
Basic statistical analysis in genetic case-control studies

Geraldine M Clarke1, Carl A Anderson2, Fredrik H Pettersson1, Lon R Cardon3, Andrew P
Morris1, and Krina T Zondervan1

1 Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University

of Oxford, Oxford, UK.

2 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.

3 GlaxoSmithKline, King of Prussia, Pennsylvania, USA.

Abstract

This protocol describes how to perform basic statistical analysis in a population-based genetic
association case-control study. The steps described involve the (i) appropriate selection of measures
of association and relevance of disease models; (ii) appropriate selection of tests of association; (iii)
visualization and interpretation of results; (iv) consideration of appropriate methods to control for
multiple testing; and (v) replication strategies. Assuming no previous experience with software such
as PLINK, R or Haploview, we describe how to use these popular tools for handling single-nucleotide
polymorphism data in order to carry out tests of association and visualize and interpret results. This
protocol assumes that data quality assessment and control has been performed, as described in a
previous protocol, so that samples and markers deemed to have the potential to introduce bias to the
study have been identified and removed. Study design, marker selection and quality control of case-
control studies have also been discussed in earlier protocols. The protocol should take ~1 h to
complete.

INTRODUCTION

A genetic association case-control study compares the frequency of alleles or genotypes at
genetic marker loci, usually single-nucleotide polymorphisms (SNPs) (see Box 1 for a glossary
of terms), in individuals from a given population—with and without a given disease trait—in
order to determine whether a statistical association exists between the disease trait and the
genetic marker. Although individuals can be sampled from families (‘family-based’ association
study), the most common design involves the analysis of unrelated individuals sampled from
a particular outbred population (‘population-based association study’). Although disease-
related traits are usually the main trait of interest, the methods described here are generally
applicable to any binary trait.

Following previous protocols on study design, marker selection and data quality control1–3,
this protocol considers basic statistical analysis methods and techniques for the analysis of
genetic SNP data from population-based genome-wide and candidate-gene (CG) case-control

© 2011 Nature America, Inc. All rights reserved.

Correspondence should be addressed to G.M.C. (gclarke@well.ox.ac.uk). .
AUTHOR CONTRIBUTIONS G.M.C. wrote the first draft of the manuscript, wrote scripts and performed analyses. G.M.C., C.A.A.,
A.P.M. and K.T.Z. revised the manuscript and designed the protocol. L.R.C. conceived the protocol.

Note: Supplementary information is available in the HTML version of this article.

COMPETING FINANCIAL INTERESTS The authors declare no competing financial interests.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/.

Europe PMC Funders Group
Author Manuscript

Nat Protoc. Author manuscript; available in PMC 2011 August 11.

Published in final edited form as:
Nat Protoc. 2011 February ; 6(2): 121–133. doi:10.1038/nprot.2010.182.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

http://npg.nature.com/reprintsandpermissions/


studies. We describe disease models, measures of association and testing at genotypic
(individual) versus allelic (gamete) level, single-locus versus multilocus methods of
association testing, methods for controlling for multiple testing and strategies for replication.
Statistical methods discussed relate to the analysis of common variants, i.e., alleles with a minor
allele frequency (MAF) > 1%; different analytical techniques are required for the analysis of
rare variants4. All methods described are proven and used routinely in our research group5,6.

Conceptual basis for statistical analysis

The success of a genetic association study depends on directly or indirectly genotyping a causal
polymorphism. Direct genotyping occurs when an actual causal polymorphism is typed.
Indirect genotyping occurs when nearby genetic markers that are highly correlated with the
causal polymorphism are typed. Correlation, or non-random association, between alleles at
two or more genetic loci is referred to as linkage disequilibrium (LD). LD is generated as a
consequence of a number of factors and results in the shared ancestry of a population of
chromosomes at nearby loci. The shared ancestry means that alleles at flanking loci tend to be
inherited together on the same chromosome, with specific combinations of alleles known as
haplotypes. In genome-wide association (GWA) studies, common SNPs are typically typed at
such high density across the genome that, although any single SNP is unlikely to have direct
causal relevance, some are likely to be in LD with any underlying common causative variants.
Indeed, most recent GWA arrays containing up to 1 million SNPs use known patterns of
genomic LD from sources such as HapMap7 to provide the highest possible coverage of
common genomic variation8. CG studies usually focus on genotyping a smaller but denser set
of SNPs, including functional polymorphisms with a potentially higher previous probability
of direct causal relevance2.

A fundamental assumption of the case-control study is that the individuals selected in case and
control groups provide unbiased allele frequency estimates of the true underlying distribution
in affected and unaffected members of the population of interest. If not, association findings
will merely reflect biases resulting from the study design1.

Models and measures of association

Consider a genetic marker consisting of a single biallelic locus with alleles a and A (i.e., a
SNP). Unordered possible genotypes are then a/a, a/A and A/A. The risk factor for case versus
control status (disease outcome) is the genotype or allele at a specific marker. The disease
penetrance associated with a given genotype is the risk of disease in individuals carrying that
genotype. Standard models for disease penetrance that imply a specific relationship between
genotype and phenotype include multiplicative, additive, common recessive and common
dominant models. Assuming a genetic penetrance parameter γ (γ > 1), a multiplicative model
indicates that the risk of disease is increased γ-fold with each additional A allele; an additive
model indicates that risk of disease is increased γ-fold for genotype a/A and by 2γ-fold for
genotype A/A; a common recessive model indicates that two copies of allele A are required for
a γ-fold increase in disease risk, and a common dominant model indicates that either one or
two copies of allele A are required for a γ-fold increase in disease risk. A commonly used and
intuitive measure of the strength of an association is the relative risk (RR), which compares
the disease penetrances between individuals exposed to different genotypes. Special
relationships exist between the RRs for these common models9 (see Table 1).

