the-
orem. It is enough to verify that H := F − F1 is constant since then H ≡ 0 by
considering the limit at −∞. Now H is bounded from below and satisfies the
homogeneous Poisson equation

H = τ ∗ H.(16)

The claim follows from Lemma 10 below. �

LEMMA 10. Let H solve the homogeneous Poisson equation (16) and assume
that it is bounded from below and has at most exponential growth at ±∞. Then H

is constant.

PROOF. By adding a constant, we may without loss of generality assume that
H ≥ 0. Let u(x, t) (x ∈ R, t ≥ 0) denote the heat extension of H to the upper
half-plane, explicitly given by

u(x, t) = 1√
2πt

∫ ∞
−∞

e−(y−x)2/(2t)H(y)dy.

By assumption, u is periodic in t : denoting t0 = σ 2, u(x, t + t0) = u(x, t) for all
t ≥ 0. Define the function v in the upper-half plane by setting

v(x, t) :=
∫ t0

0
u(x, t + s)ds.
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Then v solves the heat equation and, by the periodicity of u, it is constant in t .
Thus, it is harmonic in x, that is, a linear function v(x, t) = ax + b. Here, a = 0
by the nonnegativity of u, whence v is constant. This shows that there is a constant
C independent of x so that

∫ t0
t0/2 u(x, s)ds < C. Especially, for each x there is

t1 = t1(x) ∈ (t0/2, t0) so that u(x, t1) ≤ 2C/t0. The heat kernel (2πt)−1/2e−x2/2t

can be bounded from below on x ∈ [−1,1] uniformly in t ∈ (t0/2, t0), whence
again using the nonnegativity of H we deduce that

∫ x+1
x−1 H(y)dy ≤ C′ for all

x ∈ R. As we combine this information with the fact that H = τ ∗ H it follows
that H is bounded. Then the equation(

1 − e−ξ2/2)Ĥ (ξ) = 0,

interpreted in the sense of distributions, shows that Ĥ = c1δ0 + c2δ
′
0, that is, H is

linear. By nonnegativity, we finally deduce that H is constant. �

REMARK 11. As pointed out by one of the referees, these types of results
often have more probabilistic proofs as well. For example, let us sketch one for
the previous lemma. Consider again H ≥ 0 and note that the condition H = τ ∗
H means that (H(Sn))n≥0 is a martingale for the Gaussian random walk (Sn)

with increments distributed according to τ . Since H is nonnegative, the martingale
converges to some nonnegative random variable, say H. On the other hand, (Sn)

is neighborhood recurrent, so for any ε > 0 and x ∈ R we can find a subsequence
nk such that nk → ∞ as k → ∞ and |Snk

− x| < ε for all k. Now, the fact that
H = τ ∗ H together with the growth condition assumed of H implies that H is
a smooth function. Thus, for any given x we have H = limk→∞ H(Snk

) = H(x)

and, therefore, H is constant.

We finish the proof of Proposition 8 by deducing it from Lemma 9 by a convo-
lution argument analogous to the one of Buraczewski [13].

PROOF OF PROPOSITION 8. Let φ ≥ 0 be an arbitrary symmetric smooth
test function with suppφ ⊂ [−1,1] and

∫
R φ = 1. Given any locally integrable

g :R→R, let gε denote the convolution gε = g ∗ ε−1φ(ε−1·). By convolving the
Poisson equation, we obtain [writing, e.g., (Fα,β)ε = Fα,β,ε] for any 0 ≤ α < β

and ε > 0

Fα,β,ε = τ ∗ Fα,β,ε + ψα,β,ε.

By the continuity of ψα,β,ε and integrability of ψα,β , we have limx→±∞ ψα,β,ε =
0. From Lemma 9, we thus obtain, for each ε > 0, the asymptotics

lim
x→±∞Fα,β,ε(x) = 2

σ 2 Cα,β,(17)

since ∫
R

xψα,β,ε(x)dx = iψ̂ ′
α,β,ε(0) = iψ̂ ′

α,β(0) =
∫
R

xψα,β(x) = Cα,β.
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In order to remove the ε from (17), let k ∈ (1, (β/α)1/2) be given and observe
that by the definition of Fα,β as a measure of an interval we have Fkα,k−1β(x) ≤
Fα,β,ε(x) for all x as soon as ε is small enough. Hence, we obtain from (17) that

lim sup
x→∞

Fα,β(x) ≤ 2

σ 2 Ck−1α,kβ .

By letting k → 1+ and recalling the assumption of the continuity of (α,β) �→
Cα,β it follows that lim supx→∞ Fα,β(x) ≤ 2Cα,β/σ 2. The converse direction
lim infx→∞ Fα,β(x) ≥ 2Cα,β/σ is obtained analogously by starting from the in-
equality Fk−1α,kβ(x) ≤ Fα,β,ε(x). �

The proof of Proposition 7 has now essentially been reduced to checking that
the Poisson equation (11) with Fα,β determined by ν as in (10) and ψα,β given
by (12) satisfies the assumptions of Proposition 8.

PROOF OF PROPOSITION 7. We first check that the measure ν satisfies
ν((0, x]) ≤ C(1 + x)γ for some C,γ > 0. This is clear from the definition and
Theorem A: for any γ ∈ (0,1),

ν
(
(0, x])= EY1{Y∈(0,x]} ≤ xγEY 1−γ 1{Y∈(0,x]} ≤ EY 1−γ xγ .

To check the integrability conditions on ψα,β , we define the functions

ψα(x) = EQỸ1{αex−B̃<W̃ Ỹ≤αex} and ψβ(x) = EQỸ1{βex−B̃<W̃ Ỹ≤βex}.

By this definition,

ψα,β(x) = EQỸ1{αex−B̃<W̃ Ỹ≤βex−B̃} −EQỸ1W̃ Ỹ∈(αex,βex ] = ψα(x) − ψβ(x).

Since the functions ψα and ψβ are positive, to check the integrability conditions
of Theorem 8 on the functions ψα,β it is sufficient to show that∫ 1

−1
ψα(x)dx < ∞ and

∫ ∞
−∞

x2ψα(x)dx < ∞ for all α > 0.

In our situation, the first condition is clear, since EQW̃−1 < ∞. For the second
condition, some computation and a separate lemma is needed. We write

1{αex−B̃<W̃ Ỹ≤αex} = 1{(W̃ Ỹ )/α≤t<(W̃ Ỹ+B̃)/α} for t = ex

and use the integral∫ b

a

log t

t
dt = 1

2

(
log

b

a

)
(logab) for 0 < a < b
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to compute∫ ∞
0

x2ψα(x)dx

= EQỸ

∫ ∞
0

x21{αex−B̃<W̃ Ỹ≤αex} dx

= EQỸ

∫ ∞
1

1{(W̃ Ỹ )/α≤t<(W̃ Ỹ+B̃)/α}
(log t)2

t
dt

= EQỸ1{(W̃ Ỹ )/α>1}
∫ (W̃ Ỹ+B̃)/α

(W̃ Ỹ )/α

(log t)2

t
dt

+EQỸ1{(W̃ Ỹ )/α<1<(W̃ Ỹ+B̃)/α}
∫ (W̃ Ỹ+B̃)/α

1

(log t)2

t
dt

≤ 1

2
EQỸ1{(W̃ Ỹ )/α>1} log

(
1 + B̃

W̃ Ỹ

)
log

(
W̃ Ỹ

α
· W̃ Ỹ + B̃

α

)
log

(
W̃ Ỹ + B̃

α

)

+ 1

2
EQỸ1{(W̃ Ỹ )/α<1<(W̃ Ỹ+B̃)/α}

(
log

(
W̃ Ỹ + B̃

α

))2

log
(

W̃ Ỹ + B̃

α

)
=: I1 + I2,

and similarly by the change of variables s = e−x we get∫ 0

−∞
x2ψα(x)dx

= EQỸ

∫ 0

−∞
x21{αex−B̃<W̃ Ỹ≤αex} dx

= EQỸ

∫ ∞
1

1{α/s−B̃<W̃ Ỹ≤α/s}
(log s)2

s
ds

≤ 1

2
EQỸ1{(W̃ Ỹ+B̃)/α<1} log

(
1 + B̃

W̃ Ỹ

)
log

(
α

W̃ Ỹ
· α

W̃ Ỹ + B̃

)
log

(
α

W̃ Ỹ

)

+ 1

2
EQỸ1{(W̃ Ỹ )/α<1<(W̃ Ỹ+B̃)/α}

(
log

(
W̃ Ỹ

α

))2

log
(

α

W̃ Ỹ

)
=: I3 + I4.

To show that I1 < ∞, we use the crude estimate log(1 + x) ≤ Cpxp , valid for all
p > 0 for sufficiently large constant Cp > 0 depending only on p, to get

I1 ≤ Cp1Cp2Cp3

αp1αp2
E

(
μ
([0,1/2])(μ([1/2,1])

μ([0,1/2])
)p1

× (
μ
([0,1/2])p2 + μ

([0,1])p2
)
μ
([0,1])p3

)
.
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In Lemma 13 below, we show that for any 0 < h < 1 we have

Eμ
([0,1/2])hμ([1/2,1])h < ∞.

By choosing p1,p2,p3 > 0 such that 0 < 1−p1 +p2 +p3 < 1 and p1 +p2 +p3 <

1, this implies the finiteness of I1. For I2 one may estimate W̃ Ỹ+B̃
α

≤ 1 + B̃

W̃ Ỹ
and

proceed as in the case of I1. In estimating I3, one may write α

W̃ Ỹ+B̃
< α

W̃ Ỹ
and

proceed as before, and the finiteness of I4 follows the same route.
In order to apply Proposition 8, we still need to show that∫ ∞

−∞
ψα,β(x)dx = 0

and compute the value of the integral

Cα,β =
∫ ∞
−∞

xψα,β(x)dx.

The first integral follows immediately from the integrability of ψα and the fact that

ψα,β(x) = ψα(x) − ψβ(x) = ψα(x) − ψα

(
x + log

α

β

)
.

The value of Cα,β can be calculated by using the change of variables x = et as
above to obtain∫ ∞

−∞
xψα(x)dx = 1

2
EQỸ log

(
1 + B̃

W̃ Ỹ

)
log

W̃ Ỹ (W̃ Ỹ + B̃)

α2 ,

which implies

Cα,β =
∫ ∞
−∞

x
(
ψα(x) − ψβ(x)

)
dx = EQỸ log

(
1 + B̃

W̃ Ỹ

)
log

β

α
.

