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Quatro conjuntos de dados de QSAR e QSPR foram selecionados da literatura e os modelos 

de regressão foram construídos com 75, 56, 50 e 15 amostras no conjunto de treinamento. Estes 

modelos foram validados por meio de validação cruzada excluindo uma amostra de cada vez, 

validação cruzada excluindo N amostras de cada vez (LNO), validação externa, randomização do 

vetor y e validação bootstrap. Os resultados das validações mostraram que o tamanho do conjunto 

de treinamento é o fator principal para o bom desempenho de um modelo, uma vez que este piora 

para os conjuntos de dados pequenos. Modelos oriundos de conjuntos de dados muito pequenos 

não podem ser testados em toda a sua extensão. Além disto, eles podem falhar e apresentar 

comportamento atípico em alguns dos testes de validação (como, por exemplo, correlações espúrias, 

falta de robustez na reamostragem e na validação cruzada), mesmo tendo apresentado um bom 

desempenho na validação cruzada excluindo uma amostra, no ajuste e até na validação externa. 

Uma maneira simples de determinar o valor crítico de N em LNO foi introduzida, usando o valor 

limite de 0,1 para oscilações em Q2 (faixa de variações em único LNO e dois desvios padrões 

em LNO múltiplo). Foi mostrado que 10 - 25 ciclos de randomização de y ou de bootstrapping 

são suficientes para uma validação típica. O uso do método bootstrap baseado na análise de 

agrupamentos por métodos hierárquicos fornece resultados mais confiáveis e razoáveis do que 

aqueles baseados somente na randomização do conjunto de dados completo. A qualidade de dados 

em termos de significância estatística das relações descritor - y é o segundo fator mais importante 

para o desempenho do modelo. Uma seleção de variáveis em que as relações insignificantes não 

foram eliminadas pode conduzir a situações nas quais elas não serão detectadas durante o processo 

de validação do modelo, especialmente quando o conjunto de dados for grande.

Four quantitative structure-activity relationships (QSAR) and quantitative structure-property 

relationship (QSPR) data sets were selected from the literature and used to build regression 

models with 75, 56, 50 and 15 training samples. The models were validated by leave-one-out 

crossvalidation, leave-N-out crossvalidation (LNO), external validation, y-randomization and 

bootstrapping. Validations have shown that the size of the training sets is the crucial factor in 

determining model performance, which deteriorates as the data set becomes smaller. Models 

from very small data sets suffer from the impossibility of being thoroughly validated, failure and 

atypical behavior in certain validations (chance correlation, lack of robustness to resampling and 

LNO), regardless of their good performance in leave-one-out crossvalidation, fitting and even in 

external validation. A simple determination of the critical N in LNO has been introduced by using 

the limit of 0.1 for oscillations in Q2, quantified as the variation range in single LNO and two 

standard deviations in multiple LNO. It has been demonstrated that it is sufficient to perform 10 - 25 

y-randomization and bootstrap runs for a typical model validation. The bootstrap schemes based 

on hierarchical cluster analysis give more reliable and reasonable results than bootstraps relying 

only on randomization of the complete data set. Data quality in terms of statistical significance of 

descriptor - y relationships is the second important factor for model performance. Variable selection 

that does not eliminate insignificant descriptor - y relationships may lead to situations in which 

they are not detected during model validation, especially when dealing with large data sets.

Keywords: leave-one-out crossvalidation, leave-N-out crossvalidation, y-randomization, 

external validation, bootstrapping
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Introduction

Multivariate regression models in chemistry and other 

sciences quantitatively relate a response (dependent) 

variable y to a block of predictor variables X, in the form of a 

mathematical equation y = f(X), where the predictors can be 

determined experimentally or computationally. Among the 

best known of such quantitative-X-y relationships (QXYR) 

are quantitative structure-activity relationships (QSAR)1-3 

and quantitative structure-property relationships (QSPR),4,5 

in which y is a biological response (QSAR) or physical 

or chemical property (QSPR), and any of the predictors, 

designated as descriptors, may account for a microscopic 

(i.e., determined by molecular structure) or a macroscopic 

property. QSAR has become important in medicinal 

chemistry, pharmacy, toxicology and environmental science 

because it deals with bioactive substances such as drugs and 

toxicants. QSPR has become popular in various branches 

of chemistry (physical, organic, medicinal, analytical 

etc.) and materials science. There are many other types 

of QXYR, some of which represent variants of or are 

closely related to QSAR or QSPR. It is worth mentioning 

quantitative structure-retention relationship (QSRR),6 

adsorption-distribution-metabolism-excretion-toxicity 

(ADMET) relationship,7 quantitative composition-activity 

relationship (QCAR),8 linear free energy relationship 

(LFER),9 linear solvent energy relationship (LSER)10 and 

quantitative structure-correlations in structural science.11,12 

QXYR are also found in cheminformatics,13 for example, 

using z-scales or scores of amino-acids or nucleotides as 

molecular descriptors,14,15 and in bioinformatics where the 

primary sequence of nucleic acids, peptides and proteins 

is frequently understood as the molecular structure for 

generation of independent variables.16-18 Other QXYR deal 

with relationships among various molecular features19 and 

parameters of intermolecular interactions20 in computational 

and quantum chemistry, and correlate various chemical and 

physical properties of chemicals in chemical technology.21,22 

In this work, all types of QXYR will be termed as QSAR 

and QSPR rather than molecular chemometrics23 because 

X can be a block of macroscopic properties which are not 

calculated from molecular structure.

Continuous progress of science and technology24 is 

the generator for a vast diversity of QSAR and QSPR 

approaches via new mathematical theories, computational 

algorithms and procedures, and advances in computer 

technology, where chemometrics is the discipline for 

merging all these elements. Health problems, search for 

new materials, and environmental and climate changes give 

rise to new tasks for QSAR and QSPR, as can be noted 

in the literature. Mathematical methodologies employed 

in QSAR and QSPR cover a wide range, from traditional 

regression methods25-28 such as multiple linear regression 

(MLR), principal component regression (PCR) and partial 

least squares (PLS) regression to more diverse approaches 

of machine learning methods such as neural networks29,30 

and support vector machines.31 Modern computer programs 

are capable of generating hundreds and even thousands 

of descriptors for X and, in specific kinds of problems 

even variables for y, in a very easy and fast way. Time for 

and costs of testing chemicals in bioassays, and several 

difficulties in physical and chemical experiments are the 

reasons for more and more variables being computed instead 

of being measured. Regression models y = f(X) are obtained 

from these descriptors with the purpose of comprehensive 

prediction of values of y. Finally, the statistical reliability 

of the models is numerically and graphically tested32-34 in 

various procedures called by the common name of model 

validation,35-38 accompanied by other relevant verifications 

and model interpretation.3-5,39

Even though the terms validation and to validate are 

frequent in chemometric articles, these words are rarely 

explained.40 Among detailed definitions of validation in 

chemometric textbooks, of special interest is that discussed 

by Smilde et al.,32 who pointed out that validation includes 

theoretical appropriateness, computational correctness, 

statistical reliability and explanatory validity. According 

to Brereton,41 to validate is equivalent to “to answer 

several questions” on a model’s performance, and for 

Massart et al.,42 to validate a model means “to verify 

that the model selected is the correct one”, “to check the 

assumptions” on which the model has to be based, and “to 

meet defined standards of quality”. Validation for Snee43 

is a set of “methods to determine the validity of regression 

models.”

