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A b s t r a c t :  We define equality constrained equations and clauses and use them 

to prove the completeness of what we have called basic superposition: a re- 

stricted form of superposition in which only the subterms not created in previ- 

ous inferences is superposed upon. We first apply our results to the equational 

case and define an unfailing Knuth-Bendix completion procedure that uses 

basic superposition as inference rule. Second, we extend the techniques to 

completion of full first-order clauses with equality. Moreover, we prove the 

refutational completeness of a new simple inference system. 

1. I n t r o d u c t i o n  

Reasoning about equality has many applications in computer science, including auto- 

mated theorem proving, logic and equational programming, symbolic algebraic com- 

putation, and program specification and verification. Knuth-Bendix-like completion 

techniques [KB 70, Rus 87, HR 89, BDP 89, BG 91, NO 91] are one of the most suc- 

cessful approaches for dealing with equality. Completion procedures can be seen as 

refutationally complete processes that moreover transform sets of axioms in such a way 

that, by using the final complete set, efficient normal form proof strategies become com- 

plete (e.g. rewrite proofs or linear proofs). Completion is normally based on a form of 

paramodulation with strong ordering restrictions, called superposition. 

In this paper we develop a notion of equality constraints and use it to prove the 

completeness of basic superposition. This result has important consequences for Knuth- 

Bendix completion of equations and other first-order clauses with equality, and has 

been searched for since the completeness of basic narrowing was proved in [Hul 80]. 

Roughly speaking, the inference rule of basic superposition is the restriction of normal 

superposition in which the only inferences that have to be computed are the ones at 

subterms that have not been created in previous inference steps. Consider for example 

the inference by (equational) superposition 

f(g(a)) ~- a h(f(x)) ~_ h(x) 

h(a) ~_ h(g(a)) 

obtained by unifying in h(f(x))  the subterm f(~) with f(g(a)). Its conclusion is an 

instance with the unifier {x ~ g(a)} of the equation h(a) ~_ h(x). Therefore, no further 

basic superposition steps have to be applied to subterms of g(a) in this conclusion, 

whereas in normal superposition all subterms of h(g(a)) must be considered. 
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In this paper we will describe such situations by means of equations with equality 
constraints. In the example above the conclusion would be h(a) ~- h ( z ) ~  = g(a)], 
i.e. the instantiations caused by inference steps are kept in the constraints. Normal 

superposition can then be used for the non-variable subterms of the equation part (in 

the example, h(a) ~_ h(z) ). The inference rule of (here for simplicity equational) basic 

superposition can then be expressed as 

where t],, ~ ])ars(t) 
0 %  --- t' IT ^ T' A = 

if moreover the usual ordering restrictions for superposition are fulfilled. As we can see, 

equality constraints provide a simple and elegant representation for this inference rule. 

Information from the meta-level, in this case the accumulated unifiers, is kept in the 

constraints and used later on. Of course, other notations and practical implementations 

for basic superposition are possible, such as pairs clause-substitution or clauses in which 

"forbidden" subterms are marked somehow. 

Obviously, basic superposition is a considerable improvement over normal super- 

position as defined in e.g. [BG 91], allowing to importantly reduce the search space, 

and to obtain complete systems in more cases. One of the reasons is that by normal 

superposition many superfluous consequences are generated. Sometimes one can try to 

eliminate these consequences (e.g. in the equational case some -but not all- redundant 

critical pairs are joinable), but this is not always possible (almost never in the non- 

equational cases), and very expensive in general. By basic superposition, many of these 

superfluous consequences are simply not created. 

This paper is structured as follows. After the basic definitions of section 2, in 

the third section we apply our techniques to the particular case of equational logic and 

define a new unfailing Knuth-Bendix completion procedure that uses basic superposition 

as inference rule. In section 4 we extend the results to the case of Horn-clauses with 

equality and further to full first-order clauses with equality. Our style of proof is based 

on the model construction techniques and redundancy notions defined by Bachmair and 

Ganzinger in [BG 91]. We prove the refutational completeness of a basic superposition- 

based inference system, which moreover uses a simple new factoring rule. Section 5 is 

on further work. 

Related work (simultaneously and independently developed) on similar "basic" re- 

strictions, but for paramodulation, has recently been presented by W. Snyder and C. 

Lynch at the UNIF-91 workshop in Barbizon, France. Their method is less useful for 

Knuth-Bendix completion, since it needs paramodulation on right hand sides, and gives 

no simplification and deletion mechanisms for redundant equations and clauses. Their 

proof methods are completely different from ours and more complex. We have also 

learned that L. Bachmair, H. Ganzinger, C. Lynch and W. Snyder have very recently 

further developed the previous method obtaining basic superposition calculi more sim- 

ilar to ours. 
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2. Basic  not ions  and t e r m i n o l o g y  

We adopt the standard notations and definitions for term rewriting given in [DJ 90, 91]. 

Furthermore, by equality constraints we mean conjunctions of equalities of terms 

t = t ~, where = denotes syntactic equality of the terms t and t ~. An equality constraint 

T of the form tl = t~ A . . .  A tn = t~n is satisfiable iff there exists a (most general) unifier 

a of T, i.e. a simultaneously unifies every tl with t~ for i -- 1 . . . n .  Every unifier 0 of 

T is called a solution of T, and then we say that  TO is (equivalent to) true, denoted 

TO -- true. 

By an equation we mean a multiset {s, t},  denoted by s ~ t (or equivalently by 

t "~ s), where s and t are terms in 7"(~',X). A first-order clause I" ~ A is a pair 

of (finite) multisets of equations I ~ and A, called respectively the antecedent and the 

succedent of the clause. 

An equality constrained clause is a pair (C, T), denoted C ~T~, where C is a clause 

and T is an equality constraint. Such a pair can be seen as a shorthand for the set 

of ground instances of C ~T]: those ground clauses C a  such that  T a  is true. We will 

suppose distinct equality constrained clauses not to share variables. 

Like in [BG 91], here we consider interpretations that  are congruences on ground 

terms. An interpretation I satisfies a ground clause F ---, A, denoted by I I= F ~ A, if 

I ~ I" or else I n A # 0. An interpretation X satisfies (is a model of) C ~T~, denoted 

_r ~ C [[T~, if it satisfies every ground instance of C ~TI, i.e. clauses with unsatisfiable 

constraints are tautologies. The empty clause (with a satisfiable constraint!) is satisfied 

by no interpretation. _T satisfies a set of clauses S, denoted by _/" ~ S, if it satisfies every 

clause in S. A clause C can be deduced from a set of clauses S (denoted by S ~ C), if 

C is satisfied by every model of S. 