RR estimates based on penetrances can only be derived directly from prospective cohort
studies, in which a group of exposed and unexposed individuals from the same population are
followed up to assess who develops disease. In a case-control study, in which the ratio of cases
to controls is controlled by the investigator, it is not possible to make direct estimates of disease
penetrance, and hence of RRs. In this type of study, the strength of an association is measured
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by the odds ratio (OR). In a case-control study, the OR of interest is the odds of disease (the
probability that the disease is present compared with the probability that it is absent) in exposed
versus non-exposed individuals. Because of selected sampling, odds of disease are not directly
measurable. However, conveniently, the disease OR is mathematically equivalent to the
exposure OR (the odds of exposure in cases versus controls), which we can calculate directly
from exposure frequencies10. The allelic OR describes the association between disease and
allele by comparing the odds of disease in an individual carrying allele A to the odds of disease
in an individual carrying allele a. The genotypic ORs describe the association between disease
and genotype by comparing the odds of disease in an individual carrying one genotype to the
odds of disease in an individual carrying another genotype. Hence, there are usually two
genotypic ORs, one comparing the odds of disease between individuals carrying genotype A/
A and those carrying a/a and the other comparing the odds of disease between individuals
carrying genotype a/A and those carrying genotype a/a. Beneficially, when disease penetrance
is small, there is little difference between RRs and ORs (i.e., RR ≈ OR). Moreover, the OR is
amenable to analysis by multivariate statistical techniques that allow extension to incorporate
further SNPs, risk factors and clinical variables. Such techniques include logistic regression
and other types of log-linear models11.

To work with observations made at the allelic (gamete) rather than the genotypic (individual)
level, it is necessary to assume (i) that there is Hardy-Weinberg equilibrium (HWE) in the
population, (ii) that the disease has a low prevalence ( < 10%) and (iii) that the disease risks
are multiplicative. Under the null hypothesis of no association with disease, the first condition
ensures that there is HWE in both controls and cases. Under the alternative hypothesis, the
second condition further ensures that controls will be in HWE and the third condition further
ensures that cases will also be in HWE. Under these assumptions, allelic frequencies in affected
and unaffected individuals can be estimated from case-control studies. The OR comparing the
odds of allele A between cases and controls is called the allelic RR (γ*). It can be shown that
the genetic penetrance parameter in a multiplicative model of penetrance is closely
approximated by the allelic RR, i.e., γ ≈ γ* (ref. 10).

Tests for association

Tests of genetic association are usually performed separately for each individual SNP. The
data for each SNP with minor allele a and major allele A can be represented as a contingency
table of counts of disease status by either genotype count (e.g., a/a, A/a and A/A) or allele count
(e.g., a and A) (see Box 2). Under the null hypothesis of no association with the disease, we
expect the relative allele or genotype frequencies to be the same in case and control groups. A
test of association is thus given by a simple χ2 test for independence of the rows and columns
of the contingency table.

In a conventional χ2 test for association based on a 2 × 3 contingency table of case-control
genotype counts, there is no sense of genotype ordering or trend: each of the genotypes is
assumed to have an independent association with disease and the resulting genotypic
association test has 2 degrees of freedom (d.f.). Contingency table analysis methods allow
alternative models of penetrance by summarizing the counts in different ways. For example,
to test for a dominant model of penetrance, in which any number of copies of allele A increase
the risk of disease, the contingency table can be summarized as a 2 × 2 table of genotype counts
of A/A versus both a/A and a/a combined. To test for a recessive model of penetrance, in which
two copies of allele A are required for any increased risk, the contingency table is summarized
into genotype counts of a/a versus a combined count of both a/A and A/A genotypes. To test
for a multiplicative model of penetrance using contingency table methods, it is necessary to
analyze by gamete rather than individual: a χ2 test applied to the 2 × 2 table of case-control
allele counts is the widely used allelic association test. The allelic association test with 1 d.f.
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will be more powerful than the genotypic test with 2 d.f., as long as the penetrance of the
heterozygote genotype is between the penetrances of the two homozygote genotypes.
Conversely, if there is extreme deviation from the multiplicative model, the genotypic test will
be more powerful. In the absence of HWE in controls, the allelic association test is not suitable
and alternative methods must be used to test for multiplicative models. See the earlier protocol
on data quality assessment and control for a discussion of criteria for retaining SNPs showing
deviation from HWE3. Alternatively, any penetrance model specifying some kind of trend in
risk with increasing numbers of A alleles, of which additive, dominant and recessive models
are all examples, can be examined using the Cochran-Armitage trend test12,13. The Cochran-
Armitage trend test is a method of directing χ2 tests toward these narrower alternatives. Power
is very often improved as long as the disease risks associated with the a/A genotype are
intermediate to those associated with the a/a and A/A genotypes. In genetic association studies
in which the underlying genetic model is unknown, the additive version of this test is most
commonly used. Table 2 summarizes the various tests of association that use contingency table
methods. Box 2 outlines contingency tables and associated tests in statistical detail.

Tests of association can also be conducted with likelihood ratio (LR) methods in which
inference is based on the likelihood of the genotyped data given disease status. The likelihood
of the observed data under the proposed model of disease association is compared with the
likelihood of the observed data under the null model of no association; a high LR value tends
to discredit the null hypothesis. All disease models can be tested using LR methods. In large
samples, the χ2 and LR methods can be shown to be equivalent under the null hypothesis14.

More complicated logistic regression models of association are used when there is a need to
include additional covariates to handle complex traits. Examples of this are situations in which
we expect disease risk to be modified by environmental effects such as epidemiological risk
factors (e.g., smoking and gender), clinical variables (e.g., disease severity and age at onset)
and population stratification (e.g., principal components capturing variation due to differential
ancestry3), or by the interactive and joint effects of other marker loci. In logistic regression
models, the logarithm of the odds of disease is the response variable, with linear (additive)
combinations of the explanatory variables (genotype variables and any covariates) entering
into the model as its predictors. For suitable linear predictors, the regression coefficients fitted
in the logistic regression represent the log of the ORs for disease gene association described
above. Linear predictors for genotype variables in a selection of standard disease models are
shown in Table 3.

