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Basic quantum mechanics for three Dirac equations in a curved spacetime

Mayeul Arminjon
CNRS (Section of Theoretical Physics) and

Laboratory “Soils, Solids, Structures,
Risks” (CNRS & Universités de Grenoble),
BP 53, F-38041 Grenoble cedex 9, France

Frank Reifler
Lockheed Martin Corporation, MS2 137-205,

199 Borton Landing Road,
Moorestown, New Jersey 08057, USA

(Received on 23 March, 2010)

We study the basic quantum mechanics for a fully general set of Dirac matrices in a curved spacetime by
extending Pauli’s method. We further extend this study to three versions of the Dirac equation: the standard
(Dirac-Fock-Weyl or DFW) equation, and two alternative versions, both of which are based on the recently
proposed linear tensor representations of the Dirac field (TRD). We begin with the current conservation: we
show that the latter applies to any solution of the Dirac equation, iff the field of Dirac matrices γµ satisfies a
specific PDE. This equation is always satisfied for DFW with its restricted choice for the γµ matrices. It similarly
restricts the choice of the γµ matrices for TRD. However, this restriction can be achieved. The frame dependence
of a general Hamiltonian operator is studied. We show that in any given reference frame with minor restrictions
on the spacetime metric, the axioms of quantum mechanics impose a unique form for the Hilbert space scalar
product. Finally, the condition for the general Dirac Hamiltonian operator to be Hermitian is derived in a general
curved spacetime. For DFW, the validity of this hermiticity condition depends on the choice of the γµ matrices.
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1. INTRODUCTION

1.1. Aim of this work

Quantum-mechanical effects of the classical gravitational
field are currently the clearest consequence of the interplay
between gravitation and the quantum. The effects which
have been observed [15, 22, 28, 37, 41] had been pre-
viously predicted by using the non-relativistic Schrödinger
equation in the Newtonian gravity potential [25, 31, 41], and
are still described by this same non-relativistic approxima-
tion [28, 37, 42]. However, one expects that the precision
will increase so that, in the future, the corrections brought
by the Dirac equation in a curved spacetime (see e.g. Refs.
[2, 11, 20, 26, 29, 40]) should become detectable. The stan-
dard extension of the Dirac equation to a curved spacetime is
due to Fock and to Weyl, and will be referred to as the “Dirac-
Fock-Weyl” (DFW) equation. In addition to this, two alterna-
tive versions of the Dirac equation in a curved spacetime were
tentatively proposed in a recent work [3]. While waiting for
an increase in the experimental accuracy, one would like to
determine the predictions of the Dirac equation for quantum
mechanics in a curved spacetime, and to check if the different
versions of it might be experimentally distinguishable.

A basic feature of the Dirac equation is that its coefficients,
the Dirac matrices γµ, have to satisfy the anticommmutation
relation corresponding to the Lorentzian metric gµν on the
spacetime V:

γµγν +γνγµ = 2gµν 14, µ,ν∈{0, ...,3} (14 ≡ diag(1,1,1,1)).
(1)

[Here (gµν) is the inverse matrix of (gµν).] Therefore,
in a curved spacetime, or already in a flat spacetime in
general coordinates, the Dirac matrices γµ(X) depend on the
spacetime point X , as does the metric. It follows that there

is a continuum of possible choices for the field γµ(X), all
satisfying the fundamental anticommutation relation (1). The
point-dependence of the metric also implies, as we will show,
that there is an infinity of a priori equally valid candidates for
the Hilbert space scalar product.

Together with the standard equation or Dirac-Fock-Weyl
(DFW) equation, the two alternative equations [3] provide us
with three versions of the Dirac equation in a curved space-
time, which are a priori inequivalent. The aim of the present
work is to study the basic quantum mechanics: current con-
servation, Hilbert space inner product, and hermiticity of the
Hamiltonian, for these three gravitational Dirac equations.
To reach this goal, in particular to study the influence of the
possible choices for the field of Dirac matrices γµ(X), it is
necessary to be able to use any possible choice of the latter.
This is achieved by using the “hermitizing matrix” A of
Bargmann [8] and Pauli [33, 34], which allows one to define
the current and the scalar product for a generic (ordered) set
(γµ) of Dirac matrices [4]. To our knowledge, until now, the
possible choices for the fields γµ(X) and the Hilbert space
scalar product have not been systematically investigated,
even for the standard (DFW) equation. [For the latter, the
different fields γµ(X) arise due to different choices of the
orthonormal tetrad field in Eq. (15) below.] However, it is
not a priori obvious that these choices have no effect. We will
show that in fact they have an essential effect. First, we will
show that the axioms of quantum mechanics impose a unique
form for the scalar product. The hermiticity condition has
not been investigated in a general setting, again even for the
standard (DFW) equation. The recent work of Leclerc [24]
studies the hermiticity of the Hamiltonian without explicitly
stating restrictions on the coordinate system, but it restricts
consideration to special kinds of tetrad fields, and the validity
of its result is not general: we will show that, for DFW, the
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validity of the hermiticity condition depends on the choice of
the fields γµ(X). This indicates the presence of a uniqueness
problem.

For example, this uniqueness problem arises for the DFW
equation in a Rindler spacetime, which is a Minkowski space-
time using Rindler coordinates [30]. In a Rindler spacetime,
it is usual to choose a tetrad that is independent of the time co-
ordinate. However, if time dependent tetrads are allowed, the
time evolution of the quantum mechanical states can fail to
be unitary. How does one exclude the use of the Minkowski
tetrad which is time dependent in a Rindler spacetime? Fur-
thermore, there is no known method for choosing this tetrad
that can be generalized to general spacetimes, such that the
time evolution will be unitary. The approach taken in this pa-
per is complementary to using tetrads, and questions such as
the existence and uniqueness of a Hermitian Hamiltonian op-
erator for a given Dirac equation—which is essential for en-
ergy eigenfunction expansions in both time-independent and
time-dependent quantum mechanics—are resolved more di-
rectly by considering admissible local similarity transforma-
tions. (See Section 4.) Clearly, the present investigation of the
first quantized Dirac theory in a curved spacetime is a prelim-
inary step to second quantization in a curved spacetime.

1.2. Status of the two alternative Dirac equations

The two alternative versions of the Dirac equation in a
curved spacetime were got by using directly the classical-
quantum correspondence [3]. One version obeys [1, 3] the
equivalence principle in the sense which is standard [43] in
this context. Namely, it automatically coincides with the flat-
spacetime Dirac equation “in a local freely-falling frame,”
i.e., in a coordinate system in which, at the point X consid-
ered, the metric tensor reduces to the standard form ηµν [with
matrix (ηµν) ≡ diag(1,−1,−1,−1)], and the metric connec-
tion vanishes. In contrast, for the DFW equation, the equiv-
alence principle can only be established for an anholonomic
frame and a spin connection [3]. The other alternative grav-
itational Dirac equation has a preferred reference frame, al-
though it can be rewritten in a generally-covariant form [3].
Both of these alternative versions require the tensor represen-
tation of the Dirac (TRD) field, i.e., the Dirac theory with
a four-vector wave function and with the set of the compo-
nents of the γµ matrices building a third-order tensor [1]. In
the TRD theory, the Dirac equation has the same linear form
and a similar Lagrangian as the DFW equation, 1 potentially
giving rise to both first and second quantized theories.

In a Minkowski spacetime in both Cartesian and affine
coordinates, the TRD theory with constant Dirac matrices
has been proved [4] to be quantum-mechanically fully
equivalent to the genuine Dirac theory. See also Subsect.
1.1 in Ref. [3] for a summary of the argument. Like the
solutions of the genuine Dirac equation, the single parti-
cle TRD solutions have only two spin polarizations (up

1 See Eq. (2) below for the common form of the Dirac equation and see Eq.
(21) in Ref. [5] for the Lagrangian.

and down) which makes them spin-half wave functions.
Moreover, just as with the genuine Dirac equation, it is
straightforward to extend the single particle theory to a
canonical second quantized fermion theory (see Subsect.
4.3 of Ref. [38]), with the fermion field operator built on
the normalized single particle and antiparticle TRD solutions.

