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ABSTRACT
A major distinguishing point of any programming language is how
it deals with concurrency. Programmers want to extract the best
throughput possible for their applications, but it is well known
that taking advantage of all available CPU cores correctly and effi-
ciently is hard. Here, we look at how JuliaLang unleashes the full
power of a modern CPU’s multiple cores.
One of our key considerations is to reduce the programmer’s bur-
den. We will discuss how JuliaLang aims to provide a range of
modern primitives that are designed to automatically compose ef-
fectively, and some of the trade-offs we make to try to simplify the
mental model for the programmer. We’ll also briefly discuss our
thoughts on future development.
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1. Introduction
A design principle for JuliaLang is to make common tasks easy and
difficult tasks possible. This is demonstrated in multiple aspects
of the language, from automatic memory management vs. manual
memory reuse, to having one type of method with dispatch, to op-
tional type-inference for performance. We now extend this to con-
currency. By extending design work that has been present in the
language for many years to provide concurrency, we have devel-
oped a means to add parallelism that preserves the (relative) sim-
plicity of single-threaded execution for existing code, while allow-
ing new code to benefit from multi-threaded execution. This work
has been inspired by parallel programming systems such as Cilk,
Intel Threading Building Blocks (TBB) and Go.
In this paradigm, any piece of a program can be marked for execu-
tion in parallel, and a task will be started to run that piece of code
automatically on an available thread. A dynamic scheduler handles
making cache-aware decisions on when and where to launch tasks.
This model of parallelism has many helpful properties. We see it as
somewhat analogous to garbage collection: with GC, you freely al-
locate objects without worrying about when and how they are freed.
With task parallelism, you freely spawn tasks–potentially millions
of them–without worrying about where they may eventually run.
The model is portable and free from low-level details. The pro-
grammer does not need to manage threads, nor even know how
many processors or threads are available.
The model is nestable and composable: parallel tasks can be started
that call library functions that themselves start parallel tasks, and
everything works correctly. This property is crucial for a high-level

language where a lot of work is done by library functions. The pro-
grammer can write serial or parallel code without worrying about
how the libraries used are implemented. This model isn’t limited to
JuliaLang libraries alone: we’ve shown that it can be extended to
native libraries such as FFTW and are working on extending it to
OpenBLAS.

1.1 Background History
Initially, JuliaLang exclusively provided users the ability to use
cooperatively scheduled workers. In other contexts, these may be
known as “green threads”, “threadlets”, or “coroutines”. In Julia,
we’ve called these tasks. A task is a unit of work with its own con-
text (stack) whose execution can be interleaved with that of any
other task. Additionally, these have the ability to produce a value
or an exception, making them useful for structured concurrency,
without requiring an extra channel to manage. But they haven’t had
the ability to work in parallel (simultaneously).
Tasks have been useful for writing generators and outstanding for
dealing with I/O workloads. Such cases present unpredictable la-
tency and therefore the ability to quickly switch between different
control flows is essential. The arrival of an event requires a quick
context switch to react to the event, and quickly switching back to
resume the original work.
A common pattern for a server is to provide a context for each
child. Consider the following code snippet for a toy socket echo
server. With JavaScript promises:� �
while (true) {

listen(port)
.then(client => {

return client.read()
.then(data => {

return client.write(data);
})
.then(() => {

return client.close();
})
.done();

})
.done();

};� �
This can be made clearer and the structure improved with
async/await:� �
(async () => {

while (true) {
let client = await listen(port);
(async () => {
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let data = await client.read();
await client.write(data);
await client.close();