For dealing with non-equality predicates, we express atoms A by equations A ~ true 

where true is a special symbol, i.e. we treat atoms as terms. Here ~- denotes a total  

simplification ordering on ground terms, where the special symbol true is the smallest 

symbol. We use ~'-m,~t (~-m,~l-) to denote its (n-fold) multiset extension. 

We use the definitions of [DJ 91] for rewriting-related notions like normal form, 

confluence, convergence, reducibility, etc. We denote ground rewrite rules (ground equa- 

tions t ~_ t' with t ~- t') by t =~ t'. The congruence generated by a set of ground rewrite 

rules R (which is an interpretation) will be denoted by R*. 
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3. Basic superpos i t ion  in the equational  case 

In this section we deal with clauses of the form --+ s "~ t, denoted here by s "" t. 

Defini t ion 1: The inference rule of equational basic superposition is defined as follows: 

s _ s' ~T'~ t _~ t' ~T~ 

t[s']~ - t' ~T A T'  A flu = s~ 
where tl. r Var,(t) 

if, for some ground substi tution o., IT A T'  A tl= = silo. is true, so. ~- s'o. and to" ~ t'o". 

As said, constraint solving for equality constraints is just unification (in practice, 

every satisfiable constraint T can be kept in a simplest form, which is its most general 

unifier, and non-relevant variables can be eliminated, al though here we will not go into 

these details). 

The  difficulty with basic superposition (and with all forms of deduction with con- 

strained formulae) is that  lifting lemmas like the critical pair lemma [KB 70] do not 

hold: 

Example  2: No inference by basic superposition can be made between the two 

equations a ~- b and f ( z )  ~_ b ~z = aN, where a >- b. Now the term f(a) rewrites into 

f(b) by the first equation, and into b by the second one, but  there is no term t such 

that  f(b) and b are both reducible to t, i.e. the critical pair lemma does not hold when 

considering only critical pairs by basic superposition. 

Another  conclusion that  we can draw from this example is that  basic superposition is 

not  complete as inference rule for equational Knuth-Bendix completion when starting 

from an arbitrary set of equations with equality constraints: there is no rewrite proof 

at all for the consequence f(b) ~_ b, although the set of equations is closed under basic 

superposition. 

Therefore, here we will suppose that  the initial set of axioms contains only clauses 

without constraints*, i.e. clauses of the form C ~T~ where T is an empty (or trivially 

true) constraint,  sometimes written C ~true~. 

For simplicity, we will first study basic superposition without simplification. It is 

proved that  the closure under basic superposition of an initial set of equations without 

constraints is ground confluent. We do this by first defining a (canonical) set of ground 

rewrite rules RE generated from a set E of equations, by selecting ground instances of 

equations in E that  fulfil certain properties (this is similar to [BG 91], but adapted to 

equations with equality constraints). Then we show that  R~ I-- E if E is closed under 

basic superposition, and we prove that  this implies that  E is ground confluent. 

To overcome the problems of the non-existence of a critical pair lemma, we will 

sometimes consider only ground instances of equations with irreducible substitutions, 

defined as follows: 

* In fact, this restriction can be slightly weakened 
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D e f i n i t i o n  3: A ground subst i tut ion o- is irreducible wrt. a set of ground rewrite 

rules R if zo- is irreducible wrt. R, for every variable z in the domain of a.  A n o r m a l  

f o r m  of o- wrt. R is a subst i tut ion o-' with the same domain as o-, and such tha t  zo-' is 

a normal  form wrt. R of a:r for every variable z in the domain.  

D e f i n i t i o n  4: Let so- ~ to- be a ground instance with so- ~- to- of an equat ion 

s ~ t ~T~ in a set of equations E.  Then so- "" to- generates  the rule so" @ to- if so" and o- 

are irreducible wrt. the rules generated by ground instances e0 of equations in E with 

SO" ~'  tO" N-mul eS.  

The set of rules generated by all ground instances of equations in E is denoted by R E .  

D e f i n i t i o n  5: Let E be a set of constrained equations, and let R be a set of ground 

rewrite rules. The set of ground instances of equations in E with subst i tut ions tha t  are 

irreducible wrt. R is denoted by i v redR(E) ,  i.e. 

i r r edR(E)  = { ea [ e [T] e E ,  To" = true, ~ ground, ,7 irreducible wrt .  R } 

L e m m a  6: Let s ~ s '  ~TI be an equat ion in E such that  s8 ~ s '8 generates the rule 

s8 ~ s '8 for some ground subst i tut ion 8. Then z8  is irreducible wrt. R E  for every z in 

])ars(s ' ) .  

Proof.  If sO ~ s~O is generated as a rule, then z0 is irreducible wrt. the rules generated 

by ground instances smaller wrt. ~-mut than  sO ~" s'O, and also sO ~- s~O. All rules 

generated by instances greater  or equal than  sO ~- s~O have left hand sides tha t  are 

strictly greater  than  s~O. Therefore, none of these rules can reduce a sub te rm of gO. �9 

L e m m a  7: Let E be a set of equations with equality constraints  tha t  is closed under  

basic superposit ion.  Then R~ [= i rredRs (E) .  

Proof.  We will derive a contradict ion f rom the existence of a minimal  (wrt.  ~-m,n) 

element to- ~_ t'o- in irredR~ (E)  such tha t  R~ ~ t~r ~ t'o-. 

Let t~r _~ t'o- be a ground instance of an equation t ~_ t '  IT]  in E.  We can suppose 

w.l.o.g, tha t  to- ~ t'o-. Since R~ ~: to- ~- t'o-, the equation does not generate  any rule 

in RE. Therefore to- must  be reducible by R E ,  e.g. with a rule sO ~ s'O generated by 

an equat ion sO "" s'O smaller (wrt. ~-m,n) than  to- _~ t'o-, where sO ~_ s'O is a ground 

instance of an equation s _~ s '  ~T']] in E.  Now we have to-l,, = sO, where tl= cannot  be 

a variable, since o- is irreducible wrt. R E ,  and therefore the following inference can be 

made: 

t[s'],, "~ t' I T  h T'  A tl~ = s~ 

Since E is closed under basic superposit ion,  its conclusion is in E.  It  has a ground 

instance d of the form w[~'o]= ~_ t'o- such that  R~ V: d (otherwise R ~  [= to- _~ t%).  