The purpose of this work is to present, discuss and 

give some practical variants of five validation procedures 

which are still not-so-commonly used44 in QSAR and 

QSPR works: leave-one-out crossvalidation, leave-N-out 

crossvalidation, y-randomization, bootstrapping (least 

known among the five) and external validation.23,38,40,44-46 

This statistical validation is the minimum recommended 

as standard in QSAR and QSPR studies for ensuring 

reliability, quality and effectiveness of the regression 

models for practical purposes. Unlike instrumental data 

generated by a spectrometer, where a huge set of predictors 

of the same nature (intensities, in general of the same order 

of magnitude) are highly correlated among themselves 

and to the dependent variable (analyte concentration) via 

a known physical law (Beer’s law), QSAR and QSPR 

data are more complex and obscure. In QSAR and QSPR 

studies, the descriptors are of different natures and orders 
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of magnitude and, therefore careful variable selection and 

rigorous model validation are crucial.

Five Basic Validation Procedures

The basic statistical parameters, such as root mean 

square errors (standard deviations), “squared form” 

correlation coefficients which are regularly used in 

QSAR and QSPR, and the respective Pearson correlation 

coefficients that can be also found in several studies, are 

described in detail in Table 1.

The purpose of validation is to provide a statistically 

reliable model with selected descriptors as a consequence 

of the cause-effect and not only of pure numerical 

relationship obtained by chance. Since statistics can never 

replace chemistry, non-statistical validations (chemical 

validations5) such as verification of the model in terms 

of the known mechanism of action or other chemical 

knowledge, are also necessary. This step becomes crucial 

for those cases where no mechanism of action is known 

and also for small and problematic data sets, when some 

statistical tests are not applicable but the mechanism of 

action of compounds is well known so that the selected 

descriptors may be justified a priori.

Requirements for the structure of data sets

Statistical validation of the final model should start 

with all samples in random order and a ready and “clean” 

data set, i.e., where variable selection has been already 

performed and outliers removed. Randomness is important 

since a user-defined samples’ order frequently affects the 

validation, because regularly increasing or decreasing 

values of variables may be correlated to the position of 

samples within the set or its blocks (subsets). The structure 

of such data sets can be characterized by their size, data 

set split, statistical distribution of all descriptors and the 

dependent variable, and structural diversity of samples.

From the statistical point of view, small data sets, i.e. 

data sets with a small number of samples, may suffer 

from various deficiencies like chance correlation, poor 

regression statistics and inadequacy for carrying out various 

statistical tests as well as unwanted behavior in performed 

tests. Any of those may lead to false conclusions in model 

interpretation and to spurious proposals for the mechanism 

of action of the studied compounds. Working with small 

data sets is delicate and even questionable, and it should 

be avoided whenever possible. 

The number of predictor variables (descriptors) also 

defines the data size. It is generally accepted that there must 

be at least five samples per descriptor (Topliss ratio) for a 

simple method as MLR.38,44 However, PCR and PLS allow 

using more descriptors, but too many descriptors may cause 

difficulties in model interpretability. Besides, using several 

factors (principal components or latent variables) can make 

model interpretation tedious and lead to a problem similar 

to that just mentioned about MLR (using too many factors 

means low compression of original descriptors).

Data set split is another very important item which 

strongly depends on the size of the whole set and the nature 

and aim of the study. In an ideal case, the complete data 

set is split into a training (learning) set used for building 

the model, and an external validation set (also called test 

or prediction set) which is employed to test the predictive 

power of the model. The external validation set should be 

distinguished from a data set additionally created only to 

make predictions. This data set, which is sometimes also 

called prediction set, is blind with respect to eventual 

absence of dependent variable and has never participated 

in any modeling step, including variable selection and 

outlier detection. In cases of small data sets and for special 

purposes, it is necessary to build first the model with all 

samples and, a posteriori, construct an analogous one 

based on the split data. In this article, the former and latter 

models are denominated as the real and auxiliary models, 

respectively. The aim of the auxiliary model is to carry 

out validations that are not applicable for the real model 

(external validation and bootstrapping). Since the auxiliary 

model has fewer samples than the real, it is expected that 

its statistics should be improved if the validations were 

performed on the real model.

It is expected that variables in QSAR and QSPR 

models follow some defined statistical distribution, most 

commonly the normal distribution. Moreover, descriptors 

and the dependent variable should cover sufficiently wide 

ranges of values, the size of which strongly depends on 

the nature of the study. From our experience, biological 

activities expressed as molar concentrations should vary 

at least two orders of magnitude. Statistical distribution 

profile of dependent and independent variables can easily 

be observed in simple histograms which are powerful tools 

for detection of badly constructed data sets. Examples 

include histograms with too large gaps, poorly populated 

or even empty regions, as well as highly populated narrow 

intervals. Such scenarios are an indication that the studied 

compounds, in terms of molecular structures, were not 

sufficiently diverse, i.e., on the one hand, one or more 

groups of compounds are characterized by small structural 

differences and on the other hand, there are structurally 

specific and unique molecules. A special case of such a 

molecular set is a degenerate (redundant in samples) set,37 

containing several enantiomers, close structural isomers 
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and very similar molecules. These samples will probably 

have very similar or equal values of molecular descriptors 

and of the dependent variable, which can contribute to 

poor model performance in some validation procedures. 

This is the reason why degenerate samples should be 

avoided whenever possible. Furthermore, a data set may 

contain descriptors that have only a few distinct numerical 

values (two or three), which is not always a consequence 

of degenerate samples. These descriptors behave as 

qualitative variables and should be also avoided, to reduce 

data degeneracy (variable redundancy). For this purpose, 

two cases should be distinguished. The first is of so-called 

Table 1. Basic statistical parameters for regression models in QSAR and QSPR

Parameter Definitiona

Number of samples (training set or external validation set) M

Number of factors (LVs or PCs) or original descriptors k

Root mean square error of crossvalidation (training set)

Root mean square error of calibration (training set)

Root mean square error of prediction (external validation set)

Crossvalidated correlation coefficient b (training set)

Correlation coefficient of multiple determinationc (training set)

Correlation coefficient of multiple determinationc (external validation set)

Correlation coefficient of external validationd,e (external validation set)

Pearson correlation coefficient of validation (training set)

Pearson correlation coefficient of calibration (training set)

 

Pearson correlation coefficient of prediction (external validation set)

aBasic definitions: i - the summation index and also the index of the i-th sample; y
e
 - experimental values of y; y

c
 - calculated values of y, i.e., values from 

calibration; y
p
 - predicted values of y, i.e., values from the external validation set; y

v
 - calculated values of y from an internal validation (LOO, LNO or 

y-randomization) or bootstrapping; <y
e
>, <y

c
> and <y

v
> - average value of y

e
, y

c
 and y

v
, respectively. 

bAlso known as (LOO or LNO) crossvalidated correlation coefficient, explained variance in prediction, (LOO or LNO) crossvalidated explained variance, 

and explained variance by LOO or by LNO. The attributes LOO and LNO are frequently omitted in names for this correlation coefficient.
cAlso known as coefficient of multiple determination, multiple correlation coefficient and explained variance in fitting.
dAlso known as external explained variance.
eThe value w = <y

e
> is the average for experimental values of y calculated for the training set and not for the external validation set.
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indicator variables,47,48 which, by their definition, possess 

only a few distinct values. The very few values of indicator 

variables should have approximately equal frequency; this 

way, model validation should always yield reasonable 

results. The second accounts for other types of descriptors, 

which, according to their meaning, should contain several 

distinct numerical values (integers or real numbers), but 

because of problem definition, computational difficulties, 

lack of sufficient experimental data, etc., become highly 

degenerate. When this occurs, one should replace these 

descriptors by others, or even consider redefining the 

problem under study.

Leave-one-out crossvalidation

Leave-one-out (LOO) crossvalidation is one of the 

simplest procedures and a cornerstone for model validation. 

It consists of excluding each sample once, constructing 

a new model without this sample (new factors or latent 

variables are defined), and predicting the value of its 

dependent variable, y
c
. Therefore, for a training set of M 

samples, LOO is carried out M times for one, two, three, 

etc. factors in the model, resulting in M predicted values for 

each number of factors. The residuals, y
c
 - y

e
 (differences 

between experimental and estimated values from the 

model) are used to calculate the root mean square error of 

crossvalidation (RMSECV) and the correlation coefficient 

of leave-one-out crossvalidation (Q2), as indicated in  

Table 1. 