})();
}

})();� �
This leaves some slightly obnoxious syntax, creating distracting
line noise. When most parts of the language are loosely typed and
inferred by the runtime, this distinction is forced upon the program-
mer.
Consider the Julia version:� �
# function accept(cb, server)
# while true
# let client = accept(server)
# @async cb(client)
# end
# end
# end
accept(listen(port)) do client

data = read(client)
write(client, data)
close(client)

end� �
Notice here how we leverage the do-block syntax to additionally re-
use the loop logic, task allocation, and error handling from a central
place.
This works well for latency bound activities such as a web server.
Note that this code only uses one core, although as it performs
only thread-local actions, it could be run simultaneously on multi-
ple cores without significant change. However, there is also a lot of
code that is not written with the expectation of simultaneous access.
As such, we want to continue to provide concurrency1 as well as
parallelism2. If we define a thread as a unit of work managed by the
runtime system, we can call this N : 1 threading, where the runtime
library manages N independent operations and maps them onto
one system thread (approximately representing a CPU core). In the
new system, we’ll let the user now additionally have M CPU cores.
This goes beyond the classic N :M threading model however, as the
programmer can specify cooperative affinities where certain tasks
won’t interrupt each other. We’ll call this N(k : 1) : M schedul-
ing since we’re combining the advantages of single-threaded work
queues with multiple cores.
In N(k : 1) :M scheduling, we have N units of work mapped onto
M CPU threads. Additionally, each of those units of work may be
composed of k cooperatively scheduled tasks. This is achieved by
pinning the k tasks in a group to one CPU thread, while load bal-
ancing units of work across the available cores using the partr
scheduler, a novel implementation of a parallel depth-first schedul-
ing algorithm. This will be discussed further in section 5 on imple-
mentation.
We can extend this model further by factoring out a common factor
of P :P to write this as N(k : 1) :M + P (k : 1) :P and derive one
further useful use case: the ability to pin one thread to running one
task (or task-group). These P tasks could be an over-subscription
of the CPU cores, or take away from M , or both. Typical uses for
this mode of operation would be high-availability tasks (with low
latency requirements, but also minimal computation), such as back-

1When at least two threads are making progress; a more general form of
parallelism that can include time-slicing.
2When at least two threads are executing simultaneously

ground I/O processing, blocking work pools (foreign library inte-
gration), finalizers, or message server queues.
For a couple years, JuliaLang has been able to perform simple loop
parallelism with the ‘@threads for’ macro, roughly analogous to
OpenMP’s ‘#pragma omp parallel for schedule(static)’
without support for reductions. This had been labelled “exper-
imental” while we focused on making JuliaLang’s runtime re-
entrant and threadsafe and clarified requirements for the final par-
allelism capabilities. The experimental threading infrastructure had
no scheduler, could not interact with regular tasks or do I/O, and
parallel loops could not be nested. This made it nearly impossible
to write many common algorithms or use a large portion of the lan-
guage while running a threaded region of code.
The new threading runtime addresses all these shortcomings. Fur-
thermore, in addition to the new parallelism constructs that have
been introduced, the previous loop parallelism capability has been
rewritten on top of this runtime, demonstrating its power and flexi-
bility.

Running Julia with Threads

In the examples below, we will be using JuliaLang v1.3
launched with multiple threads. To follow along on your
own machine, you will need to download the upcoming
JuliaLang release (currently v1.3.0-rc1) from https://
julialang.org/downloads. Run ./julia with the en-
vironment variable JULIA_NUM_THREADS set to the num-
ber of threads to use.
Alternatively, after installing JuliaLang, follow the
steps at http://docs.junolab.org/latest/man/
installation/ to install the Juno IDE. It will automat-
ically set the number of threads based on the number of
available processor cores, and also provides a graphical
interface for changing the number of threads.

2. Motivating Examples
The presence and usability aspects of threading, as exemplified
here, reflect JuliaLang’s general policy of giving users control. One
driving philosophy is that users should have the ability to access the
full power of their machine. And it should be easy when needed but
ignorable when not required.
While many, or even most, programs can be written without need-
ing to touch multithreading, some require them, while some benefit
from them. In this paper, we’ll primarily examine some cases where
threads aren’t required, but are improved by their presence. Addi-
tionally we’ll look at a case where the work can be run sequentially
with cooperative scheduling, but at greatly reduced performance.
Most thread-specific functionality is exported from the Threads
submodule of the Base module. For example, we can querying it
for the runtime number of threads and the id of the current thread:� �
julia> Threads.nthreads()
4