Proposition 8 now gives the desired asymptotics

Fα,β(x)
x→∞−→ 2EQỸ log(1 + B̃/(W̃ Ỹ ))

2 log 2
log

β

α

= 2

log 2
Eμ

([0,1/2]) log
(

1 + μ([1/2,1])
μ([0,1/2])

)
log

β

α

for all 0 < α < β . �

Before moving on to the final step of the proof of Theorem 1, we complete the
proof of Proposition 7 by proving Lemma 13.

LEMMA 12. For any h ∈ (0,1) and any pair of intervals I1, I2 ⊂ [0,1] such
that d(I1, I2) > 0,

E
(
μ(I1)

hμ(I2)
h)< ∞.
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PROOF. We use Kahane’s convexity inequality, to be given as Proposition 19,
and the definition (7) of the critical measure as the limit of

μt(dx) = √
te

√
2Xt (x)−EXt(x)2

dx

as t → ∞. Write the product μt(I1)μt (I2) as

μt(I1)μt (I2) = t

∫
I1

dx

∫
I2

dy e
√

2(Xt (x)+Xt(y))−EXt(x)2−EXt (y)2

and consider the Gaussian fields Zt(x, y) = Xt(x) + Xt(y) and Z̃t (x, y) =
Xt(x) + X̃t (y) indexed by I1 × I2, where X̃t is an independent realization of the
field Xt . The covariance kernel of Z̃t is clearly dominated by the covariance kernel
of Zt , so Proposition 19 gives the inequality

E

(
t

∫
I1

dx

∫
I2

dy e
√

2Zt (x,y)−EZt (x,y)2
)h

≤ E

(
t

∫
I1

dx

∫
I2

dy e
√

2Z̃t (x,y)−EZ̃t (x,y)2
)h

= E

(√
t

∫
I1

e
√

2Xt(x)−EXt (x)2
dx

)h

E

(√
t

∫
I2

e
√

2X̃t (x)−EX̃t (x)2
dx

)h

= E
(
μt(I1)

h)E(μt(I2)
h)

< ∞.

By expanding the variance EZt(x, y)2 = EXt(x)2 +EXt(y)2 +2EXt(x)Xt(y) we
note that the first expression may be estimated from below by

e
−2 supx∈I1,y∈I2

EXt (x)Xt (y)
E
(
tμt (I1)μt (I2)

)h
.

Since the intervals I1 and I2 are separated by a positive distance, the supremum in
the exponent stays bounded as t → ∞, which proves the claim. �

LEMMA 13. For any h ∈ (0,1),

E
(
μ
([0,1/2])μ([1/2,1]))h < ∞.

PROOF. Fix h ∈ (0,1). For every k ∈ N, let Jk = [1/2 − 2−k,1/2 + 2−k].
Denote the left and right half of Jk by J 0

k and J 1
k , and the right and left halves of

J 0
k (and J 1

k ) by J 00
k and J 01

k (J 10
k and J 11

k ). Define the sets Ak by

Ak = (
J 00

k × J 11
k

)∪ (
J 00

k × J 10
k

)∪ (
J 01

k × J 11
k

)
.

Write

Z = μ
([0,1/2])μ([1/2,1])=

∫
[0,1/2]

μ(dx)

∫
[1/2,1]

μ(dy)
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and define the random variables

Zk =
∫
[0,1/2]

μ(dx)

∫
[1/2,1]

μ(dy)χAk
(x, y)

= μ
(
J 00

k

)
μ
(
J 11

k

)+ μ
(
J 00

k

)
μ
(
J 10

k

)+ μ
(
J 01

k

)
μ
(
J 11

k

)
for k ∈ N. It is clear that

Z =
∞∑

k=1

Zk

and thus by the subadditivity of x �→ xh

EZh ≤
∞∑

k=1

EZh
k .

By the exact scaling property of the construction, the measure μ satisfies(
μ
(
J

σ1σ2
k

))
σ1,σ2∈{0,1} = 2−k+1e

√
2X(Jk)−EX(Jk)

2(
μ′(J σ1σ2

1

))
σ1,σ2∈{0,1},(18)

where X(Jk) = W(C(Jk)) is a centered Gaussian random variable with variance
λ(C(Jk)) = (k − 1) log 2 and μ′ is random measure independent of X(Jk) that has
the same distribution as μ. But this implies that

Zk
d= 2−2k+2e2

√
2X(Jk)−2EX(Jk)

2
Z′

1,

where Z′
1

d= Z1 is a random variable independent of Z1. Since

2(−2k+2)hEe2
√

2hX(Jk)−2hEX(Jk)
2 = 2(−2k+2)h2(4h2−2h)(k−1) = 24(h2−h)(k−1)

and EZh
1 is finite by Lemma 12, we have

EZh ≤ EZh
1

∞∑
k=1

24(h2−h)(k−1) < ∞.
�

REMARK 14. While it can be seen from the proof of Proposition 7, we em-
phasize that the finiteness of c1 follows from this lemma: simply use the elemen-
tary inequality log(1 + x) ≤ √

x for x ≥ 0 to bound c1 by a term proportional to
E(μ([0, 1

2 ])1/2μ([1
2 ,1])1/2).

PROOF OF THEOREM 1. We will show that for any r > 1 there exists a λr

such that

P(Y > λ) ≤ c1

λ
r for all λ ≥ λr .

The verification of the lower bound is similar and is left to the reader.
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Let r > 1 and fix q > 1 so that q logq
q−1 <

√
r . By Proposition 7, there exists a λr

such that

F1,q(x) ≤ c1
√

r logq for all x ≥ logλr,

where we have defined F1,q(x) = E(Y1{Y∈(ex,qex ]}). We now have for λ ≥ λr

P(Y > λ) =
∞∑

k=0

P
(
Y ∈ (λqk, λqk+1])

≤ 1

λ

∞∑
k=0

q−kF1,q(k logq + logλ)

≤ 1

λ

∞∑
k=0

q−kc1
√

r logq = c1

λ

√
r
q logq

q − 1
≤ c1

λ
r,

as was to be shown. �

3. Modulus of continuity.

3.1. Outline of the proof. In this section, we prove Theorem 2. Our plan of
attack is to follow the arguments carried out in [9] in the case of multiplicative
cascades. However, the delicate dependence structure of multiplicative chaos calls
for nontrivial modifications. Let us briefly sketch the main steps in the case of
multiplicative cascades to see what the main structure of the proof will be and
what kind of modifications we shall need.

The main part of the proof in the situation for cascades was showing that if we
write (Iσ )σ∈{0,1}n for the dyadic subintervals of [0,1] of length 2−n and μ for the
critical measure, then for any ε > 0 there exists a Cε > 0 such that for γ ∈ (0, 1

2),
P(maxσ∈{0,1}n μ(Iσ ) ≥ n−γ ) ≤ Cεn

(1−ε)(γ−(1/2)). The corresponding result for the
modulus of continuity then follows from this through a Borel–Cantelli argument.

To get a hold of this estimate, one uses the scaling relation (μ(Iσ ))σ
d=

(eXσ Y (σ))σ , where Y (σ) are i.i.d. copies of μ([0,1]) which are also independent of
the random variables (Xσ )σ . By using the scaling relation, conditioning on (Xσ )

and the tail estimate P(Y (σ) ≥ λ) ≈ Cλ−1 (along with some technical details to
justify the approximations used)

P
(

max
σ∈{0,1}n μ(Iσ ) < n−γ

)
= E

( ∏
σ∈{0,1}n

(
1 − P

(
Y (σ) ≥ n−γ e−Xσ |(Xσ )

)))

≈ E

( ∏
σ∈{0,1}n

(
1 − Cnγ eXσ

))

≈ Ee−Cnγ ∑
σ∈{0,1}n eXσ

.
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The last term we can write as φn(Cnγ−(1/2)), where φn is the Laplace
transform of the correctly normalized total mass: φn(t) = Ee−tSn , where Sn =√

n
∑

σ∈{0,1}n eXσ . One can then prove that for any fixed q ∈ (0,1), supnE(S
q
n ) <

∞. Using this and Markov’s inequality, one can show that for q < 1, 1 − φn(t) ≤
Cqt

q from which one concludes that

P
(

max
σ∈{0,1}n μ(Iσ ) ≥ n−γ

)
≤ 1 − φn

(
Cnγ−(1/2))

(19)
≤ Cεn

(1−ε)(γ−(1/2)).

While this sketch swept a lot of the technical details under the rug, it still forms
the back bone of the proof and one can see some of the difficulties that will be
present in the case of multiplicative chaos. Let us consider some of the differ-
ences we can expect to be present in the current context. First of all, if we manage
to prove the same estimate for the maximum of the measure of dyadic intervals,
the Borel–Cantelli argument will go through in a similar manner. The first major
difference is the scaling relation. For the exactly scale invariant critical measure,

one has a similar distributional relation: (μ√
2(Iσ ))σ

d= (eXσ μ(σ)([0,1]))σ , but the

difference is that we have nontrivial correlations—μ(σ) are not independent from
each other and they may depend on some of the Xσ as well. To remedy this, we
consider instead of μ√

2 another random measure which is absolutely continuous
with respect to μ√

2 which possesses nice scaling properties, nice decorrelation
properties as well as a nicely behaving Radon–Nikodym derivative with respect
to μ√

2. Moreover, one gets similar asymptotic behavior for the tail of the measure
of the unit interval for this measure as well.

The next step of the proof is to use scaling, independence and tail behavior
to obtain a similar estimate in terms of a Laplace transform and some errors due
to approximations. This step of the proof requires a fair amount of technical de-
tails which are even more involved than in the multiplicative cascade setup, but
philosophically similar. Finally, we are left with estimating moments of the cor-
rectly normalized approximation to the critical measure. This can be done by using
Gaussian comparison inequalities and the result from multiplicative cascades.

3.2. Tools for the proof. Let us now collect some of the tools we shall need
for the proof. First of all, we shall consider modifications of the field X and the
measure μ√

2 for which we still have a similar result for the tail.

LEMMA 15. Assume that we can write μ√
2(dx) = eZ(x)ν(dx), for some ran-

dom measure ν(dx) and random Gaussian field Z which is independent of ν and
minx∈[0,1] Z(x) > 0 with positive probability, then there exists a constant C such
that P(ν([0, α]) > λ) ≤ Cαλ−1.
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PROOF. Plugging in the definitions,

P
(
μ√

2

([0, α])> λ
)= P

(∫ α

0
eZ(x)ν(dx) > λ

)
≥ P

(
eminx∈[0,1] Z(x)ν

([0, α])> λ
)

≥ P
(
eminx∈[0,1] Z(x) > 1, ν

([0, α])> λ
)

= P
(

min
x∈[0,1]Z(x) > 0

)
P
(
ν
([0, α])> λ

)
.