The prediction statistics of the final model are expressed 

by the root mean square error of calibration (RMSEC) 

and the correlation coefficient of multiple determination 

(R2), calculated for the training set. Since LOO represents 

certain perturbations to the model and data size reduction, 

the corresponding statistics are always characterized by the 

relations R2 > Q2 and RMSEC < RMSECV. The minimum 

acceptable statistics for regression models in QSAR and 

QSPR include conditions Q2 > 0.5 and R2 > 0.6.44,49 A large 

difference between R2 and Q2, exceeding 0.2 - 0.3, is a clear 

indication that the model suffers from overfitting.38,46

Leave-N-out crossvalidation

Leave-N-out (LNO) crossvalidation,45,50,51 known also 

as leave-many-out, is highly recommended to test the 

robustness of a model. The training set of M samples is 

divided into consecutive blocks of N samples, where the 

first N define the first block, the following N samples is the 

second block, and so on. This way, the number of blocks is 

the integer of the ratio M/N if M is a multiple of N; otherwise 

the left out samples usually make the last block. This test 

is based on the same basic principles as LOO: each block 

is excluded once, a new model is built without it, and the 

values of the dependent variable are predicted for the block 

in question. LNO is performed for N = 2, 3, etc., and the 

leave-N-out crossvalidated correlation coefficients Q2
LNO

 

are calculated in the same way as for LOO (Table 1). LNO 

can be performed in two modes: keeping the same number 

of factors for each value of N (determined by LOO for 

the real model) or with the optimum number of factors 

determined by each model.

Contrary to LOO, LNO is sensitive to the order of 

samples in the data set. For example, leave-two-out 

crossvalidation for even M means that M/2 models are 

obtained, but this is only a small fraction (0.5·(M – 1 )–1) 

of all possible combinations of two samples M!/(M – 2)! = 

M(M – 1). To avoid any systematic variation of descriptors 

through a data set or some subset what would affect LNO, 

the samples should be randomly ordered (in X and y 

simultaneously).

It is recommended that N represents a significant 

fraction of samples (like leave-20 to 30% - out for smaller 

data sets40). It has been shown recently52 that repeating the 

LNO test for scrambled data and using average of Q2
LNO

 

with its standard deviation for each N, is statistically 

more reliable than LNO being performed only once. This 

multiple LNO test can be also performed in the two modes, 

with fixed or optimum number of factors. The critical N is 

the maximum value of N at which Q2
LNO

 is still stable and 

high. It is primarily determined by the size of a data set 

and somewhat less by its quality. For a good model, Q2
LNO

 

should stay close to Q2 from LOO, with small variations at 

all values for N up to the critical N. For single LNO, these 

variations can be quantified in the following way. Variations 

for single LNO are expressed as the range of Q2
LNO

 values, 

which shows how much Q2
LNO

 oscillates around its average 

value. By our experience, this range for single LNO should 

not exceed 0.1. In case of multiple LNO, a more rigorous 

criterion should be used, where two standard deviations 

should not be greater than 0.1 for N = 2, 3, etc., including 

the critical value of N. 

y-Randomization

The purpose of the y-randomization test45,46,50,53,54 is 

to detect and quantify chance correlations between the 

dependent variable and descriptors. In this context, the term 

chance correlation means that the real model may contain 

descriptors which are statistically well correlated to y but in 

reality there is no cause-effect relationship encoded in the 

respective correlations with y because they are not related 

to the mechanism of action. The y-randomization test 



Kiralj and Ferreira 775Vol. 20, No. 4, 2009

consists of several runs for which the original descriptors 

matrix X is kept fixed, and only the vector y is randomized 

(scrambled). The models obtained under such conditions 

should be of poor quality and without real meaning. One 

should be aware that the number of factors is kept the same 

as for the real model, since y-randomization is not based 

on any parameter optimization. The basic LOO statistics 

of the randomized models (Q2
yrand

 and R2
yrand

) should be 

poor, otherwise, each resulting model may be based on 

pure numerical effects.

Two main questions can be raised regarding 

y-randomization: how to analyze the results from each 

randomization run and how many runs should be carred 

out? There are various approaches to judge whether the real 

model is characterized by chance correlation. The simple 

approach of Eriksson and Wold53 can be summarized as a 

set of decision inequalities based on the values of Q2
yrand

 

and R2
yrand

 and their relationship R2
yrand

 > Q2
yrand

:

Q2
yrand

 < 0.2 and R2
yrand

 < 0.2 → no chance correlation;

any Q2
yrand

 and 0.2 < R2
yrand

 < 0.3 → negligible chance 

correlation;

any Q2
yrand

 and 0.3 < R2
yrand

 < 0.4 → tolerable chance 

correlation;

any Q2
yrand

 and R2
yrand

 > 0.4 → recognized chance 

correlation.

Therefore, the correlation’s frequency is counted as the 

number of randomizations which resulted in models with 

spurious correlations (falsely good), which is easily visible 

in a Q2
yrand

 against R2
yrand

 plot that also includes Q2 and R2 

values for the real model.

In another approach,54 the smallest distance between the 

real model and all randomized models in units of Q2 or R2 is 

identified. This minimum distance is then expressed relative 

to the respective standard deviation for the randomization 

runs. The distinction of the real model from randomized 

models is judged in terms of an adequate confidence level 

for the normal distribution. A simple procedure proposed 

in the present work, is to count randomized models which 

are statistically not distinguished from the real model 

(confidence levels are greater than 0.0001).

There is another approach to quantify chance correlation 

in the literature,46 based on the absolute value of the Pearson 

correlation coefficient, r, between the original vector y and 

randomized vectors y. Two y randomization plots r - Q2
yrand

 

and r - R2
yrand

 are drawn for randomized and real models, 

and the linear regression lines are obtained:

Q2
yrand

 = a
Q
 + b

Q
r (1)

R2
yrand

 = a
R
 + b

R
r (2)

The real model is characterized as free of chance 

correlation when the intercepts are a
Q
 < 0.05 and a

R
 < 0.3. 

These intercepts are measures for the background chance 

correlation, i.e., intrinsic chance correlation encoded in X, 

which is visible when statistical effects of randomizing the 

y vector are eliminated, i.e., the correlation between original 

and randomized y vectors is equal to zero (r = 0).

The number of randomized models encoding chance 

correlation depends primarily on two statistical factors. 

It strongly increases with the decrease of the number of 

samples in the training set, and is increased moderately for 

large number of randomization runs.54 Chemical factors, 

such as the nature of the samples and their structural 

similarity, data quality, distribution profile of each variable 

and variable intercorrelations, modify to a certain extent 

these statistical dependences. The approach of Wold and 

Eriksson53 consists of ten randomization runs for any data 

set size. This is a sufficiently sensitive test because models 

based on chance correlation easily fail in one or more (i.e., 

at least 10%) randomization runs. Several authors propose 

hundreds or thousands of randomizations independent 

of the data set size, while others argue that the number 

of randomizations should depend on the data size. The 

authors of this work have shown recently55 that 10 and 1000 

randomization runs provide the same qualitative information 

and, moreover, that the statistics for these two approaches 

are not clearly distinguished when the linear relationships 

(1) and (2) and that one between Q2
yrand

 and R2
yrand

 are 

inspected. Accordingly, it is expected that poor models will 

show unwanted performance in y-randomization, while 

good models will be free from chance correlation even for 

a small number of randomizations, as will be shown by the 

examples in this work.