A global field of Dirac matrices γµ satisfying Eq. (1)
exists (for DFW and for TRD as well) if and only if the
spacetime admits spinor structure [35]. It thus suggests
itself to extend the investigation to curved spacetimes that
admit spinor structure. We will first present the three Dirac
equations in a common framework and show that appropriate
hermitizing matrices always exist (Sect. 2). Then we shall
discuss the definition of the current, the condition for its
conservation, and the ways to fulfil this condition (Sect. 3).
Finally, we shall write the Hamiltonian and emphasize its
frame-dependence, define the scalar product, and character-
ize the hermiticity condition for the Hamiltonian (Sect. 4). In
conclusion we summarize the theorems (proved in this paper)
which are common to all three Dirac equations (Sect. 5).

2. THREE DIRAC EQUATIONS IN A CURVED
SPACETIME

2.1. The Dirac equation with three different connections

The three gravitational Dirac equations discussed in the In-
troduction have a common form:

γµDµψ = −imψ, (2)

where γµ = γµ(X) (µ = 0, ...,3) is a field of 4× 4 complex
matrices defined on the spacetime manifold V, satisfying the
anticommmutation relation (1); and where i =

√−1, m is
the rest-mass of the particle (setting � = 1 = c: otherwise,
replace m by mc/�), ψ is either a quadruplet of four scalar
fields (DFW) or a four-vector field (TRD), and Dµ is a
covariant derivative, associated with a specific connection.

For the two alternative equations based on the tensor rep-
resentation of the Dirac field (TRD), this is an affine con-
nection (i.e., a connection associated with the tangent bundle
[14, 16]):

(Dµψ)ν ≡ ∂µψν +∆ν
ρµψρ. (3)

In the TRD equations, the affine connection is extended to
the complexified tangent bundle. More precisely, for one of
the two TRD equations, henceforth denoted TRD-1, this is
simply the Levi-Civita connection. That is, the ∆ν

ρµ’s are the
(second-kind) Christoffel symbols associated with the space-
time metric gµν:

∆ν
ρµ ≡

{
ν
ρµ

}
. (4)

This is the one which obeys the equivalence principle, in the
sense stated in the Introduction. For the other TRD equation
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(TRD-2), the connection ∆ is defined from the spatial Levi-
Civita connection in an assumed preferred reference frame (a
congruence of observers [13]], here endowed with a preferred
time coordinate [3, 6], denoted E. In any coordinates adapted
to E, we have

∆ν
ρµ ≡

⎧⎨
⎩

0 if ν = 0 or µ = 0 or ρ = 0

G j
lk if ν = j and µ = k and ρ = l ∈ {1,2,3},

(5)

the G j
lk’s ( j,k, l ∈ {1,2,3}) being the Christoffel symbols of

the spatial metric h [13, 23, 27] in that preferred frame E.
In a general coordinate system, the ∆ν

ρµ’s are obtained from
the coefficients (5), by using the transformation law of affine
connections [17]: it is proved in Ref. [3] that this does define
a unique connection (which is torsionless). Equation TRD-2,
being based on that “preferred-frame connection,” has clearly
a more speculative character from the physical point of view.
Note that, in the case of a static (and non-flat) spacetime, we
do have one preferred reference frame with a preferred time
coordinate [3]. Also note that, in the case of a flat spacetime,
special relativity does apply. Thus, in that case, we must
find that we may take any inertial frame as “the preferred
frame E.” And indeed, if we take for E any inertial frame,
the connection defined by (5) coincides with the Levi-Civita
connection associated with the flat metric (with, in particular,
all ∆ν

ρµ ’s being zero if the coordinates are Cartesian). In
other words, the two equations TRD-1 and TRD-2 coincide
in the case of a flat spacetime.

For the DFW equation, the connection is the “spin connec-
tion” acting on the trivial bundle V×C4. 2 It is built from the
“spin matrices” Γµ [12]: we shall take the positive sign,

Dµψ ≡ ∂µψ+Γµψ, (6)

so that (3) takes the form (6) if we associate matrices Γµ to
connection coefficients (or conversely) by

(Γµ)
ν
ρ ≡ ∆ν

ρµ. (7)

However, except in the Majorana representation where the
Γµ’s are real, the spin connection matrices Γµ of the DFW
equation are generally complex, and depend on the set of
fields (γµ) (µ = 0, ...,3).

The transformation of the Dirac equation (2) for a coordi-
nate change depends also on the version: for the two TRD
equations [3], the wave function ψ is a spacetime vector (or
four-vector), hence it transforms thus:

ψ′ = Lψ (ψ′µ = Lµ
ν ψν), Lµ

ν ≡ ∂x′µ

∂xν , (8)

2 It is well known that a given spacetime V need not admit a spinor struc-
ture. It was proved by Geroch that a four-dimensional noncompact space-
time admits a spinor structure if and only if it admits a global tetrad field
[19]. In that case, both spinor bundles and tangent bundles are trivial
[19, 21]. Penrose and Rindler argue that these are the only spacetimes
of interest [35]. Then it is easy to show that one may define a global field
of Dirac matrices γµ satisfying Eq. (1) above, for DFW and for TRD as
well.

and the threefold array of the components of the Dirac matri-
ces, γµρ

ν ≡ (γµ)ρ
ν, builds a (2

1) tensor, thus

γ′µ = Lµ
σ LγσL−1, or γ′µρ

ν = Lµ
σ Lρ

τ
(
L−1)χ

ν γστ
χ . (9)

In contrast, for the DFW equation [12], the wave function
transforms like a scalar:

ψ′µ((x′ν)) = ψµ((xν)), (10)

and the set of the γµ matrices transforms like a four-vector:

γ′µ = Lµ
ν γν. (11)

Either of these two transformation modes leaves the Dirac
equation (2) form invariant after a general coordinate change:
for the TRD equations, each side of (2) is a four-vector;
whereas, for DFW, it is an object with four scalar compo-
nents.

2.2. A common tool: the hermitizing matrices

To define the current, we shall use the hermitizing matrix
for a general set (γµ) of Dirac matrices. This is a nonzero
4×4 complex matrix A such that

A† = A, (Aγµ)† = Aγµ µ = 0, ...,3, (12)

where M† ≡ M∗T denotes the Hermitian conjugate of a ma-
trix M. Moreover, we shall see that the Hamiltonian operator
associated with (2) depends on the field of matrices αµ, with

α0 ≡ γ0/g00, α j ≡ γ0γ j/g00. (13)

Therefore, to define a relevant scalar product, we will also
need a hermitizing matrix, denoted B, for the set (αµ):

B† = B, (Bαµ)† = Bαµ µ = 0, ...,3, (14)

and we will need that it be positive-definite. The existence of
A and B is ensured by the following result [4]: 3

Theorem [4]-6. Fix any point X in the spacetime. For any
set of matrices γµ satisfying the general anticommutation
formula (1), there exists a hermitizing matrix A for the
matrices γµ. The matrix A is nonsingular and unique, up to a
real scale factor. Similarly, a nonsingular hermitizing matrix
B ≡ Aγ0 for the αµ’s exists and is unique, up to a real scale
factor. If, furthermore, the coordinate system is an admissible
one, i.e., if g00 > 0 and the 3×3 matrix (g jk) ( j,k = 1,2,3) is
negative definite, then B ≡ Aγ0 is either a positive or negative
definite matrix. The sign of the matrix A can be chosen such
that B ≡ Aγ0 is a positive definite matrix.

The proof of this theorem in Ref. [4] is directly valid for
TRD, because that proof uses the tensor transformation of the

3 The existence of a hermitizing matrix A had been already proved by Pauli
[33, 34], though in a less general case and with less complete results (see
Ref. [4]).
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Dirac matrices, Eq. (9) here, but this is not in an essential way.
For DFW, the field of the matrices γµ satisfying the anticom-
mutation relation (1) is defined from an orthonormal tetrad
(uα), with uα ≡ aµ

α
∂

∂xµ (α = 0, ...,3), by [12, 24, 29]

γµ = aµ
α γ�α, (15)

where (γ�α) could be any set of constant Dirac matrices,
i.e., obeying Eq. (1) with (gµν) = (ηµν)−1 = (ηµν) ≡
diag(1,−1,−1,−1). It is immediate to check that, due to
the fact that the matrix a ≡ (aµ

α) and its inverse b ≡ (bα
µ)

are real, any matrix A� that is hermitizing for the γ�α’s is also
hermitizing for the γµ’s, and conversely. Using this fact, it is
straightforward to modify the proof of Theorem 6 in Ref. [4]
so that it applies to DFW.