On the other hand, by scaling

P
(
μ√

2

([0, α])> λ
)= P

(
αeXα−(1/2)E(X2

α)μ√
2

([0,1])> λ
)
,(20)

where Xα is a centered Gaussian independent of μ√
2([0,1]). Conditioning on Xα

and using the tail estimate for μ√
2([0,1])

P
(
αeXα−(1/2)E(X2

α)μ√
2

([0,1])> λ
)≤ Cαλ−1.(21)

Collecting everything gives the desired result. �

REMARK 16. While the class of measures ν covered by this result is rather
limited (due to the fact that the result was easy to prove and sufficient for our needs
concerning the modulus of continuity), we believe that such a result for the tail
should hold quite generally for critical Gaussian multiplicative chaos measures.

We next note that the regular variation with exponent −1 of the tail is robust
under linear combinations of copies of random variables:

LEMMA 17. Let X ≥ 0 satisfy P(X > λ) ≤ A
λ

for λ > 0.
Let Xj , j ∈ {1, . . . ,N} be (possibly dependent) random variables with the same

distribution as X and let aj ≥ 0 for j ∈ {1, . . . ,N}. Then

P

(
N∑

j=1

ajXj > λ

)
≤ C · A log(N + 1)(

∑N
j=1 aj )

λ
for all λ > 0,

with a universal (in particular, independent of A) constant C < ∞.

PROOF. We may assume that
∑N

j=1 aj = 1 since the statement scales in the
right way. Fix t ∈ (0,1) and observe first that for all positive y1, . . . , yN one has
the subadditivity inequality (

N∑
j=1

ajyj

)t

≤
N∑

j=1

at
j y

t
j .
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Fix λ > 0. The above holds if we set yj = (xj −λ)+, where we denote the positive
part by y+ := max(0, y) and let, for now, the numbers (xj )1≤j≤N be arbitrary
reals. We obtain using

∑N
j=1 aj = 1 (and Jensen) that(

N∑
j=1

ajxj − λ

)t

+
≤
(

N∑
j=1

aj (xj − λ)+
)t

≤
N∑

j=1

at
j (xj − λ)t+,

or, in other words,

φ

(
N∑

j=1

ajxj

)
≤

N∑
j=1

at
jφ(xj ),

where φ(x) := (x − λ)t+. Especially, we have

Eφ

(
N∑

j=1

ajXj

)
≤ Eφ(X)

N∑
j=1

at
j .(22)

The right-hand side can be estimated as follows:

Eφ(X) =
∫ ∞

0
φ′(u)P(X > u)du

≤ A

∫ ∞
λ

t (u − λ)t−1u−1 du

= At

∫ λ

0

yt−1 dy

y + λ
+ At

∫ ∞
λ

yt−1 dy

y + λ
(23)

≤ Atλ−1
∫ λ

0
yt−1 dy + At

∫ ∞
λ

yt−2 dy

= A(1 − t)−1λt−1.

From Markov’s inequality and (22), we thus obtain

φ(2λ) · P
(

N∑
j=1

ajXj > 2λ

)
≤ Eφ

(
N∑

j=1

ajXj

)
≤
(

N∑
j=1

at
j

)
Eφ(X),

and by combining with (23)

P

(
N∑

j=1

ajXj > 2λ

)
≤ A

λ

(
1

1 − t

N∑
j=1

at
j

)
.(24)

Finally, choosing t = t0 := 1 − 1/ logN (for N ≥ 3) we get(
1

1 − t0

N∑
j=1

a
t0
j

)
≤
(

N1−t0

1 − t0

)( N∑
j=1

aj

)t0

= N1−t0

1 − t0
= e logN,

and then (24) yields the stated result. �



BASIC PROPERTIES OF CRITICAL LOGNORMAL MULTIPLICATIVE CHAOS 2227

REMARK 18. The above result is essentially optimal: choose � = [0,1), that
is, the one-dimensional torus with the Lebesgue measure. Let

X0(ω) = N

k
for ω ∈ [(k − 1)/N, k/N

)
, k = 1,2, . . . ,N.

Then P(X > λ) < 1/λ. Define the random variables Xj , j = 1, . . . ,N with the
formula Xj(ω) = X0(ω + (j − 1)/N), which is well defined since we are now
in the torus. Then each Xj has the same tail as X0. However, the average X :=
(1/N)

∑N
j=1 Xj is the constant variable: X(ω) =∑N

j=1 j−1 ≥ logN for all ω ∈ �.
We thus have P(X ≥ logN) = 1.

For comparing the present setting with that of multiplicative cascades, we shall
make use of Kahane’s convexity inequalities [26].

PROPOSITION 19. Let G : [0,∞) → R be a concave function such that
|G(x)| ≤ C(1 + xα) for some positive constants C and α. Let A ⊂ Rd be a Borel
set, ρ be a Radon measure on A and (Xr)r∈A and (Yr)r∈A be two continuous
and centered Gaussian processes on A such that the covariance kernels satisfy
kX(u, v) ≤ kY (u, v) for all u, v ∈ A. Then

EG

(∫
A

eXr−(1/2)E(X2
r )ρ(dr)

)
≥ EG

(∫
A

eYr−(1/2)E(Y 2
r )ρ(dr)

)
.

To apply this inequality, we construct a Gaussian field on [0,1] for which the
moments of the corresponding measure can be calculated and for which we have a
covariance structure that allows comparing with more correlated situations (such a
comparison is also used in [17] to prove that the limit of the total mass martingale
associated to nonrenormalized critical chaos measures vanishes almost surely).

The Gaussian field we shall employ is essentially a Gaussian branching random
walk. Let us associate to the collection {Iσ } of dyadic subintervals of [0,1] an i.i.d.
collection of standard Gaussian random variables {Vσ }. Let us write �k = {0,1}k
and define the field

Un(x) =
n∑

k=1

∑
σ∈�k : x∈Iσ

Vσ .(25)

The covariance of Un is given by

E
(
Un(x)Un(y)

)=
n∑

k,k′=1

∑
σ∈�kσ

′∈�k′ : x∈Iσ ,y∈Iσ ′
E(VσVσ ′)

=
n∑

k,k′=1

∑
σ∈�k,σ

′∈�k′ : x∈Iσ ,y∈Iσ ′
1
(
σ = σ ′)

=
n∑

k=1

∑
σ∈�k : x,y∈Iσ

1.
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For comparison with other fields, we note that to have a σ ∈ �k such that
x, y ∈ Iσ , we must have |x − y| ≤ 2−k and we see that

E
(
Un(x)Un(y)

) ≤
(− log |x−y|/log 2)∧n∑

k=1

1

= − log |x − y|
log 2

∧ n.

Our last technical lemma is a version of the Borell–Tsirelson–Ibragimov–
Sudakov inequality [1], Theorem 2.1.1. For our purposes, we need a version which
relates the tail probability of the supremum of a Gaussian process on an interval
both to the size of the interval and to the modulus of continuity of the covariance
of the process in a quantitative manner.

LEMMA 20. Let I ⊂ R be a bounded interval and L > 0. Let (Y (x))x∈I be an
arbitrary centered Gaussian process on I such that E|Y(x) − Y(y)|2 ≤ L|x − y|
for all x, y ∈ I , and further suppose there is some (deterministic) x0 ∈ I for which
Y(x0) = 0 almost surely. Then, for any ε > 0, there exists an absolute constant
cε > 0 (i.e., the choice of cε depends only on ε) such that for all s > 0

P
(
sup
x∈I

Y (x) > s
)

≤ cεe
−s2/((2+ε)|I |L).(26)

PROOF. By considering the scaled process 1√|I |LY (|I |·) instead of Y(·) we

may without loss of generality reduce to the case |I | = L = 1. Since EY(x0)
2 = 0,

this normalization also implies that σ 2
Y := supx∈I EY(x)2 ≤ 1. The Borell–TIS

inequality then states that for s > 0 we have

P
(
sup
x∈I

Y (x) −E sup
x∈I

Y (x) > s
)

≤ e−s2/(2σ 2
Y ) ≤ e−s2/2.(27)

Then consider the Gaussian process X(x) = Bx − Bx0 , where (Bx)x∈I is a one-
dimensional Brownian motion. Clearly, (X(x))x∈I satisfies the assumptions of the
lemma, and moreover,

E
∣∣Y(x) − Y(y)

∣∣2 ≤ |x − y| = E
∣∣X(x) − X(y)

∣∣2
for all x, y ∈ I . By the Sudakov–Fernique inequality ([1], Theorem 2.2.3), we then
have

E sup
x∈I

Y (x) ≤ E sup
x∈I

X(x) ≤ M < ∞

for some absolute constant M > 0. In (27), for s > M this implies

P
(
sup
x∈I

Y (x) > s
)

≤ e−(s−M)2/2.
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Since the choice of M does not depend on the parameters of the process (Y (x))x∈I ,
it clear that for any ε > 0 there exists an absolute constant cε > 0 for which (26)
holds. �

REMARK 21. The statement of the lemma generalizes to processes on
bounded domains U ⊂ Rd for d ≥ 2 simply by replacing the length |I | of the
interval I by the diameter diam(U) of U . The only difference in the proof is that
instead of one-dimensional Brownian motion one compares the arbitrary process
to Lévy’s Brownian motion on Rd , that is, the Gaussian process (X(x))x∈Rd with
EX(x)X(y) = 1

2(|x|+ |y|− |x −y|); we refer to [27] for a proof that this function
is indeed a covariance kernel.

We are ready to proceed to the main proof.

3.3. Main results for the modulus of continuity. Let ((Xt(x))x∈R)t≥0 be the
exactly scale invariant Gaussian field on R as before and define the Gaussian field
((Yt (x))x∈R)t≥0 by setting

Yt (x) = W
(
Ct (x) \ C0(x)

)= Xt(x) − X0(x) for x ∈ R, t ≥ 0.

In the proof of Theorem 2, it is convenient to use the characterization (7) of critical
lognormal multiplicative chaos. To keep the notation simpler, we normalize the
construction by the deterministic constant c > 0 in (7). Explicitly, we consider the
critical measures associated to the fields X and Y and denote

μ√
2(dx) = lim

t→∞
√

te
√

2Xt(x)−(t+1) dx

and

ν√
2(dx) = lim

t→∞
√

te
√

2Yt (x)−t dx,

where the limits exist in probability in the weak sense. By construction, it is clear

that almost surely, the Radon–Nikodym derivative
dμ√

2
dν√

2
(x) = e

√
2X0(x)−1 is almost

surely positive and uniformly bounded away from 0 and ∞ for all x ∈ [0,1] (in
particular, the assumptions of Lemma 15 are met), so for the purpose of our re-
sult on the modulus of continuity the difference between these two measures is
insignificant. The measure μ√

2 is exactly scale invariant as before, but in this sec-
tion we make more use of the measure ν√

2 which satisfies the �-scaling relation:
for every ε ∈ (0,1] we have(

ν√
2(A)

)
A∈B([0,1])

d=
(
ε

∫
A

e
√

2Y− log ε+log ενε√
2
(dx)

)
A∈B([0,1])

,(28)

where νε√
2

is independent of Y− log ε and (νε√
2
(A))A

d= (ν√
2(ε

−1A))A. The proof
of this scaling relation is recalled in the Appendix. We also stress that ν√

2 satisfies
the conditions of Lemma 15.
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The next lemma contains the key technical estimates that lead to the proof of
Theorem 2.