Bootstrapping

Bootstrapping56,57 is a kind of validation in which the 

complete data set is randomly split several times into 

training and test sets, the respective models are built and 

their basic LOO statistics (Q2
bstr

 and R2
bstr

) are calculated 

and compared to that of the real model. Unlike validations 

(LOO and LNO) where each sample is excluded only 

once, in bootstraping a sample may be excluded once, or 

several times, as well as never. Since in each bootstrap run 

a new model is built, it is expected that the values of Q2
bstr

 

and R2
bstr

 satisfy the minimum acceptable LOO statistics 

in all bootstrap runs, and that they oscillate around the 

real Q2 and R2 (the LOO statistics of the real model) 

within reasonable ranges. The aim of bootstrapping is 

to perturb the training set, whilst statistics of the test set 

are not considered. 
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There are two issues to be considered when performing 

this validation. One is the procedure for making the 

bootstrappings i.e., data splits or resamplings, and the 

other is their number. Different number of splits have been 

proposed in the literature, ranging from low (ten) to high 

(hundreds). By its basic conception, bootstrapping does 

not require that the data split is based on high structural 

similarity between the training and test sets. The literature 

proposes random selection of samples for the training set by 

means of algorithms frequently coupled to various statistical 

procedures and also a rational split based on data subsets 

(clusters) in hierarchical cluster analysis (HCA).25,28 The size 

of the complete data set is the main factor that influences 

bootstrap procedures. In general, a small data set is difficult 

to split and exclusion of significant portion of its samples 

may seriously harm the model’s performance. Exclusion of 

about 30% of samples from the complete set is a reasonable 

quantity for smaller sets40 consisting of a few clusters of 

samples, some of which are poorly populated. Therefore, 

purely random procedures that do not take into account 

the structure and population of the clusters may produce 

unrealistically good or poor models in particular bootstrap 

runs. Random sampling within each HCA cluster, or within 

other types of clusters as, for example, obtained from y 

distribution (low, moderate and highly active compounds), 

better reflects the chemical structure of the complete data set. 

In large data sets, highly populated clusters will be always 

well represented in any random split, making clear why such 

sets are practically insensitive to exclusion of a significant 

portion of samples (more than 50%), independent of the type 

of random split employed.

External validation

Unlike bootstrapping, the external validation test 

requires only one split of the complete data set into 

structurally similar training and external validation sets. 

The purpose of this validation is to test the predictive 

power of the model. Basic statistical parameters that are 

used to judge the external validation performance (Table 

1) are the root mean square error of prediction (RMSEP), 

the correlation coefficient of external validation (Q2
ext

) and 

the Pearson correlation coefficient of prediction (R
ext

). Q2
ext

 

quantifies the validation and is analogous to Q2 from LOO, 

with exception of the term w (see Table 1), which is the 

average value of the dependent variable y for the training 

set and not the external validation set. R
ext

 is a measure of 

fitting for the external validation set and can be compared 

to R for the training set.

When performing external validation, two issues 

have to be dealt with. One is the number of samples in 

the external validation set and the other is the procedure 

for selecting them. It is recommended to use 30% of 

samples for the external validation of smaller data sets40 

and to keep the same percentage of external samples in 

bootstrapping and external validation.43 There are various 

procedures for selecting external samples. All of them 

have to provide chemical analogy between the training 

and external samples, structural proximity between the two 

data sets (similar variable ranges and variable distributions 

as a consequence of similar molecular diversities), and 

to provide external predictions as interpolation and not 

extrapolation. A reasonable approach for splitting the 

complete data set, which takes all these items into account 

is to use HCA combined with principal component analysis 

(PCA)25,28 scores, y distribution (e.g., low, moderate and 

high biological activity) and other sample classification.

Methods

Data sets

Four data sets of different dimensions were selected 

from the literature.5,39,53-55 Basic information about them, 

including splits adopted and validations performed in this 

work, are presented in Table 2. The complete data sets are 

in Supplementary Information (Tables T1-T4). The new 

splits performed in this work were based on exploratory 

analysis of autoscaled complete data sets, always using 

clusters from HCA with complete linkage method,25 

combined with PCA, y distribution and some sample 

classification known a priori. The regression models, MLR 

and PLS, were built using data previously randomized and  

autoscaled.

The QSAR data set 1 comprises five molecular 

descriptors and toxicity, -log[IGC
50

/(mol L-1)], against 

a ciliate T. pyriformis for 153 polar narcotics (phenols). 

This data set was originally defined by Aptula et al.,58 and 

it was used for the first time to build a MLR model by Yao 

et al.59 who also made a modest data split (14% samples 

out for the external validation). In this work, the real MLR 

model is based on a rather radical split (51% out) in order to 

show that even data sets of moderate size can enable good 

splitting and model performance in all validations.

The data set 2 is from a quantitative genome/structure-

activity relationship (QGSAR) study,39 a hybrid of QSAR 

and bioinformatics, in which the resistance of 24 strains 

of the phytopathogenic fungus P. digitatum against four 

demethylation inhibitors was investigated by PLS models. 

This data set consists of toxicity values -log[EC
50

/(mol L–1)] 

for 86 samples, described by eight descriptors, from which 

three are fungal genome descriptors and five are products 
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of some molecular and genome features. The reader may 

look at the original work39 for the definition of the matrix 

X. A new data split was applied in this work (35% out), 

which is more demanding than in the original publication. 

The purpose of this example is to show that even modest 

data sets can be successfully validated without using an 

auxiliary regression model.

The data set 3 is from a QSPR study on the carbonyl 

oxygen chemical shift (18O) in 50 substituted benzaldehydes,5 

comprising eight molecular descriptors and the shifts  

δ/ppm. Two literature PLS models, the real and the auxiliary 

model (20% out), are inspected in more details with respect 

to the validations carried out, especially bootstrapping.

The smallest data set 4 is from a series of QSAR 

studies based on MLR models,60 and it was used to predict 

mouse cyclooxigenase-2 inhibition by 2-CF
3
-4-(4-SO

2
Me-

phenyl)-5-(X-phenyl)-imidazoles. It consists of three 

molecular descriptors and the anti-inflammatory activity 

-log[IC
50

/molL–1] for 15 compounds. Only a very modest 

split (13% out) could be applied in this example, to show 

that very small data sets cannot provide reliable statistics 

in all the applied validations.

All chemometric analyses were carried out by using the 

software Pirouette® 61 and MATLAB®.62

Validations

Samples in all data sets were randomized prior to any 

validation. All single and multiple (10 times) leave-N-out 

(LNO) cross-validations were carried out by determining 

the optimum number of factors for each N when using 

PLS. For each data set, 10 and 25 randomizations were 

tested, to show the effect of the number of runs on chance 

correlation statistics. The same data split was used in 

external validation and bootstrapping, as suggested in the 

literature,43 to allow comparison between the respective 

statistics. At least two different bootstrap split schemes were 

applied for each data set, where the randomized selection of 

the training samples was made from the complete set, from 

subsets (clusters) in HCA, and other types of subsets (PCA 

clusters, y distribution, or some other sample classification). 

To demonstrate the effect of the number of resamplings 

on bootstrap statistics, 10 and 25 runs were carried out for 

each split scheme.