julia> Threads.threadid()
1� �
2.1 Stochastic Ordering
One of the more visual ways to show we have threads working is to
show the scheduler picking up work in semi-random, interleaving,
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orders. JuliaLang’s existing ‘@threads for’ macro would split a
range and run a portion on each thread with a static schedule. So in
the range below, thread 1 would run items 1 and 2, thread 2 would
run items 3 and 4, and so on. Now these threads support doing I/O
too with that same schedule.� �
bash$> JULIA_NUM_THREADS=8 julia <<EOF
Threads.@threads for i = 1:12

println(i, " on thread ", Threads.threadid())
end
EOF
1 on thread 1
3 on thread 2
12 on thread 8
9 on thread 5
7 on thread 4
2 on thread 1
4 on thread 2
5 on thread 3
8 on thread 4
11 on thread 7
10 on thread 6
6 on thread 3� �
But now, it’s also now possible to do the same example but with
a completely dynamic schedule. With the improved language run-
time, this takes a few small tweaks now. We use the new ‘@spawn’
macro with the existing ‘@sync’ macro to delineate the work items.
The ‘@spawn’ macro marks a block of code that can immediately
start executing, asynchronously, on any free thread. The preexist-
ing ‘@sync’ macro then waits for all (lexical) subtasks to complete,
eliminating the boilerplate necessary to track and wait on each task
block separately.� �
bash$> JULIA_NUM_THREADS=8 julia <<EOF
@sync for i = 1:12

Threads.@spawn println(i, " on thread ", Threads.threadid())
end
EOF
2 on thread 5
3 on thread 4
8 on thread 7
6 on thread 5
12 on thread 7
7 on thread 6
9 on thread 8
10 on thread 5
4 on thread 3
1 on thread 2
5 on thread 1
11 on thread 1� �
But on to even more fun stuff...

2.2 Parallel Merge Sort
A classic algorithm, parallel merge sort shows nice performance
benefit and scaling from using multiple threads. This function will
create O(log(n)) subtasks which will sort independent portions of
the array before merging them into a final sorted copy of the input.
We use here the ability of each task to return a value to directly
fetch the result without requiring an additional channel for data!
This operation implicitly waits for the task to finish, then accesses
the result value of the Task.� �
# perform a merge sort on `v` using parallel threads
function psort(v::AbstractVector)

hi = length(v)
if hi < 100_000 # below some cutoff, run in serial

return sort(v, alg = MergeSort)
end

# split the range and sort the halves in parallel recursively
mid = (1 + hi) >>> 1
half = Threads.@spawn psort(view(v, 1:mid))
right = psort(view(v, (mid + 1):hi))
left = fetch(half)::typeof(right)

# perform the merge on the result
out = similar(v)
merge!(out, left, right)
return out

end

function merge!(out, left, right)
ll, lr = length(left), length(right)
@assert ll + lr == length(out)
i, il, ir = 1, 1, 1
@inbounds while il <= ll && ir <= lr

l, r = left[il], right[ir]
if isless(r, l)

out[i] = r
ir += 1

else
out[i] = l
il += 1

end
i += 1

end
@inbounds while il <= ll

out[i] = left[il]
il += 1
i += 1

end
@inbounds while ir <= lr

out[i] = right[ir]
ir += 1
i += 1

end
return out

end� �
To see the timing results as we add threads, refer to figure 3 at the
end.
While not demonstrated here, fetch would also automatically
propagate errors, with the result of it being an error thrown if the
child task ended by throwing an exception.
Since we are using in-process threads, we could further optimize
this to instead mutate the input in-place and to reuse work buffers
for additional performance. We have elsewhere tested that and
shown the performance improvement is as expected. However,
since the scaling improvement was similar between them, we’ve
opted not to include it here.
On a single thread, this code is already quite competitive to the
optimized serial implementation in the standard library, which does
not use any threading:� �
julia> @time psort(a);

2.676906 seconds (3.06 k allocations: 1.416 GiB, 3.66% gc time)

julia> @time sort(a);
1.716137 seconds (2 allocations: 152.588 MiB)

julia> @time sort(a, alg=MergeSort);
2.123958 seconds (5 allocations: 228.882 MiB)� �

This shows we are adding some overhead, but it is not substantial.
In fact, with 2 threads, we’ll already be faster than the serial imple-
mentations!