LEMMA 22. Let us index by σ ∈ �n = {0,1}n the dyadic subintervals Iσ of
[0,1] of length 2−n. Moreover, write �

(e)
n for the family of even dyadic intervals of

length 2−n (i.e., intervals of the form [(2j)2−n, (2j + 1)2−n)). Then for γ ∈ (0, 1
2)

and ε ∈ (0,1) there exists a constant C = C(ε) such that

P
(

max
σ∈�

(e)
n

ν√
2(Iσ ) ≥ n−γ

)
≤ Cn(1−ε)(γ−(1/2)).(29)

The same holds if we replace �
(e)
n with �

(o)
n , the corresponding collection of odd

dyadic intervals.

PROOF. The proof is rather lengthy so we shall split it into steps that somewhat
parallel the cascade proof.

Step 1: Using scaling and independence.
We begin by noting that by specializing the �-scaling relation to dyadics, we get(

ν√
2(Iσ )

)
σ∈�n

d=
(

2−n
∫
Iσ

e
√

2Yn log 2(x)−n log 2ν
(n)√

2
(dx)

)
σ∈�n

,(30)

where ν
(n)√

2
is independent of Yn log 2 and (ν

(n)√
2
(A))A

d= (ν√
2(2

nA))A. Since Yt (x)

and Yt (y) are independent when |x − y| ≥ 1, ν√
2(A) is independent of ν√

2(B)

when d(A,B) ≥ 1. Thus, the scaling property implies that (ν
(n)√

2
�Iσ )

σ∈�
(e)
n

is a
family of independent random measures (and similarly for the odd intervals)—
here ν

(n)√
2
�Iσ denotes the restriction of ν

(n)√
2

to Iσ .
Let us write

Wn,σ = 2−n
∫
Iσ

e
√

2Yn log 2(x)−n log 2ν
(n)√

2
(dx).(31)

Using the independence noted above, we see that

P
(

max
σ∈�

(e)
n

Wn,σ < n−γ
)

= E
∏

σ∈�
(e)
n

P
(
Wn,σ < n−γ |Yn log 2

)
(32)

≥ E
∏

σ∈�n

(
1 − P

(
Wn,σ ≥ n−γ |Yn log 2

))
.

Step 2: Getting to the Laplace transform.
To estimate P(Wn,σ ≥ n−γ |Yn log 2), we will approximate the integral (31) by

a Riemann sum and then make use of Lemma 15. For brevity, we will denote
f

(n)√
2
(·) := e

√
2Yn log 2(·)−n log 2. Fix σ ∈ �n for the moment, let k ∈ N+ and divide Iσ

into 2k subintervals (Iσ,j )
2k

j=1 of equal length. Denote the midpoint of Iσ,j by xσ,j .
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Let s > 0 and define the event Ds = {supx∈Iσ,j
|Yn log 2(x) − Yn log 2(xσ,j )| ≤ s for

all j = 1,2, . . . ,2k}. We then have on Ds

2nWn,σ =
∫
Iσ

f
(n)√

2
(x)ν

(n)√
2
(dx) ≤ e2

√
2s

2k∑
j=1

−
∫
Iσ,j

f
(n)√

2
(x)dx ν

(n)√
2
(Iσ,j ),

where −∫
A f (x)dx := 1

|A|
∫
A f (x)dx is the integral average. Let Fn = σ({Yt (x) :

x ∈ [0,1], t ≤ n log 2}). Since ν
(n)√

2
(Iσ,j )

d= ν
(n)√

2
(Iσ,i) for j �= i and the function

f
(n)√

2
is independent of the measure ν

(n)√
2
, Lemmas 17 and 15 imply that on Ds

P

(∫
Iσ

f
(n)√

2
(x)ν

(n)√
2
(dx) > λ

∣∣∣Fn

)

≤ P

(
e2

√
2s

2k∑
j=1

−
∫
Iσ,j

f
(n)√

2
(x)dx ν

(n)√
2
(Iσ,j ) > λ

∣∣∣Fn

)

≤ Ck2−k

(e2
√

2s ∑2k

j=1 −∫
Iσ,j

f
(n)√

2
(x)dx

λ

)
for some constant C > 0. Setting λ = n−γ 2n and combining this inequality with
(32) and the inequality e−2x ≤ 1 − x valid for x ∈ [0,1/2], we get

EP
(

max
σ∈�

(e)
n

ν√
2(Iσ ) > n−γ

∣∣Fn

)
≤ 1 −E

∏
σ∈�n

(
1 − P

(
Wn,σ ≥ n−γ |Yn log 2

))

≤ 1 −E exp
(
−2Ck2−ke2

√
2s
∑

σ∈�n

(∑2k

j=1 −∫
Iσ,j

f
(n)√

2
(x)dx

2nn−γ

))
+ 1 − P(An,k,s)

= 1 −E exp
(
−2Cke2

√
2snγ

∫ 1

0
f

(n)√
2
(x)dx

)
+ 1 − P(An,k,s),

where An,k,s is the event

An,k,s =
{

max
σ∈�n

Ck2−k
e2

√
2s ∑2k

j=1 −∫
Iσ,j

f
(n)√

2
(x)dx

n−γ 2n
<

1

2

}
∩
{

sup
x∈Iσ,j

∣∣Yn log 2(x) − Yn log 2(xσ,j )
∣∣≤ s

∀j ∈ {0,1, . . . ,2k − 1
} ∀σ ∈ �n

}
.
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Denoting

Sn = n1/2
∫ 1

0
e
√

2Yn log 2(x)−n log 2 dx,

we finally get

P
(

max
σ∈�

(e)
n

μ√
2(Iσ ) > n−γ

)
≤ 1 −E exp

(−2Ce2
√

2skn(γ−(1/2))Sn

)
(33)

+ 1 − P(An,k,s).

Step 3: Controlling the error.
We then estimate the terms in the inequality above. Denote

Bn =
{

max
σ∈�n

Ck2−k
e2

√
2s ∑2k

j=1 −∫
Iσ,j

f
(n)√

2
(x)dx

n−γ 2n
<

1

2

}

=
{

max
σ∈�n

∫
Iσ

e
√

2Yn log 2(x)−n log 2 dx < n−γ (2Cke2
√

2s)−1
}

and

B′
n,k,s =

{
sup

x∈Iσ,j

∣∣Yn log 2(x) − Yn log 2(xσ,j )
∣∣≤ s ∀j ∈ {0,1, . . . ,2k − 1

} ∀σ ∈ �n

}
so that

An,k,s = Bn ∩B′
n,k,s and 1 − P(An,k,s) ≤ (

1 − P(Bn)
)+ (

1 − P
(
B′

n,k,s

))
.

We first estimate the probability of B′
n,k,s not occurring. For all σ and j , the length

of Iσ,j is 2−n−k and E|Yn log 2(x) − Yn log 2(y)|2 ≤ 2n+1|x − y|, so by Lemma 20
we have, for any σ ∈ �n and j = 1, . . . ,2k ,

P
(

sup
x∈Iσ,j

∣∣Yn log 2(x) − Yn log 2(xσ,j )
∣∣> s

)
≤ ce−2k−3s2

,

where c > 0 is an absolute constant. It follows that

1 − P
(
B′

n,k,s

)≤ c2n+ke−2k−3s2
.

For the choice sn ∼ √
ε logn and kn ∼ α logn, the right-hand side of this estimate

is asymptotically equivalent to

nα log 2en log 2−(ε/8)nα log 2 logn,

from which we see that in order to have
∑∞

n=1(1 − P(B′
n,kn,sn

)) < ∞ we may
take ε > 0 arbitrarily small, but must restrict to α ≥ 1/ log 2. Taking α = 1/ log 2,
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in (33) these choices give

P
(

max
σ∈�

(e)
n

ν√
2(Iσ ) > n−γ

)

≤ 1 −E exp
(
−2Ce2

√
2
√

ε logn logn

log 2
n(γ−(1/2))Sn

)
(34)

+ c′n−c′′ logn + (
1 − P(Bn)

)
for some constants c′, c′′ > 0 depending on ε.

To estimate the probability of Bn, we note that{
Sn < n(1/2)−γ (2Ckne

2
√

2sn
)−1}⊂ Bn.(35)

By Chebyshev’s inequality, we then see that for any q < 1

1 − P(Bn) ≤ P
(
Sn >

(
2Ckne

2
√

2sn
)−1

n((1/2)−γ ))
≤ (

2Ckne
2
√

2sn
)q E(S

q
n )

n((1/2)−γ )q
.

Step 4: Comparison with cascades.
If we knew that E(S

q
n ) were uniformly bounded in n for some values of q , we

would have a quantitative estimate for the speed at which P(Bn) tends to one.
For this, we employ Kahane’s convexity inequalities, that is, Proposition 19, and
comparison with the branching random walk Un defined in (25).

Note that

E
(
Un(x)Un(y)

)≤ − log |x − y|
log 2

∧ n

≤ 1

log 2
E
(
Yn log 2(x)Yn log 2(y)

)+ C,

for some large enough constant C, since the covariance of the field Yn log 2 is given
by

E
(
Yn log 2(x)Yn log 2(y)

)
=
{− log |x − y| + |x − y| − 1, 2−n ≤ |x − y| ≤ 1,

n log 2 + |x − y| − 2n|x − y|, |x − y| ≤ 2−n.

Let us thus consider a standard Gaussian variable Z independent of Yn log 2 and
define the fields

A(x) =
√

2 log 2Un(x) and B(x) = √
2Yn log 2(x) +

√
2C log 2Z.

We have E(A(x)A(y)) ≤ E(B(x)B(y)) for all x, y. We then apply the convexity
inequality to the fields A and B with the convex function G(x) = nq(1/2)xq for
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q < 1, to get

E
(
eq

√
2C log 2Z−qC log 2)E(Sq

n

)
≤ E

(
nq(1/2)

(∫ 1

0
e
√

2 log 2Un(x)−log 2E(Un(x)2) dx

)q)
.