Multiple testing

Controlling for multiple testing to accurately estimate significance thresholds is a very
important aspect of studies involving many genetic markers, particularly GWA studies. The
type I error, also called the significance level or false-positive rate, is the probability of rejecting
the null hypothesis when it is true. The significance level indicates the proportion of false
positives that an investigator is willing to tolerate in his or her study. The family-wise error
rate (FWER) is the probability of making one or more type I errors in a set of tests. Lower
FWERs restrict the proportion of false positives at the expense of reducing the power to detect
association when it truly exists. A suitable FWER should be specified at the design stage of
the analysis1. It is then important to keep track of the number of statistical comparisons
performed and correct the individual SNP-based significance thresholds for multiple testing
to maintain the overall FWER. For association tests applied at each of n SNPs, per-test
significance levels of α* for a given FWER of α can be simply approximated using Bonferroni
(α* = α/n) or Sidak15,16 (α* = 1 − (1 – α)1/n) adjustments. When tests are independent,
the Sidak correction is exact; however, in GWA studies comprising dense sets of markers, this
is unlikely to be true and both corrections are then very conservative. A similar but slightly
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less-stringent alternative to the Bonferroni correction is given by Holm17. Alternatives to the
FWER approach include false discovery rate (FDR) procedures18,19, which control for the
expected proportion of false positives among those SNPs declared significant. However,
dependence between markers and the small number of expected true positives make FDR
procedures problematic for GWA studies. Alternatively, permutation approaches aim to render
the null hypothesis correct by randomization: essentially, the original P value is compared with
the empirical distribution of P values obtained by repeating the original tests while randomly
permuting the case-control labels20. Although Bonferroni and Sidak corrections provide a
simple way to adjust for multiple testing by assuming independence between markers,
permutation testing is considered to be the ‘gold standard’ for accurate correction20.
Permutation procedures are computationally intensive in the setting of GWA studies and,
moreover, apply only to the current genotyped data set; therefore, unless the entire genome is
sequenced, they cannot generate truly genome-wide significance thresholds. Bayes factors
have also been proposed for the measurement of significance6. For GWA studies of dense
SNPs and resequence data, a standard genome-wide significance threshold of 7.2 × 10− 8 for
the UK Caucasian population has been proposed by Dudbridge and Gusnanto21. Other
thresholds for contemporary populations, based on sample size and proposed FWER, have
been proposed by Hoggart et al22. Informally, some journals have accepted a genome-wide
significance threshold of 5 × 10− 7 as strong evidence for association6; however, most recently,
the accepted standard is 5 × 10− 8 (ref. 23). Further, graphical techniques for assessing whether
observed P values are consistent with expected values include log quantile-quantile P value
plots that highlight loci that deviate from the null hypothesis24.

Interpretation of results

A significant result in an association test rarely implies that a SNP is directly influencing disease
risk; population association can be direct, indirect or spurious. A direct, or causal, association
occurs when different alleles at the marker locus are directly involved in the etiology of the
disease through a biological pathway. Such associations are typically only found during follow-
up genotyping phases of initial GWA studies, or in focused CG studies in which particular
functional polymorphisms are targeted. An indirect, or non-causal, association occurs when
the alleles at the marker locus are correlated (in LD) with alleles at a nearby causal locus but
do not directly influence disease risk. When a significant finding in a genetic association study
is true, it is most likely to be indirect. Spurious associations can occur as a consequence of data
quality issues or statistical sampling, or because of confounding by population stratification
or admixture. Population stratification occurs when cases and controls are sampled
disproportionately from different populations with distinct genetic ancestry. Admixture occurs
when there has been genetic mixing of two or more groups in the recent past. For example,
genetic admixture is seen in Native American populations in which there has been recent
genetic mixing of individuals with both American Indian and Caucasian ancestry25.
Confounding occurs when a factor exists that is associated with both the exposure (genotype)
and the disease but is not a consequence of the exposure. As allele frequencies and disease
frequencies are known to vary among populations of different genetic ancestry, population
stratification or admixture can confound the association between the disease trait and the
genetic marker; it can bias the observed association, or indeed can cause a spurious association.
Principal component analyses or multidimensional scaling methods are commonly used to
identify and remove individuals exhibiting divergent ancestry before association testing. These
techniques are described in detail in an earlier protocol3. To adjust for any residual population
structure during association testing, the principal components from principal component
analyses or multidimensional scaling methods can be included as covariates in a logistic
regression. In addition, the technique of genomic control26 can be used to detect and
compensate for the presence of fine-scale or within-population stratification during association
testing. Under genomic control, population stratification is treated as a random effect that
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causes the distribution of the χ2 association test statistics to have an inflated variance and a
higher median than would otherwise be observed. The test statistics are assumed to be
uniformly affected by an inflation factor λ, the magnitude of which is estimated from a set of
selected markers by comparing the median of their observed test statistics with the median of
their expected test statistics under an assumption of no population stratification. Under genomic
control, if λ > 1, then population stratification is assumed to exist and a correction is applied
by dividing the actual association test χ2 statistic values by λ. As λ scales with sample size,
λ1,000, the inflation factor for an equivalent study of 1,000 cases and 1,000 controls calculated
by rescaling λ, is often reported27. In a CG study, λ can only be determined if an additional
set of markers specifically designed to indicate population stratification are genotyped. In a
GWA study, an unbiased estimation of λ can be determined using all of the genotyped markers;
the effect on the inflation factor of potential causal SNPs in such a large set of genomic control
markers is assumed to be negligible.

Replication

Replication occurs when a positive association from an initial study is confirmed in a
subsequent study involving an independent sample drawn from the same population as the
initial study. It is the process by which genetic association results are validated. In theory, a
repeated significant association between the same trait and allele in an independent sample is
the benchmark for replication. However, in practice, so-called replication studies often
comprise findings of association between the same trait and nearby variants in the same gene
as the original SNP, or between the same SNP and different high-risk traits. A precise definition
of what constitutes replication for any given study is therefore important and should be clearly
stated28.

In practice, replication studies often involve different investigators with different samples and
study designs aiming to independently verify reports of positive association and obtain accurate
effect-size estimates, regardless of the designs used to detect effects in the primary study. Two
commonly used strategies in such cases are an exact strategy, in which only marker loci
indicating a positive association are subsequently genotyped in the replicate sample, and a local
strategy, in which additional variants are also included, thus combining replication with fine-
mapping objectives. In general, the exact strategy is more balanced in power and efficiency;
however, depending on local patterns of LD and the strength of primary association signals, a
local strategy can be beneficial28.

In the past, multistage designs have been proposed as cost-efficient approaches to allow the
possibility of replication within a single overall study. The first stage of a standard two-stage
design involves genotyping a large number of markers on a proportion of available samples to
identify potential signals of association using a nominal P value threshold. In stage two, the
top signals are then followed up by genotyping them on the remaining samples while a joint
analysis of data from both stages is conducted29,30. Significant signals are subsequently tested
for replication in a second data set. With the ever-decreasing costs of GWA genotyping, two-
stage studies have become less common.