3



Proceedings of JuliaCon 1(1), 2019

The algorithm given here is limited in the theoretical scaling capa-
bility, since the merge step is not parallelized. On large core counts,
that can be important, so please see our supplementary code in ap-
pendix A for the version with optimal theoretical scaling.

2.3 Parallel Primes Sieve
An unusual use of high-level threading operations can be used
to (inefficiently) compute prime numbers using the sieve of Er-
atosthenes. This use of threaded channels is translated from
Thomas Hoare’s seminal 1978 paper “Communicating Sequential
Processes”[3] example 6.1. It works by creating a task for each
prime number being generated. Upon receiving (and outputing) a
prime, each task will then take responsibility for filtering out mul-
tiples of that prime from the input list, as represented in figure 1.

Fig. 1. Primes sieve in operation. Inputs ‘n’ across the top. Task numbers
‘i’ down the side. Outputs ‘P ’ marked in the center.

� �
function S61_SIEVE(numPrimes::Integer, nqueue::Int=5)

done = Threads.Atomic{Bool}(false)
primes = Int[]
sieves = [Channel{Int}(nqueue) for i = 1:numPrimes]
for i in 1:numPrimes

Threads.@spawn begin
sieve = sieves[i]
p = take!(sieve)
push!(primes, p)
if length(primes) == numPrimes

# don't pass it on--we're done now
#= TODO: add an atomic write release barrier here =#
done[] = true
return

end
mp = p # mp is a multiple of p
for m in sieve

while m > mp
mp += p

end
if m < mp

put!(sieves[i + 1], m)
end

end
end

end
put!(sieves[1], 2)
n = 3
while !done[]

put!(sieves[1], n)
n += 2

end
foreach(close, sieves)
return primes

end� �

To see the timing results as we add threads, refer to figure 3 at the
end.
Since we’re creating one thread for each number, the overhead here
overwhelms the computational cost of the additions. That makes
this implementation much slower than the optimized routines typi-
cally used now, such as those provided in Primes.jl to compute
primes. But is also means we show exceptional (super-linear) scal-
ing. This is because we end up being able to run a better schedule
when we can fill and empty the channels in parallel. That is also
why the presence of at least a small buffer on the channel can be a
significant advantage for the implementation.

2.4 Parallel Prefix Scan
Prefix-scan-sum is another classic algorithm that is able to benefit
nicely from having multiple threads. Without going into any details
about how this operation works or what it does, the short code be-
low can take advantage of all cores and SIMD units available on
the native machine—even with a generic ahead-of-time-compiled
system image:� �
using .Threads: @threads
function prefix_threads!(⊕, y::AbstractVector)

l = length(y)
k = ceil(Int, log2(l))
# do reduce phase
for j = 1:k

@threads for i = 2�j:2�j:min(l, 2�k)
@inbounds y[i] = y[i - 2�(j - 1)] ⊕ y[i]

end
end
# do expand phase
for j = (k - 1):-1:1

@threads for i = 3*2�(j - 1):2�j:min(l, 2�k)
@inbounds y[i] = y[i - 2�(j - 1)] ⊕ y[i]

end
end
return y

end

A = fill(1, 500_000)
prefix_threads!(+, A)� �
JuliaLang can express this operation so well because it defines an
expressive front-end to describe optimizations to the compiler. Un-
der the hood, it puts together a comprehensive set of features that
free the user from dealing with memory management, thread man-
agement, nor compile/runtime distinction. The runtime is able to
prepare a version of this function specifically optimized for the ar-
guments types. And it spawns closures to be run on all available
CPUs. The compiler can also automatically specialize the function
for the current processor (both ahead-of-time and just-in-time), ad-
justing the ABI on-the-fly (with trampolines as needed). And our
lightweight threading system will dynamically schedule the work
chunks.