Comparing with the notation of [9], we see that the quantity on the right here
is simply E((n1/2Z1,n)

q), the qth moment of the total mass of the correctly
renormalized critical Mandelbrot cascade measure. As noted in [9], the fact
that this is uniformly bounded in n for a fixed q < 1 follows from [33, 45].
Thus, E(S

q
n ) is also uniformly bounded in n for q < 1. So, recalling that sn =√

ε logn and kn = 1
log 2 logn, we conclude that for any ε ∈ (0,1), there are con-

stants C(ε
2) and C(ε) so that if we take n large enough, then 1 − P(Bn) ≤

C(ε
2)(2Ckne

2
√

2sn)1−(ε/2)n(1−(ε/2))(γ−(1/2)) ≤ C(ε)n(1−ε)(γ−(1/2)). Thus, by (34)
all we are left with is to estimate the Laplace transform of Sn.

We make use of the following formula, valid for all nonnegative random vari-
ables X:

1 −E
(
exp(−αX)

)=
∫ ∞

0
αe−αtP(X ≥ t)dt.

In this formula, we set α = 2Ce2
√

2snknn
(γ−(1/2)) and X = Sn. Recalling from the

argument above that E(S
q
n ) is uniformly bounded in n for q < 1, by Chebyshev’s

inequality we see that for any q < 1

P(Sn ≥ t) ≤ Cqt
−q .

Making the change of variable τ = αt , we get

1 −E
(
e−αSn

)≤ Cqα
q
∫ ∞

0
e−τ τ−q dτ.

Recalling again that sn = √
ε logn and kn = 1

log 2 logn, we see that since the inte-
gral converges, we can take q so close to one that we get

1 −E
(
e−αSn

)≤ C′(ε)n(γ−(1/2))(1−ε),

which completes the proof of Lemma 22. �

Theorem 2 now follows quickly. We first prove the analogous statement for the
measure ν√

2.

THEOREM 23. For any interval I ⊂ [0,1] and γ < 1
2 , almost surely

ν√
2(I ) ≤ C(ω)

(
log

(
1 + |I |−1))−γ

,(36)

where C(ω) is an almost surely finite random constant.
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PROOF. It is enough to restrict to dyadic subintervals. Pick γ ∈ (0, 1
2). Let l

be an integer so that l(γ − 1
2) < −2. We then have by Lemma 22 that

∞∑
k=1

P
(

max
σ∈�

(e/o)

kl

ν√
2(Iσ ) ≥ k−lγ

)
≤ C

∞∑
k=1

kl((γ−(1/2))/2) < ∞.

By Borel–Cantelli,

max
σ∈�

(e/o)

kl

ν√
2(Iσ ) ≤ C(ω)k−lγ

for a random (almost surely finite) constant C(ω). Combining the estimates for
even and odd intervals, we get

max
σ∈�

kl

ν√
2(Iσ ) ≤ C′(ω)k−lγ .

We note that maxσ∈�n ν√
2(Iσ ) is decreasing in n so for kl ≤ n ≤ (k + 1)l we

have

max
σ∈�n

ν√
2(Iσ ) ≤ max

σ∈�
kl

ν√
2(Iσ ) ≤ C ′(ω)k−lγ ≤ C′(ω)2lγ n−γ ,

which is the desired result. �

PROOF OF THEOREM 2. From the definition of ν√
2, we note that for any

interval I ⊂ [0,1]
μ√

2(I ) ≤ e
√

2 maxx∈[0,1] X0(x)−1ν√
2(I ),

where (X0(x))x∈[0,1] is a Gaussian process with a continuous covariance kernel.

The quantity e
√

2 maxx∈[0,1] X0(x) is almost surely finite, so Theorem 23 implies the
result. �

4. On the μ√
2-almost everywhere local behavior of μ√

2. We consider the
following question: what can be said of the size of smallest possible sets of full
μ√

2-measure? This question is partially answered by Theorem 4, which is proven
in this section.

Let f :N →R+ be an ultimately nonincreasing function tending to 0 at infinity
and consider the sets

Ef
n = {

x :μ√
2

(
In(x)

)≤ f (n)
}
.

We will determine a class of functions f for which we have∑
n

μ√
2

(
Ef

n

)
< ∞ almost surely.
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For a nontrivial result, it is already enough to consider the expectation of the series
above. We fix a sequence (ηn)n≥1 taking values in (0,1) and write

μ√
2

(
Ef

n

)=
∫ 1

0
1{μ√

2(In(x))≤f (n)}μ√
2(dx) = ∑

σ∈�n

μ√
2(Iσ )1{μ√

2(Iσ )≤f (n)}

≤ ∑
σ∈�n

μ√
2(Iσ )

(
f (n)

μ√
2(Iσ )

)ηn

= ∑
σ∈�n

μ√
2(Iσ )1−ηnf (n)ηn.

Let εn = − log(f (n))
n

take the form γ

√
log(n)

n
+ α

log log(n)
n

for n ≥ 3, where α > 0
and γ > 0 are to be prescribed. Assume ηn = λεn.

Denoting by Wn the nth level lognormal factor

Wn
d= exp

(√
2Xn −EX2

n

) d= exp
(
σnN − σ 2

n

2

)
,

N ∼ N(0,1), σ 2
n = 2n log 2,

we have, for each σ ∈ �n, μ√
2(Iσ )

d= 2−nWnYn where Yn is a copy of Y inde-

pendent of Wn. Moreover, by Theorem 1 we have E(Y 1−η) = O(η−1) as η → 0+.
These remarks yield

Eμ√
2

(
Ef

n

)≤ 2n2−n(1−ηn)E
(
W 1−ηn

n

)
E
(
Y 1−ηn

)
e−nεnηn

≤ Cen(log(2)η2
n−εnηn)−log(ηn).

A computation yields for n ≥ 3

n
(
log(2)η2

n − εnηn

)− log(ηn) = (
c + 1

2

)
log(n) + (

cα − 1
2

)
log log(n) + O(1),

where c = log(2)λ2γ 2 − λγ 2. With the order of magnitude chosen for εn, taking
c = −3

2 is optimal in view of making
∑

n≥1 Eμ√
2(E

f
n ) convergent. This condi-

tion requires the equation log(2)λ2γ 2 − λγ 2 + 3
2 = 0 to have solutions in λ. This

imposes γ ≥ √
6 log(2), hence we choose γ = √

6 log(2) to minimize εn. It then
turns out that if −3

2α − 1
2 < −1, that is, α > 1

3 , then
∑

n≥1 Eμ√
2(E

f
n ) < ∞.

Theorem 4 follows from the preceding estimates by an application of the Borel–
Cantelli lemma to the measure μ√

2. As an application of Theorem 4 we present
the following simple corollary.

COROLLARY 24. Almost surely, there exists a set of Hausdorff dimension 0
that has full μ√

2-measure.

PROOF. Let

E = {
x :μ√

2

(
In(x)

)≥ f (n) for all but finitely many n
}
,



BASIC PROPERTIES OF CRITICAL LOGNORMAL MULTIPLICATIVE CHAOS 2237

where f = fα for some α > 1
3 . Since, by Theorem 4, E almost surely has full

μ√
2-measure, we only need to show that a.s. it has Hausdorff dimension 0.
Let {Iσ }

σ∈�
f
n

be the collection of dyadic subintervals of [0,1] such that |σ | ≥ n

and μ√
2(Iσ ) ≥ f (|σ |). Clearly, for any n, {Iσ }

σ∈�
f
n

is a cover of E. But for any

s > 0 and sufficiently large n ∈ N we have 2−(s/2)|σ | ≤ μ√
2(Iσ ) for all σ ∈ �

f
n , so∑

σ∈�
f
n

|Iσ |s = ∑
k≥n

∑
σ∈�

f
n ,|σ |=k

|Iσ |s = ∑
k≥n

∑
σ∈�

f
n ,|σ |=k

|Iσ |s/2(2−|σ |)s/2

≤ ∑
k≥n

2−k(s/2)
∑

σ∈�
f
n ,|σ |=k

μ√
2(Iσ )

≤ μ√
2

([0,1])∑
k≥n

2−k(s/2).

The last expression tends to 0 as n → ∞. It follows that for any s > 0 the set E

has zero Hausdorff s-measure, which implies the claim. �

5. Higher dimensions. In this section, we discuss results corresponding to
Theorems 1 and 2 in a higher-dimensional setting, that is, for multiplicative chaos
measures on Rd for d ≥ 2, using similar methods as in the d = 1 case. We will
focus on the d = 2 case. We begin by describing the relevant objects and stating
the results, and we will then sketch the minor differences in the proofs. Finally, we
will make a remark on the higher-dimensional cases d ≥ 3.

Formally, a two-dimensional exactly scale invariant lognormal multiplicative
chaos measure may be constructed by exponentiating a centered Gaussian field
(X(x))x∈R2 with the covariance EX(x)X(y) = log+ r

|x−y| , with r > 0. To make
a rigorous construction (see [8] Section A.1), one introduces a Gaussian process
(Xt(x))x∈R2,t≥0 with covariance:

E
(
Xt(x)Xs(y)

)

(37) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, |x − y| > r ,

log
r

|x − y| , re−t∧s < |x − y| ≤ r ,

t ∧ s + 2
(

1 −
√ |x−y|

r
et∧s

)
, |x − y| ≤ re−t∧s .

It follows from [17, 18] (see Remark 3 in [18] in particular) that a nontrivial critical
measure μ exists (the critical point being βc = 2) and it can be written as

μ(dx) = lim
t→∞

√
te2Xt (x)−2(t+2) dx,(38)

where the limit is taken weakly in probability. The measure can also be constructed
through the derivative martingale measure. This measure is exactly scale invariant,
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that is, for any λ < 1(
μ(λA)

)
A∈B(Br/2)

d= λ2e2Xλ−2E(X2
λ)(μ(A)

)
A∈B(Br/2)

,

where Br/2 is any disk of radius r
2 , B(Br/2) denotes its Borel subsets and Xλ

is a centered Gaussian with variance log 1
λ

and as in the one-dimensional case,
it is independent of (μ(A))A∈B(Br/2). The parameter r plays the role of a scale
parameter. We fix r = 1 from now on.

Our proof of Theorem 1 is robust in the sense that in addition to exact scale
invariance, very little extra information on the exponentiated field (Xt(x)) is used.
Indeed, we will prove the following theorem.

THEOREM 25. Let Q = [0, a]2 with a ≤ 1 and write Q1 = [0, a
2 ]2. Then

lim
λ→∞λP

(
μ(Q) > λ

)= c

for

c = 2

log 2
E

(
μ(Q1) log

μ(Q)

μ(Q1)

)
< ∞.