Software

Standard statistical software (such as R (ref. 31) or SPSS) can be used to conduct and visualize
all the analyses outlined above. However, many researchers choose to use custom-built GWA
software. In this protocol we use PLINK32, Haploview33 and the customized R package
car34. PLINK is a popular and computationally efficient software program that offers a
comprehensive and well-documented set of automated GWA quality control and analysis tools.
It is a freely available open source software written in C++, which can be installed on Windows,
Mac and Unix machines (http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml).
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Haploview (http://www.broadinstitute.org/haploview/haploview) is a convenient tool for
visualizing LD; it interfaces directly with PLINK to produce a standard visualization of PLINK
association results. Haploview is most easily run through a graphical user interface, which
offers many advantages in terms of display functions and ease of use. car (http://
socserv.socsci.mcmaster.ca/jfox/) is an R package that contains a variety of functions for
graphical diagnostic methods.

The next section describes protocols for the analysis of SNP data and is illustrated by the use
of simulated data sets from CG and GWA studies (available as gzipped files from http://
www.well.ox.ac.uk/ggeu/NPanalysis/ or .zip files as Supplementary Data 1 and
Supplementary Data 2). We assume that SNP data for a CG study, typically comprising on the
order of thousands of markers, will be available in a standard PED and MAP file format (for
an explanation of these file formats, see http://pngu.mgh.harvard.edu/~purcell/plink/
data.shtml#ped) and that SNP data for a GWA study, typically comprising on the order of
hundreds of thousands of markers, will be available in a standard binary file format (for an
explanation of the binary file format, see http://pngu.mgh.harvard.edu/~purcell/plink/
data.shtml#bed). In general, SNP data for either type of study may be available in either format.
The statistical analysis described here is for the analysis of one SNP at a time; therefore, apart
from the requirement to take potentially differing input file formats into account, it does not
differ between CG and GWA studies.

MATERIALS

EQUIPMENT

Computer workstation with Unix/Linux operating system and web browser

• PLINK32 software for association analysis (http://pngu.mgh.harvard.edu/~purcell/
plink/download.shtml).

• Unzipping tool such as WinZip (http://www.winzip.com) or gunzip (http://
www.gzip.org)

• Statistical software for data analysis and graphing such as R (http://cran.r-
project.org/) and Haploview33 (http://www.broadinstitute.org/haploview/
haploview).

• SNPSpD35 (Program to calculate the effective number of independent SNPs among
a collection of SNPs in LD with each other; http://genepi.qimr.edu.au/general/daleN/
SNPSpD/)

• Files: genome-wide and candidate-gene SNP data (available as gzipped files from
http://www.well.ox.ac.uk/ggeu/NPanalysis/ or .zip files as Supplementary Data 1 and
Supplementary Data 2)

PROCEDURE

Identify file formats ● TIMING ~5 min

1| For SNP data available in standard PED and MAP file formats, as in our CG study, follow
option A. For SNP data available in standard binary file format, as in our GWA study, follow
option B. The instructions provided here are for unpacking the sample data provided as gzipped
files at http://www.well.ox.ac.uk/ggeu/NPanalysis/. If using the .zip files provided as
supplementary Data 1 or supplementary Data 2, please proceed directly to step 2.

▲ CRITICAL STEP The format in which genotype data are returned to investigators varies
according to genome-wide SNP platforms and genotyping centers. We assume that genotypes
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have been called by the genotyping center, undergone appropriate quality control filters as
described in a previous protocol3 and returned as clean data in a standard file format.

A. Standard PED and MAP file format

i. Download the file ‘cg-data.tgz’.

ii. Type ‘tar -xvzf cg-data.tgz’ at the shell prompt to unpack the gzipped .tar
file and create files ‘cg.ped’ and ‘cg.map’.

▲ CRITICAL STEP The simulated data used here have passed standard
quality control filters: all individuals have a missing data rate of < 20%, and
SNPs with a missing rate of > 5%, a MAF < 1% or an HWE P value < 1 ×
10− 4 have already been excluded. These filters were selected in accordance
with procedures described elsewhere3 to minimize the influence of
genotype-calling artifacts in a CG study.

B. Standard binary file format

i. Download the file ‘gwa-data.tgz’.

ii. Type ‘tar -xvzf gwa-data.tgz’ at the shell prompt to unpack the gzipped .tar
file and obtain the standard binary files ‘gwa.bed’, ‘gwa.bim’ and ‘gwa.fam’
and the covariate file ‘gwa-covar.’

▲ CRITICAL STEP We assume that covariate files are available in a
standard file format. For an explanation of the standard format for covariate
files, see http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#covar.

▲ CRITICAL STEP Optimized binary BED files contain the genotype
information and the corresponding BIM/FAM files contain the map and
pedigree information. The binary BED file is a compressed file that allows
faster processing in PLINK and takes less storage space, thus facilitating the
analysis of large-scale data sets32.

▲ CRITICAL STEP The simulated data used here have passed standard
quality control: all individuals have a missing data rate of < 10%. SNPs with
a missing rate > 10%, a MAF < 1% or an HWE P value < 1 × 10− 5 have
already been excluded. These filters were selected in accordance with
procedures described elsewhere3 to minimize the influence of genotype-
calling artifacts in a GWA study.

? TROUBLESHOOTING

Basic descriptive summary ● TIMING ~5 min

2| To obtain a summary of MAFs in case and control populations and an estimate of the OR
for association between the minor allele (based on the whole sample) and disease in the CG
study, type ‘plink --file cg --assoc --out data’. In any of the PLINK commands in this protocol,
replace the ‘--file cg’ option with the ‘--bfile gwa’ option to use the binary file format of the
GWA data rather than the PED and MAP file format of the CG data.

▲ CRITICAL STEP PLINK always creates a log file called ‘data.log’, which includes details
of the implemented commands, the number of cases and controls in the input files, any excluded
data and the genotyping rate in the remaining data. This file is very useful for checking the
software is successfully completing commands.

▲ CRITICAL STEP The options in a PLINK command can be specified in any order.
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? TROUBLESHOOTING

3| Open the output file ‘data.assoc’. It has one row per SNP containing the chromosome [CHR],
the SNP identifier [SNP], the base-pair location [BP], the minor allele [A1], the frequency of
the minor allele in the cases [F_A] and controls [F_U], the major allele [A2] and statistical
data for an allelic association test including the χ2-test statistic [CHISQ], the asymptotic P
value [P] and the estimated OR for association between the minor allele and disease [OR].