3. Performance
Each of the examples above shows a performance benefit attained
from adding threads!
On a quad-core laptop (Intel(R) Core(TM) i7-8559U CPU @
2.70GHz), we observed the scaling and timing numbers shown in
Tables 1 and 2.
These can be seen plotted graphically in figure 2 and 3.
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Table 1. Measured timing of the examples given above.
nthreads 1 2 3 4
S61_SIEVE 14.704s 7.709s 4.065s 2.241s
psort 2.609s 1.528s 1.321s 0.993s
prefix_threads! 2.375ms 1.462ms 1.100ms 1.043ms

Table 2. Timing figures from table 1 converted
to scaling ratios relative to the first column.
nthreads 1 2 3 4
S61_SIEVE 1x 1.91x 3.62x 6.56x
psort 1x 1.71x 1.98x 2.63x
prefix_threads! 1x 1.62x 2.16x 2.28x
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Fig. 2. Timings from table 1 plotted graphically.

4. Integration into an existing language
Another challenge we faced was seeing what would be needed to
integrate this work with pre-existing code. JuliaLang is an exist-
ing, post version 1.0 language with promises to maintain backwards
compatibility and a large third-party code base that depends on it.
Any changes needed to have an upgrade-path. Whenever there were
existing code that might reasonably be expected to be safe to use
from multiple threads, that code needed to be identified and fixed.
Fortunately, many key aspects of the language had previously been
designed in expectations of becoming threaded. In some other pop-
ular languages, we see they have not been able to add unrestricted
threading. There were several areas that needed to be tackled to
determine the appropriate upgrade path:
User-facing APIs:

—concurrency basics: Task, and associated functions including
schedule, yield, wait

—mutexes: ReentrantLock and Condition variables, including
lock, unlock, wait

—synchronization primitives: Channel, Event, AsyncEvent,
Semaphore

—IO and other delays: including read, write, open, close,
sleep

—experimental Threads module: random assortment of building
blocks and atomics

—memoization-type caches (e.g. inside Regex.PCRE and the
Random.GLOBAL_RNG object reference)

Once we determined we wanted to make concurrency and paral-
lelism use the same concept (named a Task), that set many prior-
ities. Many of the APIs in our list of user-facing APIs were able
to directly add thread-safety “under-the-hood”, as they say. This
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Fig. 3. Scaling ratios from table 2 plotted graphically.

meant that we found that typical user code that already interacted
with IO, synchronization, locks, and tasks could continue to operate
unchanged. In most cases, we achieved this by adding fine-grained
locks on each critical resource. There were a few notable cases:

4.1 Changes to Tasks
The existing concurrency primitive of Tasks was enhanced by ex-
posing a new, optional flag to enable thread-migration for it. We
call this concept “sticky” tasks, as a default task is only coopera-
tively runnable on the thread that scheduled them. When set to
false, however, the task becomes eligible to be picked up by any
other thread. Combined with the internal changes to make wait on
events and channels thread-safe, we believe this provides an easy-
to-use mechanism for selecting between the simpler cooperatively
concurrent usage (single-threaded) and the more general simulta-
neous parallelism (multi-threaded).� �
t = Task(() -> [closure code])
t.sticky = false # t may now get run on any thread
schedule(t)
...
wait(t)� �
However, while conceptually simple, the above felt slightly awk-
ward compared to the fairly succinct @async syntax used for creat-
ing a concurrent task. We wanted to make it similarly convenient,
so we also created a new Threads.@spawn macro and integrated
it with the existing @sync macro.� �
using Threads: @spawn
@sync begin

@async concurrent_closure()
@spawn parallel_closure()

end # wait for all� �
4.2 Changes to Condition
The existing Condition object couldn’t be made thread-safe.
There were two replacements identified: one, replace it with an
auto-resetting event with the same API; or two, replace it with a
new mutex-based API. We decided to go with the latter option.
This meant that existing usage of Condition was only correct if it
remained on a single-thread. We decided to mechanically enforce
this by asserting on usage that it was always used from the same
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thread it was created on. The new API requires writing the follow-
ing more verbose code pattern:� �
c = Threads.Condition()
# or alternately
# l = ReentrantLock()
# ...
# c1 = Threads.Condition(l)
# c2 = Threads.Condition(l)
...
lock(c)
try

while !is_condition_met()
...
wait(c)
...

