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Abstract First, we present some simple (and easily verifiable) necessary conditions
and sufficient conditions for boundedness of the multiplication operator Mu and com-
position operator CT acting from Orlicz space L�1(�) into Orlicz space L�2(�)

over arbitrary complete, σ -finite measure space (�,�,μ). Next, we investigate the
problem of conditions on the generating Young functions, the function u, and/or the
function h = d(μ ◦ T−1)/dμ, under which the operators Mu and CT are of closed
range or finite rank. Finally, we give necessary and sufficient conditions for bounded-
ness of the operators Mu and CT in terms of techniques developed within the theory
of Musielak–Orlicz spaces.
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1 Introduction

Given the functions f and T ( f : � → R, T : � → �), one way to produce, under
certain conditions, a new function is to compose them, i.e. to evaluate f at points
T (t). The resulting function is denoted by f ◦ T , and the operator f �→ f ◦ T , as f
runs through a linear function space, is a linear operator CT called the composition
operator induced by amapping T . Another way to produce a new function out of given
functions u and f (each from � into R) is to multiply them, whenever it makes sense,
and this gives rise to the operator called the multiplication operator Mu induced by a
function u. A combination of the two methods leads to yet another operator, named
the weighted composition operator, defined by MuCT f = u( f ◦T ). Composition and
multiplication operators received much attention over the past several decades, espe-
cially in spaces of measurable functions such as L p-spaces, Bergman spaces, and, to a
lesser degree, Orlicz spaces. They also play an important role in the study of operators
on Hilbert spaces. Consequently, by now there exists a vast literature on the properties
of these transformations in various function spaces; we refer the interested reader to
the beautiful books [5,35,36], and, for more recent studies, to [9–11,14,23,25], for
instance.

As said, composition and multiplication operators between classical L p-spaces
have been the subject-matter of intensive and extensive study and they feature
prominently in operator theory, operator algebras, dynamical systems, and endo-
morphisms of Banach algebras. Composition operators were used by Banach [2]
in his study of isometries between function spaces. In this paper, we aim at a
generalization to Orlicz spaces of some results of the paper [38] concerning the
classical Lebesgue spaces. Apparently, the paper [24] by Kumar in 1997 was the
first attempt at the study of composition operators between Orlicz spaces. In 2004,
Cui, Hudzik, Kumar, and Maligranda in [6] considered the composition operator
between Orlicz spaces induced by a non-singular measurable transformation and stud-
ied its boundedness and compactness. Some other results on the boundedness and
compactness of the composition operator between Orlicz spaces were published in
[6–8,12,13,16,21,25,33].

Our concern in this paper is to state and prove some necessary conditions, suffi-
cient conditions, and some simultaneously necessary and sufficient conditions for the
composition and multiplication operator between distinct Orlicz spaces to be bounded
or to have closed-range or finite rank. Our results generalize and improve on some
recent results to be found in the literature.
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2 Preliminaries and basic lemmas

In this section, for the convenience of the reader, we gather some essential facts on
Orlicz spaces and prove two basic lemmas for later use. For more detail on Orlicz
spaces, see [22,34].

A function � : R → [0,∞] is called a Young function if � is convex, even,
and �(0) = 0; we will also assume that � is neither identically zero nor identically
infinite on (0,∞). The fact that�(0) = 0, along with the convexity of�, implies that
limx→0+ �(x) = 0; while � �= 0, again along with the convexity of �, implies that
limx→∞ �(x) = ∞. We set a� := sup{x ≥ 0 : �(x) = 0} and b� := sup{x > 0 :
�(x) < ∞}.Then it can be checked that� is continuous and nondecreasing on [0, b�)

and strictly increasing on [a�, b�) if a� < b�. We also assume the left-continuity of
the function � at b�, i.e. limx→b−

�
�(x) = �(b�) ∈ [0,∞].

To each Young function � is associated another convex function � : R → [0,∞)

with similar properties, defined by

�(y) = sup{x |y| − �(x) : x ≥ 0} (y ∈ R).

The function � is called the function complementary to � in the sense of Young. Any
pair of complementary functions (�,�) satisfies Young’s inequality xy ≤ �(x) +
�(y) (x, y ∈ R).

The generalized inverse of the Young function � is defined by

�−1(y) = inf{x ≥ 0 : �(x) > y} (y ∈ [0,∞)).

Notice that if x ≥ 0, then �
(
�−1(x)

) ≤ x , and if �(x) < ∞, we also have x ≤
�−1

(
�(x)

)
. There are equalities in both cases when � is a Young function vanishing

only at zero and taking only finite values. Also, if (�,�) is a pair of complementary
Young functions, then

x < �−1(x)�−1(x) ≤ 2x (2.1)

for all x ≥ 0 (Proposition 2.1.1(ii) in [34]).
By an N -function we mean a Young function vanishing only at zero, taking only

finite values, and such that limx→∞ �(x)/x = ∞ and limx→0+ �(x)/x = 0. Note
that then a� = 0, b� = ∞, and, as we said above, � is continuous and strictly
increasing on [0,∞). Moreover, a function complementary to an N -function is again
an N -function.

AYoung function� is said to satisfy the�2-condition at∞ if�(2x)≤K�(x) (x≥
x0) for some constants K > 0 and x0 >0 with�(x0)<∞. A Young function � sat-
isfies the �2-condition globally if �(2x) ≤ K�(x) (x ≥ 0) for some K > 0.

A Young function � is said to satisfy the �′-condition (respectively, the ∇′-
condition) at∞, if there exist c > 0 (respectively, b > 0) and x0 > 0with�(x0) < ∞
such that

�(xy) ≤ c�(x)�(y) (x, y ≥ x0)

(respectively, �(bxy) ≥ �(x)�(y) (x, y ≥ x0)).
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If x0 = 0, these conditions are said to hold globally. Notice that if � ∈ �′, then
� ∈ �2 (both at ∞ and globally).

Let �1,�2 be Young functions. Then �1 is called stronger than �2 at ∞, which

is denoted by �1
�� �2 [or �2

�≺ �1], if

�2(x) ≤ �1(ax) (x ≥ x0)

for some a ≥ 0 and x0 > 0 with �2(x0) < ∞; if x0 = 0, this condition is said to hold
globally and is then denoted by �1

a� �2 [or �2
a≺ �1]. We record the following

observation for later use.

Lemma 2.1 If �1,�2,�3 are Young functions vanishing only at zero, taking only
finite values, and such that

�1(xy) ≤ �2(x) + �3(y) (x, y ≥ 0),

then �2

�

⊀ �1, and hence also �2

a
⊀ �1.

Proof The inequality in the assumptions of the lemma implies that�1(�
−1
2 (x)�−1

3 (x))
≤ 2x for all x ≥ 0, and this, together with subadditivity of �−1

1 , leads to

�−1
2 (x)�−1

3 (x) ≤ �−1
1 (2x) ≤ 2�−1

1 (x) (x ≥ 0). (2.2)

Now suppose, towards a contradiction, that there are a > 0 and x0 > 0 such that

�2(x) < �1(ax) (x ≥ x0).

Then, since �−1
1 is increasing on [0,∞), we have �−1

1 (�2(x)) < �−1
1 (�1(ax)) =

ax , and so, replacing x with �2(x) in (2.2), we get

x �−1
3 (�2(x)) = �−1

2 (�2(x))�
−1
3 (�2(x)) ≤ 2�−1

1 (�2(x)) < 2ax (x ≥ x0).

This means, since �3 is increasing on [0,∞), that �1(x) < �3(2a) = const. for all
x ≥ x0, a contradiction, because �2(x) → ∞ as x → ∞. ��

Let (�,�,μ) be a complete σ -finite measure space and let L0(�) be the linear
space of equivalence classes of �-measurable real-valued functions on �, that is, we
identify functions equal μ-almost everywhere on �. The support S of a measurable
function f is defined by S( f ) := {t ∈ � : f (t) �= 0}. For a Young function �, the
space

L�(�) =
{
f ∈ L0(�) : ∃k > 0, I�(k f ) < ∞

}

is a Banach space if it is equipped with the norm

‖ f ‖� = inf {k > 0 : I�( f/k) ≤ 1} ,

where I�( f ) = ∫
�

�( f (t))dμ(t). The couple (L�(�), ‖ · ‖�) is called the Orlicz
space generated by a Young function �. For any f ∈ L0(�), we have I�( f ) ≤ 1 if
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and only if ‖ f ‖� ≤ 1. In particular, if I�( f ) ≤ a (a > 0), then ‖ f ‖� ≤ max(a, 1).
If � ∈ �2 and f ∈ L�(�), then I�(k f ) < ∞ for all k > 0.

Let �(x) = |x |p/p with 1 < p < ∞; � is then a Young function and �(x) =
|x |p′

/p′, with 1/p+1/p′ = 1, is the Young function complementary to�. Thus, with
this function�we retrieve the classical Lebesgue space L p(�), i.e. L�(�) = L p(�).

Recall that an atom of the measure space (�,�,μ) is a set A ∈ � with μ(A) > 0
such that if F ∈ � and F ⊂ A, then either μ(F) = 0 or μ(F) = μ(A). A measure
space (�,�,μ) with no atoms is called a non-atomic measure space [29].

Remark 2.2 By saying that � ∈ �2 we will always mean that the Young function �

satisfies the �2-condition globally, since we place no restrictions on the underlying
measure space (�,�,μ), which can be finite or infinite, non-atomic, purely atomic,
or mixed.

The following lemma is a key tool in some of our investigations.

Lemma 2.3 Let �1,�2 be Young functions such that �2

�

⊀ �1. If E is a non-atomic
�-measurable set with positive measure, then there exists f ∈ L�1(�) such that
f|E /∈ L�2(E).

Proof It is well-known that if L�1(�,�,μ) ⊂ L�2(�,�,μ) for a non-atomic

measure space (�,�,μ), then �2
�≺ �1 (see, for instance, [26] Theorem 3.4, and

[28,30,31] for some extensions). Therefore, if �2

�

⊀ �1 and E is a �-measurable
subset of � with μ(E) > 0, then we can find a function g ∈ L�1(E) such that
g /∈ L�2(E). Defining f (t) = g(t) for t ∈ E , and f (t) = 0 for t /∈ E , we have the
desired function. ��
Remark 2.4 We will use Lemmas 2.1 and 2.3 in conjunction since the thesis of the
former is the assumption of the latter.