Inspection of data quality versus data set size

Data set size is the primary but not the sole factor that 

affects model performance. To evaluate how much the data 

quality, i.e., descriptors and their correlations with y, affect 

the model performance, the following investigations were 

carried out. First, data sets 1, 2 and 3 were reduced to the 

size of data set 4 (15 samples) according to the following 

principles: a) all descriptors possessed at least three distinct 

values; b) samples were selected throughout the whole 

range of y; c) very influential samples were avoided; and 

d) one or more samples were selected from each HCA 

cluster already defined in bootstrapping, proportionally to 

cluster size. Eventually formed subsets were subject to all 

validations in the very same way as data set 4. Second, the 

relationships between descriptors and y were inspected for 

all data sets and subsets in the form of the linear regression 

Table 2. Data sets used, real and auxiliary regression models built and corresponding validations carried out in this work

Data seta Typeb References Real modelc,d,e Auxiliary modelc,d,e

1: X(153×5) QSAR [MLR] Ref. 58, 59 75 (tr) + 78 (ev), 51% out:

LOO, LNO, YRD, BSR, EXTV 

-

2: X(86×8) QGSAR [PLS] Ref. 39 56 (tr) + 30 (ev), 35% out:

LOO, LNO, YRD, BSR, EXTV

-

3: X(50×8) QSPR [PLS] Ref. 5 50 (tr) + 0:

LOO, LNO, YRD

40 (tr) + 10 (ev), 20% out:

LOO, BSR, EXTV

4: X(15×3) QSAR [MLR] Ref. 60 15 (tr) + 0:

LOO, LNO, YRD

13 (tr) + 2 (ev), 13% out:

LOO, (BSR), (EXTV)

aData sets 1-4 with respective dimensions of the descriptors matrix X for the complete data set.
bTypes of study in which the data sets were originated: quantitative structure-activity relationship (QSAR), quantitative genome/structure-activity relationship 

(QGSAR) (a combination of QSAR and bioinformatics) and quantitative structure-property relationship (QSPR). Regression models in these studies are 

multiple linear regression (MLR) and partial least squares regression (PLS).
cThe real model is the model of main interest in a study, built for practical purposes. The auxiliary model is the model with a smaller number of samples 

than the real model, used to perform external validation and bootstrapping.
dData split: the number of samples in the training set (tr) + the number of samples in the external validation set (ev), and the percentage (%) of samples 

excluded from building the model but used for external validation and bootstrapping.
eValidations: leave-one-out cross-validation (LOO), leave-N-out cross-validation (LNO), y-randomization (YRD), bootstrapping (BSR), and external 

validation (EXTV). Abbreviations in parenthesis (BSR) and (EXTV) mean that due to very a small number of samples, validations were performed in a 

very limited way.
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equation y = a + b x, and the following statistical parameters 

were calculated by using MATLAB® and QuickCalcs63  

software: statistical errors for a (σ
a
) and b (σ

b
), respective 

t-test parameters (t
a
 and t

b
), Pearson correlation coefficient 

between a descriptor and y (R), explained fitted variance 

(R2), F-ratio (F), and normal confidence levels for 

parameters t
a
, t

b
 and F. This way, the interplay between data 

set size and quality could be rationalized and the importance 

of variable selection discussed.

Results and Discussion

Data set 1: QSAR modeling of phenol toxicity to ciliate 

T. pyriformis

Yao et al.59 have explored the complete data set of 153 

phenol toxicants by building a MLR model (reported:  

R = 0.911 and RMSECV = 0.352; calculated in the present 

work: Q2 = 0.805, R2 = 0.830, RMSEC = 0.335 and  

Q = 0.897), and also another MLR model with 131 training 

samples (reported: R = 0.924 and RMSEC = 0.309; 

calculated in this work: Q2 = 0.827, R2 = 0.854, RMSECV =  

0.328, Q = 0.910, Q2
ext

 = 0.702, R2
ext

 = 0.696, RMSEP =  

0.459 and R
ext

 = 0.835). This set is larger than those 

commonly used in QSAR studies and, therefore, various 

statistical tests could be performed. This was the reason to 

make a rather radical split into 75 and 78 compounds for 

the training and external validation sets (51% out), based 

on HCA analysis (dendrogram not shown). The LOO  

(Q2 = 0.773, R2 = 0.830, RMSECV = 0.403, RMSEC = 0.363,  

Q = 0.880 and R = 0.911) and external validation 

statistics (Q2
ext

 = 0.824, R2
ext

 = 0.824, RMSEP = 0.313 and  

R
ext

 = 0.911) obtained were satisfactory. To test the self-

consistency of the data split, the training and external 

validation sets were exchanged and a second model with 

78 training samples was obtained. Its LOO (Q2 = 0.780,  

R2 = 0.838, RMSECV = 0.349, RMSEC = 0.313, Q = 0.884 and 

R = 0.915) and external statistics (Q2
ext

 = 0.817, R2
ext

 = 0.817,  

RMSEP = 0.362 and R
ext

 = 0.908), were comparable to 

that of the first model. Results from other validations of 

the real MLR model are shown in Table 3, Figures 1-3 and 

Supplementary Information (Tables T5-T9 and Figures F1 

and F2).

Among the validations performed for the real model 

(Table 2), the single LNO statistics shows an extraordinary 

behavior, with critical N = 37 (49% out), because the values 

of Q2
LNO

 stay high (Figure 1) and do not oscillate significantly 

around the average value (Table T5) even at high N. Multiple 

LNO shows slow but continuous decrease of average Q2
LNO

 

and irregular increase of the respective standard deviations 

along N, so that up to N = 17 (23% out) two standard 

deviations (±σ) are not greater than 0.1. (Table T5). In other 

words, the training set with 75 training toxicants is rather 

stable, robust to exclusion of large blocks (between 17 and 

37 inhibitors), and the data split applied is effective.

Three bootstrap schemes for 10 and 25 runs were 

applied (Tables T6 and T7) to form training sets: by 

random selection of 75 toxicants from the complete data 

set, from HCA clusters (10 clusters at the similarity index 

of 0.60), and from PCA groups (plot not shown). In fact, 

Figure 1. Leave-N-out crossvalidation plot for the MLR model on data 

set 1. Black - single LNO, red - multiple LNO (10 times). Single LNO: 

average Q2 - dot-dash line, one standard deviation below and above the 

average - dotted lines. Multiple LNO: one standard deviation below and 

above the average - red dotted curved lines.

Figure 2. A comparative plot for bootstrapping of the MLR model 

on data set 1: the real model (black square), models from HCA-based 

bootstrapping (blue squares: 10 iterations - solid, 25 iterations - open), 

models from PCA-based bootstrapping (green squares: 10 iterations - 

solid, 25 iterations - open), and models from simple bootstrapping (red 

squares: 10 iterations - solid, 25 iterations - open).
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three PCA groups were detected in the scores plot, based 

on three distinct values of descriptor N
hdon

 (see Table T1). 

Classes of y were not applied since no gaps in the 

statistical distribution of y had been noticed. The graphical 

presentation of the results (Figure 2) shows that the data 

points are well concentrated along a R2 - Q2 diagonal, with 

negligible dispersion in the region defined by R2 < 0.85 

and Q2 < 0.80. The real model (the black point) is placed 

in the middle of the bootstrap points. Careful comparison 

of the three bootstrap schemes indicates that HCA-based 

bootstrapping has certain advantages over the other two 

schemes. It is less dispersed and more symmetrically 

distributed around the real model. This would be expected, 

since each bootstrap training set originating from the HCA 

contains toxicants that represent well the complete data set 

in terms of molecular structure and descriptors.

The real MLR model shows excellent performance in 

y-randomization with 10 and 25 runs (Tables T8 and T9). 

There are no randomized models in the proximity of the 

real model in the Q2 - R2 plot (Figure 3) since they are all 

concentrated at Q2 < 0 and R2 < 0.2. A significantly larger 

number of randomization runs should be applied to get 

some randomized models approaching the real model. 