Thus, at each point X in the spacetime V, for both TRD and
DFW theories, we have hermitizing matrices A(X) and B(X)
for the sets (γµ(X)) and (αµ(X)), respectively. For TRD, the
components Aµν of matrix A build a covariant second-order
tensor [4]. For DFW, we may choose A = A�. However, since
A is uniquely defined only up to a real factor, we might also
multiply by a positive real scalar field λ:

A = λ(X)A�. (16)

Because the “flat” matrices γ�α of Eq. (15), hence also A�, are
constant matrices in the DFW theory, it follows from (16) for
each point X ∈ V that A(X) is a matrix with scalar compo-
nents in the DFW theory. At each spacetime point, the matrix

B ≡ Aγ0 (17)

is positive definite for both the TRD and DFW theories by the
Theorem above. Note that, by (1) and (13), we get conversely

A = Bα0. (18)

Using Eq. (12), we define a Hermitian product between
complex four-vectors (or quadruplets of complex scalars) u,v
by setting

(u,v) ≡ Aρνuρ∗vν = u†Av, (19)

and in the same way, we define a positive-definite Hermitian
product, by setting

(u : v) ≡ Bρνuρ∗vν = u†Bv. (20)

In the TRD theory, the four-vectors u,v∈TCVX , where TCVX
is the complexification of the tangent space TVX at X ∈ V.
4 It results from (12) [resp. from (14)] that each of the γµ

4 In the TRD theory, Eqs. (19)2 and (20)2 exploit an abuse of notation that
views A and B in two different ways: first as tensors and then as matri-
ces representing Hermitian forms [4]. Compare these equations with the
similar equation using the spacetime metric G viewed first as a tensor and
then as a matrix representing a quadratic form. In this case we would have
gρνuρvν = uT Gv for u,v ∈ TVX . This is harmless as long as the covariance
is being carefully checked.

[resp. αµ] matrices is a Hermitian operator for the product
(19) [resp. (20)], that is,

(γµu,v) = (u,γµv), µ = 0, ...,3, (21)

(αµu : v) = (u : αµv), µ = 0, ...,3. (22)

Finally, we note that, due to Eqs. (17) and (18), we have

(u,v) = (α0u : v) = (u : α0v) (23)

and

(u : v) = (γ0u,v) = (u,γ0v). (24)

3. CURRENT CONSERVATION

3.1. Definition of the current

Obviously, the definition of the current should involve the
Dirac matrices. There are an infinity of sets of fields (γµ) that
satisfy the anticommutation relation (1) in the given curved
spacetime (V,gµν). In the case of a flat spacetime, it is nat-
ural to assume that the matrices γµ are constant in Carte-
sian coordinates (such that the metric has the standard form,
gµν = ηµν). 5 In the latter case, the current is unambiguously
defined as

Jµ ≡ (γµψ,ψ) = Aρν (γµ∗)ρ
σ ψσ∗ψν, (25)

or equivalently [using (12)]:

Jµ = ψ†γµ† Aψ = ψ†Bµψ, (Bµ ≡ Aγµ). (26)

Indeed, this definition coincides with the usual one [10, 39]
for the standard set (γ�µ) of “flat” Dirac matrices—for which
set A ≡ γ�0 turns out to be a hermitizing matrix. The case
with the standard set has been thoroughly investigated in the
literature, in particular the current (26) [with A ≡ γ�0] is then
derived from the Dirac Lagrangian, so that there is no ambi-
guity. In addition, it turns out [4] that the current (26) is actu-
ally independent on the choice of the Dirac matrices: if one
changes one set (γµ) for another one (γ̃µ) [satisfying the same
anticommutation relation (1) as does (γµ)], then the second
set can be obtained from the first one by a similarity transfor-
mation:

∃S ∈ GL(4,C) : γ̃µ = SγµS−1, µ = 0, ...,3, (27)

for which the solutions of the flat-spacetime Dirac equation
exchange by

ψ̃ = Sψ. (28)

5 We note in passing that, for TRD, this is equivalent to say that the γµ’s
are covariantly constant: Dσγµ = 0, or explicitly Dσγµρ

ν = 0. Whereas,
for DFW, the derivatives Dσγµ are always zero [12]: contrary to the Levi-
Civita connection, the spin connection does not recognize anything special
in the case of constant Dirac matrices in the flat situation.
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The hermitizing matrix is transformed thus:

Ã = (S−1)†AS−1 = (S†)−1AS−1, (29)

and this leads indeed to the invariant relation

J̃µ ≡ ψ̃†γ̃µ† Ã ψ̃ = Jµ. (30)

The definition (26) of the current is thus the right one in the
flat case, and it is generally-covariant, the current being in-
deed a four-vector, for TRD and for DFW as well—as it re-
sults immediately from the transformation behaviours of its
ingredients γµ,ψ, and A in the two theories. Therefore, we as-
sume (26) [or (25)] as the definition of the current in the gen-
eral case of a curved spacetime. We note that the invariance
(30) of the current after a similarity (27)-(29) remains in force
in that general case, even if matrix S depends on the event X .
We check from (26), (17) and the positive definiteness of ma-
trix B that the probability density is J0 = ψ†Bψ ≥ 0, with
J0 > 0 if ψ �= 0, as it must be.

3.2. Characteristic condition for current conservation

From the current definition (26) and Leibniz’ rule, one gets
trivially

DµJµ = (Dµψ)†Bµψ+ψ†(DµBµ)ψ+ψ†BµDµψ, (31)

provided the derivative DµBµ is well defined. Note that, for
TRD, Bµ

νρ ≡ (Aγµ)νρ = Aνσγµσ
ρ is a spacetime tensor. 6 DµBµ

is then the matrix with components DµBµ
νρ, the latter being

defined in the standard way from the relevant affine connec-
tions, thus

DµBµ
νρ = ∂µBµ

νρ +
{µ

σµ
}

Bσ
νρ −∆σ

νµBµ
σρ −∆σ

ρµBµ
νσ. (32)

For DFW, γν is a “spinor vector” [Eq. (11)], whose spin co-
variant derivative is defined as [12, 35]

Dµγν ≡ ∂µγν +
{

ν
ρµ

}
γρ +[Γµ,γν] (33)

(where [M,N] ≡ MN −NM), and this is known to be zero:

Dµγν = 0 (DFW); (34)

6 More exactly, the first contravariant index µ in γµσ
ρ corresponds to tensor

components of the (real) tangent space, as indicated by the (real) anticom-
mutation relation (1). In contrast, the second contravariant index, σ, as
well as the covariant index, ρ, correspond to tensor components of the
complex tangent space, as apparent from Eq. (25). In other words, the
tensor γµσ

ρ at each spacetime point X is an element of the tensor space
TVX ⊗TCVX ⊗T◦

CVX , where TCVX and T◦
CVX are the complexifications

of the real tangent space TVX and its dual T◦VX . Similarly, from (19),
the tensor Aνσ belongs to T◦

CVX ⊗T◦
CVX , so that the contracted product

Bµ
νρ = Aνσγµσ

ρ makes sense and belongs to TVX ⊗T◦
CVX ⊗T◦

CVX . Now,
for different types of indices, we may use different connections. For “com-
plex” indices, we are using the connection ∆ν

ρµ, Eq. (3), which differs from

the metric connection
{

ν
ρµ

}
for TRD-2; but, for “real” indices, we shall

use the metric connection for both TRD-1 and TRD-2. Leibniz’ rule still
applies.

while the derivative of a “spinor scalar” like the hermitizing
matrix A is defined to be

DµA ≡ ∂µA−AΓµ −Γ†
µA, (35)

ensuring that Dµ(A†) = (DµA)†. Since the spin matrices have
the form [12]

Γµ = cλνµsλν (DFW) (36)

with real coefficients cλνµ, and where sλν ≡ 1
2

(
γλγν − γνγλ),

it follows from (35) and the hermitizing character (12) of A
that

DµA−∂µA = 0 (DFW). (37)

Moreover, for DFW, we may choose λ ≡ 1 in Eq. (16), i.e.,
A ≡ A�, so that we get

DµA = 0 (DFW, A ≡ A�), (38)

and from (34), by using Leibniz’ rule:

DµBµ = 0 (DFW, A ≡ A�). (39)

Note that, if one uses also matrices Γµ for TRD, as defined
from the connection coefficients [Eq. (7)], then the defini-
tions (33) and (35), and in fact all definitions of covariant
derivatives used in DFW theory [35], also apply to TRD—
but, of course, not in general the results (34) and (39), which
are specific to DFW theory.