Moreover, by the previous l emma and since or is irreducible by R E ,  the instance d is 

an instance of this conclusion with a ground subst i tut ion tha t  is irreducible by R E .  

Furthermore,  we have to- _~ t'o- ~-m=t d, which al together  contradicts  the minimal i ty  of 

to- --~ t'o-. �9 
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L e m m a  8: Let E0 be a set of equations without constraints, and let E be the closure 

of E0 under basic superposition. Then R~ ~- E. 

Proof. First note that E0 ~ E, by soundness of basic superposition. Therefore, it 

suffices to show that R~ I= E0, i.e. R~ I= e~ for every ground instance e~ of an equation 

e ~true~ in E0. Now let ~r' be a normal form of a wrt. RE. Since E0 C E, by the previous 

lemma it holds that R* E I---- e~l, because al is irreducible wrt. RE, and ea I is an existing 

instance of e ~true~. From RE U {e~'} ~ ecr and R* E ~- ea' it follows that R~ ~ ecr. �9 

L e m m a  9: Let E be a set of constrained equations such that R~ ~ E. Then E is 

ground confluent. 

Proof. Let a, s ~ and t be ground terms such that s and s ~ are normal forms of t wrt. 

E. We prove that s and s t must be syntactically equal. We have E ~ s _~ s I, and 

R~ ~ E, which implies R~ [= s _~ s' and RE I = s ~ s'. If s and s' are normal forms 

wrt. E, then they are also normal forms wrt. RE, because RE is a set of instances of 

equations of E. Moreover, by its construction, RE is a canonical set of ground rewrite 

rules because there are no overlappings between left hand sides. This implies that s and 

s' are equal. �9 

T h e o r e m  10: Let E0 be a set of equations without constraints, and let E be the 

closure of E0 under basic superposition. Then E is ground confluent. 

3.1. C o m p l e t i o n  by basic superpos i t ion :  the  equa t iona l  c a s e  

Now we know that if E is the closure under basic superposition of a set of equations with- 

out constraints, then E is ground confluent. In this section we show that basic superpo- 

sition is also the appropriate inference rule for unfailing Knuth-Bendix completion, i.e. 

for computing ground confluent sets in practice, even when applying the existing power- 

ful simplification and deletion methods that can be used in normal superposition-based 

completion. However, at first sight there seems to be a problem with simplification: 

E x a m p l e  11: Consider the ordering f ~ g ~- a ~ b and three initial equations: 

1) a~-b  

3) f(g(a)) b 

Now a completion process including simplification could generate: 

4) g(z) -~ b Ix = a] (by basic superposition of 2 and 3) 

5) f(b) ~- b (simplifying 3 by 4) 

6) f(b) ~- g(z) ~z = a~ (by basic superposition of 2 and 4) 

Now the set {1,2,4,5,6} is closed under basic superposition, i.e. this set would be the 

final set generated by the completion process. However, there is no rewrite proof for 

g(b) ~_ b using instances of this set. The conclusion of this example is that, even when 

starting with equations without constraints, it is incorrect to apply simplification steps 

like the one made above, where the equation f (g(a))  ~ b is simplified into f(b) ~_ b using 
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the instance g(a) "~ b of g(z) ~_ b ~z = a~, which would be a quite natural  simplification 

method.  

However, as we will see, this problem appears only in (quite special) concrete 

situations, and can be solved in such a way that  all intuitive simplification and deletion 

techniques can be allowed if sometimes certain equality constraints are slightly weakened. 

Our notions of completion and redundancy are based on the ones defined in [BG 

91], where an axiom is redundant  if all its ground instances can be deduced from smaller 

instances of other axioms. Analogously, an inference is redundant  if, for all its instances, 

the conclusion can be deduced from instances smaller than the maximal premise. These 

redundancy notions include, as far as we know, all correct methods  that  make completion 

procedures more efficient and terminate in more cases. Here we adapt  these notions by 

considering only instances with substitutions that  are, in some sense, irreducible. 

Now we first give some definitions, which we do not pretend to be constructive. For 

instance, the definition of completion derivations below does not provide (yet) a way to 

compute them (at least not if the redundancy notions are exploited). This point will 

be made clear below. 

Defini t ion 1~: Let E0, E l , . . .  be a sequence of sets of constrained equations. 

a) The set Eoo of persistent equations in E0, E l , . . .  is defined as t2j(fqk>_jEk). 

b) An equation e ~T] is redundant in Ej if for every ground instance e~r of it with ~r 

irreducible wrt. REoo, there exist instances di in irredn~oo (Ej), for i = 1 . . . m ,  such 

that  err ~-m,t di and REoo U { d l , . . .  ,din} I= ecr. 

Definit ion 13: A completion derivation is a sequence of sets of constrained equations 

Eo,E1, . . .  such that  To is true for every equation e0 ~T0~ in E0 and 

Ei = Ei-1  U {e [[T~} where E,-1 l= e [[T~, or 

Ei = El-1 \ {e ~T~} if e [[T~ is redundant  in Ei-1. 

Defini t ion 14: Let E o , g l , . . .  be a completion derivation, and let ~r be a basic 

superposition inference with premises el ~TI~ and e2 ~T2~, and with conclusion e ~T~. 

Then every inference by basic superposition with premises el cr and e2cr, and conclusion 

e~, with Ttr ==_ true, for some ground substi tut ion ~,, is a ground instance r~r of rr. 

The  inference 7r is redundant in Ej if for every ground instance 7rcr of 7r with tr irre- 

ducible wrt. REoo, there exist instances di in irredR~oo(gj), for i = 1 . . .  m, such that  

maz(e~,,e2tr) ~'-~,,,,t dl and RE~ U {d~. . .  din} I= e~,, where maz denotes maximali ty 

wrt.  N-mul. 

Defini t ion 15: A completion derivation E0, E l , . . .  is fair if every inference by basic 

superposition with premises in Eoo is redundant  in some Ej .  
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As we can see, in completion derivations we consider instances with subst i tut ions 

irreducible wrt. REo~. For example,  an equation is redundant  if all its instances tha t  

are irreducible in tha t  sense can be deduced from other smaller irreducible instances. 

However, in practice, during the computa t ion  of a fair derivation, one cannot prove 

the redundancy of equations or inferences in a set Ej, since at that  point RE~ is 

unknown. Therefore,  sufficient conditions for redundancy have to be used. We will 

define them in detail at the end of this section, and we suppose for the momen t  tha t  we 

can indeed compute  fair completion derivations. 