REMARK 26. Using different values of a and r , we obtain upper and lower
bounds of similar form for disks (or any other compact set containing an open
set) instead of squares. Also, this result can be used to obtain similar bounds for
measures other than the exactly scale invariant one (e.g., by controlling the Radon–
Nikodym derivative).

For our proof of the modulus of continuity, we needed a further decorrelation
property of the family of fields (Xt(x)) and the �-scale invariant measure was more
convenient than the exactly scale invariant one. We define a corresponding one in
two dimensions: consider Yt (x) = Xt(x) − X0(x). Again from [17, 18], it follows
that

ν(dx) = lim
t→∞

√
te2Yt (x)−2t dx(39)

exists when the limit is taken weakly in probability, that the limit is nontrivial and
that it has the �-scaling property. The �-scaling property is a consequence of the
fact that for 0 < t < t ′, the field Y may be decomposed as Yt ′(x) = Yt (x)+Yt,t ′(x),
where Yt,t ′ is a scaled copy of Yt ′−t that is sampled independently of Yt . Especially,
Yt,t ′(x) is also independent of Yt,t ′(y) for |x − y| ≥ e−t . This decomposition prop-
erty was crucial and also sufficient for the proof of Theorem 2, so without further
comment have the following theorem.

THEOREM 27. Let Q = [0, a]2 with a ≤ 1 and γ < 1
2 . Then

ν(Q) ≤ C(ω)
(
log

(
1 + |Q|−1))−γ

for some random, almost surely finite, constant C(ω).
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Again, the result readily extends to other sets besides squares, and also to other
measures such as μ.

We now sketch how the proof of Theorem 1 should be adapted in order to prove
Theorem 25.

First, a fundamental part of our proof of Theorem 1 was that we were able to
write

Y = μ
([0,1])= W0Y0 + W1Y1,

where for i = 1,2, Yi
d= Y and Wi

d= 1
4e

√
2 log 2N , where N is normal, and Wi

is independent of Yi . This decomposition followed from the explicit white noise
representation of the field Xt(x) (see the Appendix) which is lacking in dimension
two. In the Appendix, we prove the following replacement.

LEMMA 28. Let Y = μ(Q) and Q = [0, a]2 =⋃4
i=1 Qi where Qi are squares

of side a/2. By possibly enlarging the probability space where the process
(Xt(x))x∈R2,t≥0 is defined, we may write

Y =
4∑

i=1

μ(Qi) =
4∑

i=1

WiYi,

where for each i, Yi
d= Y , Wi

d= 1
16e2

√
log 2N with N a standard normal variable,

and Yi is independent of Wi .

With this input, adapting Lemma 13 to the higher-dimensional context turns out
to be the only significant task.

PROOF OF THEOREM 25. Using Lemma 28, we may define the Peyrière mea-
sure Q on � × {1,2,3,4} by setting

EQf (ω, j) = E

4∑
j=1

Wj(ω)f (ω, j),

and then we may define the random variables Ỹ (ω, j) = Yj (ω), W̃ (ω, j) = Wj(ω)

and B̃(ω, j) =∑
i �=j Wi(ω)Yi(ω). From this point on the proof of Theorem 1 may

be followed with only cosmetic modifications. Lemma 6 holds true, the measure
ν may be defined exactly as in (10) and one obtains the Poisson equation (11). To
apply Proposition 8, we only need to check there is an analogue of Lemma 13 in the
two-dimensional setup. Note that even though Lemma 13 holds for all h ∈ (0,1),
for the tail result to hold it is sufficient to have the result for h ∈ (0, 1

2 +ε) for some
ε > 0. This is proven next as Lemma 29. �

LEMMA 29. For any h ∈ (0, 1
2 + 1

2
√

2
),

E
(
μ(Q1)

hμ(Q \ Q1)
h)< ∞.
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PROOF. The idea of the proof of Lemma 13 may be applied, but some differ-
ences arise from the fact that the boundary points common to both Q1 and Q \Q1
are two line segments rather than just one point. We start by noting that Lemma 12
has an analogue in this setting, with exactly the same proof: for two Borel sets
A,B ⊂ R2 separated by a positive distance, we have E(μ(A)hμ(B)h) < ∞ for
any h ∈ (0,1).

By subadditivity, we may estimate

E
(
μ(Q1)

hμ(Q \ Q1)
h)

≤ E
(
μ(Q1)

hμ(Q2)
h)+E

(
μ(Q1)

hμ(Q3)
h)+E

(
μ(Q1)

hμ(Q4)
h).

Suppose that Q2 and Q3 are the squares that share a boundary segment with Q1.
Then the first two terms on the right are equal and we need to estimate two different
types of terms.

Let us first consider Q1 = [0, a
2 ]2 =: P1 and Q4 = [a

2 , a]2 =: R1. We then de-
compose

P1 × R1 =
([

a

4
,
a

2

]2

×
[
a

2
,

3a

4

]2)
∪ A1

=: (P2 × R2) ∪ A1,

where A1 = (P1 × R1) \ (P2 × R2). We note that P2 × R2 is simply a scaled and
translated version of P1 × R1, so we can repeat this procedure. We obtain

P1 × R1 =
{(

a

2
,
a

2

)}
∪

∞⋃
k=1

Ak,(40)

where Pk+1 is a square of side length 2−k−1a with upper right corner at (a
2 , a

2 ) and
Rk+1 is a square of side length 2−k−1a with lower left corner at (a

2 , a
2 ). Moreover,

the Ai are mutually disjoint and disjoint from Pk+1 × Rk+1, and Ak is a scaled
and translated version of A1 with the scale factor 2−k+1. The set A1 is a finite
union of products of two sets with positive distance. Using Lemma 12, we see that
E((μ ⊗ μ)(A1)

h) < ∞, and by exact scaling we have

(μ ⊗ μ)(Ak)
d= 24(−k+1)e4Xk−4EX2

k (μ ⊗ μ)(A1).

Thus, by subadditivity, the decomposition (40) yields

E
(
μ(P1)

hμ(R1)
h)≤ E

(
(μ ⊗ μ)(A1)

h) ∞∑
k=1

2−4(k−1)he(8h2−4h)E(X2
k ).

Since EX2
k = k log 2, we see that the series converges for any h ∈ (0,1). We also

made use of the fact that almost surely (1
2 , 1

2) is not an atom.
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Consider next the case P1 := [0, a
2 ]2 = Q1 and R1 := [1

2 ,1] × [0, 1
2 ] = Q2. We

may then write

P1 × R1 = (
P u

2 × Ru
2
)∪ (

P u
2 × Rd

2
)∪ (

P d
2 × Qu

2
)∪ (

P d
2 ∪ Qd

2
)∪ A1,

where P u
2 is the upper half of [a

4 , a
2 ] × [0, a

2 ], P d
2 its lower half and similarly

for R. The set A1 is what remains, and again it is a finite union of products of
two sets whose distance is positive. The terms corresponding to P u

2 × Rd
2 and

P d
2 ×Ru

2 are of the form we considered already and the sets P u
2 ×Ru

2 and P d
2 ×Rd

2
are scaled and translated copies of P1 × R1. We repeat this decomposition for
P u

2 × Ru
2 and P d

2 × Rd
2 and iterate. At the kth iteration, we have 2k sets of the

form [0, a
2 ]2 × [a

2 , a]2 scaled by 2−k and having pairwise disjoint interiors, and
also 2k−1 copies of A1 with disjoint interiors, scaled by 2−k+1. Finally, we also
have 2k terms that are scaled and translated copies of P1 × R1, which are then
further decomposed in the k + 1th step. Using exact scaling, subadditivity and the
fact that the μ-mass of the boundary segments is almost surely zero, we obtain

E
(
μ(P1)

hμ(R1)
h)≤ CE

(
(μ ⊗ μ)(A1)

h) ∞∑
k=1

2k(1−8h+8h2)

+ C′E
(
μ(Q1)

hμ(Q4)
h) ∞∑

k=1

2k(1−8h+8h2).

The series converge for 1
2 − 1

2
√

2
< h < 1

2 + 1
2
√

2
, completing the proof of the

lemma. �

We close this section by commenting on the case d ≥ 3. It is known ([41])
that exactly scale invariant multiplicative chaos measures exist in any dimension,
but in the known cases, the associated Gaussian field has long range correlations
for d ≥ 3 (i.e., the covariance does not have compact support) and due to this
the existence of a nontrivial critical measure is as of yet an open question. This
being said, such correlations played no role in our proof of Theorem 1. Indeed, if
one could establish the limit (39) the proof of Theorem 25 would also extend to
the case d ≥ 3, with only the combinatorics involved in establishing analogues of
Lemma 29 getting slightly more cumbersome.

For the modulus of continuity, the long range correlations, and more specifically
the lack of decompositions of the approximating fields with the required decorre-
lation properties, are more problematic and our proof does not work as it is. On
the other hand, in any dimension there exists a �-scale invariant critical measure
which does not have long range correlations. Thus, a possible way to proceed is to
try to prove the corresponding tail result for this measure.
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APPENDIX: SCALE INVARIANCE PROPERTIES

In this section, we give the computations leading to the statements (2) and (6)
on the exact scale invariance of the field X and of the measure μ√

2. We also
discuss the �-scaling relation for the measure ν√

2 given in (28), and finally prove
Lemma 28.

A.1. Scaling properties for critical one-dimensional measures.

PROPOSITION 30. The random measure μ√
2 satisfies the exact scale invari-

ance property (6), that is, for any interval I ⊂ [0,1]
μ√

2�I d= |I |e
√

2X(I)−EX(I)2
μI√

2
,

where μ√
2�I denotes the restriction of μ√

2 onto I and μI√
2

is a random measure
independent of X(I) with the law given by(

μI√
2
(A)

)
A∈B(I )

d= (
μ√

2

(|I |−1A
))

A∈B(I ).

REMARK. Writing the scaling relation simultaneously for a set {Ij } of subin-
tervals of [0,1], one has(

μ√
2�Ij

)
j

d= (|Ij |e
√

2X(Ij )−EX(Ij )2
μ

Ij√
2

)
j ,

where the μ
Ij√

2
are random measures such that for each j ,

(
μ

Ij√
2
(J )

)
J∈B(Ij )

d= (
μ√

2

(|Ij |−1J
))

J∈B(Ij ) and μ
Ij√

2
⊥ {

X(A)
}
A⊂C(Ij ).

However, we stress that for subintervals of the unit interval, for j �= k the measure

μ
Ij√

2
is not independent either of μ

Ik√
2

or X(Ik).

PROOF OF PROPOSITION 30. We first show that (2) holds. Consider, for no-
tational convenience, the interval I = [0, y] with 0 < y < 1. By definition, for
t ≥ log 1/y we have (

Xt(x)
)
x∈I = (

X(I) + XI
t (x)

)
x∈I .