Given a measurable function u ∈ L0+(�) the mapping f �→ u f is a linear transfor-
mation on L0(�) called the multiplication operator induced by u and denoted Mu .

Let T : � → � be a measurable transformation. The transformation T is said
to be non-singular if μ(T−1(A)) = 0 for all A ∈ � ∩ T (�) with μ(A) = 0. The
condition ensures that the measure μ ◦ T−1 defined by μ ◦ T−1(A) = μ(T−1(A)) for
all A ∈ � ∩ T (�) is absolutely continuous with respect to the measure μ (this fact
is usually denoted by μ ◦ T−1 � μ). Then the Radon–Nikodym theorem guarantees
the existence of a non-negative locally integrable function h : T (�) → R+, called
the Radon–Nikodym derivative of μ ◦ T−1 with respect to μ, such that

μ ◦ T−1(A) =
∫

A
h dμ (A ∈ � ∩ T (�)).

We do not necessarily assume that the transformation T is surjective or injective.
The non-singular measurable transformation T induces a linear operator CT on

L0(�), called the composition operator, defined by

CT f (t) = f (T (t)) (t ∈ �, f ∈ L0(�)).
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Finally, we recall two well-known facts from measure theory; for proofs see, for
example, Section 11.9 in [29]:

(i) If (�,�,μ) be a σ -finite measure space, then for every measurable real-valued
function f on � and every atom A, there is a real number, denoted by f (A), such
that f = f (A) μ-a.e. on A.

(ii) If (�,�,μ) is a σ -finite measure space that fails to be non-atomic, there is a
non-empty countable set of pairwise disjoint atoms {An}n∈N with the property
that B := �\⋃n∈N An contains no atoms. We assume that both the atoms and
their counterimages under T have strictly positive measure. The latter fact means
that the Radon–Nikodym derivative h is strictly positive on all atoms from T (�).

We keep the above notation throughout the paper.

3 Boundedness of the multiplication operator

In this section we state various necessary conditions and sufficient conditions under
which the multiplication operator Mu between distinct Orlicz spaces is bounded.

Recall the well-known theorem due to O’Neil [32] on the multiplication operator
between Orlicz spaces (see also [1] and Theorem 5.4.1 in [33]): suppose that �1, �2,
�3 are Young functions such that either (a) there exist c > 0 and x0 > 0with�2(x0) <

∞ such that�2(cxy) ≤ �1(x)+�3(y) for all x, y ≥ x0 in the case whenμ(�) < ∞
or (b) there exists c > 0 such that �2(cxy) ≤ �1(x) + �3(y) for all x, y > 0 in the
case when μ(�) = ∞. Let � contain a non-atomic set of positive measure. Then,
whenever u ∈ L�3(�), the multiplication operator Mu is bounded from L�1(�) into
L�2(�).

Before going any further, let us consider some related examples.

Example 3.1 (i) Let � and � be complementary Young functions. Since |x |p
p ≤

1
p (�(x) + �(x p−1)) and |x |p

p ≤ 1
p (�(x p−1) + �(x)), for x ≥ 0 and p > 2, by

O’Neil’s theorem we get that if u
1

p−1 ∈ L�(�) then the operator Mu is bounded

from L�(�) into L p(�), and if v
1

p−1 ∈ L�(�) then the operator Mv is bounded
from L�(�) into L p(�).

(ii) Let � = [a, b], a, b > 1, p > 1, and let μ be Lebesgue measure. If we take
�1(x) = e|x |p − |x |p − 1, �2(x) = |x |p

p , and �3(x) = (1 + |x |p) log(1 +
|x |p)−|x |p, then, sinceφ1(x) = �1(|x |1/p) andφ3(x) = �3(|x |1/p) are comple-
mentary Young functions, Young’s inequality yields �2(xy) ≤ �1(x) + �3(y)
for all x, y ≥ 0. Now, if u(t) = p

√
t p − 1, it is clear that I�3(u) < ∞, i.e.

u ∈ L�3(�). O’Neil’s theorem implies that Mu is a bounded operator from
L�1(�) into L�2(�).

(iii) Let A = (0, a], B = {ln t : t ∈ N, t > a}, for a > 0, and let � = A ∪ B.
Take �1(x) = e|x | − |x | − 1, �2(x) = (1+ |x |) ln(1+ |x |) − |x |, and for every
Lebesgue measurable C ⊂ � define μ(C) = μ1(C ∩ A)+μ2(C ∩ B), whereμ1
is Lebesgue measure and μ2({ln t}) = 1/t3 for ln t ∈ B. If we set u(t) = 1/t2,
then Mu is not bounded from L�1(�) into L�2(�). Indeed, for f (t) = t we
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have

I�1( f ) =
∫

�

(�1 ◦ f ) dμ =
∫

�

(
et − t − 1

)
dμ

=
∫

A

(
et − t − 1

)
dμ +

∫

B

(
et − t − 1

)
dμ < ∞,

where we used the following calculation

∫

B

(
et − t − 1

)
dμ =

∑

n>a

(eln n − ln n − 1)
1

n3
<
∑

n>a

1

n2
< ∞.

Hence f ∈ L�1(�). But for any λ > 0 we have

I�2(λMu f ) =
∫

�

(�2 ◦ λMu f )dμ =
∫

�

�2

(
λ

t

)
dμ

=
∫

�

((
1 + λ

t

)
ln

(
1 + λ

t

)
− λ

t

)
dμ

=
∫

A

((
1 + λ

t

)
ln

(
1 + λ

t

)
− λ

t

)
dμ

+
∫

B

((
1 + λ

t

)
ln

(
1 + λ

t

)
− λ

t

)
dμ

>

∫ a

0

((
1 + λ

t

)
ln

(
1 + λ

t

)
− λ

t

)
dt

= λ

∫ ∞

λ/a
((1 + s) ln(1 + s) − s)

1

s2
ds

= λ

∫ ∞

λ/a

(
ln(1 + s)

s2
+ ln(1 + s) − 1

s

)
ds

> λ

∫ ∞

λ/a

(
ln(1 + s) − 1

s

)
ds = ∞,

and so Mu f /∈ L�2(�). The operator Mu does even act from L�1(�) into
L�2(�) and, by O’Neil’s theorem, we conclude that if a Young function �3
satisfies �2(xy) ≤ �1(x) + �3(y) for all x, y ≥ 0, then u does not belong to
L�3(�).

Maligranda and Persson in [27] proved a theorem which can be stated in the fol-
lowing way: assume that �1, �2, �3 are Young functions with values in [0,∞) such
that �2(xy) ≤ �1(x) + �3(y) for all x, y ≥ 0 and �−1

2 (x) ≤ �−1
1 (x)�−1

3 (x) for
all x ≥ 0, and assume further that either (A) � is a non-atomic measure space or (B)
�2(x) = xr and x−r�1(x) is nondecreasing. Then Mu is a bounded multiplication
operator from L�1(�) into L�2(�) if and only if u ∈ L�3(�).

These results have been generalized and extended to the more general setting of
Calderón–Lozanovskiı̆ spaces in two recent papers [19,20] by Kolwicz et al.
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We give another necessary condition on the function u so that it induces a bounded
multiplication operator Mu between distinct Orlicz spaces; it will be used in the proof
of Theorem 4.11.

Proposition 3.2 Let �1 and �2 be Young functions vanishing only at zero, taking
only finite values, and such that �1 is an N-function, �1 ∈ �′, �2 ∈ �2, and
�3 := �2◦�−1

1 is a Young function. If u ∈ L0+(�) and Mu is a boundedmultiplication
operator from L�1(�) into L�2(�), then u ∈ L�3◦�1(�).

Proof Let u ∈ L0+(�) and let Mu be a bounded multiplication operator from L�1(�)

into L�2(�) induced by the function u. Since �1 ∈ �2 (as a consequence of the
fact that �1 ∈ �′) and �2 ∈ �2, the dual spaces of L�1(�) and L�2(�) are equal
to L�1(�) and L�2(�), respectively. Hence the adjoint operator M∗

u to the bounded
operator Mu is bounded and acts from L�2(�) into L�1(�).

It is easy to check that �1 ∈ �′ implies that �1 ∈ ∇′, i.e. there is b > 0 such that
�1(bxy) ≥ �1(x)�1(y) for all x, y ≥ 0.

Let f be any function from L�3(�). By the definition of �3, we have that the
function�−1

1 ◦| f | is contained in the space L�2(�), and soM∗
u (�−1

1 ◦| f |) is contained
in the space L�1(�). Therefore, there is λ > 0 such that I�1(λM

∗
u (�−1

1 ◦ | f |)) < ∞.
We have

∣∣∣∣

∫

�

(�1 ◦ λ

b
u) f dμ

∣∣∣∣ ≤
∫

�

(�1 ◦ λ

b
u)| f | dμ≤

∫

�

(�1 ◦ λ

b
u)(�1 ◦ �−1

1 ◦ | f |)dμ

≤
∫

�

�1
(
b
λ

b
u�−1

1 ◦ | f |)dμ=
∫

�

�1
(
λM∗

u (�−1
1 ◦ | f |))dμ < ∞.

This means that �1 ◦ λ
b u belongs to the Köthe dual of L�3(�), which is equal to

L�3(�). Consequently, there is α ∈ (0, 1) such that I�3(α �1 ◦ λ
b u) < ∞, whence

I�3◦�1(α
λ
b u) = I�3(�1 ◦ α λ

b u) ≤ I�3(α �1 ◦ λ
b u) < ∞. Hence u ∈ L�3◦�1(�). ��

In the case of a non-atomic complete and σ -finite measure space, some necessary
and sufficient conditions for the boundedness ofMu andCT from L�1(�) into L�2(�)

were established in [3]. It turns out that these are equivalent to the conditions for the
inclusion of the Orlicz space L�1(�) into the Musielak–Orlicz space L�2,u(�) and
of the Orlicz space L�1(T (�)) into the Musielak–Orlicz space L�2

h (T (�)), where

h = d(μ◦T−1)/dμ, respectively. The spaces L�2,u(�) and L�2
h (T (�)) are generated

over themeasure spaces (�,�,μ) and (T (�),�∩T (�), μ|�∩T (�)) by theMusielak–
Orlicz functions �2(xu(t)) (t ∈ � and x ∈ R) and �2(x)h(t) (t ∈ T (�) and x ∈ R),
respectively, t ∈ � and x ∈ R.