Since A and Bµ are hermitian matrices, the first term on the
r.h.s. of (31) is

(Dµψ)†Bµψ = (BµDµψ)†ψ = [A(γµDµψ)]†ψ = (γµDµψ)†Aψ.
(40)

Therefore, if the (relevant) Dirac equation (2) is satisfied, then
the two extreme terms on the r.h.s. of (31) cancel one another:

(γµDµψ)†Aψ+ψ†A(γµDµψ) = imψ†Aψ+ψ†A(−imψ) = 0,
(41)

whence from (31):

DµJµ = ψ†(DµBµ)ψ. (42)

Our definition of the covariant derivative uses the metric
connection for both TRD-1 and TRD-2 when “real” indices
are concerned (see Footnote 6)—as is the case for the index
µ in the foregoing equation. That is, for TRD, as well as for
DFW, the connection acting on the probability current Jµ is
the Levi-Civita connection. Hence, it follows that, for TRD
as well as for DFW, the condition for conservation of the
probability current is the same as in a Riemannian spacetime,
namely DµJµ = 0. Hence we can state the following result:

a. Theorem 1. Consider the general Dirac equation (2),
thus either DFW or any of the two TRD equations. In order
that any ψ solution of (2) satisfy the current conservation

DµJµ = 0, (43)
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it is necessary and sufficient that

DµBµ = 0 (Bµ ≡ Aγµ). (44)

The reasoning which was used to get Theorem 1, hence
also this theorem itself, extend immediately to the transition
probability currents

Kµ(ψ,ψ′) ≡ ψ†Bµψ′. (45)

We note also that Eq. (39) gives to Theorem 1 the following

b. Corollary 1. For DFW theory, the hermitizing matrix
field can be imposed to be A ≡ A�, with A� a constant
hermitizing matrix for the “flat” constant Dirac matrices γ�α

of Eq. (15). Then the current conservation applies to any
solution of the DFW equation.

The current conservation usually stated for DFW theory
(e.g. [12, 24, 29]) applies only to the case where the “flat”
Dirac matrices γ�α of Eq. (15) are the standard choices of
Dirac matrices, which we shall denote generically γ�α, and
for which γ�0 turns out to be hermitizing. {These choices of
Dirac matrices are related by similarity transformations that
are unitary [32], and not by general similarity transformations
(27) that leave the anticommutation formula (1) invariant.}
This is a particular case of Corollary 1.

3.3. Modified Dirac equation with conserved current

Due to the r.h.s. of (42), the current is in general not
conserved for solutions of the Dirac equation (2) (the general
one, i.e., DFW or TRD as well, although for DFW the
natural choice A ≡ A� does ensure the current conservation).
However, we can modify this equation to the following one:

γµDµψ = −imψ− 1
2

A−1(DµBµ)ψ, (46)

so as to conserve the transition probability current (45).
Indeed we have the

c. Theorem 2. For any pair (ψ,ψ′) of solutions of
the modified Dirac equation (46), the transition probability
current (45) is conserved.

Proof. Similarly to Eqs. (31) and (40), we get from the
definition (45):

DµKµ = (γµDµψ)†Aψ′ +ψ†(DµBµ)ψ′ +ψ†AγµDµψ′. (47)

Then, if the modified Dirac equation (46) is satisfied by ψ
and by ψ′ as well, the contributions coming from −imψ and
−imψ′ to the two extreme terms on the r.h.s. of (47) cancel
one another, as in Eq. (41). Thus we are left with

DµKµ = (Cψ)†Aψ′ +ψ†(DµBµ)ψ′ +ψ†ACψ′, (48)

where

C ≡−1
2

A−1(DµBµ). (49)

But since A = A†, we have (A−1)† = A−1, hence [noting that
(DµBµ)† = Dµ(Bµ†) = DµBµ]:

(Cψ)† = ψ†C† = −1
2

ψ†(DµBµ)A−1, (50)

so that the r.h.s. of (48) vanishes, as claimed by Theorem 2.
Q.E.D.

Note that the modified Dirac equation (46) coincides with
the normal one (2) for all ψ, iff the condition for current con-
servation (44) is satisfied. Therefore, Eq. (46) is really the
adequate modification of (2) to get the current conserved in
the general case. However, it is the normal Dirac equation,
not the modified one, that (in the TRD case) has been derived
from the classical-quantum correspondence [3]. Moreover,
the TRD-1 version [based on the Levi-Civita connection (4)]
of the normal equation obeys the equivalence principle in the
precise sense of the Introduction; whereas it is not the case
for the corresponding version of Eq. (46), because the van-
ishing of the connection (4) does not imply the validity of the
condition (44). Thus, one may feel that the physically rele-
vant equation remains the normal one (2). Since the current
conservation is very important, this option means that not all
possible fields γµ,A are physically admissible, but merely the
ones which, in addition to the anticommutation relation (1),
satisfy condition (44). Such systems will be called admissi-
ble. This, after all, is just an extension to the general case of
the statement made for the flat case, that any relevant field γµ

(and hence also the field A) has to be constant in Cartesian
coordinates: if one selects the gamma field at random, the
condition (44) and the current conservation do not generally
apply to the solutions of (2) even in a flat spacetime—except
for DFW.

3.4. Similarity transformations under which the Dirac
equation is covariant

Consider a local similarity transformation of the coefficient
fields: starting with a “fiduciary” set of fields, γµ,A,Bµ ≡ Aγµ,
let us apply an event-varying similarity transformation S(X)
[we exchange S for S−1 w.r.t. (27)-(29), for convenience]:

γ̃µ = S−1γµS, (51)

Ã = S†AS, B̃µ ≡ Ãγ̃µ = S†BµS. (52)

For DFW, the similarity transformations must be restricted to
the form S(L) with L �→ ±S(L) the spinor representation, see
Eq. (105). As is well known, the DFW equation is covari-
ant under all such similarities [12]. For TRD, we may ask
whether the general Dirac equation—either the normal one
(2) or the modified one (46)—is covariant under a similarity
(51)–(52), if one simultaneously imposes that the wave func-
tion must transform naturally as

ψ̃ = S−1ψ. (53)

We examine three questions: i) ψ obeying the modified
equation, when does ψ̃ obey the normal one? ii) ψ obeying
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the normal equation, when does ψ̃ obey it also? and iii)
ψ obeying the modified equation, when does ψ̃ obey it
also? The first question occurs most naturally after the dis-
cussion at the end of subsect. 3.3. The answer to it is given by

d. Theorem 3. In order that ψ̃ obey (2) each time that ψ
obeys (46), it is necessary and sufficient that

Z ≡ BµDµS +
1
2
(DµBµ)S = 0. (54)

Moreover, if Z = 0, the transformed fields satisfy condition
(44), hence the current conservation is valid, after the
transformation, with the normal Dirac equation (2).