Therefore, it suffices to check that(
XI

t (x)
)
x∈I

d= (
Xt−log 1/y(x/y)

)
x∈I

and since the processes are Gaussian, it is enough to consider the covariance struc-
tures. Checking that the covariances of the processes are the same is demonstrated
in Figure 1.
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FIG. 1. Left. The sets Ct (x1)\Ct (x2) and Ct (x2)\Ct (x1) are shaded light gray, while the intersec-
tion (Ct (x1) ∩ Ct (x2)) \ C([0, y]) is dark gray. The law of the Gaussian process (XI

t (x))x∈[0,y]
is determined by the hyperbolic areas of these sets for all pairs (x1, x2) ∈ [0, y]2. The set
C([0, y]), contained in every Ct (x) for x ∈ [0, y], has been left white. Right. Closing the gap left
by the set C([0, y]) does not affect the hyperbolic areas of any of the shaded regions. Scaling
this picture by 1/y also leaves the hyperbolic areas invariant, giving the distributional equality

(XI
t (x))x∈I

d= (Xt−log 1/y(x/y))x∈I .

Showing the exact scale invariance of μ√
2 is now simple, as one only needs

to note that the measure-defined analogously to the subcritical measures vanishes:
for any intervals J ⊂ I ⊂ [0,1] we have

μ√
2(J ) = lim

t→∞

∫
J

(√
2(t + 1) − Xt(x)

)
e
√

2Xt (x)−EXt(x)2
dx

= lim
t→∞

∫
J

(√
2EX(I)2 − X(I)

)
e
√

2Xt(x)−EXt (x)2
dx

+ lim
t→∞

∫
J

(√
2
(
t + 1 −EX(I)2)− XI

t (x)
)
e
√

2Xt (x)−EXt(x)2
dx

= 0

+ e
√

2X(I)−EX(I)2

× lim
t→∞

∫
J

(√
2
(
t + 1 −EX(I)2)− XI

t (x)
)
e
√

2XI
t (x)−EXI

t (x)2
dx

=: |I |e
√

2X(I)−EX(I)2
μI (|I |−1J

)
,

where μI a random measure with the law of μ and independent of X(I). Note that
the measure μI defined here depends on the field X only through the processes
(XI

t (x))x∈I , t > 0. This observation implies the statement on the simultaneous
scaling relations for a set of intervals {Ij }. �

We then consider �-scale invariance, as defined in [3], and the measure ν√
2

defined for the proof of Theorem 2. A random measure ν on [0,1] is called �-scale
invariant on scale ε ∈ (0,1] if there exist a process (ωε(x))x∈[0,1] and a random
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measure νε that are independent of each other and satisfy(
ν(A)

)
A∈B([0,1])

d=
(
ε

∫
A

eωε(x) dνε(x)

)
A∈B([0,1])

and (
νε(A)

)
A∈B([0,1])

d= (
ν
(
ε−1A

))
A∈B([0,1]).

The measure

ν√
2(dx) = lim

t→∞
√

te
√

2Yt (x)−EYt (x)2
dx,

where Yt (x) = Xt(x) − X0(x) = W(Ct (x) \ C0(x)), is �-scale invariant on every
scale ε ∈ (0,1] with

ωε(x) = √
2Ylog(1/ε)(x) + log ε.

This can be seen by first deducing the scale invariance property(
Yt (x)

)
x∈[0,1]

d= (
Ylog(1/ε)(x) + Y ′

t−log(1/ε)

(
ε−1x

))
x∈[0,1],(41)

where Y ′ is an independent realization of the field Y , from Figure 2 and then
performing a computation analogous to the one above for μ√

2.

A.2. Joint exact scaling property in two dimensions.

PROOF OF LEMMA 28. For j = 1, . . . ,4, let φj :Q → Qj be the linear maps
that map the corners of Q to the corners of Qj by scaling and translating. We have
the following equality in law:(

Xt

(
φj (x)

))
x∈Q,t≥log 2

d= (
V + Xt−log 2(x)

)
x∈Q,t≥log 2,(42)

FIG. 2. The cones Ct (x1) and Ct (x2) have been shaded gray, with the parts in Clog(1/ε)(x1)

and Clog(1/ε)(x2) highlighted. By scaling the part of the picture below the line log 1
ε by ε−1

we get the equality of distributions (Yt (x) − Ylog(1/ε)(x))x∈[0,1] d= (Yt−log(1/ε)(ε
−1x))x∈[0,1].

This immediately implies (41), since the process (Ylog(1/ε)(x))x∈[0,1] is independent of
(Yt (x) − Ylog(1/ε)(x))x∈[0,1].
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where V is a centered Gaussian variable of variance log 2 which is independent
of the process (Xt−log 2(x))x∈Q,t≥log 2. Equation (42) can be readily checked from
the form (37) of the covariance.

We would like to show that by possibly extending our probability space we can
decompose almost surely

Xt

(
φj (x)

)= Vj + X
(j)
t−log 2(x) for j = 1,2,3,4 and x ∈ Q,(43)

where for each j = 1,2,3,4 the process (X
(j)
t−log 2(x))x∈Q,t≥log 2 has the same law

as the process (Xt−log 2(x))x∈Q,t≥log 2 and is independent of Vj .
As we are interested only in the limit measures, we will need (43) only for t

in some sequence tending to ∞. We consider the countable collection of point
evaluations given by

Xk log 2(x) where x ∈ Q ∩Q2, k = 1,2,3, . . .

and denote their closed linear span by

H := span
(
Xk log 2(x) :x ∈ Q ∩Q2, k = 1,2, . . .

)
.

Thus H ⊂ L2(�,P) is a separable (centered) Gaussian Hilbert space. By enlarging
our probability space, if needed, we may assume that (�,F,P) supports a centered
Gaussian variable V of variance log 2 that is independent of all elements in H. Set

H′ := H⊕ span(V ).

Consider the closed subspace

G := span
(
V + Xk log 2(x) :x ∈ Q ∩Q2, k = 1,2, . . .

)⊂ H′.

The dimension of the orthogonal complement of G in H′ is either 1 or zero since
by definition span(G ∪ {V }) = H′. Suppose first it is 1 as the latter case is even
easier to deal with. Thus, we may write

H′ := G ⊕ span(N),

where N is a centered Gaussian vector of variance log 2 independent of all ele-
ments in G.

By (42), we have for each j ∈ {1,2,3,4} the equality of joint distributions(
Xk log 2

(
φj (x)

))
k≥1,x∈Q∩Q2

d= (
V + X(k−1) log 2(x)

)
k≥1,x∈Q∩Q2 .(44)

This allows us to define linear (not necessarily surjective) isometries

�j :H′ = G ⊕ span(N) → H′ = H⊕ span(V )

as follows. First, set, for k ≥ 1 and x ∈ Q ∩Q2

�j

(
V + X(k−1) log 2(x)

)= Xk log 2
(
φj (x)

)
.(45)
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By (44) �j uniquely extends to an isometry �j :G → H′. Then setting

�j(N) = V

extends �j to the whole of H′. Note that in case the dimension of the orthogonal
complement of G in H′ is zero we may omit this last step.

Let us denote

Vj := �j(V ),

X
(j)
k log 2(x) := �j

(
Xk log 2(x)

)
for k ≥ 0 and x ∈ Q ∩Q2.

Since V and Xk log 2(x)) are independent and �j is an isometry then Vj is inde-

pendent of all the variables X
(j)
k log 2(x). (45) then gives

Xk log 2
(
φj (x)

)= Vj + X
(j)
(k−1) log 2(x)(46)

for all k ≥ 1, x ∈ Q ∩Q2 and j = 1,2,3,4.
Since the covariance (37) is Hölder continuous in x, y we may assume that a.s.

x → Xk log 2(x) is continuous. Since �j is an isometry the decomposition (46)
extends from x ∈ Q ∩Q2 to all of Q, almost surely.

Consider now, for k ≥ 1, the measures

μk(dx) :=
√

k log 2e2Xk log 2(x)−2E(Xk log 2(x)2) dx

and for k ≥ 0 the measures

μ
(j)
k (dx) :=

√
(k + 1) log 2e

2X
(j)
k log 2(x)−2E(X

(j)
k log 2(x)2) dx.

Using the decomposition (46), we get

μk(Qj ) = 1
4e2Vj−2 log 2μ

(j)
k−1(Q)(47)

and defining

Wj = 1
16e2Vj

we then get

μk(Q) =
4∑

j=1

Wjμ
(j)
k−1(Q).(48)

Since μk → μ in probability as k → ∞, we infer from (47) that the variables
μ

(j)
k−1(Q) converge in probability to some random variables Yj . Since μ

(j)
k−1(Q)

has the same distribution as ( k
k−1)1/2μk−1(Q), we infer Yj

d= Y = μ(Q). Hence,
taking limit of (48) the desired result follows as 2Vj has variance 4 log 2. �



BASIC PROPERTIES OF CRITICAL LOGNORMAL MULTIPLICATIVE CHAOS 2247

Acknowledgements. We wish to thank the referees for carefully reading the
manuscript and for many helpful suggestions which certainly have improved the
quality of the article.

REFERENCES

[1] ADLER, R. J. and TAYLOR, J. E. (2007). Random Fields and Geometry. Springer, New York.
MR2319516

[2] AIDEKON, E. and SHI, Z. (2014). The Seneta–Heyde scaling for the branching random walk.
Ann. Probab. 42 959–993. MR3189063

[3] ALLEZ, R., RHODES, R. and VARGAS, V. (2013). Lognormal �-scale invariant random mea-
sures. Probab. Theory Related Fields 155 751–788. MR3034792

[4] ASTALA, K., JONES, P., KUPIAINEN, A. and SAKSMAN, E. (2011). Random conformal weld-
ings. Acta Math. 207 203–254. MR2892610

[5] BACRY, E. and MUZY, J. F. (2003). Log-infinitely divisible multifractal processes. Comm.
Math. Phys. 236 449–475. MR2021198

[6] BARRAL, J. and FAN, A.-H. (2005). Covering numbers of different points in Dvoretzky cov-
ering. Bull. Sci. Math. 129 275–317. MR2134123

[7] BARRAL, J. and JIN, X. (2014). On exact scaling log-infinitely divisible cascades. Probab.
Theory Related Fields 160 521–565. MR3278915

[8] BARRAL, J., JIN, X., RHODES, R. and VARGAS, V. (2013). Gaussian multiplicative chaos and
KPZ duality. Comm. Math. Phys. 323 451–485. MR3096527

[9] BARRAL, J., KUPIAINEN, A., NIKULA, M., SAKSMAN, E. and WEBB, C. (2014). Critical
Mandelbrot cascades. Comm. Math. Phys. 325 685–711. MR3148099

[10] BARRAL, J. and MANDELBROT, B. B. (2002). Multifractal products of cylindrical pulses.
Probab. Theory Related Fields 124 409–430. MR1939653

[11] BARRAL, J., RHODES, R. and VARGAS, V. (2012). Limiting laws of supercritical branching
random walks. C. R. Math. Acad. Sci. Paris 350 535–538. MR2929063

[12] BENJAMINI, I. and SCHRAMM, O. (2009). KPZ in one dimensional random geometry of mul-
tiplicative cascades. Comm. Math. Phys. 289 653–662. MR2506765

[13] BURACZEWSKI, D. (2007). On invariant measures of stochastic recursions in a critical case.
Ann. Appl. Probab. 17 1245–1272. MR2344306

[14] BURACZEWSKI, D. (2009). On tails of fixed points of the smoothing transform in the boundary
case. Stochastic Process. Appl. 119 3955–3961. MR2552312

[15] CARPENTIER, D. and LE DOUSSAL, P. (2001). Glass transition of a particle in a random
potential, front selection in nonlinear RG and entropic phenomena in Liouville and Sinh–
Gordon models. Phys. Rev. E (3) 63 026110.