We shall now prove a theorem from which it follows that, if the measure space

(�,�,μ) is non-atomic, for the above inclusions to hold it is necessary that�2
�≺ �1.

Thismight come as a surprise since it means that the simple condition�2
�≺ �1, which

does not involve the Radon–Nikodym derivative h, is necessary for the inclusion
L�1(T (�)) ⊂ L�2

h (T (�)), which does.
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Basic properties of multiplication and composition operators... 343

Theorem 3.3 Let �1,�2 be Young functions such that �2

�

⊀ �1 and let (�,�,μ)

be a non-atomic measure space. Then there are no non-zero bounded operators CT Mu

from L�1(�) into L�2(�).

Proof Suppose, to the contrary, thatCT Mu is a non-zero bounded linear operator from
L�1(�) into L�2(�) and let

En =
{
t ∈ � : u(t) >

1

n

}⋂{
t ∈ T (�) : h(t) >

1

n

}

For any n ∈ N. Then {En}n∈N is an increasing sequence of �-measurable sets. Since
CT Mu is non-zero, μ(Em) > 0 for some m ∈ N, whence also μ(En) > 0 for all
n ≥ m. We assume without loss of generality that μ(En) > 0 for all n ∈ N. Let

F ⊂ E := ⋃
n En and 0 < μ(F) < ∞. The assumption that �2

�

⊀ �1 implies that
an increasing sequence of positive numbers {yn} can be found such that �2(yn) >

�1(2nn3yn). Since the measure space (�,�,μ) is non-atomic, we can choose a
sequence {Fn} of pairwise disjoint measurable subsets of F such that Fn ⊂ En and
μ(Fn) = �1(y1)μ(F)

2n�1(n3yn)
For any n ∈ N. This is possible because ν is non-atomic and

�1(n3yn) ≥ �1(yn) ≥ �1(y1), and so μ(Fn) ≤ μ(F)
2n , and

∑∞
n=1

μ(F)
2n = μ(F).

Define the function f := ∑∞
n=1 bnχFn , where bn := n2yn , and take arbitrary

α > 0. Then for a natural number n0 > α we have

I�1(α f ) =
∫

�

�1(α f )dμ =
∞∑

n=1

∫

�

�1(α bn)χFndμ

=
n0∑

n=1

�1(α bn)μ(Fn) +
∑

n>n0

�1(α bn)μ(Fn)

=
n0∑

n=1

�1(α bn)μ(Fn) + μ(F)
∑

n>n0

�1(α bn)�1(y1)

2n�1(n3yn)

≤
n0∑

n=1

�1(α bn)μ(Fn) + μ(F)
∑

n>n0

�1(n3yn)�1(y1)

2n�1(n3yn)
< ∞.

This implies that f ∈ L�1(�). But for m0 > 0 such that 1
m0

< α, we obtain

I�2(αCT Mu f ) =
∫

�

�2(αCT Mu f )dμ =
∫

T (�)

h(t)�2(αu f )dμ

≥
∑

n≥m0

∫

Fn
h(t)�2(α bnu)dμ ≥

∑

n≥m0

∫

Fn

1

n
�2(bn/n

2)dμ

≥
∑

n≥m0

∫

Fn

1

n
�2(yn)dμ ≥

∑

n≥m0

1

n
�1(2

nn3yn)μ(Fn)

≥
∑

n≥m0

1

n
2n�1(n

3yn)μ(Fn) ≥ μ(F)
∑

n≥m0

1

n
�1(y1) = ∞,
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which, by the arbitratiness of α > 0, contradicts the boundedness of CT Mu . (In fact,
we even proved that CT Mu does not act from L�1(�) into L�2(�)). ��

We provide some necessary conditions for the boundedness of the multiplication
operator Mu from L�1(�) into L�2(�) under the assumption that�1(xy) ≤ �2(x)+
�3(y) for some Young function �3 and for all x, y ≥ 0.

Theorem 3.4 Let �1,�2,�3 be Young functions vanishing only at zero, taking only
finite values, and such that �1(xy) ≤ �2(x) + �3(y) for all x, y ≥ 0. If u ∈ L0+(�)

induces a bounded multiplication operator Mu : L�1(�) → L�2(�), then

(i) u(t) = 0 for μ-a.e. t ∈ B, the non-atomic part of �;
(ii) supn∈N u(An)�−1

3 ( 1
μ(An)

) < ∞.

Proof Let the assumptions about �i (i=1,2,3) be satisfied and Mu be bounded. First
we prove (i). If μ{t ∈ B : u(t) �= 0} > 0, then there exists a constant δ > 0 such
that the set E = {t ∈ B : u(t) > δ} has positive measure. Since E is non-atomic,
μ(E) > 0, and �1(xy) ≤ �2(x) + �3(y) for all x, y ≥ 0, by Lemmas 2.1 and 2.3
we have that there exists f ∈ L�1(�) such that f|E /∈ L�2(E), and so

∞ =
∫

E
�2

(
δ f (t)

‖Mu f ‖�2

)
dμ ≤

∫

�

�2

(
u(t) f (t)

‖Mu f ‖�2

)
dμ ≤ 1,

which is a contradiction. Thus (i) holds.
Now we prove (ii). We may assume that the function u is not identically zero. For

each n ∈ N, put fn = �−1
1 ( 1

μ(An)
)χAn . It is clear that fn ∈ L�1(�) and I�1( fn) = 1,

whence ‖ fn‖�1 = 1. Since the operator Mu is bounded, we have

1 ≥
∫

�

�2

(
u(t) fn(t)

‖Mu fn‖�2

)
dμ =

∫

An

�2

(
u(t)�−1

1 ( 1
μ(An)

)

‖Mu fn‖�2

)

dμ

= �2

(
u(An)�

−1
1 ( 1

μ(An)
)

‖Mu fn‖�2

)

μ(An).

Therefore

u(An)�
−1
1

(
1

μ(An)

)

�−1
2 (1/μ(An))

≤ ‖Mu fn‖�2 . (3.1)

Put x = 1/μ(An) in the inequality �−1
2 (x)�−1

3 (x) ≤ 2�−1
1 (x) derived in lines 2–3

of the proof of Lemma 2.1 and use inequality (3.1) to obtain

u(An)�−1
3

(
1

μ(An)

)
≤ u(An)

2�−1
1 (1/μ(An))

�−1
2 (1/μ(An))

≤ 2‖Mu fn‖�2 ≤ 2‖Mu‖ < ∞.

This completes the proof. ��
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We have a straightforward consequence.

Corollary 3.5 Under the assumptions of Theorem 3.4, if (�,�,μ) is a non-atomic
measure space, then the multiplication operator Mu is bounded from L�1(�) into
L�2(�) if and only if Mu = 0.

Now we present some sufficient conditions for the continuity of the operator Mu

from one Orlicz space into another.

Theorem 3.6 Let�1,�2 be Young functions vanishing only at zero, taking only finite
values, and such that�1,�2 ∈ �′ and�2◦�−1

1 is a Young function. Then u ∈ L0+(�)

induces a bounded multiplication operator Mu : L�1(�) → L�2(�) if

(i) u(t) = 0 for μ-a.e. t ∈ B;
(ii) supn∈N �2[ u(An)

�−1
1 (μ(An))

]μ(An) < ∞.

Proof Suppose that (i) and (ii) hold and setM := supn∈N �2[ u(An)

�−1
1 (μ(An))

]μ(An). Then

for each f ∈ L�1(�) we have

I�2(Mu f ) =
∫

�

�2(Mu f )dμ =
∫

B
�2(u(t) f (t))dμ +

∫

⋃
n An

�2(u(t) f (t))dμ

=
∑

n∈N

∫

An

�2(u(t) f (t))dμ =
∑

n∈N
�2(u(An) f (An))μ(An)

=
∑

n∈N
�2

[

�−1
1 (μ(An))�−1

1 ◦ �1( f (An))
u(An)

�−1
1 (μ(An))

]

μ(An)

≤
∑

n∈N
�2

[

�−1
1

[
c1μ(An)�1( f (An))

] u(An)

�−1
1 (μ(An))

]

μ(An)

≤ c2
∑

n∈N
�2 ◦ �−1

1

[
c1μ(An)�1( f (An))

]
�2

[
u(An)

�−1
1 (μ(An))

]

μ(An)

≤ c2
∑

n∈N
�2 ◦ �−1

1

[
c1μ(An)�1( f (An))

]
M

≤ c2M �2 ◦ �−1
1

[

c1
∑

n∈N
μ(An)�1( f (An))

]

,

where c1, c2 are positive constants related to conditions �1 ∈ �′ and �2 ∈ �′,
respectively, and the last inequality follows from the superadditivity of the convex
function �2 ◦ �−1

1 on the interval [0,∞). Now let ‖ f ‖�1 ≤ 1. We get

I�2(Mu f ) ≤ c2M �2 ◦ �−1
1 (c1) < ∞.

This implies that ‖Mu f ‖�2 ≤ max(c2M �2 ◦ �−1
1 (c1), 1), and so Mu is bounded. ��
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Remark 3.7 The following results on the classical Lebesgue spaces, presented in [38]
(see also [18]), are an immediate consequence of Theorem 3.6.

1. Taking �1(x) = |x |p/p and �2(x) = |x |q/q, where 1 < p < q < ∞, by
Theorems 3.4 and 3.6, we obtain that the multiplication operator Mu induced by
a function u ∈ L0+(�) is bounded from L p(�) into Lq(�) if and only if the
following conditions hold:
(i) u(t) = 0 for μ-almost all t ∈ B;
(ii) supn∈N

u(An)
r

μ(An)
< ∞, where q−1 + r−1 = p−1.