? TROUBLESHOOTING

Single SNP tests of association ● TIMING ~5 min

4| When there are no covariates to consider, carry out simple χ2 tests of association by
following option A. For inclusion of multiple covariates and covariate interactions, follow
option B.

A. Simple χ2 tests of association

i. Create a file containing output from single SNP χ2 tests of association in
the CG data by typing ‘plink --file cg --model --out data’. The command for
the GWA data is ‘plink --bfile gwa --model --out data’.

▲ CRITICAL STEP Genotypic, dominant and recessive tests will not be
conducted if any one of the cells in the table of case control by genotype
counts contains less than five observations. This is because the χ2

approximation may not be reliable when cell counts are small. For SNPs
with MAFs < 5%, a sample of more than 2,000 cases and controls would be
required to meet this threshold and more than 50,000 would be required for
SNPs with MAF < 1%. To change the threshold, use the ‘--cell’ option. For
example, we could lower the threshold to 3 and repeat the χ2 tests of
association by typing ‘plink --file cg --model --cell 3 --out data’.

ii. Open the output file ‘data.model’. It contains five rows per SNP, one for
each of the association tests described in Table 2. Each row contains the
chromosome [CHR], the SNP identifier [SNP], the minor allele [A1], the
major allele [A2], the test performed [TEST: GENO (genotypic association);
TREND (Cochran-Armitage trend); ALLELIC (allelic association); DOM
(dominant model); and REC (recessive model)], the cell frequency counts
for cases [AFF] and controls [UNAFF], the χ2 test statistic [CHISQ], the
degrees of freedom for the test [DF] and the asymptotic P value [P].

B. Test of association using logistic regression

i. Create a file containing output of association tests based on logistic
regression assuming a multiplicative model and including covariates in the
GWA data by typing ‘plink --bfile gwa --logistic --covar gwa.covar --out
data’.

▲ CRITICAL STEP To specify a genotypic, dominant or recessive model
in place of a multiplicative model, include the model option --genotypic, --
dominant or --recessive, respectively. To include sex as a covariate, include
the option --sex. To specify interactions between covariates, and between
SNPs and covariates, include the option --interaction. Open the output file
‘data.assoc.logistic’. If no model option is specified, the first row for each
SNP corresponds to results for a multiplicative test of association. If the ‘--
genotypic’ option has been selected, the first row will correspond to a test
for additivity and the subsequent row to a separate test for deviation from
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additivity. If the ‘--dominant’ or ‘--recessive’ model options have been
selected, then the first row will correspond to tests for a dominant or recessive
model of association, respectively. If covariates have been included, each of
these P values is adjusted for the effect of the covariates. The C ≥ 0
subsequent rows for each SNP correspond to separate tests of significance
for each of the C covariates included in the regression model. Finally, if the
‘--genotypic’ model option has been selected, there is a final row per SNP
corresponding to a 2 d.f. LR test of whether both the additive and the
deviation from additivity components of the regression model are
significant. Each row contains the chromosome [CHR], the SNP identifier
[SNP], the base-pair location [BP], the minor allele [A1], the test performed
[TEST: ADD (multiplicative model or genotypic model testing additivity),
GENO_2DF (genotypic model), DOMDEV (genotypic model testing
deviation from additivity), DOM (dominant model) or REC (recessive
model)], the number of missing individuals included [NMISS], the OR, the
coefficient z-statistic [STAT] and the asymptotic P value [P].▲ CRITICAL
STEP ORs for main effects cannot be interpreted directly when interactions
are included in the model; their interpretation depends on the exact
combination of variables included in the model. Refer to a standard text on
logistic regression for more details36.

? TROUBLESHOOTING

Data visualization ● TIMING ~5 min

5| To create quantile-quantile plots to compare the observed association test statistics with their
expected values under the null hypothesis of no association and so assess the number,
magnitude and quality of true associations, follow option A. Note that quantile-quantile plots
are only suitable for GWA studies comprising hundreds of thousands of markers. To create a
Manhattan plot to display the association test P values as a function of chromosomal location
and thus provide a visual summary of association test results that draw immediate attention to
any regions of significance, follow option B. To visualize the LD between sets of markers in
an LD plot, follow option C. Manhattan and LD plots are suitable for both GWA and CG studies
comprising any number of markers. Otherwise, create customized graphics for the visualization
of association test output using customized simple R31 commands37 (not detailed here)).

A. Quantile-quantile plot

i. Start R software.

ii. Create a quantile-quantile plot ‘chisq.qq.plot.pdf’ with a 95% confidence
interval based on output from the simple χ2 tests of association described in
Step 4A for trend, allelic, dominant or recessive models, wherein statistics
have a χ2 distribution with 1 d.f. under the null hypothesis of no association.
Create the plot by typing

data < -read.table(“[path_to]/data.model”, header = TRUE); pdf

(“[path_to]/chisq.qq.plot.pdf”); library(car);

obs < - data[data$TEST = = “[model]”,]$CHISQ; qqPlot(obs, 

distribution = ”chisq”, df = 1, xlab = ”Expected chi-squared

values”, ylab = “Observed test statistic”, grid = FALSE); 

dev.off()’,

where [path_to] is the appropriate directory path and [model] identifies the
association test output to be displayed, and where [model] can be TREND
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(Cochran-Armitage trend); ALLELIC (allelic association); DOM (dominant
model); or REC (recessive model). For simple χ2 tests of association based
on a genotypic model, in which test statistics have a χ2 distribution with 2
d.f. under the null hypothesis of no association, use the option [df] = 2 and
[model] = GENO.

iii. Create a quantile-quantile plot ‘pvalue.qq.plot.pdf’ based on – log10 P
values from tests of association using logistic regression described in Step
4B by typing

‘data < - read.table(“[path_to]/data.assoc.logistic”, header = 

TRUE); pdf(“[path_to]/pvalue.qq.plot.pdf”);

obs < - −log10(sort(data[data$TEST = = ”[model]”,]$P)); exp < 
- −log10( c(1:length(obs)) /(length(obs) + 1)); plot(exp, 
obs, ylab = “Observed (−logP)”, xlab = ”Expected(−logP) “, ylim 
= c(0,20), xlim = c(0,7))

lines(c(0,7), c(0,7), col = 1, lwd = 2)

; dev.off()’,

where [path_to] is the appropriate directory path and [model] identifies the
association test output to be displayed and where [model] is ADD
(multiplicative model); GENO_2DF (genotypic model); DOMDEV
(genotypic model testing deviation from additivity); DOM (dominant
model); or REC (recessive model).