This example illustrates how many randomized runs are 

necessary to detect a model free of chance correlation: 

the choice of 10 or even 25 runs seems reasonable, which 

agrees with the method of Eriksson and Wold.53 When 

the Q2 - r and R2 - r plots are analyzed (Figures F1 and 

F2), it can be seen that the randomized models are placed 

around small values of r so that the intercepts of the linear 

Table 3. Comparative statistics of 10 and 25 y-randomizations of the MLR model on data set 1

Parametera 10 iterations 25 iterations

Maximum (Q2
yrand

) -0.017 -0.017

Maximum (R2
yrand

) 0.157 0.182

Standard deviation (Q2
yrand

) 0.062 0.048

Standard deviation (R2
yrand

) 0.047 0.046

Minimum model-random. Diff. (Q2
yrand

)b 12.67 16.48

Minimum model-random. Diff. (R2
yrand

)b 14.30 14.25

Confidence level for min. diff. (Q2
yrand

)c <0.0001 <0.0001

Confidence level for min. diff. (R2
yrand

)c <0.0001 <0.0001

Randomizations %, conf. level > 0.0001 (Q2
yrand

)d 0 0

Randomizations %, conf. level > 0.0001 (R2
yrand

)d 0 0

y-Randomization intercept (r
yrand

 vs. Q2
yrand

)e –0.191 –0.176

y-Randomization intercept (r
yrand

 vs. R2
yrand

)e –0.012 0.003

aStatistical parameters are calculated for Q2 from y-randomization (Q2
yrand

) and R2 from y-randomization (R2
yrand

).
bMinimum model-randomizations difference: the difference between the real model (Table 1) and the best y-randomization in terms of correlation coefficients 

Q2
yrand

 or R2
yrand

, expressed in units of the standard deviations of Q2
yrand

 or R2
yrand

, respectively. The best y-randomization is defined by the highest Q2
rand

 or 

R2
rand

.
cConfidence level for normal distribution of the minimum difference between the real and randomized models.
dPercentage of randomizations characterized by the difference between the real and randomized models (in terms of Q2

yrand
 or R2

yrand
) at confidence levels 

> 0.0001.
eIntercepts obtained from two y-randomization plots for each regression model proposed. Q2

yrand
 or R2

yrand
 is the vertical axis, whilst the horizontal axis is 

the absolute value of the correlation coefficient r
yrand

 between the original and randomized vectors y. The randomization plots are completed with the data 

for the real model (r
yrand

 = 1.000, Q2 or R2).

Figure 3. The y-randomization plot for the MLR model on data set 1: 

black ball - the real model, blue balls - 10 randomized models, red balls 

- 25 randomized models.
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regressions (1) and (2) are very small (a
Q
 < –0.15 and  

a
R
 ≤ 0.003, Table 3).

All the validations for the real MLR model confirm the 

self-consistency, robustness and good prediction power 

of the model, its stability to resamplings and the absence 

of chance correlation. The primary reason for this is the 

number of compounds. One out of five descriptors (the 

number of hydrogen bond donors, N
hdon

, Table T1) shows 

degeneracy, i.e., it has only three distinct integer values, 

but it did not affect the model’s performance noticeably 

in this case.

Data set 2: QGSAR modeling of fungal resistance  

(P. digitatum) to demethylation inhibitors

Kiralj and Ferreira39 have used five latent variables 

to model the complete data set of 86 samples using PLS 

(96.8% variance, Q2 = 0.851, R2 = 0.874, RMSECV = 

0.286, RMSEC = 0.271, Q = 0.922 and R = 0.935), and also 

for the data split with 56 training samples when building 

the auxiliary PLS model (97.1% variance, Q2 = 0.841,  

R2 = 0.881, RMSECV = 0.305, RMSEC = 0.279, Q = 0.917, 

R = 0.939, Q2
ext

 = 0.844, R2
ext

 = 0.843, RMSEP = 0.272 and 

R
ext

 = 0.935). The split (35% out) was done based on six 

HCA clusters at a similarity index of 0.65. In this work, 

the model for 56 training samples was considered as the 

real model and it was further validated by bootstrapping. 

Results from validations for data set 2 are shown in Table 4 

and in the Supplementary Information (Tables T10-T15 

and Figures F3-F7).

The single and multiple LNO statistics (Table 4,  

Table T10 and Figure F3) show that the critical N is 10 

(leave-18%-out) and 17 (leave-30%-out), respectively. 

The variations of Q2
LNO

 in single LNO are uniform and less 

than 0.1, and the same is valid for two standard deviations 

in multiple LNO. Therefore, the real model is robust to 

exclusion of blocks in the range of 10 - 17 samples, which 

is reasonable for a data set of this size.40

Four bootstrap schemes were applied (Tables T11 

and T12) to randomly select 56 training samples from 

the following sets: 1) the complete data set; 2) the six 

HCA clusters; 3) three classes of y, based on its statistical 

distribution (low, moderate and high fungal activity 

referred to intervals 4.55-5.75, 5.76-6.75, and 6.76-7.70, 

Table 4. Important resultsa of single (Q2
LNO

)b and multiple (<Q2
LNO

> (σ))c leave-N-out crossvalidations for regression models on data sets 2, 3 and 4

Data set 2 Data set 3 Data set 4

N Q2
LNO

<Q2
LNO

> (σ) Q2
LNO

<Q2
LNO

> (σ) Q2
LNO

<Q2
LNO

> (σ)

1 0.841 0.841 0.895 0.895 0.798 0.798

2 0.847 0.842(3) 0.894 0.895(2) 0.709 0.801(28)

3 0.839 0.839(6) 0.877 0.896(3) 0.723 0.746(54)

4 0.845 0.839(6) 0.888 0.892(4) Av: 0.743(48)

5 0.845 0.842(6) 0.897 0.894(6)

6 0.850 0.835(8) 0.869 0.890(13)

7 0.828 0.836(5) 0.898 0.896(4)

8 0.853 0.839(8) 0.880 0.894(7)

9 0.834 0.837(11) 0.887 0.894(7)

10 0.819 0.842(8) 0.897 0.893(9)

11 Av: 0.840(10) 0.838(13) 0.889(13)

12 0.831(17) 0.885(14)

13 0.842(10) 0.888(11)

14 0.841(13) 0.890(11)

15 0.842(6) 0.898(7)

16 0.842(8) 0.896(7)

17 0.838(9) 0.890(19)

18 0.886(22)

19 0.892(13)

aPartial results are shown for values of N at which Q2 is stable and high.
bResults of single LNO: Q2

LNO
 - Q2 for a particular N, Av - average of Q2 with standard deviation in parenthesis (given for the last or last two digits).

cResults of multiple LNO: <Q2
LNO

> - average of Q2
LNO

 for ten runs, σ - respective standard deviation (given for the last or last two digits).
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respectively); and 4) three MDR (multidrug resistance) 

classes of fungal strains with respect to pesticides (resistant, 

moderately resistant and susceptible).39 The graphical 

presentation of the bootstrap models when compared to 

the real model (Figure F4), is very similar to that from 

data set 1. A new observation can be pointed out here, 

that the bootstrap models become more scattered as the 

number of runs increases, which is statistically expected. 

Resamplings based on HCA and y distribution seems to 

be the most adequate bootstrap schemes, because they are 

more compact and better distributed around the real model 

than those for the other two bootstrap schemes.

Results from 10 and 25 y-randomization runs 

(Tables T13 and T14) were analyzed numerically 

(Table T15) and graphically by means of the Q2 - R2 plot 

(Figure F5), and Q2 - r and R2 - r plots (Figures F6 and F7). 

The results are very similar to those from data set 1, leading 

to the same conclusion that the explained variance by the 

real PLS model is not due to chance correlation. In cases like 

this one, the results from a huge number of randomization 

runs18 would concentrate mainly in the region of these 10 

or 25 randomizations, confirming the conclusions that the 

real PLS model is statistically reliable.