2. Similarly, taking �1(x) = |x |p/p and �2(x) = |x |q/q, where 1 < q < p < ∞,
by O’Niel’s theorem (see the beginning of Sect. 3) combined with Proposition 3.2
we obtain that the multiplication operator Mu induced by a function u ∈ L0+(�)

is bounded from L p(�) into Lq(�) if and only if u ∈ Lr (�), where p−1+r−1 =
q−1.

4 Boundedness of the composition operator

In this section, we give necessary conditions and sufficient conditions under which
the composition operator CT acts continuously between distinct Orlicz spaces.

Theorem 4.1 Let T : � → � be a non-singular measurable transformation and
let �1,�2,�3 be Young functions vanishing only at zero, taking only finite values,
and such that �1(xy) ≤ �2(x) + �3(y) for all x, y ≥ 0. If T induces a bounded
composition operator CT : L�1(�) → L�2(�), then h(t) = 0 for μ-almost all
t ∈ T (B).

Proof Suppose, towards a contradiction, that μ({t ∈ T (B) : h(t) �= 0}) > 0. Then
there is a constant δ > 0 such that the set E = {t ∈ T (B) : h(t) > δ} has positive
measure. Since μ(E) > 0, E is non-atomic, and �1(xy) ≤ �2(x) + �3(y) for all
x, y ≥ 0, by Lemmas 2.1 and 2.3 we have that there exists f ∈ L�1(�) such that
f|E /∈ L�2(E). Since E ⊂ T (B), we obtain that CT f �= 0 (otherwise we would have
f|E ∈ L�2(E)). Together with the fact that CT is bounded, the above gives

∞ =
∫

E
δ�2

(
f (t)

‖CT f ‖�2

)
dμ ≤

∫

E
h(t)�2

(
f (t)

‖CT f ‖�2

)
dμ

≤
∫

�

�2

(
CT f (t)

‖CT f ‖�2

)
dμ ≤ 1,

which is a contradiction finishing the proof. ��
Remark 4.2 Although the function �3 does not feature in the thesis of Theorem 4.1,
it was actually used in the proof via Lemma 2.1.

Theorem 4.3 Let T : � → � be a non-singular measurable transformation, and
let �1,�2 be Young functions vanishing only at zero, taking only finite values, and
such that �1,�2 ∈ �′ and �2 ◦ �−1

1 is a Young function. Then T induces a bounded
composition operator CT : L�1(�) → L�2(�) if
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(i) h(t) = 0 for μ-almost all t ∈ T (B);
(ii) supn∈N,An⊂T (�) �2[ 1

�−1
1 (μ(An))

]h(An)μ(An) < ∞.

Proof Assume that (i) and (ii) hold and put

M := supn∈N,An⊂T (�) �2[ 1

�−1
1 (μ(An))

]h(An)μ(An).

Then for each f ∈ L�1(�) we have

I�2 (CT f ) =
∫

�

�2(CT f )dμ =
∫

T (B)

h(t)�2( f (t))dμ +
∫

⋃
n T (An)

h(t)�2( f (t))dμ

=
∑

An⊂T (�)

∫

An

h(t)�2( f (t))dμ =
∑

An⊂T (�)

h(An)�2( f (An))μ(An)

=
∑

An⊂T (�)

h(An)�2

[

�−1
1 (μ(An))�−1

1 ◦ �1( f (An))
1

�−1
1 (μ(An))

]

μ(An)

≤
∑

An⊂T (�)

h(An)�2

[

�−1
1

[
c1μ(An)�1( f (An))

] 1

�−1
1 (μ(An))

]

μ(An)

≤ c2
∑

An⊂T (�)

h(An)�2 ◦ �−1
1

[
c1μ(An)�1( f (An))

]
�2

[
1

�−1
1 (μ(An))

]

μ(An)

≤ c2
∑

An⊂T (�)

�2 ◦ �−1
1

[
c1μ(An)�1( f (An))

]
M

≤ c2M �2 ◦ �−1
1

[

c1
∑

n∈N
μ(An)�1( f (An))

]

,

where c1, c2 are positive constants related to conditions �1 ∈ �′ and �2 ∈ �′,
respectively, and the last inequality follows from the superadditivity of the convex
function �2 ◦ �−1

1 on the interval [0,∞). Now let ‖ f ‖�1 ≤ 1. We obtain

I�2(CT f ) ≤ c2 M �2 ◦ �−1
1 (c1) < ∞.

Hence ‖CT f ‖�2 ≤ max(c2M �2 ◦ �−1
1 (c1), 1), and so CT is bounded. ��

Theorem 4.4 Let T : � → � be a non-singular measurable transformation, and
let �1,�2,�3 be Young functions vanishing only at zero, taking only finite values,
and such that �1(xy) ≤ �2(x) + �3(y) for all x, y ≥ 0. Consider the following
statements:

(i) T induces a bounded composition operator CT : L�1(�) → L�2(�).
(ii) μ(B) = 0 and there is a constant M > 0 such that �−1

1 ( 1
μ(An)

) ≤
M�−1

2 ( 1
h(An)μ(An)

) for all n ∈ N such that An ⊂ T (�).
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(iii) h(t) = 0 for μ-a.e. t ∈ T (B) and

sup
n∈N,An⊂T (�)

�−1
2

(
1

μ(An)

)
�−1

3

(
1

μ(An)

)

�−1
2

(
1

h(An)μ(An)

) < ∞.

(iv) h(t) = 0 for μ-a.e. t ∈ T (B) and

sup
n∈N,An⊂T (�)

�−1
2 (h(An))�−1

3

(
1

μ(An)

)
< ∞.

Then (i) ⇒ (ii) ⇒ (iii). Moreover, if �2 ∈ �′, then (ii) ⇒ (iv).

Proof To prove that (i) ⇒ (ii), assume that CT is a bounded operator from L�1(�)

into L�2(�). It implies that there is a constant M > 0 such that for every n ∈ N,

‖CTχAn‖�2 ≤ M‖χAn‖�1 ,

where χAn is the characteristic function of the atomAn ⊂ T (�). Calculating the norm
of the characteristic function χAn , we obtain

1

�−1
2

(
1

μ◦T−1(An)

) ≤ M

�−1
1

(
1

μ(An)

) ,

which yields the desired inequality.
By Theorem 4.1, we have h(t) = 0 for μ-a.e. t ∈ T (B), hence μ(B) = μ ◦

T−1(T (B)) = ∫T (B)
h(t)dμ(t) = 0.

Next we show that (ii) ⇒ (iii). For each An ⊂ T (�) let

�−1
1

(
1

μ(An)

)
≤ M�−1

2

(
1

h(An)μ(An)

)
. (4.1)

Since�1(xy) ≤ �2(x)+�3(y) for all x, y ≥ 0, we have�−1
3 (x)�−1

2 (x) ≤ 2�−1
1 (x)

for all x ≥ 0. Plugging x = 1
μ(An)

in this inequality and using (4.1), we have

�−1
3

(
1

μ(An)

)
�−1

2

(
1

μ(An)

)
≤ 2�−1

1

(
1

μ(An)

)

≤ 2M�−1
2

(
1

h(An)μ(An)

)
. (4.2)

Hence

sup
n∈N,An⊂T (�)

�−1
2

(
1

μ(An)

)
�−1

3

(
1

μ(An)

)

�−1
2

(
1

h(An)μ(An)

) ≤ 2M < ∞.
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Moreover, sinceμ◦T−1(T (B)) = μ(B) = 0, we have h(t) = 0 forμ-a.e. t ∈ T (B).
Finally, we prove implication (ii) ⇒ (iv) under the assumption that �2 ∈ �′, i.e.

that there is a constant c > 0 such that �−1
2 (x)�−1

2 (y) ≤ �−1
2 (cxy) (x, y ≥ 0).

We may assume that c ≥ 1. Plugging x = 1/h(An)μ(An) and y = h(An)/c in this
inequality, we get

�−1
2

(
1

h(An)μ(An)

)
≤

�−1
2

(
1

μ(An)

)

�−1
2

(
h(An)

c

) .

Combining inequality (4.2) with this, yields

�−1
3

(
1

μ(An)

)
�−1

2

(
1

μ(An)

)
≤ 2M�−1

2

(
1

h(An)μ(An)

)
≤ 2M

�−1
2

(
1

μ(An)

)

�−1
2

(
h(An)

c

) .

Therefore

�−1
2

(
h(An)

c

)
�−1

3

(
1

μ(An)

)
≤ 2M.

Since �−1
2 is a concave function and c ≥ 1, we have

1

c
�−1

2 (h(An))�−1
3

(
1

μ(An)

)
≤ 2M,

hence supn∈N,An⊂T (�) �−1
2 (h(An))�−1

3 (1/μ(An)) ≤ 2M c < ∞, and this com-
pletes the proof. ��

Now we present two lemmas on the relationship between multiplication operators
and composition operators, which will be needed later on.

Lemma 4.5 Let T : � → � be a non-singular measurable transformation, and let
�1,�2 be Young functions vanishing only at zero and taking only finite values, with
�2 ∈ ∇′. For any function f ∈ L�1(�) such that M

�−1
2 ◦h f ∈ L�2(T (�)), we have

CT f ∈ L�2(�) and the following inequality holds

‖CT f ‖�2 ≤ b‖M
�−1

2 ◦h f ‖�2 ,

where b is some positive constant.

Proof Let f ∈ L�1(�) be such that M
�−1

2 ◦h f ∈ L�2(T (�)). By the definition of

the norm ‖ · ‖�2 and the assumption that �2 ∈ ∇′, for b > 0 such that �2(bxy) ≥
�2(x)�2(y) (x, y ≥ 0) we have

‖CT f ‖�2 = inf

{
k :
∫

�

�2

(
f (T (t))

k

)
dμ ≤ 1

}

123



350 T. Chawziuk et al.

= inf

{
k :
∫

T (�)

h(t)�2

(
f (t)

k

)
dμ ≤ 1

}

= inf

{
k :
∫

T (�)

�2(�
−1
2 (h(t)))�2

(
f (t)

k

)
dμ ≤ 1

}

≤ inf

{

k :
∫

T (�)

�2

(
b�−1

2 (h(t)) f (t)

k

)

dμ ≤ 1

}

= b inf

{

k/b :
∫

T (�)

�2

(
�−1

2 (h(t)) f (t)

k/b

)

dμ ≤ 1

}

= b‖M
�−1

2 ◦h f ‖�2 .