D e f i n i t i o n  16: Let E 0 , E 1 , . . .  be a completion derivation. Then Eoo is complete if 

every inference by basic superposit ion with premises in Eoo is redundant  in Eoo. 

L e m m a  17: Let E 0 , E 1 , . . .  be a completion derivation. Then  for every set E j  and 

instance ea in irredR~o~ (Ej) ,  there are instances dl for i = 1 . . .  m in irredREoo(Eoo), 
such that  REo~ U { d l , . . . , d i n }  [= ec~ and e~r ~ , ~ t  di. 

Proo[. We derive a contradict ion f rom the existence of an instance ec~ tha t  is min- 

imal (w.r . t . ) ' - ,nut )  in all sets irredn~(Ej) such tha t  there are no such instances dl 
in irredRE~(Eoo). The corresponding equation e ~T~ in Ej is not persistent,  because 

otherwise e~ is in irredREoo(Eoo). This means tha t  e IT]] is redundant  in some Ek, 

with k >_ j ,  i.e. there exist instances d~q with q = 1 . . . n ,  in irredR~(Ek) such tha t  

. . .  d' R~o~ U {d~, , ~) I= eg, with e~r ~-m~ dq. However, if the result holds for the in- 

stances d~,...,d~ (which must  be the case, because ea is minimal) ,  then it also holds 

for e~. �9 

L e r n m a  18: Let E 0 , E I , . . .  be a completion derivation. If an inference by basic 

superposi t ion is redundant  in some Ej, then it also is in Eoo. 

Proof. Let 7r be an inference with premises el ~TI~ and e2 ~T2~, and with conclu- 

sion e~T], such tha t  7r is redundant  in Ej. Then,  by definition of redundant  in- 

ference, for every ground instance vo" of 7r with g irreducible wrt.  REo~, there exist 

instances dl in irredREoo(Ej), for i --- 1 . . . m ,  such that  maz(el~r, e2cr) ~m,,t dl and 

REo~ U {dl, . . . ,dm} I-- ec~. By the previous lemma,  each of the instances di Can 

be deduced f rom REoo and other instances { d ~ , . . . , d ~ }  in irredR~ (E~) such tha t  

di ~-m~t d~. This implies that  7r is also redundant  in Eo~. �9 

L e m m a  19: If E0, E l , . . .  is a fair completion derivation, then Eo~ is complete. 

Proo[. By fairness, every inference 7r with premises in Eo~ is redundant  in some Ej. 
By the previous lemma,  then 7r is also redundant  in Eo~, tha t  is, Eo~ is complete.  �9 

We now apply the same method  as above to prove tha t  Eo~ is ground confluent. 

The  following l emma states that  in fair completion derivations R* Eoo I = irrednEoo (Boo). 
After this, in l emma 21, we show tha t  R* Eo~ I = Eo~ which, as we know by l emma  9, 

implies that  Eoo is ground confluent. 
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L e m m a  20: If E0, E l , .  is a fair completion derivation then R* "" E~ I = irredREo~(Eoo). 

Proof. This proof is an easy extension of that  of lemma 7, where the same result is 

proved for sets E that  are closed under basic superposition, instead of what  we need 

here: proving it for E ~  which we only know to be complete, i.e. closed up to redundant 
inferences. 

Let to- ,v_ t'o- be a minimal (wrt. ~-mul) instance in irredRsoo (Eo~) such that  R*Eoo 

to- ~ t'o-. We will derive a contradiction from the existence of such an equation. 

We can suppose w.l.o.g, that  to- ~ t'o-. Since R* E~ ~= to- "-~ t'o-, the equation has not 
generated any rule in RE~. Therefore to, must be reducible by RE~, e.g. with a rule 

s0 =~ s'8 generated by an equation sO ~_ s'8 smaller than to- _~ t'o-. Now we have 

to-I= = sO, where flu cannot be a variable, since O- is irreducible, and therefore the 
following inference can be made: 

s ~_ s' lIT'l] t _~ t' [[T~ 

t' IT A T' A = 

Its conclusion has a ground instance d of the form to-[s'8]~ "~ t'o- such that  R* E~V=d 
(otherwise R* _~ Eoo [= tO" frO'). Moreover, d is an instance of this conclusion with a 
ground substi tut ion that is irreducible by REoo (as in lemma 7). 

Since Eoo is complete, the inference must be redundant in Eoo, i.e. there exist instances di 

in irrednEoo(Eoo), for i = 1 . . . m ,  such that  to- ~_ t'o- ~-mut dl and RE~ U { d l , . . .  ,din} [= 
d. But if R* Eoo ~ d then also R* Eoo ~ di for some di, contradicting the minimali ty of 
to-_~ t'o-. �9 

L e m m a  21: If E 0 , E 1 , . . .  is a fair completion derivation then R* E~o [ = E ~ .  

Proof. We have R* E~ [:  irredRE~(E~) by the previous lemma. Moreover, REo~ U 
irredREoo (E~) ]= irredRs~ (Eo) is a direct consequence of lemma 17. Now, since REo: U 
irredREoo(Eo) [= E0 holds as in lemma 8 (equations in E0 have no constraints),  and 

E0 ~- Eoo holds since El [= Ei+l for all i, together we have R* Eor I=Eoo. �9 

T h e o r e m  22: 

fluent. 
If E 0 , E 1 , . . .  is a fair completion derivation then E ~  is ground con- 

3.2.  R e d u n d a n c y  n o t i o n s  for  basic  s u p e r p o s i t i o n  

In this section we study in which concrete situations the usual notions of redundancy 

are incorrect when dealing with basic superposition. It is shown that  these situations 

can be avoided by sometimes slightly weakening constraints,  in such a way that  basic 

superposit ion only in the very worst case may degenerate into normal superposition. 

Roughly speaking, the notions of redundant  axioms and inferences for normal  su- 

perposit ion of [BG 91] state that  a clause is redundant  if all its ground instances can be 

deduced from smaller instances of other clauses, and an inference is redundant  if, for all 

its instances, the conclusion can be deduced from instances smaller than  the maximal  

premise. These notions include most simplification techniques and critical pair criteria 
for proving the redundancy of superpositions. For example, the simplification of an 
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equation e into e' can be modelled in a completion derivation by first adding e', and 

then deleting e, which has become redundant .  