end
finally

unlock(c)
end
...� �
Previously, this would have been more simply
c = Condition(); is_condition_met() wait(c). While this change
may seem more difficult at first glance, we observed that while
the lock acquisition here could be hidden inside wait in the first
replacement, all of this structure will usually still be required
by the is_condition_met function. And the code would get much
further complicated by the need to release the lock before calling
wait. We concluded therefore that in most cases the code would
be made simpler and faster by changing the API to the second
option. This also meant that when code was being changed to be
thread-safe, it would need to replace uses of Condition with the
new Threads.Condition.

4.3 Changes to I/O
Changing the I/O code (files, streams, folders, and other platform
code) to work on from any thread was another big project. The ex-
isting design requires an underlying asynchronous library, with a
design similar to Windows IOCP, to efficiently manage large num-
bers of open event sources and provide the simplicity and conci-
sion of the logic shown in section 1.1 on all platforms. For this, we
have been using the libuv library. This lets us have most platform-
specific code isolated in a separately tested library and provide
more commonality in our runtime library. As an initial implemen-
tation to make this library safe to use from threads, we’ve used one
big I/O lock around all calls to it. However, this library also has
callbacks and will block to wait for external incoming events, so
we also needed to integrate it fully with the task scheduler to get
it to cooperatively release the lock on demand. We were able to
do so by adding an asynchronous channel (uv_async_t) to wake
the one thread running the event loop while all other threads sleep
on a system mutex (uv_cond_t) when there is no work for them
to perform. When we try entering the event loop, we do so only
if the count of currently waiting tasks is zero. In the future, this
work may allow us to move the event loop entirely to a separate
thread (and/or multiple threads). It seems that this design change
may thus be making threading support a mandatory requirement
for the underlying VM—with the advantage we that we can get
more throughput on the large-core systems that are only becoming
more common.

4.4 Changes to Memoization Caches
The usual strategy for dealing with these was to turn them from true
globals into thread-local variables. To assist in that goal, we assign
all threads a low numbered threadid. This can then be used to
index a global array to access the cache for that thread. For exam-
ple, instead of one global Random.GLOBAL_RNG object represent-
ing the global MersenneTwister pseudo-random number genera-
tor (PRNG) state, we use a Random.default_rng() function to
retrieve the current PRNG for that thread (or to lazy-initialize one
from system randomness on first use).� �
function default_rng()

tid = Threads.threadid()
@assert 0 < tid <= length(THREAD_RNGs)
if @inbounds isassigned(THREAD_RNGs, tid)

@inbounds MT = THREAD_RNGs[tid]
else

MT = MersenneTwister()
@inbounds THREAD_RNGs[tid] = MT

end
return MT

end
function __init__()