��
Corollary 4.6 Under the assumptions of Lemma 4.5, if M

�−1
2 ◦h is a bounded multipli-

cation operator from L�1(T (�)) into L�2(T (�)), then CT is a bounded composition
operator from L�1(�) into L�2(�).

Lemma 4.7 Let T : � → � be a non-singular measurable transformation and
let �1,�2 be Young functions vanishing only at zero and taking only finite values,
with �2 ∈ �′. For any function f ∈ L�1(�) such that CT f ∈ L�2(�), we have
M

�−1
2 ◦h f ∈ L�2(T (�)) and the following inequality holds

‖M
�−1

2 ◦h f ‖�2 ≤ c‖CT f ‖�2 ,

where c is some positive constant.

Proof Let f ∈ L�1(�) be such that CT f ∈ L�2(�), and let c ≥ 1 be a constant in
the inequality �2(xy) ≤ c�2(x)�2(y) for all x, y ≥ 0. Then

‖M
�−1

2 ◦h f ‖�2 = inf

{

k :
∫

T (�)

�2

(
�−1

2 (h(t)) f (t)

k

)

dμ ≤ 1

}

≤ inf

{
k :
∫

T (�)

c�2(�
−1
2 (h(t)))�2

(
f (t)

k

)
dμ ≤ 1

}

= inf

{
k :
∫

T (�)

c h(t)�2

(
f (t)

k

)
dμ ≤ 1

}

= inf

{
k :
∫

�

c�2

(
f (T (t))

k

)
dμ ≤ 1

}

≤ inf

{
k :
∫

�

�2

(
f (T (t))

k/c

)
dμ ≤ 1

}

= c inf

{
k/c :

∫

�

�2

(
f (T (t))

k/c

)
dμ ≤ 1

}

= c ‖CT f ‖�2 ,
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as required. ��
Corollary 4.8 Under the assumptions of Lemma 4.7, if CT is a bounded composition
operator from L�1(�) into L�2(�), then M

�−1
2 ◦h is a boundedmultiplication operator

from L�1(T (�)) into L�2(T (�)).

Following [38], for any F in the σ -algebra � ∩ T (�), we define

QT (F) := inf{b ≥ 0 : μ ◦ T−1(E) ≤ bμ(E), E ∈ � ∩ T (�), E ⊂ F}.

To prove our next results, we will need the following two lemmas.

Lemma 4.9 [38, Lemma 3.6] For any F ∈ � ∩ T (�), we have QT (F) =
ess supt∈Fh(t), where h = d(μ ◦ T−1)/dμ.

Lemma 4.10 Let T be a measurable transformation of the measure space (�,�,μ)

into itself and let � be a Young function. Then

∫

T (�)

� ◦ h dμ = inf

⎧
⎨

⎩

∞∑

j=1

�(QT (Fj ))μ(Fj ) : {Fj } ∈ PT (�)

⎫
⎬

⎭
,

where PT (�) is the family of all measurable partitions of T (�) and the case ∞ = ∞
is admissible.

Proof Let I := inf{∑∞
j=1 �(QT (Fj ))μ(Fj ) : {Fj } ∈ PT (�)}. By Lemma 4.9, for

the partition {Fj } of T (�), we have

∫

T (�)

� ◦ hdμ =
∞∑

j=1

∫

Fj

�(h(t))dμ ≤
∞∑

j=1

�(ess supt∈Fj
h(t))μ(Fj )

=
∞∑

j=1

�(QT (Fj ))μ(Fj ).

Hence
∫

T (�)

� ◦ h dμ ≤ I.

To prove the reverse inequality, let a > 1 be an arbitrary number. For each m ∈ Z

define the set

Gm := {t ∈ T (�) : am−1 ≤ �(h(t)) < am}.

Let {Fj }∞j=1 be any rearrangement of the sets {Gm}∞m=−∞ and the set {t ∈ T (�) :
h(t) = 0}. Clearly, {Fj }∞j=1 is a partition of T (�). By Lemma 4.9, we have
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I ≤
∞∑

j=1

�(QT (Fj ))μ(Fj ) =
∞∑

j=1

�(ess supt∈Fj
h(t))μ(Fj )

=
∞∑

m=−∞
�(ess supt∈Gm

h(t))μ(Gm) ≤
∞∑

m=−∞
amμ(Gm)

= a
∞∑

m=−∞
am−1μ(Gm) = a

∞∑

m=−∞

∫

Gm

am−1 dμ

≤ a
∞∑

m=−∞

∫

Gm

� ◦ h dμ = a
∞∑

j=1

∫

Fj

� ◦ h dμ

= a
∫

T (�)

� ◦ h dμ.

Since this holds for any a > 1, the result follows. ��
Proposition 3.2 and Lemma 4.7 allow us to give a necessary condition for the

boundedness of the composition operator CT . Statement (ii) of the next theorem is
interesting, because under some assumptions on the Young functions �1,�2 it gives
the information that if CT acts continuously from L�1(�) into L�2(�), then the
Radon–Nikodym derivative h must be from a concrete Orlicz space L�(�), where �

depends on �1 and �2.

Theorem 4.11 Let T be a non-singular measurable transformation of the measure
space (�,�,μ) into itself. Then the following assertions hold.

(i) If� is a Young function, then the Radon–Nikodym derivative h = d(μ◦T−1)/dμ

belongs to L�(T (�)) if and only if there exists a partition {Fj }∞j=1 of T (�) and

λ > 0 such that
∑∞

j=1 �(λ QT (Fj ))μ(Fj ) < ∞.
(ii) Let �1 be an N-function, �2 a Young function vanishing only at zero and taking

only finite values, such that �1 ∈ �′, �2 ∈ �2, and �3 := �2 ◦ �−1
1 is a

Young function. If T induces a bounded composition operator CT : L�1(�) →
L�2(�), then the Radon–Nikodym derivative h = d(μ ◦ T−1)/dμ belongs to

L�3◦�1◦�−1
2 (T (�)).

Proof (i) It is an easy consequenceofLemma4.10with the function�λ(x) := �(λ x)
in place of the Young function �.

(ii) Since, by assumption, CT is a bounded composition operator from L�1(�) into
L�2(�), Lemma 4.7 implies that

M
�−1

2 ◦h : L�1(T (�)) → L�2(T (�))

is a bounded multiplication operator. Thus, by Proposition 3.2, for the Young function
�3 = �2 ◦ �−1

1 , we have �−1
2 ◦ h ∈ L�3◦�1(T (�)), and so

∫

T (�)

�3 ◦ �1 ◦ λ�−1
2 ◦ h dμ < ∞,
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for some constant λ > 0. Since �3 ◦ �1 is a nondecreasing function on the interval
[0,∞), we may assume that 0 < λ < 1. It can be easily shown that the �2-condition
assumed for the function �2 is equivalent to the condition: for all λ ∈ (0, 1) there
is a constant K > 0 such that �−1

2 (Kx) ≤ λ�−1
2 (x) (x ≥ 0). Since �3 ◦ �1 is a

nondecreasing function on the interval [0,∞), we then get

∫

T (�)

�3 ◦ �1 ◦ �−1
2 ◦ Kh dμ < ∞.

Thus h ∈ L�3◦�1◦�−1
2 (T (�)). ��

Finally, we give a sufficient condition for the composition operator CT to be
bounded from L�1(�) into L�2(�) when �1 ◦ �−1

2 is a Young function.

Theorem 4.12 Let �1,�2 be Young functions vanishing only at zero and taking only
finite values. If �3 = �1 ◦ �−1

2 is a Young function and h ∈ L�3(T (�)), then T
induces a bounded composition operator CT : L�1(�) → L�2(�).

Proof Since

I�3(�2 ◦ f ) =
∫

�

�3 ◦ �2 ◦ f dμ =
∫

�

�1 ◦ �−1
2 ◦ �2 ◦ f dμ

=
∫

�

�1 ◦ f dμ = I�1( f ),

we have f ∈ L�1(�) if and only if �2 ◦ f ∈ L�3(�), and furthermore that ‖�2 ◦
f ‖�3 = ‖ f ‖�1 . Hence an application of Hölder’s inequality yields

I�2(CT f ) =
∫

�

�2 ◦ f ◦ T dμ =
∫

T (�)

h �2 ◦ f dμ

≤ 2‖h‖�3‖�2 ◦ f ‖�3 = 2‖h‖�3‖ f ‖�1 .

Thus ‖CT ‖ ≤ max(2‖h‖�3 , 1), and this completes the proof. ��
Remark 4.13 Weconclude this sectionwith some applications of the theorems proved.

1. Taking �1(x) = |x |p/p and �2(x) = |x |q/q, where 1 < p < q < ∞, by
Theorems 4.1 and 4.4, we obtain that if CT is a composition operator induced
by the non-singular measurable transformation T : � → �, then the following
statements are equivalent:
(a) CT is bounded from L p(�) into Lq(�).
(b) h(t) = 0 for μ-a.e. t ∈ T (B) and supn∈N,An⊂T (�)

h(An)
p

μ(An)q−p < ∞.

(c) μ(B) = 0 and there is a constant k > 0 such that μ ◦ T−1(An)
p ≤ kμ(An)

q

for all n ∈ N, An ⊂ T (�).
2. Similarly, taking �1(x) = |x |p/p and �2(x) = |x |q/q, where 1 < q < p < ∞,

by Theorems 4.11 and 4.12,we obtain that ifCT is a composition operator induced
by the non-singular measurable transformation T : � → �, then the following
statements are equivalent:
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(a) CT is a bounded operator from L p(�) into Lq(�).

(b) h ∈ L
r
q (T (�)), where p−1 + r−1 = q−1.