Below we prove tha t  these notions of redundancy can also be used in basic super- 

position. However, our notion of redundant  equation (defin. 12) requires every instance 

with an irreducible substitution to be deducible f rom other smaller instances with irre- 

ducible substitutions, and also RE~ may be used in redundancy proofs: 

E x a m p l e  23: In example 11, the equation f(g(a)) ~_ b is simplified into f(b) ~_ b 

using g(z)  -- b Ix : a] with the subst i tut ion tr, which is {z ~-, a}. 

However, f (g(a))  "~ b does not become redundant  by adding f(b) "~ b, because we 

need g(z) "~ b [z = a~ ins tant ia ted  with ~, but  cr is not irreducible, since RE~ contains 

the equation a ~_ b, with a ~ b. 

Before giving other sufficient conditions for redundancy in our framework,  let us 

remark  that  by our notion of definition 12 we obtain an interesting result: a constrained 

equation e ~T] is redundant  (i.e. it can be deleted) if cr is the most  general unifier of 

T and, for some variable z in e, z a  is reducible by an equation e' in some Ej .  This is 

t rue because if z a  is reducible by e' then it is also reducible by some rule in RE~,  and 

therefore e ~T~ has no irreducible ground instances at all. 

D e f i n i t i o n  24: Let e [[T~ be an equation, and let 8 be the most  general unifier of the 

equality constraint  T. Then T binds each variable x in ])ars(e)  with x8 ~ x to xS. 

L e m m a  25: Let E0, E l , . . .  be a completion derivation. The equat ion e ~T~ is redun- 

dant  in a set E j  if 

(i) for every ground instance err there are ground instances di~rl for i -- 1 . . . m  of 

equations di ~Ti~ in Ej such tha t  {dlO'1, . . .  ,dmcrm} I= ecr and e~r ~m~t di~i, and 

(ii) for every i in 1 . . . m ,  and for every z in Vars(dl), Ti does not bind x, or else 

zo'i = ya, for some variable y in e. 

Proof. We have to prove that  the conditions imply that  for every eq where cr is ground 

and irreducible wrt.  RE~,  there exist instances d~ in i r r edR~  (Ej) ,  for k = 1 . . .  n,  such 

, . .  d' tha t  ea  ~-m~z d~ and RE~ [J {d~ ", k} [= e~. 

If every subst i tut ion c~i is irreducible wrt. RE~,  then the result holds. This is 

certainly the case if for every variable x in every di we have xcri = ycr, for some variable 

y in e, since q is irreducible. 

Otherwise, if za i  is reducible by RE~,  we can replace dlcri by diOi, where Oi is the 

ground subst i tut ion such that  ~Oi is a normal  form wrt. RE~ of a:trl, and zOi = zai for 

every other variable z in dl. Now diOi is an existing instance of di, since z is not bound 

by the corresponding constraint  Ti. Moreover, we have RE~ (.J {diOi} I = dltri. By doing 

so for all such variables z, we obtain the instances d~ in irredl~E~(Ej), for k = 1 . . . n ,  

, . .  d' such that  ecr ~-m~l d~ and RE~ U {d~ -, k} [= efT. �9 
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The lemma above means for instance that ,  roughly speaking, one can apply an 

equation e [[T]] in a redundancy proof if, for every variable z in 12ars(e), ~ is not bound 

by T, or else the "corresponding" position in the equation proved is also a variable: 

E x a m p l e  26: The equation h( / (y ) )  "~ y ~y : a] can be simplified* by the equation 

f ( z )  _~ b [[a~ = a]] into h(b) ~_ y ~y = a], because, al though the variable z is bound,  its 

corresponding position in h( f (y ) )  is the variable y. 

A lemma equivalent to lemma 25 for proving the redundancy of inferences also 

holds: it is obtained by using the instance of the maximal premise as upper  bound for 

the instances d l , . . . ,  din, instead of ea. 

Might all the conditions of the previous lemma fail, for some variable ~, then we 

can always weaken T for z: 

L e m m a  27: Let e ~T]] be an equation, and let 8 be the most general unifier of T, 

with 8 of the form {xl ~ t ~ , . . . , z n  ~ tn}. Now let cr be {z~ ~ t l}.  Then the equation 

ev, Ix2 = t~ A . . .  A x,~ = tn~, obtained by weakening e ~T~ for ~1, is logically equivalent 

to e ~T~. 

Weakening the constraint of an equation is equivalent to turning basic superposit ion 

into normal superposition for the given subterm in the equation (tl in the previous 

lemma),  since it becomes again necessary to apply superposition on it, while it was not 

before weakening. 

In fact, one can also apply partial weakening steps, i.e. instantiat ing the variable 

zl  only with the outermost  symbol of the term ~1 (or doing this several times) if this 

is enough for fulfilling the conditions of lemma 25. For example, if tl is of the form 

f ( s l  . . .  sin) the constraint becomes ~TAT' Ayl = sl A. . .Ayrn = Srn~] and the substi tut ion 

cr = {xl  ~-' f ( y x . . . y m ) }  is applied to the equation, where y ~ . . .  ym are new variables. 

For simplicity, we have not considered here redundancy of equations by subsurnp- 

tion, which can be proved by combining ~-mul with the subsumption ordering (but note 

that ,  in order to fulfil the conditions of lemma 25, the subsuming constrained equation 

has to be weakened until its equation part is, in some sense, as ins tant ia ted as the 

subsumed equation). 

Practical  implementations,  such as the one we are working on based on the T R I P  

system [NOR 90], will show whether it pays off to weaken constraints for simplification 

steps, or whether it is always more efficient to use basic superposit ion in its full power. 

For the moment ,  it seems to us that some mixed strategy has to be used. 

* If we use a notion of simplification where matching has to be compatible with the equality con- 

stralnts. Here we will not define concrete simplification methods for equality constrained equations. As 

far as we know, the previous lemma covers all intuitive extensions of known methods to the equality 

constraint case. 
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4. Completion of  first-order clauses by basic superposition 

In this section we extend the techniques defined above to the case of full first-order 

clauses with equality. As done by Bachmair and Ganzinger in [BG 91], we obtain an 

unfailing completion procedure for first-order clauses with equality, including power- 

ful notions of redundancy for clauses and inferences. This procedure is refutationally 

complete and, moreover, very efficient complete strategies can be used for refutational 

theorem proving with complete sets of clauses. 

The main new result given here is that  our completion procedure, while conserving 

these properties, uses an inference system that  has as main inference rule the one of 

strict basic superposition, instead of normal strict superposition, with the corresponding 

advantages of a more reduced search space and higher termination probabilities. 