Proof. Entering (53) into (46), we get successively

0 = γµS(Dµψ̃)+ γµ(DµS)ψ̃+
1
2

A−1(DµBµ)Sψ̃+ imSψ̃

0 = S
[
(S−1γµS)Dµ + im

]
ψ̃+ γµ(DµS)ψ̃+

1
2

A−1(DµBµ)Sψ̃

(55)
0 = SD̃ψ̃+A−1Zψ̃, (56)

the latter because A−1Bµ = γµ, and where D̃ is the normal
Dirac operator with the transformed fields γ̃µ, the normal
Dirac operator being D ≡ γµDµ + im. This proves the first
part of Theorem 3. It remains to check that

Z = 0 ⇒ DµB̃µ = 0. (57)

Entering into (57)2 the definition (52) of B̃µ as a transformed
quantity, yields

S†Bµ(DµS)+(DµS†)BµS = −S†(DµBµ)S. (58)

Thus, (57)2 is equivalent to

Y s = −1
2

S†(DµBµ)S, (59)

where

Y ≡ S†BµDµS, (60)

and where Y s ≡ 1
2 (Y +Y †) denotes the Hermitian part of Y .

But the r.h.s. of (59) is a Hermitian matrix. Hence the equa-
tion Z = 0, which is just

Y = −1
2

S†(DµBµ)S, (61)

is equivalent to the conjunction of (59) and the vanishing of
the antihermitian part of Y , namely

S†BµDµS− (DµS†)BµS = 0. (62)

In particular, Z = 0 implies (59), and thus implies (57)2. This
completes the proof.

Thus, coming back from the modified Dirac equation
to the normal one leads necessarily to a normal equation
for which the current is conserved. Note that Eq. (54) is
a first-order linear system of 16 independent PDE’s for the

16 independent unknowns of the similarity matrix S(X). So
that, starting from fields γµ,A “selected at random,” solving
this system (which should be possible with suitable boundary
conditions) allows us to go to admissible fields γ̃µ, Ã. The
meaning of the additional condition (62) will be soon
clarified by Theorem 4. For now, recall that, if we start from
a system of fields γµ,A that already satisfies condition (44),
then the “modified” Dirac equation actually coincides with
the normal one. Hence, Theorem 3 allows us to immediately
answer question ii) put at the beginning of this subsection:

e. Corollary 2. Let us start from a set of fields
γµ,A,Bµ ≡ Aγµ that does satisfy the condition (44) for current
conservation. In order that ψ̃ still obey (2) each time that ψ
obeys it already, it is necessary and sufficient that

Z ≡ BµDµS = 0. (63)

Moreover, condition (44) is then preserved by the similarity
transformation.

Note that Eq. (63) is the particular case DµBµ = 0 in
Eq. (54), and is thus also a first-order linear system of 16
independent PDE’s for the 16 independent unknowns of the
similarity matrix S(X).

Finally, the answer to question iii) is given by

f. Theorem 4. In order that ψ̃ still obey the modified
equation (46), each time that ψ obeys it already, it is neces-
sary and sufficient that Eq. (62) be satisfied.

Proof. Let us write that ψ̃ obeys Eq. (46), and multiply this
by S:

0 = S
[

γ̃µDµψ̃+ imψ̃+
1
2

Ã−1(DµB̃µ)ψ̃
]
. (64)

On the other hand, the fact ψ obeys Eq. (46) is equivalent to
Eq. (55), thus to

0 = S [γ̃µDµ + im] ψ̃+ γµ(DµS)ψ̃+
1
2

A−1(DµBµ)Sψ̃. (65)

Hence, ψ̃ obeys (46) at each time that ψ obeys it already, iff:

∀ψ̃ γµ(DµS)ψ̃+
1
2

A−1(DµBµ)Sψ̃ =
1
2

SÃ−1(DµB̃µ)ψ̃. (66)

Inserting the expression (52) of Ã and B̃µ, and thus computing
DµB̃µ, yields

SÃ−1(DµB̃µ) = A−1(DµBµ)S+γµ(DµS)+A−1(S†)−1(DµS†)BµS.
(67)

Thus, the characteristic condition (66) rewrites as

γµ(DµS) = A−1(S†)−1(DµS†)BµS, (68)

or (remembering that Aγµ ≡ Bµ):

S†Bµ(DµS) = (DµS†)BµS, (69)

which is precisely Eq. (62). Q.E.D.
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Let us summarize. If a similarity transformation takes the
modified Dirac equation (46) to the normal one (2), then it
leads to a normal equation with admissible fields γµ,A, i.e.,
ones for which, in addition to the anticommmutation relation
(1), the condition (44) for current conservation is satisfied
(Theorem 3). And if, starting with admissible fields γµ,A,
the normal Dirac equation is covariant under the transforma-
tion, then necessarily the transformed fields are admissible
also (Corollary 2). This provides the justification for the re-
striction to admissible fields. Finally, the condition (54) of
Theorem 3, that allows one to come back from the modified
to the normal Dirac equation, turns out to be equivalent to
the conjunction of the condition (44) for current conserva-
tion, and of condition (62). The latter is just the one ensuring
the covariance of the modified Dirac equation (Theorem 4).

4. HERMITICITY OF THE HAMILTONIAN

4.1. The Hamiltonian operator and its frame dependence

The general Dirac Hamiltonian H is obtained by multiply-
ing the general Dirac equation (2) by γ0 on the left, using the
anticommutation formula (1). This puts the Dirac equation
into Schrödinger form:

i
∂ψ
∂t

= Hψ, (t ≡ x0), (70)

with

H ≡ mα0 − iα jD j − i(D0 −∂0), (71)

and where the αµ ’s are given by Eq. (13). One sees from
the latter equation that, for TRD, αµρ

ν ≡ (αµ)ρ
ν is not a gen-

eral tensor, in contrast with γµρ
ν ≡ (γµ)ρ

ν—and that, however,
it does behave as a spacetime tensor for purely spatial trans-
formation of coordinates:

x′0 = x0, x′ j = f j((xk)). (72)

This is natural. Indeed, the rewriting of any linear wave
equation in the Schrödinger form (70), in which the (lin-
ear) Hamiltonian operator H has to contain no time deriva-
tive, is based on a splitting of spacetime into space and time.
Thus, a priori, the operators H and H′ corresponding to dif-
ferent spacetime coordinate systems should be different, in
general. This can be checked from the transformation of the
Schrödinger equation (70). Consider first the case that the
wave function is a scalar, or transforms as a scalar (which is
relevant to DFW). Then Eq. (70) transforms simply as

H′ψ′ ≡ i
∂ψ′

∂t ′
= i

∂ψ
∂xµ

∂xµ

∂t ′
=

∂t
∂t ′

Hψ+ i
∂ψ
∂x j

∂x j

∂t ′
. (73)

In order that the Hamiltonians H and H′ be equivalent oper-
ators, it must be that: i) ∂x j/∂t ′ = 0, ii) Hψ transforms as
a scalar: (H′ψ′)((x′µ)) = (Hψ)((xν)), and iii) t ′ = t, that is,
x′0 = x0. 7 The three foregoing conditions impose that we

7 Since we set t ≡ x0 (and t ′ ≡ x′0), the “true” time is rather T ≡ x0/c. Note
that x0 ≡ cT is invariant under a change T ′ = aT . In other words, time
scale changes are (fortunately) allowed.

restrict the allowed transformations to be purely spatial coor-
dinate changes (72). Now, for DFW, Hψ as obtained from Eq.
(71) is indeed a spatial scalar [2]. Next, consider the case that
the wave function is a four-vector (which is relevant to TRD).
We have then

(H′ψ′)µ ≡ i
∂ψ′µ

∂t ′
= i

∂
∂t ′

(
∂x′µ

∂xν ψν
)

=
∂x′µ

∂xν ×
(

i
∂ψν

∂xρ
∂xρ

∂t ′

)
,

(74)
the latter for linear coordinate changes. Thus, in order that the
new Hamiltonian H′ that appears in Eq. (74) be an equivalent
operator to H, the expression above should now transform as
a four-vector. This needs that

i
∂ψν

∂xρ
∂xρ

∂t ′
= i

∂ψν

∂t
≡ (Hψ)ν, (75)

or

∂xρ

∂t ′
= δρ

0 . (76)

That is, again one must restrict oneself to spatial changes
(72). Since this restriction applies already to linear coordi-
nate changes, it must be imposed to all coordinate changes.
One verifies that, under all spatial coordinate changes (72),
H′ψ′, thus defined as the transformation of the l.h.s. of
the Schrödinger equation (70), is indeed the four-vector
transformation of Hψ. One then easily checks that Hψ,
as defined instead from the explicit expression (71) of the
Hamiltonian, does transform as a four-vector under spatial
changes (72) for TRD. Thus, for DFW and TRD as well,
in order that the Hamiltonians H and H′ before and after a
coordinate change be equivalent operators, the coordinate
change must be a spatial change (72)—then, both sides of the
Schrödinger equation (70) behave as a scalar for DFW, and
as a four-vector for TRD. This is consistent with the fact that,
both ψ and Hψ being wave functions in the same Hilbert
space, both ψ and Hψ must transform the same way under
“allowed” coordinate transformations.