B. Manhattan plot

i. Start Haploview. In the ‘Welcome to Haploview’ window, select the ‘PLINK
Format’ tab. Click the ‘browse’ button and select the SNP association output
file created in Step 4. We select our GWA study χ2 tests of association output
file ‘data.model’. Select the corresponding MAP file, which will be the
‘.map’ file for the pedigree file format or the ‘.bim’ file for the binary file
format. We select our GWA study file ‘gwa.bim’. Leave other options as
they are (ignore pairwise comparison of markers > 500 kb apart and exclude
individuals with > 50% missing genotypes). Click ‘OK’.

ii. Select the association results relevant to the test of interest by selecting
‘TEST’ in the dropdown tab to the right of ‘Filter:’, ‘ = ’ in the dropdown
menu to the right of that and the PLINK keyword corresponding to the test
of interest in the window to the right of that. We select PLINK keyword
‘ALLELIC’ to visualize results for allelic tests of association in our GWA
study. Click the gray ‘Filter’ button. Click the gray ‘Plot’ button. Leave all
options as they are so that ‘Chromosomes’ is selected as the ‘X-Axis’.
Choose ‘P’ from the drop-down menu for the ‘Y-Axis’ and ‘−log10′ from
the corresponding dropdown menu for ‘Scale:’. Click ‘OK’ to display the
Manhattan plot.

iii. To save the plot as a scalable vector graphics file, click the button ‘Export
to scalable vector graphics:’ and then click the ‘Browse’ button (immediately
to the right) to select the appropriate title and directory.

C. LD plot

i. Start R.
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ii. Using the standard MAP file, create the locus information file required by
Haploview for the CG data by typing

‘cg.map < - read.table(“[path_to]/cg.map”);

write.table(cg.map[,c(2,4)],“[path_to]/cg.hmap”, col.names = 

FALSE, row.names = FALSE, quote = FALSE)

where [path_to] is the appropriate directory path.

iii. Start Haploview. In the ‘Welcome to Haploview’ window, select the
‘LINKAGE Format’ tab. Click the ‘browse’ button to enter the ‘Data File’
and select the PED file ‘cg.ped’. Click the ‘browse’ button to enter the ‘Locus
Information File’ and select the file ‘cg.hmap’. Leave other options as they
are (ignore pairwise comparison of markers > 500 kb apart and exclude
individuals with > 50% missing genotypes). Click ‘OK’. Select the ‘LD Plot’
tab.

iv. To save the plot as a portable network graphics (PNG) file, click on the ‘File’
button; from the drop-down menu, select ‘Export current tab to PNG’. The
appropriate title and directory can then be selected.

? TROUBLESHOOTING

Adjustment for multiple testing ● TIMING ~5 min

6| For CG studies, typically comprising hundreds of thousands of markers, control for multiple
testing using Bonferroni’s adjustment (follow option A); Holm, Sidak or FDR (follow option
B) methods; or permutation (follow option C). Although Bonferroni, Holm, Sidak and FDR
are simple to implement, permutation testing is widely recommended for accurately correcting
for multiple testing and should be used when computationally possible. For GWA studies,
select an appropriate genome-wide significance threshold (follow option D).

A. Bonferroni’s Adjustment

i. Consider the total number of markers tested in the CG. For a FWER α =
0.05, derive the per-test significance rate α* by dividing α by the number
of markers tested. In our CG study, we have 40 markers; therefore, α* =
0.05/40 = 0.00125. Markers with P values less than α* are then declared
significant.

▲ CRITICAL STEP If some of the SNPs are in LD so that there are fewer
than 40 independent tests, the Bonferroni correction will be too conservative.
Use LD information from HapMap and SNPSpD (http://genepi.qimr.edu.au/
general/daleN/SNPSpD/)35 to estimate the effective number of independent
SNPs1. Derive the per-test significance rate α* by dividing α by the effective
number of independent SNPs.

B. Holm, Sidak and FDR

i. To obtain significance values adjusted for multiple testing for trend,
dominant and recessive tests of association, include the --adjust option along
with the model specification option --model-[x] (where [x] is ‘trend’, ‘rec’
or ‘dom’ to indicate whether trend, dominant or recessive test association
P values, respectively, are to be adjusted for) in any of the PLINK commands
described in Step 4A. For example, adjusted significance values for a
Cochran-Armitage trend test of association in the CG data are obtained by
typing ‘plink --file cg --adjust --model-trend --out data’. Obtain significance
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values adjusted for an allelic test of association by typing ‘plink --file cg --
assoc –adjust --out data’.

ii. Open the output file ‘data.model.[x].adjusted’ for adjusted trend, dominant
or recessive test association P values or ‘data.assoc.adjusted’ for adjusted
allelic test of association P values. These files have one row per SNP
containing the chromosome [CHR], the SNP identifier [SNP], the unadjusted
P value [UNADJ] identical to that found in the original association output
file, the genomic-control–adjusted P value [GC], the Bonferroni-adjusted
P value [BONF], the Holm step-down–adjusted P value [HOLM], the Sidak
single-step–adjusted P value [SIDAK_SS], the Sidak step-down–adjusted
P value [SIDAK_SD], the Benjamini and Hochberg FDR control [FDR_BH]
and the Benjamini and Yekutieli FDR control [FDR_BY]. To maintain a
FWER or FDR of α = 0.05, only SNPs with adjusted P values less than α
are declared significant.

C. Permutation

i. To generate permuted P values, include the --mperm option along with the
number of permutations to be performed and the model specification option
–model-[x] (where [x] is ‘gen’, ‘trend’, ‘rec’ or ‘dom’ to indicate whether
genotypic, trend, dominant or recessive test association P values are to be
permuted) in any of the PLINK commands described in Step 4A. For
example, permuted P values based on 1,000 replicates for a Cochran-
Armitage trend test of association are obtained by typing ‘plink --file cg --
model --mperm 1000 --model-trend --out data’ and permuted P values based
on 1,000 replicates for an allelic test of association are obtained by typing
‘plink --file cg --assoc –mperm 1000 --out data’.

ii. Open the output file ‘data.model.[x].mperm’ for permuted P values for
genotypic, trend, dominant or recessive association tests or
‘data.assoc.mperm’ for permuted P values for allelic tests of association.
These files have one row per SNP containing the chromosome [CHR], the
SNP identifier [SNP], the point-wise estimate of the SNP’s significance
[EMP1] and the family-wise estimate of the SNP’s significance [EMP2]. To
maintain a FWER of α = 0.05, only SNPs with family-wise estimated
significance of less than α are declared significant.