(c) There exists a partition {Fj }∞j=1 of T (�) such that
∑∞

j=1 QT (Fj )
r
q μ(Fj ) <

∞.

These characterizations are due to Takagi and Yokouchi [38].

5 Multiplication and composition operators with closed-range and/or
finite rank

In this sectionwe are going to investigate closed-rangemultiplication and composition
operators between distinct Orlicz spaces.

We start with a basic observation concerning Young functions.

Lemma 5.1 Let �1,�2 be Young functions such that �1 is an N-function and �3 :=
�2 ◦ �−1

1 is a Young function. If �1 ∈ �′, then there is a constant b > 0 such that
b�1(xy) ≤ �2(x) + �3(�1(y)) for all x, y ≥ 0.

Proof By the definition of the function �3, we have

�3(y) = sup{x |y| − �3(x) : x ≥ 0} = sup{x |y| − �2 ◦ �−1
1 (x) : x ≥ 0}.

Since �1 is an N -function, �1 is again an N -function, and a�1 = 0, b�1 = ∞, So
the usual inverse function �−1

1 exists. By substitution, we have

�3(�1(y)) = sup{x�1(y) − �2 ◦ �−1
1 (x) : x ≥ 0},

hence

�3(�1(y)) = sup{�1(x)�1(y) − �2(x) : x ≥ 0}. (5.1)

Since �1 ∈ �′, i.e. �1(xy) ≤ c�1(x)�1(y) for some c > 0 and all x, y ≥ 0, we get
from (5.1) that

�3(�1(y)) ≥ 1

c
�1(xy) − �2(x),

for all x, y ≥ 0, whence the desired inequality with b = 1/c follows. ��
Now we characterize closed-range multiplication operators Mu : L�1(�) →

L�2(�) under the assumption �2(xy) ≤ �1(x) + �3(y) for all x, y ≥ 0.

Theorem 5.2 Let �1,�2,�3, be Young functions vanishing only at zero, taking only
finite values, and such that �2,�3 ∈ �2 and �2(xy) ≤ �1(x) + �3(y) for all
x, y ≥ 0. If u ∈ L�3+ (�), then Mu is a bounded multiplication operator from L�1(�)

into L�2(�) and the following assertions are equivalent:
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(a) u(t) = 0 for μ-a.e. t ∈ B and the set E = {n ∈ N : u(An) �= 0} is finite.
(b) Mu has finite rank.
(c) Mu has closed-range.

Proof Let u ∈ L�3(�) and f ∈ L�1(�), i.e. there are constants λ, α > 0 such that
I�3(λu) < ∞ and I�1(α f ) < ∞. Therefore, by the inequality �2(xy) ≤ �1(x) +
�3(y) (x, y ≥ 0), we have

I�2(αλu f ) ≤ I�1(α f ) + I�3(λu) < ∞,

which implies that u f ∈ L�2(�).
Let S be the support of u. We may assume that μ(S) > 0 since otherwise Mu is a

zero operator and there is nothing to prove.
We prove the implication (a) ⇒ (b). Assume that (a) holds. Hence there is r ∈ N

such that

S =
⋃

n∈E
An = An1 ∪ · · · ∪ Anr .

Since �2 ∈ �2, the set {χAn1
, . . . , χAnr

} of characteristic functions generates the
subspace

{g ∈ L�2(�) : g(x) = 0 for μ − a.e. t ∈ �\S} ∼= L�2(S).

The range of Mu is contained in the r -dimensional subspace L�2(S), hence Mu has
finite rank.

(b) ⇒ (c) . If the range of the operator Mu in L�2(�) is finite-dimensional, then it
is also closed, as any finite-dimensional subspace of a Banach space is a
closed subspace of this space.

(c) ⇒ (a) . Let Mu have closed-range and assume that μ{t ∈ B : u(t) �= 0} > 0.
Then there is δ > 0 such that the set G = {t ∈ B : u(t) ≥ δ} has
positive measure. It is easy to see that the restriction u|G induces a bounded
multiplication operator Mu|G from L�1(G) into L�2(G), and that if Mu

has closed-range, then Mu|G has closed-range as well.

We will show that Mu|G (L�1(G)) = L�2(G). Let A be any measurable subset of G

with μ(A) < ∞, and define the function f A := 1
u|G

χA. We get

I�1( f A) =
∫

G
�1 ◦ f A dμ =

∫

A
�1 ◦ 1

u|G
dμ ≤ �1(1/δ)μ(A) < ∞,

and so f A ∈ L�1(G). Moreover, Mu|G fA = χA, which implies that the linear space

Mu|G (L�1(G)) contains the setF of all linear combinations of characteristic functions
of measurable subsets of G with positive and finite measure.
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Now F is a dense subset of L�2(G) ([26, Lemma 4.1]) and, by assumption,
Mu|G (L�1(G)) is a closed subspace of L�2(G), therefore

L�2(G) = F ⊂ Mu|G (L�1(G)) ⊂ L�2(G),

and so Mu|G (L�1(G)) = L�2(G), as claimed.
Consequently, we can define the inverse multiplication operator

M 1
u|G

: L�2(G) → L�1(G), M 1
u|G

f := 1

u|G
f.

The operator M 1
u|G

is bounded and, since �2(xy) ≤ �1(x) + �3(y) (x, y ≥ 0), we

can apply Theorem 3.4 to conclude that 1
u(t) = 0 for μ-a.e. t ∈ G, which is absurd.

This contradiction shows that u(t) = 0 for μ-a.e. t ∈ B.
Next we show that the set E = {n ∈ N : u(An) �= 0} is finite if Mu has closed

range. If E = ∅, we have nothing to prove. So let us assume that E �= ∅. Define
S =⋃n∈E An .

Analogously as above, we can show that Mu|S (L
�1(S)) = L�2(S). Indeed, let A

be a subset of S with μ(A) < ∞. Define the function f A := 1
u|S

χA. The set A having

finite measure, we get

I�1( f A) =
∫

A
�1 ◦ 1

u|S
dμ =

∑

An⊂A

�1(1/u(An))μ(An) < ∞.

Hence f A ∈ L�1(S). Since Mu|S f A = χA, we conclude that Mu|S (L
�1(S)) contains

the set �0f of all linear combinations of characteristic functions of subsets of S with
positive and finite measure.

Now �0f is a dense subset of L�2(S), and Mu|S (L
�1(S)) is a closed subspace of

L�2(S), which implies that

L�2(S) = �0f ⊂ Mu|S (L
�1(S)) ⊂ L�2(S),

and so Mu|S (L
�1(S)) = L�2(S).

We can thus define a bounded multiplication operator M 1
u|S

from L�2(S) into

L�1(S). Applying Theorem 3.4 to the operator M 1
u|S

, we obtain

sup
n∈E

1

u(An)
�−1

3

(
1

μ(An)

)
< ∞.

LetC = supn∈E 1
u(An)

�−1
3 ( 1

μ(An)
) > 0. Since E �= ∅ and1 ≤ �3(Cu(An)) μ(An)

for all n ∈ E , we have
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∑

n∈E
1 ≤

∑

n∈E
�3(Cu(An)) μ(An) =

∑

n∈E

∫

An

�3 ◦ Cu dμ ≤
∫

�

�3 ◦ Cu dμ < ∞,

where the final inequality follows from the assumption that �3 ∈ �2. Thus E must
be finite. ��

In the next theorem we characterize closed-range multiplication operators Mu :
L�1(�) → L�2(�) under the condition that �1(xy) ≤ �2(x) + �3(y) for all
x, y ≥ 0.

Theorem 5.3 Let �1,�2,�3 be Young functions vanishing only at zero, taking only
finite values, and such that �2,�3 ∈ �2 and �1(xy) ≤ �2(x) + �3(y) for all
x, y ≥ 0. If Mu is a bounded multiplication operator from L�1(�) into L�2(�) and
1
u ∈ L�3+ (�), then the following statements are equivalent:

(a) The set E = {n ∈ N : u(An) �= 0} is finite.
(b) Mu has finite rank.
(c) Mu has closed-range.

Proof By Theorem 3.4, we have that u(t) = 0 for μ-a.e. t ∈ B. The proofs of
implications (a) ⇒ (b) and (b) ⇒ (c) are as in the proof of Theorem 5.2.

We prove the implication (c) ⇒ (a). Using the same notation as in the proof of
Theorem 5.2, let S = ⋃

n∈E An and E �= ∅. Since Mu : L�1(S) → L�2(S) is
bounded, by Theorem 3.4, we have

sup
n∈E

u(An)�−1
3

(
1

μ(An)

)
< ∞

Let C = supn∈E u(An)�−1
3 ( 1

μ(An)
) > 0. Since E �= ∅, 1 ≤ �3

(
C

u(An)

)
μ(An)

for all n ∈ E , and �3 ∈ �2, we may write

∑

n∈E
1 ≤

∑

n∈E
�3

(
C

u(An)

)
μ(An) =

∑

n∈E

∫

An

�3 ◦ C

u
dμ ≤

∫

�

�3 ◦ C

u
dμ < ∞.

Thus E is finite. ��
Now we characterize closed-range composition operators CT : L�1(�) →

L�2(�) under the assumption that �2(xy) ≤ �1(x) + �3(y) for all x, y ≥ 0.
We will need an elementary lemma with an easy proof which we omit.

Lemma 5.4 Let �1,�2 be Young functions vanishing only at zero and taking only
finite values, and let T be a non-singular measurable transformation of � such that
CT is a bounded composition operator from L�1(�) into L�2(�). If T is surjective,
then CT is injective.

Theorem 5.5 Let �1,�2,�3 be Young functions vanishing only at zero, taking only
finite values, and such that�2 ∈ ∇′∩�2,�3 ∈ �2, and�2(xy) ≤ �1(x)+�3(y) for
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all x, y ≥ 0. Let T be a surjective non-singular measurable transformation of � such
that �−1

2 ◦ h ∈ L�3(T (�)). If CT : L�1(�) → L�2(�) is a bounded composition
operator, then the following assertions are equivalent:

(a) CT has closed-range.
(b) h(t) = 0 for μ-a.e. t ∈ T (B) and the set {n ∈ N : An ⊂ T (�), h(An) �= 0} is

finite.
(c) μ(B) = 0 and the set {n ∈ N : An ⊂ T (�), μ ◦ T−1(An) �= 0} is finite.
(d) CT has finite rank.