Thus, the Hamiltonian operator associated with a given
wave equation depends on the reference frame F which is
considered—the latter being understood here as an equiv-
alence class of local coordinate systems (charts) on the
spacetime V, modulo the purely spatial transformations
(72). 8 Since the time coordinate x0 is fixed, this is a
more restrictive definition of a reference frame than in
relativistic gravity, where changes x′0 = f ((xµ)) are allowed
[13, 23]. However, one may trace back this restriction to that
effected by mechanics itself: e.g. in an inertial frame in a

8 This notion of a reference frame is formalized in Ref. [6], together with
the notion of the associated space manifold M, which is time-independent.
This formalization needs that one restricts oneself to an open domain U
in V, such that there is at least one chart χ : U → R4, thus that covers
U. Since a chart is, from its definition, a diffeomorphism of its domain
onto its range in the arithmetic space R4 � R×R3, this means that we
assume a local 1×3 decomposition of spacetime—as is indeed commonly
assumed in works on quantum theory in a curved space-time [9, 18]. This
decomposition writes X �→ (x0,x) with x∈ M: see Sect. 4 in Ref. [6], point
i).
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flat spacetime, the inertial time (synchronized according to
the Poincaré-Einstein procedure) is naturally distinguished;
accordingly, the quantum Hamiltonian will generally change
if one selects another time coordinate, see Eq. (73). As
shown in Ref. [6], the data of a reference frame F determines
a three-dimensional “space” manifold M, which is the set
of the world lines of the observers bound to F—i.e., whose
spatial coordinates x j do not depend on the time x0, in any
chart of the class F. The charts of the class F, also called
charts adapted to F, provide an atlas of M: the coordinates of
the running element of M in such a chart are just the constant
spatial coordinates x j of the corresponding world line.

Equation (71) reveals an important property of the TRD-
2 connection (5) in the preferred frame E. Namely, using the
definition (5) to set D0 = ∂0 in Eq. (71) shows that the Hamil-
tonian operator for TRD-2, at each time t, depends only on the
choice of gamma matrices and the spatial geometry at time t.

4.2. The scalar product

Ideally, we would like to define in a natural way a Hilbert
space scalar product for wave functions, and to find that “the
Hamiltonian H is Hermitian for this scalar product.” We now
know that this property, like H itself, will likely depend on
the reference frame, so we select one, F, with the associated
“space” manifold M. Note that H, because it does not involve
time derivatives, primarily operates on spatial wave functions
ψ = ψ(x) with x ∈ M. However, in general, H and the metric
gµν do depend on the time t ≡ x0. As noted in Ref. [2], the
scalar product for the Dirac equation (2) has necessarily the
following general form:

(ψ | ϕ) ≡
∫

M
(ψ(x).ϕ(x)) dV(x), (77)

where (u.v) is a Hermitian product defined for “arrays u and
v of four complex numbers” (which in fact are either complex
four-vectors or quadruplets of complex scalars, depending
on whether TRD or DFW theory is considered), and where
dV(x) at each time t is an arbitrary volume element defined
on M. The latter has the form (at time t)

dV(x) = σ(t,x)
√
−g(t,x) d3x, g ≡ det(gµν) (78)

where σ(t,x) is any spatial scalar field [i.e., scalar under
transformations (72)]. Note then using formula (72) that the
integral defining the scalar product (77) is invariant under all
coordinate transformations of M. Also note that the volume
element σ(t,x)

√−g(t,x) d3x is the most general possible
on M.

For a flat spacetime, in any Cartesian coordinate system
(xµ), the following scalar product has been identified:

(ψ ‖ ϕ) ≡
∫

space
(ψ(x) : ϕ(x)) d3x, (79)

where (u : v) is the positive-definite product (20) with the cor-
responding constant hermitizing matrix B. It is fully satisfy-
ing in that case, since the Hamiltonian is always Hermitian

for that product [4]. Hence, the sought after scalar product
(77) must coincide with (79) in a flat region of U, when it is
endowed with Cartesian coordinates. More generally, for any
given event X ∈U, and for wave functions of a priori bounded
variation, vanishing outside a small neighborhood of X , the
metric and the matrix B may be considered constant, so that
one should be able to approximate the exact product (77) by
the product (79), rewritten in a covariant form. Therefore, we
must take (ψ(x).ϕ(x))≡ (ψ(x) : ϕ(x)) in (77), and we are left
with the mere choice of the volume measure V on M, thus
with the choice of the scalar σ. An obvious possible choice,
indeed the standard choice, is σ ≡ 1. So that the general form
of the possible scalar product may be written, both in intrinsic
form and in a chart χ̃ on the space M, as

(ψ | ϕ) ≡
∫

M
(ψ : ϕ) dV =

∫
χ̃(M)

ψ†Aγ0ϕ σ
√−g d3x. (80)

For DFW theory, recall that the matrices γµ, in particular
γ0, are defined by Eq. (15), in which the matrix (aµ

α) must be
invertible and satisfy

aµ
α aν

β ηαβ = gµν. (81)

If we make the standard choice σ ≡ 1, and take for “flat” ma-
trices the standard Dirac matrices γ�µ, so that we may choose
A = γ�0 as previously noted, then, in that particular case, the
scalar product (80) is the one stated by Leclerc [24]. If, in ad-
dition, we have a0

j = 0, we get a0
0 =

√
g00 from (81), hence

√−gAγ0 =
√
−gg00 14. (82)

Now assume that g0 j = 0 ( j = 1,2,3), as is in particular the
case for a static metric in adapted coordinates. Then we can
certainly get a0

j = 0, and moreover we have g00 = 1/g00,
whence

√−gAγ0 =
√

h14, (83)

where h ≡ det(h jk) is the determinant of the metric h jk =
−g jk ( j = 1,2,3) on the space M, induced by the spacetime
metric gµν. Thus, in the case that g0 j = 0 ( j = 1,2,3), and
using furthermore the standard Dirac matrices, the definition
(80) coincides with that found “natural” in Ref. [2] [Eqs.
(21)–(23) there] for a static metric in DFW theory.

4.3. Conditions for hermiticity and isometric evolution

In quantum mechanics, the Hamiltonian operator H(t)
is an operator-valued function of time t, that represents
the energy observable at time t. There are three axioms in
quantum mechanics that can be straightforwardly adapted to
a curved spacetime as follows:

g. Axiom (A). The Hilbert space scalar product (80) of
any time-independent wave functions ψ and ϕ defined on the
space manifold M is time independent.

h. Axiom (B). For each time t, the Hamiltonian H is a
Hermitian operator with respect to the scalar product (80).
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i. Axiom (C). The solutions of the Dirac equation (70)
have an isometric evolution with respect to the scalar product
(80).

It will be shown in this subsection that Axioms (A) and (B)
together uniquely determine the Hilbert space scalar product,
up to an inconsequential constant.

Note that these axioms are somewhat weaker than the
self-adjointness and unitary evolution required in quantum
mechanics. Axiom (B) is a prerequisite for the energy
operator H(t) to be self-adjoint for each time t. Axiom (C),
which guarantees that the Hilbert space norm is preserved in
time, is a prerequisite for ensuring that the solutions of the
Dirac equation (70) have a unitary evolution with respect to
the scalar product (80).