resize!(empty!(THREAD_RNGs), Threads.nthreads())
end� �
4.5 Changes to the Julia Runtime Library
The functionality provided in libjulia also needed to be thread-safe.
While some of it consists of stateless helper functions, much of it
is where the shared global state for the language lives (by contrast,
much of the system library is written in the JuliaLang language
itself and as a general principle, the whole system has avoided using
mutable global state unless essential).
Due to the design of the rest of the language avoiding access to mu-
table state inside the runtime library, we felt it would acceptable to
use fine-grained locked for protecting most accesses. Many of these
were added in an earlier version of JuliaLang, while threading was
still under highly experimental development. These included such
aspects as code-generation (JIT compilation) and GC (memory al-
location and freeing).
Discussion of the GC design and subsequent updates to make it
work well with threads could occupy an entire article of its own, so
it will not be discussed here. Although in the future work section
later in this paper, some improvements being investigated for the
compiler will be discussed.
When using locks, there is a hierarchy of access that must
be respected to avoid deadlocks. This is documented somewhat
sparsely at https://docs.julialang.org/en/v1/devdocs/
locks/. Over time, we’ll extend this list as we discover problems
or are able to simplify shared resources. There are some known is-
sues already such as the lack of a lock around certain “toplevel-
only” operations and an invalid design for the ordering of the
Module->lock. These issues will be addressed in time—they are
not believed to be insurmountable issues.
The missing toplevel lock is interesting, since it is a lock against
concurrent execution of any other code. This will require halting
all other threads in some way to inhibit accidental observation of
the global state while it’s in an intermediate inconsistent state. This
should be possible in coordination with the GC-safepoint lock,
which already has a very similar problem.
Some aspects were still too performance critical however to be able
to use a lock there, so we also make careful use of atomic pointer-
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publishing updates in a few specific places. As special-cases of
that, we use RCU-type (read-copy-update) updates in some places
and write-once in other places). This is known to work on most
computer architectures. Others, such as the notorious DEC Alpha,
we are content to exclude. In a code-base that already supports
garbage-collection, the RCU algorithm is greatly simplified (and
writers pay no additional cost), so this is typically preferred if mu-
tation is absolutely required and reads must be fast. Otherwise, a
simple lock is used.

5. Implementation
A prototype implementation of the partr scheduler was first writ-
ten for us in C by Kiran Pamnany of Intel back in late 20163, fol-
lowing research done on scheduling threads for beneficial cache
sharing for best throughput[1]. The goal of this work was effortless
composition of threading-capable libraries with a globally depth-
first work ordering (as opposed to 1 : 1/preemptive scheduling,
which would try to make progress on all work, or work-stealing
scheduling, which is only depth-first local to a thread and is glob-
ally breadth-first).
The next stage of this work was then to integrate it with the existing
JuliaLang runtime system and hoist as much of the implementation
as possible into native Julian code. (Aside: one outcome of this
work has been to allow us to delete much of the special support
code from the C runtime for our prior experimental ‘@threads’
fork/join-style API!)
A big challenge of this work has been implementing a sound al-
gorithm for determining when threads should “park” themselves in
a sleep mutex or wait for I/O. This requires careful coordination
to ensure we don’t create a single contention point when trying to
schedule and run tasks, but also are responsive to resume when
new work arrives (either internally, from another thread, or exter-
nally, from I/O streams). This is done by setting a flag in the task to
notify it after work is added to the queue. If the running task sees
that the thread was previously sleeping, it then additionally notifies
its condition variable to wake it up.

6. Foreign Libraries
An important motivation for this work was our desire to better sup-
port multi-threaded capable libraries, without considerable CPU
over-subscription killing performance due to cache-thrashing and
frequent preemptive CPU context switches. Previously, the only op-
tions were often for the user to decide up-front to limit JuliaLang
to N threads, and tell the threaded library (such as libfftw or lib-
blas) use bM ÷ Nc (floordiv) cores. The most common choices
probably being 1 and M, so only part of the application and run-
ning time is able to benefit from the presence of multiple cores in
the system. However, given our ability to quickly create and run
work items in our thread pool, we are looking at how to work with
external libraries also and let them also integrate with our existing
thread-pool.
This is an on-going area of exploration as we get feedback on the
performance and API needs of various libraries.
We’ve successfully adapted FFTW to run on top of our threading
runtime instead of its own4 (a pthreads-based workpool). This took
us only a few hours (we were fortunate to be able to enlist the assis-
tance of that library’s author). Without any performance tweaking

3partr codebase: https://github.com/kpamnany/partr
4FFTW.jl partr thread support: https://github.com/JuliaMath/

FFTW.jl/pull/105

(yet), we saw competitive performance results! We learned impor-
tant lessons in needing to tightly optimize our scheduler latency,
which is now ongoing work to achieve exact performance parity5.
Even with some overhead imposed by generality however, we ex-
pect that the ability to compose thread-aware users and enable the
better resource sharing created by the partr scheduler will make
this an overall improvement in program operation.