Proof The implications (b) ⇒ (c) and (d) ⇒ (a) are obvious.
We prove the implication (a) ⇒ (b). Assume that CT has closed-range. Since T

is surjective, by Lemma 5.4, CT is injective. It is a well-known fact that an injective
operator has closed-range if and only if it is bounded away from zero (see [4], III.12.5),
hence CT is bounded away from zero. This, combined with Lemma 4.5, yields that
the multiplication operator M

�−1
2 ◦h is bounded away from zero and therefore (being

also injective) has closed-range. Now an application of Theorem 5.2 shows that�−1
2 ◦

h(t) = 0 for μ-a.e. t ∈ T (B) and the set {n ∈ N : An ⊂ T (�), �−1
2 ◦ h(An) �= 0}

is finite. We conclude that h(t) = 0 for μ-a.e. t ∈ T (B) and the set {n ∈ N : An ⊂
T (�), h(An) �= 0} is finite.

Finally, we prove implication (c) ⇒ (d). Assume (c) holds. It is easy to see that the
range of the operator CT is then contained in a subspace generated by the functions
{χT−1(An)

: An ⊂ T (�), μ ◦ T−1(An) �= 0}. Since the set {n ∈ N : An ⊂ T (�), μ ◦
T−1(An) �= 0} is finite, the subspace CT (L�1(�)) is finite-dimensional and so CT

has finite rank. ��
As an easy consequence of this theorem we state

Corollary 5.6 If � is non-atomic, then, under the assumptions of Theorem 5.5, there
are no non-zero closed-range composition operators from L�1(�) into L�2(�).

In the next theorem we characterize closed-range composition operators CT :
L�1(�) → L�2(�) in the case when�1(xy) ≤ �2(x)+�3(y) for all x, y ≥ 0 (note
that compared to Theorem 5.5 the roles of the functions �1 and �2 are reversed).

Theorem 5.7 Let �1,�2,�3 be Young functions vanishing only at zero, taking only
finite values, and such that �2 ∈ ∇′ ∩ �2, �3 ∈ �2, and �1(xy) ≤ �2(x) + �3(y)
for all x, y ≥ 0. Let T be a surjective non-singular measurable transformation of �

such that 1
�−1

2 ◦h ∈ L�3(�). If CT : L�1(�) → L�2(�) is a bounded composition

operator, then the following assertions are equivalent:

(a) CT has closed-range.
(b) The set {n ∈ N : An ⊂ T (�), h(An) �= 0} is finite.
(c) The set {n ∈ N : An ⊂ T (�), μ ◦ T−1(An) �= 0} is finite.
(d) CT has finite rank.

Proof Using Lemma 4.5 and Theorem 5.3 and a method similar as in the proof of
Theorem 5.5 proves the theorem. ��
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Remark 5.8 As an applications of our results we derive characterizations of bounded
and closed-range multiplication and composition operators in the special case of L p-
spaces. These results recover the main theorems in [38].

1. If for 1 < p < q < ∞ the multiplication operator Mu is bounded from L p(�)

into Lq(�), then the following assertions are equivalent:
(a) Mu has closed-range.
(b) Mu has finite rank.
(c) The set {n ∈ N : u(An) �= 0} is finite.

2. If for 1 < q < p < ∞ the multiplication operator Mu is bounded from L p(�)

into Lq(�), then the following assertions are equivalent:
(a) Mu has closed-range.
(b) Mu has finite rank.
(c) u(t) = 0 for μ-almost all t ∈ B, and the set {n ∈ N : u(An) �= 0} is finite.

3. If for 1 < p < q < ∞ the composition operator CT is bounded from L p(�) into
Lq(�), then the following assertions are equivalent:
(a) CT has closed-range.
(b) CT has finite rank.
(c) The set {n ∈ N : h(An) �= 0} is finite.
(d) The set {n ∈ N : μ ◦ T−1(An) �= 0} is finite.

4. If for 1 < q < p < ∞ the composition operator CT is bounded from L p(�) into
Lq(�), then the following assertions are equivalent:
(a) CT has closed-range.
(b) CT has finite rank.
(c) h(t) = 0 for μ-almost all t ∈ B, and the set {n ∈ N : h(An) �= 0} is finite.
(d) μ ◦ T−1(B) = 0 and the set {n ∈ N : μ ◦ T−1(An) �= 0} is finite.

6 Simultaneously necessary and sufficient conditions for continuity of
the multiplication and composition operators beween distinct Orlicz
spaces

Up to this point no conditions that would be simultaneously necessary and sufficient
for the continuity of the operators Mu andCT have been given; the provided necessary
conditions and sufficient conditions though have the merit of being quite easy to verify
for a pair or a triple of Young functions involved. In order to obtain simultaneously
necessary and sufficient conditions for continuity of the operators Mu and CT , it is
convenient to take advantage of the theory of embeddings between Musielak–Orlicz
spaces. In the case of non-atomicmeasure spaces such conditionswere presented in [3];
nowwewill present them for purely atomic andmixedmeasure spaces. However, there
is a price: the simultaneously necessary and sufficient conditions for the continuity
of the operators Mu and CT are more complicated and not as easy to verify as those
presented in the preceding part of this paper.

A function � acting from � × R into [0,∞) such that �(t, .) is an Orlicz func-
tion (i.e. a finite-valued continuous Young function) for μ-a.e. t ∈ � and �(., x) is
a �-measurable function for every x ∈ R, is called a generalized Orlicz function
or a Musielak–Orlicz function. The Musielak–Orlicz space L� = L�(�,�,μ) is
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the space of all (equivalence classes of) �-measurable functions f : � → R such
that

I�(k f ) :=
∫

�

�(t, k f (t))dμ < ∞

for some k > 0 depending on f . The Musielak–Orlicz space furnished with the
Luxemburg norm

‖ f ‖� = inf

{
λ > 0 : I�

(
f

λ

)
≤ 1

}

is a Banach space (cf. [26,28]). It is obvious that Orlicz functions areMusielak–Orlicz
functions and, consequently, Orlicz spaces are Musielak–Orlicz spaces. Moreover, an
Orlicz weighted space L�

w(�) is a Musielak–Orlicz space L�w(�) with �w(t, x) =
�(x)w(t) for any t ∈ � and any x ∈ R.

When the measure space (�,�,μ) is purely atomic with infinite number of atoms,
we may restrict ourselves to counting measure. Since (�,�,μ) is σ -finite, it has
countably many atoms, and so, without loss of generality, it may be viewed as having
the form (N, 2N, μc), where μc is the counting measure on 2N. Indeed, considering
atoms as singletons, wewriteμ({n}) = an for any n ∈ N, where {an}n∈N is a sequence
of positive real numbers. If �0 denotes the space of all real sequences, then, given the
Musielak–Orlicz function � = (�n)

∞
n=1, i.e. a sequence of Young functions �n , we

can define on �0 the absolutely convex modular

I�( f ) =
∞∑

n=1

�n( fn)an ( f = ( fn) ∈ �0).

Defining

B� = { f ∈ �0 : I�( f ) ≤ 1}

and

��(N) = { f ∈ �0 : I�(k f ) < ∞ for some k > 0},

we easily see that B� is an absolutely convex set in ��(N) and that all elements of
��(N) are absorbed by B�. Consequently, theMinkowski functional generated by B�

m�( f ) := inf{λ > 0 : f/λ ∈ B�}

is a seminorm on ��(N). If we assume that for all n ∈ N the functions �n are not
identically equal to zero, then it is easy to prove that m�( f ) = 0 if and only if f = 0.
Of course,

m�( f ) = inf{λ > 0 : I�( f/λ) ≤ 1}.

This is the Luxemburg norm ‖ f ‖� = m�( f ).
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Let us define a new Musielak–Orlicz function � = (�n)
∞
n=1 with

�n(x) = �n(x) μ({n}) = �n(x) an,

where {n} is identified with the nth atom of the measure μ. Then the Musielak–
Orlicz space generated by the original Musielak–Orlicz function � and the original
purely atomic measure with μ({n}) = an is isometric to the Musielak–Orlicz space
generated by the Musielak–Orlicz function � defined above and corresponding to
counting measure with μc({n}) = 1 for all n ∈ N, because of the equality

I�( f, μc) =
∞∑

n=1

�n( fn) =
∞∑

n=1

�n( fn) an = I�( f, μ).

For these reasonsMusielak–Orlicz sequence spaces, without loss of generality, may
be considered (and usually are) over the counting measure space (N, 2N, μc).

Assume that (N, 2N, μ) is a purely atomic measure space with μ({n}) > 0 for all
n ∈ N. IfT : N → N is a non-singularmeasurable transformation andu : N → [0,∞)

a measurable function, then we can define a composition operator CT by

CT f (n) := f (T (n)) ( f ∈ �0, n ∈ N),

and a multiplication operator Mu by

Mu f (n) := u(n) f (n) ( f ∈ �0, n ∈ N).

Given Orlicz functions � and �, we can look for conditions on the triples (�,�, T )

and (�,�, u), so that CT or Mu act continuously from ��(N) into ��(N). Note that
for every function f on N we have

I�(CT f, μ) =
∞∑

n=1

�( f (T (n)))μ({n}) =
∑

m∈T (N)

∑

s∈T−1(m)

�( f (m))μ({s})

=
∑

m∈T (N)

�( f (m))
∑

s∈T−1(m)

μ({s}) =
∑

m∈T (N)

�( f (m))μ ◦ T−1({m})

= I�( f|T (N)
, μ ◦ T−1) = Iω

�( f|T (N)
, μ), (6.1)

where ω(n) = μ◦T−1({n})
μ({n}) . This means, of course, that CT f ∈ ��(N) if and only if

f|T (N)
∈ ��

ω (T (N)).