[16] DUPLANTIER, B. (2010). A rigorous perspective on Liouville quantum gravity and the KPZ re-
lation. In Exact Methods in Low-dimensional Statistical Physics and Quantum Computing
(J. Jacobsen, S. Ouvry, V. Pasquier, D. Serban and L. F. Cugliandolo, eds.). Lecture Notes
of the Les Houches Summer School 89 529–561. Oxford Univ. Press, Oxford. MR2668656

[17] DUPLANTIER, B., RHODES, R., SHEFFIELD, S. and VARGAS, V. (2014). Critical Gaussian
multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. 42 1769–
1808.

[18] DUPLANTIER, B., RHODES, R., SHEFFIELD, S. and VARGAS, V. (2014). Renormalization of
critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys. 330 283–
330. MR3215583

[19] DUPLANTIER, B. and SHEFFIELD, S. (2009). Duality and the Knizhnik–Polyakov–
Zamolodchikov relation in Liouville quantum gravity. Phys. Rev. Lett. 102 150603, 4.
MR2501276

http://www.ams.org/mathscinet-getitem?mr=2319516
http://www.ams.org/mathscinet-getitem?mr=3189063
http://www.ams.org/mathscinet-getitem?mr=3034792
http://www.ams.org/mathscinet-getitem?mr=2892610
http://www.ams.org/mathscinet-getitem?mr=2021198
http://www.ams.org/mathscinet-getitem?mr=2134123
http://www.ams.org/mathscinet-getitem?mr=3278915
http://www.ams.org/mathscinet-getitem?mr=3096527
http://www.ams.org/mathscinet-getitem?mr=3148099
http://www.ams.org/mathscinet-getitem?mr=1939653
http://www.ams.org/mathscinet-getitem?mr=2929063
http://www.ams.org/mathscinet-getitem?mr=2506765
http://www.ams.org/mathscinet-getitem?mr=2344306
http://www.ams.org/mathscinet-getitem?mr=2552312
http://www.ams.org/mathscinet-getitem?mr=2668656
http://www.ams.org/mathscinet-getitem?mr=3215583
http://www.ams.org/mathscinet-getitem?mr=2501276


2248 J. BARRAL ET AL.

[20] DUPLANTIER, B. and SHEFFIELD, S. (2011). Liouville quantum gravity and KPZ. Invent.
Math. 185 333–393. MR2819163

[21] DURRETT, R. and LIGGETT, T. M. (1983). Fixed points of the smoothing transformation.
Z. Wahrsch. Verw. Gebiete 64 275–301. MR0716487

[22] FAN, A. (2004). Limsup deviations on trees. Anal. Theory Appl. 20 113–148. MR2095456
[23] FAN, A. H. (1997). Sur les chaos de Lévy stables d’indice 0 < α < 1. Ann. Sci. Math. Québec

21 53–66. MR1457064
[24] FYODOROV, Y. V. and BOUCHAUD, J.-P. (2008). Freezing and extreme-value statistics in a

random energy model with logarithmically correlated potential. J. Phys. A 41 372001, 12.
MR2430565

[25] GUIVARC’H, Y. (1990). Sur une extension de la notion de loi semi-stable. Ann. Inst. Henri
Poincaré Probab. Stat. 26 261–285. MR1063751

[26] KAHANE, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 105–150.
MR0829798

[27] KAHANE, J.-P. (1985). Some Random Series of Functions, 2nd ed. Cambridge Univ. Press,
Cambridge. MR0833073

[28] KAHANE, J.-P. (1987). Positive martingales and random measures. Chinese Ann. Math. Ser. B
8 1–12. MR0886744

[29] KAHANE, J.-P. (1987). Multiplications aléatoires et dimensions de Hausdorff. Ann. Inst. Henri
Poincaré Probab. Stat. 23 289–296. MR0898497

[30] KAHANE, J.-P. (1990). Recouvrements aléatoires et théorie du potentiel. Colloq. Math. 60/61
387–411. MR1096386

[31] KAHANE, J.-P. and PEYRIÈRE, J. (1976). Sur certaines martingales de Benoit Mandelbrot.
Adv. Math. 22 131–145. MR0431355

[32] LIU, Q. (2000). On generalized multiplicative cascades. Stochastic Process. Appl. 86 263–286.
MR1741808

[33] MADAULE, T. (2011). Convergence in law for the branching random walk seen from its tip.
Available at arXiv:1107.2543.

[34] MADAULE, T., RHODES, R. and VARGAS, V. (2013). Glassy phase and freezing of log-
correlated Gaussian potentials. Available at arXiv:1310.5574.

[35] MANDELBROT, B. (1974). Multiplications aléatoires itérées et distributions invariantes par
moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278 289–292. MR0431351

[36] MANDELBROT, B. B. (1972). Possible refinement of the lognormal hypothesis concerning the
distribution of energy in intermittent turbulence. In Statistical Models and Turbulence
(M. Rosenblatt and C. V. Atta, eds.). Lectures Notes in Physics 12 333–351. Springer,
New York.

[37] MANDELBROT, B. B. (1974). Intermittent turbulence in self-similar cascades, divergence of
high moments and dimension of the carrier. J. Fluid Mech. 62 331–358.

[38] MANDELBROT, B. B. (1989). Multifractal measures, especially for the geophysicist. In Frac-
tals in Geophysics 5–42. Birkhäuser, Basel. MR1106479

[39] MANDELBROT, B. B. (1997). Fractals and Scaling in Finance: Discontinuity, Concentration,
Risk. Springer, New York. MR1475217

[40] PORT, S. C. and STONE, C. J. (1969). Potential theory of random walks on Abelian groups.
Acta Math. 122 19–114. MR0261706

[41] RHODES, R. and VARGAS, V. (2010). Multidimensional multifractal random measures. Elec-
tron. J. Probab. 15 241–258. MR2609587

[42] RHODES, R. and VARGAS, V. (2011). KPZ formula for log-infinitely divisible multifractal
random measures. ESAIM Probab. Stat. 15 358–371. MR2870520

[43] ROBERT, R. and VARGAS, V. (2008). Hydrodynamic turbulence and intermittent random
fields. Comm. Math. Phys. 284 649–673. MR2452591

http://www.ams.org/mathscinet-getitem?mr=2819163
http://www.ams.org/mathscinet-getitem?mr=0716487
http://www.ams.org/mathscinet-getitem?mr=2095456
http://www.ams.org/mathscinet-getitem?mr=1457064
http://www.ams.org/mathscinet-getitem?mr=2430565
http://www.ams.org/mathscinet-getitem?mr=1063751
http://www.ams.org/mathscinet-getitem?mr=0829798
http://www.ams.org/mathscinet-getitem?mr=0833073
http://www.ams.org/mathscinet-getitem?mr=0886744
http://www.ams.org/mathscinet-getitem?mr=0898497
http://www.ams.org/mathscinet-getitem?mr=1096386
http://www.ams.org/mathscinet-getitem?mr=0431355
http://www.ams.org/mathscinet-getitem?mr=1741808
http://arxiv.org/abs/arXiv:1107.2543
http://arxiv.org/abs/arXiv:1310.5574
http://www.ams.org/mathscinet-getitem?mr=0431351
http://www.ams.org/mathscinet-getitem?mr=1106479
http://www.ams.org/mathscinet-getitem?mr=1475217
http://www.ams.org/mathscinet-getitem?mr=0261706
http://www.ams.org/mathscinet-getitem?mr=2609587
http://www.ams.org/mathscinet-getitem?mr=2870520
http://www.ams.org/mathscinet-getitem?mr=2452591


BASIC PROPERTIES OF CRITICAL LOGNORMAL MULTIPLICATIVE CHAOS 2249

[44] ROBERT, R. and VARGAS, V. (2010). Gaussian multiplicative chaos revisited. Ann. Probab. 38
605–631. MR2642887

[45] WEBB, C. (2011). Exact asymptotics of the freezing transition of a logarithmically correlated
random energy model. J. Stat. Phys. 145 1595–1619. MR2863721

J. BARRAL

LAGA (UMR 7539)
DÉPARTEMENT DE MATHÉMATIQUES

INSTITUT GALILÉE

UNIVERSITÉ PARIS 13
99 AVENUE JEAN-BAPTISTE CLÉMENT

93430 VILLETANEUSE

FRANCE

E-MAIL: barral@math.univ-paris13.fr

A. KUPIAINEN

M. NIKULA

E. SAKSMAN

C. WEBB

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF HELSINKI

P.O. BOX 68
FIN-00014
FINLAND

E-MAIL: antti.kupiainen@helsinki.fi
miika.nikula@helsinki.fi
eero.saksman@helsinki.fi
christian.webb@helsinki.fi

http://www.ams.org/mathscinet-getitem?mr=2642887
http://www.ams.org/mathscinet-getitem?mr=2863721
mailto:barral@math.univ-paris13.fr
mailto:antti.kupiainen@helsinki.fi
mailto:miika.nikula@helsinki.fi
mailto:eero.saksman@helsinki.fi
mailto:christian.webb@helsinki.fi

	Introduction
	Deﬁnitions and notation
	Main results

	Tail probabilities
	Modulus of continuity
	Outline of the proof
	Tools for the proof
	Main results for the modulus of continuity

	On the µsqrt(2)-almost everywhere local behavior of µsqrt(2)
	Higher dimensions
	Appendix: Scale invariance properties
	Scaling properties for critical one-dimensional measures
	Joint exact scaling property in two dimensions

	Acknowledgements
	References
	Author's Addresses