It can be shown that any pair of these axioms implies the
third. In particular, we note that if Axiom (A) is valid, then
Axioms (B) and (C) are equivalent, as they are in ordinary
quantum mechanics. This observation follows immediately
from differentiating Eq. (80) with respect to time to obtain

∂0(ψ | ϕ) =
∫

M
ψ† ∂0[σ

√−gAγ0] ϕ d3x

+((∂0ψ) | ϕ)+(ψ | (∂0ϕ)) (84)

and then substituting for ψ and ϕ either time-independent
wave functions or time-dependent solutions of the Dirac
equation (70). In the former case, from Axiom (A) we have
∂0(ψ | ϕ) = 0, and since ψ and ϕ are time-independent we get

0 =
∫

M
ψ† ∂0[σ

√−gAγ0] ϕ d3x+0. (85)

Since ψ and ϕ can be chosen as arbitrary smooth, 4-
component complex wave functions with compact supports
in M, the vanishing of that integral implies that

∂0[σ
√−gAγ0] = 0. (86)

Then, in the latter case, for two solutions ψ and ϕ of the Dirac
equation (70), we may substitute Eq. (86) and H = i∂0 in Eq.
(84), obtaining

∂0(ψ | ϕ) = i[(Hψ | ϕ)− (ψ | Hϕ)]. (87)

Thus, assuming Axiom (A), the hermiticity of the Hamil-
tonian is equivalent to the isometricity of the evolution,
generalizing a well known result in quantum mechanics.

The hermiticity condition for the Hamiltonian is, by defi-
nition,

(Hψ | ϕ) = (ψ | Hϕ) (88)

for all ψ and ϕ in the domain of H(t), denoted Dom(H), which
we assume to be independent of time. Recall that the wave
functions ψ and ϕ in this definition are time-independent. Be-
cause the sesquilinear form (Hψ |ϕ) is determined by the cor-
responding quadratic form Q(ψ) ≡ (Hψ | ψ), an equivalent
condition to (88) is actually

∀ψ ∈ Dom(H) (Hψ | ψ) = (ψ | Hψ) (for each time t).
(89)

In order to find when this does occur with the Hamiltonian
(71), we use the expression of the global scalar product (80)
as an integral of the Hermitian product (u : v), and we use the
relation between the two Hermitian products (u : v) and (u,v)
in Eq. (24), exploiting their Hermitian property to obtain:

(ψ : Hψ)− (Hψ : ψ) = (ψ : −iα jD jψ)+(iα jD jψ : ψ)
+(ψ : −i(D0 −∂0)ψ)+(i(D0 −∂0)ψ : ψ)

= (ψ,−iγ jD jψ)+(iγ jD jψ,ψ)+(ψ,−iγ0D0ψ)

+(iγ0D0ψ,ψ)+(ψ : i∂0ψ)− (i∂0ψ : ψ)
= (ψ,−iγµDµψ)+(iγµDµψ,ψ)
+(ψ : i∂0ψ)− (i∂0ψ : ψ). (90)

Therefore, if the wave function ψ is a time-dependent one that
obeys Dirac equation in the Schrödinger form (70), we get

0 = (ψ,−iγµDµψ)+(iγµDµψ,ψ), (91)

which is indeed an immediate consequence of the Dirac
equation in the initial form (2). Thus we are left with 0 = 0
in that case.

However, if the wave function ψ is a time-independent one
instead, as is normal at the stage of checking the hermiticity
of the Hamiltonian, what we get is more interesting:

(ψ : Hψ)− (Hψ : ψ) = (ψ,−iγµDµψ)+(iDµψ,γµψ)

= −i[ψ†AγµDµψ+(Dµψ)†Aγµψ].
(92)

Now, recall that the field γµ,A may not be selected freely, but
instead should satisfy the admissibility condition (44) [and
relation (1)]. If this is the case, we find thus [cf. Eq. (26)]:

(ψ : Hψ)− (Hψ : ψ) = −iDµ(ψ†Aγµψ) ≡−iDµJµ. (93)

As noted after Eq. (42), for TRD, as well as for DFW, the
connection acting on the probability current Jµ is the Levi-
Civita connection, hence

√−g DµJµ = ∂µ
(√−g Jµ) . (94)

We use the form (80) of the scalar product. With this scalar
product, by integrating (93) over the space manifold, we get
(setting the boundary term equal to zero by assuming that the
functions ψ ∈ D decrease quickly enough at spatial infinity):9

9 From now on, for definiteness, we shall assume that χ̃(M) = R3 (for the
chart χ ∈ F that we consider), and hence that the “space” manifold M is
diffeomorphic to R3.
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i[(ψ | Hψ)− (Hψ | ψ)] =
∫

R3
σ
√−gDµJµ d3x (95)

=
∫

R3
σ ∂µ

(√−gJµ) d3x

=
∫

R3

[
σ ∂0

(√−gJ0)− (∂ jσ)
√−gJ j]d3x+

∫
R3

∂ j
(
σ
√−gJ j) d3x

=
∫

R3

[
σ ∂0

(√−gψ†Aγ0ψ
)
− (∂ jσ)

√−gψ†Aγ jψ
]

d3x+0,

i[(ψ | Hψ)− (Hψ | ψ)] =
∫

R3
ψ† [

σ ∂0
(√−gAγ0)− (∂ jσ)

√−gAγ j]ψd3x. (96)

Using again the fact that a sesquilinear form is determined
by the corresponding quadratic form, we find thus that the
hermiticity of the Hamiltonian is equivalent to ask that, for
all ψ and ϕ in Dom(H),
∫

R3
ψ†Nϕd3x = 0, N ≡σ ∂0

(√−gAγ0)−(∂ jσ)
√−gAγ j.

(97)
In the same way as after Eq. (85), the matrix N must thus
vanish for every x ∈ R3. Hence, the characteristic condition
of hermiticity for the general form (80) of the scalar product
is

σ ∂0
(√−gAγ0)− (∂ jσ)

√−gAγ j = 0 for every x ∈ R3.
(98)

This result opens the possibility that, in a given metric
and with a given admissible set of fields γµ,A, one might
get the Hamiltonian Hermitian by an appropriate choice
of the scalar field σ, that determines the scalar product.
However, combining Eq. (98) with Eq. (86) shows that
(
√−gAγµ) ∂µσ = 0. That is, since the matrix

√−gA is
invertible, γµ ∂µσ = 0 . Then, since the gamma matrices are
independent, ∂µσ = 0, proving that the scalar field σ is indeed
constant, assuming Axioms (A) and (B). Without loss of
generality we may henceforth set σ≡ 1. Thus we can state the

j. Theorem 5. Axioms (A) and (B) uniquely fix the
scalar product to be

(ψ | ϕ) ≡
∫

R3
ψ†Aγ0ϕ

√−g d3x. (99)

Moreover, rewriting (98) with σ ≡ 1 yields the following
result:

k. Theorem 6. Assume that the coefficient fields γµ,A
satisfy the two admissibility conditions (1) and (44). In or-
der that the Dirac Hamiltonian (71) be Hermitian (at time t)
for the scalar product (99), it is necessary and sufficient that

N(x) ≡ ∂0M(x) = 0 for every x ∈ R3, M ≡√−gAγ0.
(100)

The matrices in Eq. (100) depend a priori on the chart, say
χ. However, as we saw, the Hamiltonian (71) and the scalar
product (80) depend only on the reference frame F, i.e., on
the equivalence class to which the chart belongs, modulo a

relation of the kind “χR χ′ iff χ and χ′ exchange by a purely
spatial transformation (72)” [6]. The transformation of the
matrices in Eq. (100) is consistent with this: it is easy to
check that the validity or invalidity of the condition (100) is
invariant under any spatial coordinate change (72), thus it de-
pends only on the reference frame F.