Similarly, for every function f on N we have

I�(Mu f, μ) =
∞∑

n=1

�(u(n) f (n))μ({n}) = I u�( f, μ), (6.2)

123



362 T. Chawziuk et al.

which implies that Mu f ∈ ��(N) if and only if f ∈ ��u (N), where �u(n, x) :=
�(u(n) x).

To work with purely atomic measures, we need to use the discrete version of Ishii’s
theorem due to Shragin [37] (see also [15,17]).

Theorem 6.1 (Shragin 1976)Let (N, 2N, μc) be the countingmeasure space. Let� =
(�n)

∞
n=1 and � = (�n)

∞
n=1 be Musielak–Orlicz functions, and let ��(N) and ��(N)

be the Musielak–Orlicz spaces corresponding to �, �, and the counting measure
μc. Then ��(N) ⊂ ��(N) if and only if there exist K , δ > 0 and a sequence of
non-negative numbers (cn)∞n=1 ∈ �1(N) such that

�n(Kx) ≤ �n(x) + cn (6.3)

for all x ∈ R and n ∈ N satisfying �n(x) ≤ δ.

We use Shragin’s result to prove the necessity part of the following theorem.

Theorem 6.2 Let (N, 2N, μ) be a purely atomic measure space, and let � and � be
Young functions vanishing only at zero and taking only finite values. The composition
operator CT acts continuously from ��(N) into ��(N) if and only if there exist K , δ >

0 and a sequence of non-negative numbers (cn)∞n=1 ∈ �1(T (N)) such that

�(Kx) μ ◦ T−1({n}) ≤ �(x)μ({n}) + cn (6.4)

for all x ∈ R and n ∈ T (N) satisfying �(x)μ({n}) ≤ δ.

Remark 6.3 In the preceding two theorems δ can be taken in the interval (0, 1).

Proof (of Theorem 6.2) Assume that there are K > 0, 1 > δ > 0, and a sequence
of non-negative numbers (cn)∞n=1 ∈ �1(T (N)) such that condition (6.4) is satisfied
whenever �(x)μ({n}) ≤ δ. Let f be a function in the unit sphere of ��(N). Then
I�( f ) ≤ 1 and further I�(δ f ) ≤ δ I�( f ) ≤ δ, hence �(δ f (n))μ({n}) ≤ δ for all
n ∈ N. Now setting

b := K δ and c :=
∑

n∈T (N)

cn,

by (6.4) we obtain

I�(b CT f ) =
∞∑

n=1

�(b f (T (n)))μ({n}) =
∑

n∈T (N)

�(b f (n))μ ◦ T−1({n})

≤
∑

n∈T (N)

�(δ f (n))μ({n}) +
∑

n∈T (N)

cn ≤ δ
∑

n∈T (N)

�( f (n))μ({n}) + c

≤ δ + c

Denoting d = max(δ + c, 1), we get from this that

I�

(
b

d
CT f

)
≤ 1

d
I�(b CT f ) ≤ 1.
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Hence, for all functions f in the unit sphere of ��(N) we have

∥
∥∥∥
b

d
CT f

∥
∥∥∥

��(N)

≤ 1,

or

‖CT f ‖��(N) ≤ d

b
,

i.e. the composition operator CT acts continuously from ��(N) into ��(N).
Now we shall prove that condition (6.4) follows from the continuity of the compo-

sition operator CT : ��(N) → ��(N). To this end, first note that, by Shragin’s result,
condition (6.4) is equivalent to the inclusion ��(T (N)) ⊂ ��

ω (T (N)). Indeed, it is suf-
ficient to plug�n(x) = �(x)μ({n}) and�n(x) = �(x)μ◦T−1({n}) in the inequality
(6.3). Hence, we only have to show that the inclusion ��(T (N)) ⊂ ��

ω (T (N)) follows
from the continuity of CT .

Let f ∈ ��(T (N)). Then f̃ ∈ ��(N), where f̃ is the extension of f to N with zero
values outside of T (N). Since CT is continuous, we have CT f̃ ∈ ��(N), but, as we
noticed above, this means that f ∈ ��

ω (T (N)). ��
Remark 6.4 We could have proved the sufficiency part of Theorem 6.2 via Shra-
gin’s theorem and the fact that ( f ∈ ��(N) �⇒ CT f ∈ ��(N)) implies the
continuity of the operator CT since any non-negative linear operator (CT is such an
operator) between Banach lattices is continuous. Let ��(T (N)) ⊂ ��

ω (T (N)) [which,
as we have pointed out, is equivalent to condition (6.4)] and let f ∈ ��(N). Then
f|T (N)

∈ ��(T (N)) and so f|T (N)
∈ ��

ω (T (N)), whichmeans that indeedCT f ∈ ��(N).
This method of proof, however, does not provide any estimate of the norm of the oper-
ator CT .

A similar theorem can be stated for the multiplication operator.

Theorem 6.5 Let (N, �,μ) be a purely atomic measure space, and let � and � be
Young functions vanishing only at zero and taking only finite values. Themultiplication
operator Mu acts continuously from ��(N) into ��(N) if and only if there exist K , δ >

0 and a sequence of non-negative numbers (cn)∞n=1 ∈ �1(N) such that

�(Ku(n)x) ≤ �(x) + cn (6.5)

for all x ∈ R and n ∈ N satisfying �(x)μ({n}) ≤ δ .

Proof The proof proceeds along the same lines as the proof of Theorem 6.2, and we
will omit it. ��
Remark 6.6 As in the proof of Theorem 6.2, the sufficiency part can also be proved
via Shragin’s theorem with the substitutions �n(x) = �(x) and �n(x) = �(u(n)x)
in condition 6.3, which then becomes equivalent to the inclusion ��(N) ⊂ ��u (N).
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The same techniques can be applied in all theorems in which h|T (B) = 0 μ-a.e.,
where h = d(μ ◦ T−1)/dμ, and/or u|B = 0 μ-a.e.

In the case of a general measure space �, the non-atomic part of � and the purely
atomic part of � can be treated separately, and this allows us to state the following.

Theorem 6.7 Let (�,�,μ) be a measure space, and let� and� be Young functions
vanishing only at zero and assuming only finite values.

(a) Assume that a non-singular measurable transformation T mapsB into itself and
�\B into itself. The composition operator CT acts continuously from L�(�) into
L�(�) if and only if the following conditions are jointly satisfied:
(i) there exist a constant K > 0, a set A ∈ � ∩ T (B) with μ(A) = 0, and a

function g ∈ L1+(T (B)), such that

�(Kx)h(t) ≤ �(x) + g(t)

for all x ≥ 0 and all t ∈ T (B)\A;
(ii) condition (6.4) (we identify N with �\B).

(b) The multiplication operator Mu acts continuously from L�(�) into L�(�) if and
only if the following conditions are jointly satisfied:
(i) there exist a constant K > 0, a set A ∈ � ∩B with μ(A) = 0, and a function

g ∈ L1+(B), such that

�(u(t)x) ≤ �(x) + g(t)

for all x ≥ 0 and all t ∈ B\A;
(ii) condition (6.5) (again, we identify N with �\B).

Proof We give the proof for both operators concurrently. We can represent L�(�)

and L�(�) as the direct sums of the spaces over the non-atomic part of � and the
purely atomic part of �, i.e. L�(�) = L�(B)⊕ L�(�\B) and L�(�) = L�(B)⊕
L�(�\B). Therefore, every function f ∈ L�(�) can be uniquely written as f =
f χB + f χ�\B, and we have

CT f (t) = CT ( f χB + f χ�\B)(t)

= ( f χB + f χ�\B)(T (t))

= f (T (t))χT−1(B)(t) + f (T (t))χT−1(�\B)(t)

= f (T (t))χB(t) + f (χ(t))χ�\B(t)

and

Mu f (t) = Mu( f χB + f χ�\B)(t) = u( f χB + f χ�\B)(t)

= u(t) f (t)χB(t) + u(t) f (t)χ�\B(t).
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Hence, if we define the operators CT|B , Mu|B on L�(B) and the operators CT|�\B ,

Mu|�\B on L�(�\B) by the obvious formulas, we are justified to write

CT = CT|B ⊕ CT|�\B and Mu = Mu|B ⊕ Mu|�\B .

Of course, we have the following inequalities for the norms

max{‖CT|B ‖, ‖CT|�\B ‖} ≤ ‖CT ‖ ≤ ‖CT|B ‖ + ‖CT|�\B ‖
max{‖Mu|B ‖, ‖Mu|�\B ‖} ≤ ‖Mu‖ ≤ ‖Mu|B ‖ + ‖Mu|�\B ‖.

Hence it follows that the operator CT acts continuously from L�(�) into L�(�)

if and only if the operator CT|B acts continuously from L�(B) into L�(B) and the

operator CT|�\B acts continuously from L�(�\B) into L�(�\B). The same applies

to the multiplication operator: Mu acts continuously from L�(�) into L�(�) if and
only if Mu|B acts continuously from L�(B) into L�(B) and Mu|�\B acts continu-

ously from L�(�\B) into L�(�\B). Therefore, the condition for boundedness of
the operator CT is exactly the conjunction of the conditions for the boundedness of
the operators CT|B and CT|�\B . Analogously, the condition for boundedness of the
operator Mu is the conjunction of conditions for the boundedness of the operators
Mu|B and Mu|�\B . Recall that in [3] it was shown that (a)(i) is a sufficient condition
for the continuity of CT and that (b)(i) is a necessary and sufficient condition for the
continuity of Mu in the case of a non-atomic measure space. By analogous arguments
to the ones we have used in the proof of the necessity part of Theorem 6.2 (applying
Ishii’s theorem rather than Shragin’s) it can be shown that (a)(i) is also a necessary
condition for the continuity of CT in the case of a non-atomic measure space, which
generalizes [3], where (a)(i) was shown to be a necessary condition for the continuity
of CT in the non-atomic case under the additional assumption that the mapping T is
surjective up to sets of measure zero. Moreover, Theorems 6.2 and 6.5 provide parallel
sufficient and necessary conditions (a)(ii) and (b)(ii) in the case of a purely atomic
measure space. This completes the proof of Theorem 6.7 ��
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