D. Genome-wide significance threshold ● TIMING ~5 min

i. Obtain per-SNP significance thresholds for a given FWER from Hoggart et
al22. In our GWA study of 2,000 cases and 2,000 controls from a Caucasian
population, the standard per-SNP significance threshold for a FWER of α =
0.05 is estimated at 12 × 10−8 using linear interpolation between the given
value of 11 × 10−8 for studies with 1,000 cases and 1,000 controls and 15 ×
10−8 for studies with 5,000 cases and 5,000 controls.

? TROUBLESHOOTING

Population stratification ● TIMING ~5 min

7| For CG studies, typically comprising hundreds of thousands of markers, calculate the
inflation factor λ (follow option A). For GWA studies, obtain an unbiased evaluation of the
inflation factor λ by using all testing SNPs (follow option B).

A. Calculate the inflation factor λ for CG studies
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i. Assuming that PED and MAP files for null loci are available, obtain the
inflation factor by specifying the null marker loci data files instead of the
CG data files and including the --adjust option along with the model
specification option --model-[x] (where [x] is ‘trend’, ‘rec’ or ‘dom’ to
indicate whether an inflation factor based on a trend, dominant or recessive
test of association, respectively, is to be calculated) in any of the PLINK
commands described in Step 4A. For example, the inflation factor
corresponding to a Cochran-Armitage trend test of association is obtained
by typing ‘plink --file null --model --adjust --model-trend --out data’; the
inflation factor corresponding to an allelic test of association is obtained by
typing ‘plink --file null --assoc --adjust --out data’, where files ‘null.ped’
and ‘null.map’ are PED and MAP files for the case and control individuals
at the null marker loci.

▲ CRITICAL STEP To assess the inflation factor in CG studies, an
additional set of null marker loci, which are common SNPs not associated
with the disease and not in LD with CG SNPs, must be available. We do not
have any null loci data files available for our CG study.

Open the PLINK log file ‘data.log’ that records the inflation factor.

B. Calculate the inflation factor λ for GWA studies

i. To obtain the inflation factor, include the --adjust option in any of the PLINK
commands described in Step 4B. For example, the inflation factor based on
logistic regression tests of association for all SNPs and assuming
multiplicative or genotypic models in the GWA study is obtained by typing
‘plink --bfile gwa --genotypic --logistic --covar gwa.covar --adjust --out
data’.

ii. Open the PLINK log file ‘data.log’, which records the inflation factor. The
inflation factor for our GWA study is 1, indicating that no population
stratification is detected in our GWA data.

▲ CRITICAL STEP When the sample size is large, the inflation factor
λ1000, for an equivalent study of 1,000 cases and 1,000 controls, can be
calculated by rescaling λ according to the following formula

? TROUBLESHOOTING

For general help on the programs and websites used in this protocol, refer to the relevant
websites:

PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/download.shtml

R: http://cran.r-project.org/

Haploview: http://www.broadinstitute.org/haploview/haploview

Step 1: If genotypes are not available in standard PED and MAP or binary file formats, both
Goldsurfer2 (Gs2; see refs. 38,39) and PLINK have the functionality to read other file formats
(e.g., HapMap, HapMart, Affymetrix, transposed file sets and long-format file sets) and convert
these into PED and MAP or binary file formats.
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Steps 2–6: The default missing genotype character is ‘0′. PLINK can recognize a different
character as the missing genotype by using the ‘--missing-genotype’ option. For example,
specify a missing genotype character of ‘N’ instead of ‘0′ in Step 2 by typing ‘plink --file cg
--assoc --missing-genotype N --out data’.

● TIMING

None of the programs used take longer than a few minutes to run. Displaying and interpreting
the relevant information are the rate-limiting steps.

ANTICIPATED RESULTS

CG study

Summary of results—Table 4 shows the unadjusted P value for an allelic test of association
in the CG region, as well as corresponding adjusted P values for SNPs with significant P values.
Here we have defined a P value to be significant if at least one of the adjusted values is smaller
than the threshold required to maintain a FWER of 0.05. The top four SNPs are significant
according to every method of adjustment for multiple testing. The last SNP is only significant
according to the FDR method of Benjamini and Hochberg, and statements of significance
should be made with some caution.

LD plot—Figure 1 shows an LD plot based on CG data. Numbers within diamonds indicate
the r2 values. SNPs with significant P values (P value < 0.05 and listed in Table 4) in the CG
study are shown in white boxes. Six haplotype blocks of LD across the region have been
identified and are marked in black. The LD plot shows that the five significant SNPs belong
to three different haplotype blocks with the region studied: three out of five significantly
associated SNPs are located in Block 2, which is a 52-kb block of high LD (r2 > 0.34). The
two remaining significant SNPs are each located in separate blocks, Block 3 and Block 5.
Results indicate possible allelic heterogeneity (the presence of multiple independent risk-
associated variants). Further fine mapping would be required to locate the precise causal
variants.

GWA study

Quantile-quantile plot—Figure 2 shows the quantile-quantile plots for two different tests
of association in the GWA data, one based on χ2 statistics from a test of allelic association
and another based on − log10 P values from a logistic regression under a multiplicative model
of association. These plots show only minor deviations from the null distribution, except in
the upper tail of the distribution, which corresponds to the SNPs with the strongest evidence
for association. By illustrating that the majority of the results follow the null distribution and
that only a handful deviate from the null we suggest that we do not have population structure
that is unaccounted for in the analysis. These plots thus give confidence in the quality of the
data and the robustness of the analysis. Both these plots are included here for illustration
purposes only; typically only one (corresponding to the particular test of association) is
required.