4.4. Effect of an admissible change of the coefficient fields

In a given spacetime (V,gµν), there are infinitely many co-
efficient fields (γµ,A) that satisfy the two admissibility con-
ditions (1) and (44). The question thus arises, whether or not
(in a given reference frame F) the hermiticity condition (100)
is preserved by a change of the admissible coefficient fields—
such changes will be called admissible changes of coefficient
fields. We have the definite answer to this question only for
DFW. For both DFW and TRD, we know that, if a change of
the fields γµ respects the anticommutation relation (1), then
this is a similarity transformation (51), and that then the ma-
trix A and the field Bµ change according to (52). Therefore,
the matrix M of Theorem 6 changes like A and Bµ:

M̃ ≡√−gÃγ̃0 = S†MS. (101)

As an immediate consequence of this and Theorem 6, we
have the

l. Corollary 3. Let (γµ,A) be a set of admissible
coefficient fields. Let us fix the reference frame, so that the
Hamiltonian operator and the scalar product are determined
by the fields (γµ,A). Let S = S(x) be a space-dependent
matrix such that condition (44) is still valid after the trans-
formation (51)–(52) of the coefficient fields. Then, the initial
Hamiltonian is Hermitian iff the transformed Hamiltonian is
Hermitian.

In short: the hermiticity is preserved by admissible changes
that do not depend on time. However, admissible changes
may well depend on time. For DFW, the admissible changes
are restricted to local similarity transformations belonging to
the spin group, S(X) ∈ Spin(1,3). 10 We know from Corol-
lary 1 that all such transformations, including time-dependent

10 Any such similarity is obtained from a change of the tetrad field uα =
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ones, are admissible for DFW, since they preserve the condi-
tions (15), (44), as well as (1). Thus, the hermiticity condition
is always (100), for DFW (with the choice A = A�). There-
fore, the hermiticity conditions before and after an arbitrary
similarity transformation S, are respectively

∂0M = 0 for every x ∈ R3 (106)

and

∂0(S†MS) = 0 for every x ∈ R3. (107)

Obviously, if the initial matrix M is independent of time,
then, with a time dependent similarity transformation S, the
transformed matrix M̃ = S†MS will in general depend on
time—thus contradicting ∂0M̃ = 0.

To take a sensible example, consider the very general case
of an admissible coordinate system, i.e., a coordinate system
such that g00 > 0 and such that matrix (g jk) is negative defi-
nite. In that case, the lemma in Appendix B of Ref. [4] shows
that the matrix (aµ

α) of Eq. (81) (which is matrix M in Ref.
[4]) may be chosen to satisfy a0

j = 0, so that, taking for “flat”
matrices the standard Dirac matrices γ�µ, with A = γ�0, we
have [Eq. (82)]

M =
√

−gg00 14. (108)

Thus, the hermiticity condition with that starting system, Eq.
(106), rewrites as Leclerc’s condition [24]:

∂0(
√
−gg00) = 0 for every x ∈ R3, (109)

while in the transformed system, it is (107), or here:

∂0(
√
−gg00 S†S) = 0 for every x ∈ R3. (110)

Now, if (109) is satisfied, and if S is such that S†S does
depend on time, it follows that (110) cannot be satisfied.
This proves that, for DFW, the hermiticity condition is not
invariant by the admissible changes of the coefficient fields
(γµ,A).

aµ
α ∂µ, by a (proper) local Lorentz transformation L = L(X) ∈ SO(1,3):

ũβ = Lε
β uε = Lε

β aµ
ε ∂µ = ãµ

β ∂µ, (102)

thus
ãµ

β = aµ
ε Lε

β. (103)

This allows us to define gamma matrices from the same fixed set of “flat”
ones through these two tetrad fields [cf. Eq. (15)]:

γµ = aµ
α γ�α, γ̃µ = ãµ

β γ�β, A = Ã ≡ A�. (104)

Using (103) and (104) together with the characteristic property of the
spinor representation L �→ ±S(L) (defined up to a sign), it is easy to show
that we have

γ̃µ = aµ
α S−1γ�αS = S−1γµS, S ≡±S(L). (105)

Note that L and S ≡±S(L) can depend on the event X , thus in particular on
the time t. Moreover, with the restriction of S to the spinor representation:
S ≡±S(L) with L ∈ SO(1,3), one may show that S†A� S = A�, thus (104)3
is compatible with (52).

For TRD, the condition (44) is much more demanding than
it is for DFW, because: i) The derivatives Dµγν have no rea-
son to vanish in general, and ii) also the hermitizing matrix
A is not covariantly constant in general. For instance, in the
case of a flat spacetime, the condition Dµγν = 0 means (for
TRD) that the gamma matrices are constant in Cartesian co-
ordinates. In contrast, for DFW, the condition Dµγν = 0 is
always satisfied, so that in Cartesian coordinates the gamma
matrices need not be constant.

5. SUMMARY AND CONCLUSION

In this work, we studied simultaneously three versions
of the Dirac equation in a curved spacetime: the standard
or “Dirac-Fock-Weyl” (DFW) equation, and two tentative
versions, proposed recently [3]. In a given coordinate
system, the three equations differ merely in the covariant
derivative. The two alternative versions are based on the
tensor representation of the Dirac (TRD) field, Eqs. (8) and
(9). In order to define a conserved probability current for
any one of these Dirac equations in a curved spacetime, we
must consider a general set of Dirac gamma matrices (γµ)
and a hermitizing matrix A. We call these matrices (γµ,A),
which vary with each spacetime point, the coefficient fields
of the Dirac equation. Different choices for the coefficient
fields (γµ,A) are related by local similarity transformations.
For the two alternative equations based on TRD, these local
similarity transformations are not restricted to Spin(1,3)
transformations (associated with Lorentz transformations of
a tetrad [12]), nor to the unitary transformations which are
considered in Ref. [32], but instead comprise the entire group
of GL(4,C) transformations.

Independently of which Dirac equation is selected, the
current conservation asks for an admissibility condition to be
satisfied by the coefficient fields (γµ,A), as shown in Theorem
1. This condition restricts only the choice of A for DFW
and is thus essentially always verified for DFW (Corollary
1). But it also strongly restricts the choice of the field γµ

for TRD. However, one may modify the gravitational Dirac
equations (any of them) so that the current conservation is
always satisfied, as proved in Theorem 2. Moreover, starting
from any coefficient fields (γµ,A), one may transform to
(γ̃µ, Ã) satisfying the admissibility condition, by a local
similarity transformation—this is shown by Theorem 3. For
TRD, the local similarity transformations under which the
“unmodified” or the “modified” Dirac equation is covariant
are characterized by Corollary 2 and Theorem 4, respectively.

We prove in Theorem 5 that the Hilbert space scalar
product is fixed by the axioms of quantum mechanics. Note
in passing, that some authors choose a Hilbert space scalar
product that differs from Eq. (99), and therefore their Hilbert
space does not satisfy the axioms of quantum mechanics
listed as Axioms (A), (B), and (C) in Section 4.3 [7]. The
hermiticity of the Hamiltonian for the scalar product compat-
ible with the axioms is studied in the general case in Theorem
6, i.e., for a general coordinate system in a general curved
spacetime. In particular, in any time-independent metric,
the Hamiltonian is Hermitian for any admissible choice of



254 Mayeul Arminjon and Frank Reifler

time-independent coefficient fields (γµ,A). However, for
the standard equation (DFW), the Hamiltonian in a given
coordinate system may be Hermitian for some admissible
choice of the coefficient fields (γµ,A), and non-Hermitian
for another admissible choice—see Subsection 4.4. It means
that the very existence of an isometric evolution of the states
(Axiom (C)) depends on an arbitrary choice of coefficient
fields (γµ,A)—for DFW.

One may ask if the use of the TRD version of the Dirac
equation leads to a clearer and more transparent presentation
of the standard DFW formalism. The answer is yes. Note

that the quantum mechanical treatment of the Dirac equa-
tion today is mostly limited to stationary spacetimes [18].
The reason for this, as discussed in Section 4, is that in a
non-stationary spacetime, the time evolution of free particle
wave functions is generally not unitary, since the Dirac
Hamiltonian is not generally Hermitian. By investigating a
wider group of transformations of the Dirac equation, the
possibility exists that one can extend quantum mechanics to
non-stationary spacetimes, so that the time evolution of free
particle wave functions is unitary. To explore this the wider
group of local similarity transformations is a key ingredient.
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ces de Dirac. Ann. Inst. Henri Poincaré 6, 109–136 (1936).
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