Moreover, apart from using basic superposition, the new inference system we define 

below (first proved complete in [Nie 91]) is also interesting because there is only one 

inference rule for equality factoring, instead of including, apart from "normal" factor- 

ing, inference rules for merging paramodulation or equality factoring left and equality 
factoring right [BG 91]. The fact that  we use here this specific inference system does 

not mean that  our methods depend on it: our lifting techniques can be easily adapted 

to each one of these other systems. Our results can also be extended to calculi which 

consider only one arbitrary marked negative literal for superposition, as done in INN 91] 

for Horn clauses with equality, and in [BG 91] as selection functions on negative literals 

of full first-order clauses. 

In the following ordering ~-c on ground clauses, the terms appearing in antecedents 

of clauses are slightly more complex than the ones in succedents: 

Definition 28: The multiset e~pression of an equation t -~ t' in a clause F --~/k is 

(i) {{f,f},{~' , t '}} if* ~_ t' belongs to F 

(ii) {{t}, {t'}} if t ~- t' belongs to A 

The ordering >'-e on ground equations is defined as the ordering ~-,nuz2 on their multiset 

expressions. 

The ordering ~ c  on ground clauses is defined as the ordering >'-m~t~ on the multisets 

containing the multiset expressions of their equations. 

Definition 29: A ground equation e is called mazimal (resp. strictly mazimal) in a 

ground clause C if e ~ ,  e I (resp. e ~ el), for every other equation e ~ in C. 

In the following inference system B (here B stands for "Basic superposition") in- 

ferences take place only in equations of succedents that  are strictly maximal and in 

equations of antecedents that  are maximal, for some ground instance. Moreover, only 

the maximal terms in each equation are used. These conditions imply that ,  for each 

ground inference, the conclusion is strictly smaller (wrt. ~ c )  than  the maximal premise. 
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D e f i n i t i o n  30:  

mal i ty  of equa t ions  in clauses wrt .  >-~): 

1) strict  basic superposit ion right: 

F' -~ A', s ~_ s' ~T'~ F -~ A,  t ~_ t' ~T] 
where  flu ~ ];ars( t )  

. r ' , r  --+ z~', z~,t[s']~ ~_ t' gT A T '  A tlu = s]] 

if lIT A T '  A tl~ = silo. is t rue  for some g round  subs t i t u t ion  o. such t h a t  

a) to. >-- t'o., so. >-- s'o., and  to. ~ t'o. >-~ so. ~_ s'o. 

b) so. -~ s'o. is s t r ic t ly  m a x i m a l  in F'o. -+ A'o., so. _~ s'o. 

c) to. -~ t'o. is s t r ic t ly  m a x i m a l  in Fo. -o  Ao., to. _~ t'o.. 

2) strict  basic superposit ion left: 

r'  ~ A ' , s  ~_ , '  ~T'~ r ,  t ~_ t' -+ ix ~T~ 
where  tl~ ft V a t s ( t )  

r',r,t[s']~ ~_ t'  - .  zx ' , zx  gT A T '  A flu = 4 

if lIT A T '  A t[~ = s~o. is t rue  for some g round  subs t i t u t ion  o. such t h a t  

a) to. >-- t'o. and  so. >- s'o. 

b) so. --- go.  is s t r ic t ly  m a x i m a l  in F'o. -+ AIo., so. ~_ s'o. 

c) to. --~ t'o. is m a x i m a l  in Fo., to. _~ t'o. ~ A~r. 

3) equality resolution: 

F, t ~- t' --* A ~T~ 

r -~ a ~T A t = t'~ 

if lIT A t = t ']o. is t rue  for some g round  subs t i tu t ion  o. such t ha t  

a) to" _~ t'o. is m a x i m a l  in Fo., to. ~_ t ' a  --+ Ao.. 

4) factoring:  

F --* A,  t ~- s, t '  _~ s '  [[T~ 

F,  s ~ s'  -- ,  A ,  t _~ s lIT A t = t'~ 

if lIT A t -- t']]o, is t rue  for some g round  subs t i t u t ion  o. such t ha t  

a) to. >- so. and  t'o. >- s'o. 

b) to. ~- so. is m a x i m a l  in Fo. ~ Ao., ta  ~_ so., t' o. ~_ s'o.. 

T h e  inference rules of B are the  following (we a lways  cons ider  max i -  

Note  t ha t  our  inference rule for fac tor ing  is a genera l iza t ion  to the  equa l i ty  case of  

"no rma l "  fac tor ing.  For ins tance ,  if t and  t '  are a t oms ,  then  b o t h  a and  s '  a re  the  

symbo l  true and  the  equa t ion  true ~_ true can be o m i t t e d  in the  an teceden t .  
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In order to prove the correctness of completion procedures based on this inference 

system B, we will proceed in a similar way as done in the previous section for the 

equational case. In fact, we will extend almost all the definitions and results to the case  

of first-order clauses with equality, of which equations are a proper  subset. For instance, 

definitions 31 - 36 are extensions of the equivalent ones in the previous section, and t h e  

same thing happens with the lemmas 37 - 39 and 41, whose proofs are omit ted here. 

Now first we associate to a set of constrained clauses S a canonical set of ground 

rewrite rules Rs, in a similar way as it was done for the equational case. After this, it 

will be shown that ,  in a fair completion derivation for first-order clauses So, $1 , . . . ,  if 

the empty clause* is not in S ~ ,  then R* s~ I = Soo, i.e. Soo has a model. So we obtain the 

result (just as R* E~ ~ E ~  implied the confluence of Eo~) that  the completion procedure 

is refutationally complete. 

D e f i n i t i o n  31: Let C be a ground instance F --, A , t  ~ s of a clause D ~T~ in a set 

S, i.e. C is D~ for some ground substi tution a such that  Ta =_ true. 

Then C generates a rule t ~ s if the following conditions hold: 

(1) R~ V= c 

(2) t ~ s is maximal (wrt. ~-~) in C with ~ >- s 

(3) R~ ~ s ~ s', for every t ~_ s' in A 

(4) t is irreducible by R c  

(5) ~ is irreducible by Rc 

where Rc is the set of rules generated by ground instances smaller than C (wrt. ~ c )  

of clauses in S. 

The set of rules generated by all ground instances of clauses in S is denoted by Rs. 