Data set 3: QSPR modeling of carbonyl oxygen chemical 

shift in substituted benzaldehydes

Kiralj and Ferreira5 have used two latent variables to 

build the real PLS model for the complete data set of 50 

benzaldehydes (92.3% variance, Q2 = 0.895, R2 = 0.915, 

RMSECV = 9.10 ppm, RMSEC = 8.43 ppm, Q = 0.946 

and R = 0.957), and also for the data split with 40 training 

samples to construct an auxiliary PLS model (92.6% 

variance, Q2 = 0.842, R2 = 0.911, RMSECV = 9.59 ppm, 

RMSEC = 8.83 ppm, Q = 0.942, R = 0.954, Q2
ext

 = 0.937, 

R2
ext

 = 0.936, RMSEP = 6.79 ppm and R
ext

 = 0.970). This 

split (20% out) was done based on five HCA clusters with 

a similarity index of 0.70. In this work, these real and 

auxiliary models were further validated and the validation 

results were analyzed in detail.

The LNO statistics5 (Table 4, Table T16 and Figure F8) 

show that Q2 stays high and stable up to the value of  

N = 10 (leave-20%-out) in single LNO and N = 19 (leave-

38%-out) in multiple LNO, after which it starts to decrease 

and oscillate significantly. This is a very satisfactory result 

for a modest data set of fifty samples.

Three resampling schemes were applied in bootstrap 

validation (Tables T16 and T17) to exclude 10 from 50 samples 

randomly from the following sets: 1) the complete data set; 

2) the five HCA clusters; and 3) three classes of y, based on 

statistical distribution of y (low, moderate and high chemical 

shifts).5 Figure 4 shows the Q2 - R2 plot taking into account 

all the resampling schemes for 10 and 25 runs. Unlike the 

analogues for data sets 1 and 2, a different type of dispersion 

of the bootstrap models is observed in the plot. In fact, the data 

points are not well distributed along a diagonal direction but 

are substantially scattered in the orthogonal direction, along the 

whole range of values of Q2 and R2. The auxiliary model (the 

green point) is not in the centre of all bootstrap models, whilst 

the real model (the black point) is out of the main trend due to 

the different size of the training set. On the other hand, the plot 

still shows small variations in Q2 and R2, and no qualitative 

changes in this scenario are expected when increasing the 

number of bootstrap runs. Differences with respect to the 

analogue plots from data sets 1 and 2 may be a cumulative 

effect of diverse factors, as for example, smaller training set 

size, different ranges and statistical distribution profile of y, 

and the nature of y (chemical shifts against negative logarithm 

of molar concentrations). The common point in the three data 

sets is the performance of HCA-bootstrapping over the other 

schemes.

Results from 10 and 25 y-randomization runs 

(Tables T18 and T19) were analyzed numerically 

(Table T20) and graphically (Figures F9 - F11). The Q2 - R2 

plot (Figure F9) shows no chance correlation. It is likely 

that the results from a larger number of randomization runs 

would be concentrated in the region already defined. The 

Q2 - r and R2 - r plots (Figures F10 and F11) also show the 

absence of chance correlation, which is reconfirmed by 

numerical approaches in Table T20.

Figure 4. A comparative plot for bootstrapping of the PLS model on 

data set 3: the real model (black square), the auxiliary model (green 

square), models from HCA-based bootstrapping (blue squares: 10 

iterations - solid, 25 iterations - open), models from bootstrapping based 

on classes of y (pink squares: 10 iterations - solid, 25 iterations - open), 

and models from simple bootstrapping (red squares: 10 iterations - solid, 

25 iterations - open).
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The real model has somewhat weaker statistics than 

the previous one, but its statistics is still acceptable and in 

accordance to the data set size and recommendations for 

the five validation procedures.

Data set 4: QSAR modeling of mouse cyclooxigenase-2 

inhibition by imidazoles

Hansch et al.55 have built a MLR model for this small 

data set containing 15 inhibitors, with acceptable LOO 

statistics (reported: Q2 = 0.798, R2 = 0.886 and RMSEC = 

0.212; calculated in this work: RMSECV = 0.241, Q = 0.895 

and R = 0.941). Besides the real model, an auxiliary model 

was constructed in this work, by considering inhibitors 4 

and 10 (Table T4 in Supporting Information) as external 

validation samples. This data split, reasonable for such a 

small data set (13% out), was performed according to the 

HCA analysis which resulted in one large and one small 

cluster with 13 and 2 samples, respectively (dendrogram 

not shown). The two inhibitors selected were from the 

large cluster. The auxiliary model shows improved LOO 

statistics with respect to that of the real model (Q2 = 0.821,  

R2 = 0.911, RMSECV = 0.239, RMSEC = 0.202, Q = 0.908  

and R = 0.954). The external samples 4 and 10 are 

reasonably well predicted with calculated activities 6.52 

and 6.49, respectively, compared to their experimental 

values 6.72 and 6.19, respectively, which means less than 

5% error. The downside of this external validation is that it 

is not justified to calculate RMSEP, Q2
ext

 or other statistical 

parameters for a set of two inhibitors.

Both single and multiple LNO statistics (Table 4, Table 

T21 and Figure F12) show that the model is stable for  

N = 1 - 3 (leave-20%-out). The values of Q2
LNO

 in this interval 

of N oscillate within the limit of 0.1 (see Figure F12). These 

results indicate that the model is reasonably robust in spite 

of the data size.

The bootstrap tests for the MLR model were performed 

by eliminating two inhibitors by random selection from the 

complete data set and from the large HCA cluster. Other 

resampling schemes were not applied in this example due 

to the data size and its y distribution. The results obtained 

(Tables T22 and T23), when compared to that from the 

auxiliary model of the same data size (Figure 5), show 

rather unusual behavior. The data points in the R2 - Q2 plot 

are not well distributed along some diagonal direction as in 

the analyses for data sets 1 and 2, but are rather dispersed 

in the orthogonal direction, especially at lower values of Q2 

around 0.6. This suggests that Q2 would easily overcome 

the limit of 0.65 with increasing the number of resamplings. 

The auxiliary model (the green point), which should be 

closer to the bootstrap models than the real model, is placed 

too high with respect to the centroids of these models. The 

plot shows an unusual, “asymmetric” aspect unlike the 

analogue plots for data sets 1 - 3 (Figures 2 - 4), due to 

the pronounced differences between Q2 and R2 (see Tables 

T22 and T23).

Results from 10 and 25 y-randomization runs (Tables 

T24 and T25), when presented graphically (Figure 6), 

show a large dispersion of the data points. The points are 

placed along a R2 - Q2 diagonal and also spread around 

it. Furthermore, it is evident that a slight increase in the 

number of y-randomization runs would result in falsely good 

models that would be very close to the real model, meaning 

that this final model is based on chance correlation, and 

thus, is invalid. Compared to the previous y-randomization 

plots for data sets 1 - 3 (Figures 3, F5 and F9), a systematic 

increase of the dispersion of the data points can be observed. 

This trend is followed by the appearance of highly negative 

values of Q2 for the randomized models: about –0.2, –0.3, 

–0.6 and –1.1 for data sets 1, 2, 3, and 4, respectively.

To be more rigorous in this validation, further 

calculations were carried out, as shown in Table 5 and 

Figures F13 and F14. The smallest distance between the 

real model and randomized models is significant in terms 

of confidence levels of the normal distribution (<0.0001), 

both in Q2 and R2. The situation is even more critical when 

all distances are expressed in terms of the confidence 

level, since more than 40% of the randomized models are 

not statistically distinguished from the real model in Q2 

units, and much less but still noticeable in R2 units (for 

more than 10 runs). These tendencies seem to be more 

Figure 5. A comparative plot for bootstrapping of the MLR model on data 

set 4: the real model (black square), the auxiliary model (green square), 

models from HCA-based bootstrapping (blue squares: 10 iterations - solid, 

25 iterations - open), and models from simple bootstrapping (red squares: 

10 iterations - solid, 25 iterations - open).
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obvious when increasing the number of randomization runs. 