Manhattan plot—Figure 3 shows a Manhattan plot for the allelic test of association in the
GWA study. SNPs with significant P values are easy to distinguish, corresponding to those
values with large log10 P values. Three black ellipses mark regions on chromosomes 3, 8 and
16 that reach genome-wide significance (P < 5 × 10−8). Markers in these regions would then
require further scrutiny through replication in an independent sample for confirmation of a true
association.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BOX 1

GLOSSARY

Admixture

The result of interbreeding between individuals from different populations.

Cochran-Armitage trend test

Statistical test for analysis of categorical data when categories are ordered. It is used to test
for association in a 2 × k contingency table (k > 2). In genetic association studies, because
the underlying genetic model is unknown, the additive version of this test is most commonly
used.

Confounding

A type of bias in statistical analysis that occurs when a factor exists that is causally associated
with the outcome under study (e.g., case-control status) independently of the exposure of
primary interest (e.g., the genotype at a given locus) and is associated with the exposure
variable but is not a consequence of the exposure variable.

Covariate

Any variable other than the main exposure of interest that is possibly predictive of the
outcome under study; covariates include confounding variables that, in addition to
predicting the outcome variable, are associated with exposure.

False discovery rate

The proportion of non-causal or false positive significant SNPs in a genetic association
study.

False positive

Occurs when the null hypothesis of no effect of exposure on disease is rejected for a given
variant when in fact the null hypothesis is true.

Family-wise error rate

The probability of one or more false positives in a set of tests. For genetic association studies,
family-wise error rates reflect false positive findings of associations between allele/
genotype and disease.

Hardy-Weinberg equilibrium (HWE)

Given a minor allele frequency of p, the probabilities of the three possible unordered
genotypes (a/a, A/a, A/A) at a biallelic locus with minor allele A and major allele a, are (1
– p)2, 2p (1 – p), p2. In a large, randomly mating, homogenous population, these probabilities
should be stable from generation to generation.

Linkage disequilibrium (LD)

The population correlation between two (usually nearby) allelic variants on the same
chromosome; they are in LD if they are inherited together more often than expected by
chance.

r2

A measure of LD between two markers calculated according to the correlation between
marker alleles.

Odds ratio
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A measure of association derived from case-control studies; it is the ratio of the odds of
disease in the exposed group compared with the non-exposed.

Penetrance

The risk of disease in a given individual. Genotype-specific penetrances reflect the risk of
disease with respect to genotype.

Population allele frequency

The frequency of a particular allelic variant in a general population of specified origin.

Population stratification

The presence of two or more groups with distinct genetic ancestry.

Relative risk

The risk of disease or of an event occurring in one group relative to another.

Single-nucleotide polymorphism (SNP)

A genetic variant that consists of a single DNA base-pair change, usually resulting in two
possible allelic identities at that position.
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Box 2

CONTINGENCY TABLES AND ASSOCIATED TESTS

The risk factor for case versus control status (disease outcome) is the genotype or allele at
a specific marker. The data for each SNP with minor allele a and major allele A in case and
control groups comprising n individuals can be written as a 2 × k contingency table of disease
status by either allele (k = 2) or genotype (k = 3) count.

Allele count

Allele a A Total

Cases m11 m12 m1.

Controls m21 m22 m2.

Total m.1 m.2 2n

•
The allelic odds ratio is estimated by .

• If the disease prevalence in a control individual carrying an a allele can be
estimated and is denoted as P0, then the relative risk of disease in individuals with

an A allele compared with an a allele is estimated by .

An allelic association test is based on a simple χ2 test for independence of rows and columns

 where  has a χ2 distribution with 1 d.f. under
the null hypothesis of no association.

Genotype count

Genotype a/a A/a A/A Total

Case n11 n12 n13 n1.

Controls n21 n22 n23 n2.

Total n.1 n.2 n.3 n

• The genotypic odds ratio for genotype A/A relative to genotype a/a is estimated

by . The genotypic odds ratio for genotype A/a relative to genotype

a/a is estimated by .

• If the disease prevalence in a control individual carrying an a/a genotype can be
estimated and is denoted as P0, then the relative risk of disease in individuals with
an A/A [A/a] genotype compared with an a/a genotype is estimated by

• A genotypic association test is based on a simple χ2 test for independence of rows

and columns  where  has a χ2

distribution with 2 d.f. under the null hypothesis of no association. To test for a
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dominant (recessive) effect of allele A, counts for genotypes a/A and A/A (a/a and
A/a) can be combined and the usual 1 d.f. χ2-test for independence of rows and
columns can be applied to the summarized 2 × 2 table.

• A Cochran-Armitage trend test of association between disease and marker is given
by

where w = (w1, w2, w3) are weights chosen to detect particular types of association.
For example, to test whether allele A is dominant over allele a w = (0,1,1) is
optimal; to test whether allele A is recessive to allele a, the optimal choice is w =
(0,0,1). In genetic association studies, w = (0,1,2) is most often used to test for an
additive effect of allele A. T2 has a χ2 distribut ion with 1 d.f. under the null
hypothesis of no association.
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Figure 1.
LD plot. LD plot showing LD patterns among the 37 SNPs genotyped in the CG study. The
LD between the SNPs is measured as r2 and shown (× 100) in the diamond at the intersection
of the diagonals from each SNP. r2 = 0 is shown as white, 0 < r2 < 1 is shown in gray and r2

= 1 is shown in black. The analysis track at the top shows the SNPs according to chromosomal
location. Six haplotype blocks (outlined in bold black line) indicating markers that are in high
LD are shown. At the top, the markers with the strongest evidence for association (listed in
Table 4) are boxed in white.

Clarke et al. Page 22

Nat Protoc. Author manuscript; available in PMC 2011 August 11.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Figure 2.
Quantile-quantile plots. Quantile-quantile plots of the results from the GWA study of (a) a
simple χ2 allelic test of association and (b) a multiplicative test of association based on logistic
regression for all 306,102 SNPs that have passed the standard quality control filters. The solid
line indicates the middle of the first and third quartile of the expected distribution of the test
statistics. The dashed lines mark the 95% confidence interval of the expected distribution of
the test statistics. Both plots show deviation from the null distribution only in the upper tails,
which correspond to SNPs with the strongest evidence for association.
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Figure 3.
Manhattan plot. Manhattan plot of simple χ2 allelic test of association P values from the GWA
study. The plot shows –log10 P values for each SNP against chromosomal location. Values
for each chromosome (Chr) are shown in different colors for visual effect. Three regions are
highlighted where markers have reached genome-wide significance (P value < 5 × 10−8).
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