D e f i n i t i o n  32: Let So, $1 , . . .  be a sequence of sets of constrained clauses. 

a) The set Soo of persistent clauses in So, $1 , . . .  is defined as Uj(Nk>_jSk). 

b) A clause C ~T] is redundant in Sj if for every ground instance C a  of it with a 

irreducible wrt. Rsoo, there exist instances Di in irredRso~(Sj), for i = 1 . . . m ,  such 

that  Ca ~-c Di and Rso~ U { D 1 , . . . , D m }  I-- Ca.  

D e f i n i t i o n  33: A theorem proving derivation is a sequence of sets of constrained 

clauses S0 ,S1 , . . .  such that  To is true for every clause Co ~[T0~ in So and 

Si = S~-1 U {C IT]} where Si-1 I-- C ITS, or 

Si -- S~-I \ {C ITS} if C [TI is redundant in Si-1. 

* The empty clause with a satisfiable constraint. Clauses with unsatisfiable constraints are tautologies. 
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D e f i n i t i o n  34: Let 5,o,5,1,... be a theorem proving derivation, and let ~" be an 

inference of B with premises Cl [[TI~,... ,  Cn ~T,,]], and with conclusion C ~[T]]. 

Then every existing inference of B with premises Clq , .  �9 �9 C ,~ ,  and conclusion C a  with 

T~r =_ true, for some ground substitution a, is a ground instance 7vet of 7r. 

The inference 7r is redundant in 5,j if for every ground instance 7r~ of 7r with tr irre- 

ducible wrt. Rs~,  there exist instances Di in irredRs~ (5"j), for i = 1 . . .  m,  such that  

maz(Cl~r,... ,Crier) ~-c Di and Rs~ U {D1, . . .  ,Dr,,} [= Ctr, where max denotes mazd- 

mality wrt. ~-c. 

D e f i n i t i o n  35: A theorem proving derivation So, 5 '1, . . .  is fair if every inference of 

the inference system B with premises in 5'or is redundant  in some Sj. 

D e f i n i t i o n  36: Let So, $1 , . . .  be a theorem proving derivation. Then S ~  is complete 
if every inference of the inference system B with premises in Soo is redundant  in Soo. 

L e m m a  37: Let S0 ,S1 , . . .  be a theorem proving derivation. Then for every set Sj 
and instance C in irredns~ (Sj), there are instances Di for i = 1 . . .  m in irredns~ (S~),  
such that  Rs~ U {D1, . . . ,Dm} ]= C and C ___c Di. 

L e m m a  38: Let So, $1 , . . .  be a theorem proving derivation. If an inference is redun- 

dant in some Sj,  then it also is in S ~ .  

L e m m a  39: If So, $1 , . . .  is a fair theorem proving derivation, then Soo is complete.  

For technical reasons which we explain in the lemma below, we apply a mini- 

mal weakening step to consequences of inferences with non-horn clauses where the left 

premise is of the form F ~ A, z -~ s, z ~ s' [[T] and where z -~ s is the equation super- 

posed on the right premise using z as left hand side. In fact, this weakening is not really 

needed*, but  without doing it all proof techniques become quite more complicated and 

a lot of power wrt. redundancy (e.g. lemma 43) is then lost, which we think does not pay 

off. Note that  this quite special case only applies to non-Horn clauses, since there ,*re 

at least two equations in the succedent, and only if z does not appear  in F (otherwise 

z a  ~ sa  cannot be maximal for any ground substi tut ion or). Now after an inference 

step by e.g. basic superposition left 

F ~ A , z  _~ s , z  _~ s' [[T~ F ' , t  _~ t' ~ A' lIT' n 

r , r ' , t [ : ] =  t' A, T'A tl: = 
where t]u ~ l )ars( t )  

the conclusion is minimally weakened for the variable z (as done in section 3.2), i.e. the 

variable z in the clause is instantiated with the outermost  symbol of the te rm tl,, it is 

superposed upon. 

More precisely, if t[= is of the form f( t l  ... tn) the constraint of the conclusion 

becomes [[TA T ' A z l  = tl A . . .  Azn = tn~ and the substi tut ion ~r = {z ~ f ( z l . . . z , ) }  
is applied to the whole constrained clause. From now on we suppose that  this weakening 

is done after all such inferences by strict superposition left and right. 

* This has been recently pointed out to us by H. Ganzinger. 
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The only l emma of this section that  is significantly different to the equational  case 

is the following one. The  reason is that  it depends on the inference sys tem used. 

L e m m a  40: Let So, $1 , . . .  be a fair theorem proving derivation, such tha t  S ~  does 

not contain the empty  clause. Then R* 

Proof. Let C~r be a minimal (wrt. ~-c) instance irvedRso~(S~) of a clause C ~T~ in 

Sor such that  R* s~  ~= Co-. We will derive a contradict ion f rom the existence of such a 

clause. There  are several cases to be analyzed, depending on which one is the maximal  

equation in Co-: 

a) Let Co- be a clause F a  --+ Ao-,to- _ fro-, with a maximal  equation to- "~ fro-, and 

to- ~ tqr. Since R* s~ ~= C a ,  the clause Ca has not generated the rule to- :=~ fro-. This  

must  be because one of the conditions 3) or 4) of definition 31 do not hold. 

a l )  If condition 3) does not hold, then Ac~ must  be of the form AIo-, so- ~-- sto-, where 

tcr is so- and R ~  I= t'c~ _~ s'o-. In this case, consider the following inference 7r by 

factoring 

r --* A ' , t  _~ t ' , s  ~_ s ~ [T~ 

P,t' _~ s' --~ A ' , t  ~ t' IT i t : s~ 

Its conchs ion  has a ground instance D of the form Fo-,t'a ~_ s'o- --* A'o-,to- ~ t'o- such 

tha t  R* s .  ~: D. Moreover, D is an instance of this conclusion with a ground subst i tut ion 

tha t  is irreducible by R s ~ .  