7. Future work
While this work has been ongoing for several years already, there
are still many interesting and important improvements to consider.
We’d like to investigate ways to further expand the thread-safe API
surface and integrate powerful thread-sanitizer tooling to help users
write better code. There’s also substantial room for the standard li-
brary to start using this threading runtime whenever possible. How-
ever, we need to explore ways to safely and conveniently expose
this option to users (which often seem contradictory).
Additional performance testing is necessary to fine-tune the heuris-
tic numbers. For example, when adding work items to the dynamic
scheduler to run on P cores, what is a good ratio factor k to use
when creating chunks of work? Should we make 1P items (assume
a static schedule)? or 105P (assume a static schedule on either of
P or P − 1 processors for P = 4, 6, 8, 16)? Or perhaps simply 3P
is sufficient to balance out much variation? And yet other work-
loads, however, may want one work item for every input value (like
Distributed.pmap does)!
We specifically highlight one additional item: concurrent garbage
collection. Currently, JuliaLang’s runtime library needs to wait for
all threads to arrive at a safe-point or be in a safe-region (such as
foreign code) before GC can start. This can introduce long pauses
if one or more threads are far away from hitting such a region.
Presently, those only exist where manually inserted into the code,
such as while waiting for a lock or doing allocation. In the fu-
ture, we intend to investigate options for automatic placement of
safe-points by the system to minimize GC start latency without un-
duly impacting allocation-free code. There are certainly more ap-
proaches to handle releasing memory then there are language im-
plementations in existence, possibly multiple times over. So suffice
to say this is an area with many possible trade-offs! For an example
of where we might also go with this, please take a look at the Mono
project’s documentation on cooperative thread suspension[5] for
how a different language, which shares a common code-generation
strategy, handles this.

8. Conclusions and summary
JuliaLang’s approach to multi-threading combines many previously
known ideas in a novel framework. While each in isolation is use-
ful, we believe that–as is so often the case–the sum is greater than
the parts.
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5FFTW.jl performance comparison: https://github.com/JuliaMath/
FFTW.jl/pull/151
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10. Bad puns
We liken the addition of thread-safety as moving from the age of
mechanization...

Fig. 4. Ye olde age of Newtonian power.

to the atomic age!

Fig. 5. The atomic age.

The figure 4 is a windmill. The figure 5 is a atom.
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APPENDIX

A. Parallel Merge
For doing the merge step of a merge sort in parallel, we only need
to add a bit of code to the merge! function. Let’s call the result
pmerge!. The details of this algorithm can be found elsewhere,
although most textbooks do not give the stable algorithm used here.
This is a minor enhancement and simplification of the algorithm
given in the original paper[2], as described in “Structured Parallel
Programming”[4] in section 13.1 on page 300, and in a later blog
post by one of the authors[6].� �
function pmerge!(out, left, right)

ll, lr = length(left), length(right)
@assert ll + lr == length(out)
if length(out) < 100_000

# below some threshold, just do the merge
merge!(out, left, right)

else
# split the larger chunk in half, then binary search the
# smaller half to split it
if ll > lr

jl = ll ÷ 2
# stable sort: find the last entry in right
# strictly smaller than l
jr = searchsortedfirst(right, left[jl]) - 1

else
jr = lr ÷ 2
# stable sort: find the last entry in left not bigger
# than r
jl = searchsortedlast(left, right[jr])

end
@sync begin

let left = view(left, 1:jl),
right = view(right, 1:jr),
out = view(out, 1:(jl + jr))
Threads.@spawn pmerge!(out, left, right)

end
let left = view(left, (jl + 1):ll),

right = view(right, (jr + 1):lr),
out = view(out, (jl + jr + 1):length(out))
pmerge!(out, left, right)

end
end

end
nothing

end� �
This was tested with 8 hyperthreads on the same 4 core laptop as
before on a vector a consisting of 20M random doubles (Float64
elements). With the parallel pmerge!, @btime psort(a) reported
a runtime of 533 ms vs. 743 ms for the serial merge merge!!
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