Since S ~  is complete, 7r must  be redundant  in S ~ .  But then there exist instances 

D ~ , . . . , D m  in irredns~(So~) s uch t ha t  Rso~ U { D 1 , . . . , D m }  1= D and Co" ~ c  DI. Now 

R* soo ~: D implies that  R* s~ ~= Di for at least one Di which contradicts  the minimal i ty  

of Co-. 

a2) If condition 4) does not hold, then to- is reducible by  Pea ,  e.g. with a rule sO ::~ s '8 

generated by a clause C '0  smaller than  Co-. Let C ~ be a clause F'  ~ A ' , s  _~ s ~ in Soo 

and to-I= = sO. Now consider the inference 7r by strict superposi t ion right 

r' zX',s s' r zx, t t' 

r ' , r  t' [T A T '  A = s]] 

Its  conclusion has a ground instance D of the form F'0,FO- ~ A'0,  Aa,  ta[s'O]= ~ t'o-, 

such tha t  R* s~ ~= D. Moreover, D is an instance of this conclusion with a ground 

subst i tut ion tha t  is irreducible by Rso~. This is true since O- is irreducible wrt. R s ~ ,  

0 is irreducible wrt. Re,0,  and since we apply weakening steps for certain non-Horn 

clauses, as defined above. Since So~ is complete, 7r must  again be redundant  in Sor 

which, as above, leads to a contradiction with the minimali ty  of Co-. 

b) If Co- is a clause ro-, to- ~ fro- ~ Ao-, where to- _~ t'o- is maximal  in Ccr, and to- is fro-, 

then consider the following equality resolution inference: 

F, t _~ t' --~ A ~T~ 

r A IITA = r 
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The conclusion of this inference has a ground instance D of the form Fo" -+ Ao., such 

that  R* s~ ~: D. Since the inference is redundant ,  as above, a contradict ion is obtained. 

c) The only remaining case is that  Co. is a clause Fo., to. _~ t ' a  ~ Ao., where to. _~ t ' a  is 

maximal in Co. and to. ~- t'c~. In this case R* s~ [= to. _ rio., because R* s~ ~= Co.. Then  

tcr must be reducible by a rule sO =:~ srO in Rs~ generated by a clause in Soo of the 

form F r --~ A ' , s  ~_ s I ~T'~, where to.l= = sO. The following inference 7r by strict basic 

superposition left can then be made: 

F' ~ A ' , s  ~- s' ~T'~ F, t _~ t r -~ A ~T]] 

r ' , r , t [ s ' ] ,  t' --+ [TA T' A t l .  = 

For the corresponding ground instance, Co. is the maximal premise, and, as in case 

a2), for its conclusion D we have R* s~ ~= D. This implies as before that ,  since lr is 

redundant ,  a contradiction is obtained. �9 

L e m m a  41: Let So, $1, . . .  be a fair theorem proving derivation. Then R*s~[=S~. 

T h e o r e m  42: Let So, $1 , . . .  be a fair theorem proving derivation. Then  So is incon- 

sistent if, and only if, the empty clause belongs to some Sj. 

Proof. If the empty clause belongs to some Sj, then, since 5'i is logically equivalent to 

Si+l for all i, So is inconsistent. For the reverse implication, suppose the empty  clause 

belongs to no Sj. Then it is not in Soo, and by the previous lemma, R* s~ {= S ~ .  But 

then So must be consistent, since it also has the model R* Scr �9 

With respect to the redundancy notions, again the same discussion as in the previ- 

ous section applies. All known redundancy notions can be applied, al though sometimes 

weakening is needed. Therefore completion based on the inference rule of basic su- 

perposition strictly improves normal superposition-based completion. The  following 

lemma, equivalent to lemma 25, tells us when constraint weakening has to be applied 

in redundancy proofs for first-order clauses: 

L e m m a  43: Let S0 ,S1 , . . .  be a theorem proving derivation. The clause C~T] is 

redundant  in a set Sj if 

(i) for every ground instance Ca,  there are ground instances Dio.i for i = 1 . . . m  

of clauses Di ~Ti~ in Sj such that {Dlcra, . .  ,D.,crm} [= Cc~ and Co Pc Dio.i, and 

moreover 

(ii) for every i in 1 . . . m ,  and for every x in "12avs(Di), Ti does not bind x, or else 

xo.i = yo., for some variable y in C. 

The interest of applying basic superposition to completion of first-order clauses with 

equality lies not only in the gain of efficiency as a consequence of the more reduced search 

space, but  also in the higher probability of obtaining complete systems. By using such 

complete systems S, i.e. sets of clauses in which no more non-redundant  inferences can 

be computed,  very efficient complete strategies can be applied for refutat ional  theorem 

proving, since no new inferences between clauses in S have to be computed.  
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5. F u r t h e r  w o r k  

Some of the techniques of this paper can be applied to other kinds of constraints. Here 

we briefly outline some results of our follow-up paper [NR 91] on the combination of basic 

superposition modelled by the use of equality constraints, and the notion of ordering 
constraints. The interest of similar ordering constraints has been pointed out earlier, 

e.g. in [KKR 90], but, as far as we know, no completeness proofs had been found up to 

n o w .  

The basic idea is very simple. In ordered inference rules like superposition the 

search space is reduced by selecting only the maximal terms in the maximal literals to 

paramodulate upon. Therefore, if a clause is obtained in an inference, we are in fact 

only interested in those ground instances of it for which the literal (and term) selected 

is really the biggest one. This information can be kept in its constraint. Future choices 

of maximal literals that  are incompatible with this constraint can then be shown to be 

unnecessary by proving the unsatisfiability of constraints (the satisfiability of ordering 

constraints is shown to be decidable in [Com 90]). 

For example, if we denote by ~ _~ t r ~TI the ground instances of an equation L ~_ t t 

satisfying the combined ordering and equality constraint T, then the inference rule of 

basic superposition with ordering constraints for the equational case is: 

s ___ s r ~Tt~ t ~_ t' ~T~ 
where tl~, ~ Yars(~) 

t[s']= ~_g'[T' ATAs~- s '  At~-t' Atl==s ~ 

which, as we can see, is a very powerful and also elegant representation for ordered 

inference rules, since information from the meta-level, such as the ordering restrictions 

and accumulated unifiers generated in ancestors, is included into the formulae and used 

later on. 

Especially in the case of full first-order clauses, but also in the equational case, the 

ordering constraints become quickly very restrictive, which cuts down the search space 

drastically. We have reasons to believe that  complete systems can be obtained in many 

more cases, including full first-order specifications. In [NR 91] we define a completion 

procedure for full first-order clauses with ordering constraints where, as above, redun- 

dant inferences can be ignored and redundant clauses can be deleted without loosing 

completeness. This improves the techniques for ordering constrained completion for the 

equational case given in [Pet 90], since we can deal with full first-order clauses, we do 

not need to compute additional kinds of inferences, we allow initial axioms with con- 

straints, and we can combine our methods with basic superposition. In [NR 91] we also 

report two new results needed for efficiently dealing with ordering constraints. 
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