However, when the linear regression equations (1) and (2) 

are obtained, the intercepts do not approach the limits (a
Q
 

< 0.05 and a
R
 < 0.3) and the validation seems apparently 

acceptable. It is obvious that this inspection is not sufficient 

by itself to detect chance correlation in the model and so, 

one has to investigate the spread of the data points in the 

region around the intercept in both Q2 - r and R2 - r plots. If 

this spread is pronounced in the way that several data points 

are situated above the limits for intercepts, then the chance 

correlation is identified, which is exactly the situation in 

the present plots (Figures F13 and F14). In fact, the MLR 

model published by Hansch et al.60 has certainly failed in 

y-randomization, confirming that small data sets seriously 

tend to incorporate chance correlation. The other possible 

reason, although of less impact, is data degeneration 

(redundancy) in columns and rows of the data matrix X 

(see Table T4 in Supporting Information). The cumulative 

results of y-randomization and the other validations show 

that the real MLR model is not statistically reliable.

Data quality versus data set size: data subset 3

The comparative discussion of models’ performance in 

previous sections was based on data set size. In this section, 

Table 5. Comparative statistics of 10 and 25 y-randomizations of the MLR model on data set 4

Parametera 10 iterations 25 iterations

Maximum (Q2
yrand

) –0.202 0.206

Maximum (R2
yrand

) 0.404 0.563

Standard deviation (Q2
yrand

) 0.316 0.341

Standard deviation (R2
yrand

) 0.115 0.153

Minimum model-random. Diff. (Q2
yrand

)b 3.16 1.74

Minimum model-random. Diff. (R2
yrand

)b 4.19 2.10

Confidence level for min. diff. (Q2
yrand

)c 0.0016 0.0819

Confidence level for min. diff. (R2
yrand

)c <0.0001 0.0357

Randomizations %, conf. level > 0.0001 (Q2
yrand

)d 40% 48%

Randomizations %, conf. level > 0.0001 (R2
yrand

)d 0 24%

y-Randomization intercept (r
yrand

 vs. Q2
yrand

)e –0.989 –0.739

y-Randomization intercept (r
yrand

 vs. R2
yrand

)e –0.011 0.077

aStatistical parameters are calculated for Q2 from y-randomization (Q2
yrand

) and R2 from y-randomization (R2
yrand

). Values typed bold represent obvious 

critical cases.
bMinimum model-randomizations difference: the difference between the real model (Table 1) and the best y-randomization in terms of correlation coefficients 

Q2
yrand

 or R2
yrand

, expressed in units of the standard deviations of Q2
yrand

 or R2
yrand

, respectively. The best y-randomization is defined by the highest Q2
rand

 or 

R2
rand

.
cConfidence level for normal distribution of the minimum difference between the real and randomized models.
dPercentage of randomizations characterized by the difference between the real and randomized models (in terms of Q2

yrand
 or R2

yrand
) at confidence levels 

> 0.0001.
eIntercepts obtained from two y-randomization plots for each regression model real. Q2

yrand
 or R2

yrand
 is the vertical axis, whilst the horizontal axis is the 

absolute value of the correlation coefficient r
yrand

 between the original and randomized vectors y. The randomization plots are completed with the data for 

the real model (r
yrand

 = 1.000, Q2 or R2). 

Figure 6. The y-randomization plot for the MLR model on data set 4: 

black ball - the real model, blue balls - 10 randomized models, red balls 

- 25 randomized models.
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the data quality, i.e., relationships between descriptors X 

and the dependent variable y, are inspected in two ways. 

First, data sets 1, 2 and 3 were reduced to small subsets 

of 15 samples, to inspect how much the data size and its 

quality affect the performance of the models. Second, to 

rationalize these results and emphasize the importance of 

variable selection, correlations between X and y for all data 

sets and their subsets were inspected by calculating various 

statistical parameters.

The largest set, data set 1, was reduced to 15 samples 

(denominated as subset 1, containing the toxicants 4, 17, 

20, 32, 37, 51, 53, 62, 70, 71, 113, 133, 141, 143 and 149), 

but its poor performance in LOO (Q2 = 0.073) did not 

justify any further validation. All attempts to reduce data 

set 2 failed because certain descriptors which were not 

indicator variables in the original data, became degenerate 

(i.e., were reduced to two distinct values) due to the loss 

of information. Among the three data sets tested for size 

reduction, only data set 3 could be reduced successfully 

to a subset (denominated as subset 3) and validated in the 

same way as data set 4. All analyses for this data subset 

can be found in the Supplementary Information (Tables 

T26 - T32 and Figures F15 - F19).

The real PLS model for data subset 3 still has acceptable 

LOO statistics when two latent variables are used (91.8% 

variance, Q2 = 0.779, R2 = 0.897, RMSECV = 13.6 ppm, 

RMSEC = 10.4 ppm, Q = 0.892 and R = 0.947), which is 

somewhat inferior to that of the real model for data set 3 

(the differences are more obvious in RMSEC and RMSECV 

than in the correlation coefficients), but is comparable to 

that of the real model for data set 4. The same number of 

latent variables is used for the auxiliary model (91.8% 

variance, Q2 = 0.738, R2 = 0.889, RMSECV = 15.0 ppm, 

RMSEC = 11.1 ppm, Q = 0.874 and R = 0.943), which 

is obtained when benzaldehydes 7 and 37 are treated as 

external samples. These samples were selected from an 

HCA histogram (not shown) and, not surprisingly, the 

predictions are satisfactory. The experimental chemical 

shifts are 570.1 and 520.0 ppm for 7 and 37, respectively, 

and predicted shifts are 564.3 and 513.9 ppm, respectively, 

which amounts to less than 7% error. When analyzing the 

performance of the real model in LNO, bootstrapping 

and y-randomization, it is obvious that the model is much 

inferior to that from data set 3, due to the difference in the 

number of samples. However, when compared to that from 

data set 4, the model for subset 3 is somewhat better in 

single and multiple LNO (critical N = 4 or leave-27%-out 

versus N = 3), the same atypical behavior is also observed 

in the Q2 - R2 space for bootstrapping, and the model is also 

based on chance correlation. The model’s failure in most of 

the numerical and graphical analyses for y-randomization 

is even more obvious than that of the model for data set 

4. Even though small data sets allow the construction of 

models with reasonable LOO, LNO and external validation 

statistics (as has been shown in this section), this does 

not imply reasonable performance in bootstrapping and 

y-randomization. Concluding, small data sets of about 15 

samples are not suitable for a QSAR or QSPR study.

Effects of sample randomization to leave-N-out 

crossvalidation and y-randomization

It has been emphasized in this work that sample 

scrambling is an important step prior to model validation, 

by which the randomness of a data set is enhanced. 

The effects of this randomization can be found in the 

Supplementary Information (Figures F3, F8, F12 and F15, 

and two special sections containing Tables T33 - T38 and 

Figures F20 - F26 with discussion), where the results from 

LNO and y-randomization are presented for data sets 1 - 4 

and subset 3, using the original descriptor blocks, X. The 

reader should keep in mind that data sets with significant 

redundancy in samples are not of random character, and 

consequently, a regression model built on such data will 

have falsely good performance in validation procedures,50 

even though sample randomization has been performed.

Data quality versus data set size: statistics of x - y 

relationships

There are 90 relationships between descriptors and 

dependent variables (i.e., x - y relationships) for all data 

sets and subsets studied in this article, presented as linear 

regressions y = a + bx and analyzed via correlation 

coefficients, t-test and F-test parameters (Figures F20 - 

F25 and Table 33 in Supplementary Information). Careful 

analysis of these statistics may aid in explaining the behavior 

of QSAR or QSPR models in all validations performed. 

First, models built for various subsets of the same data set 

deteriorate as the number of samples decreases, which is 

a consequence of the fact that x - y relationships tend to 

become less statistically significant when there are fewer 

samples. Second, some statistical parameters are, although 

not identical, very highly correlated to each other. This is 

valid for square of R and R2; F-value (F) and the square 

of the t-test parameter for b (t
b
); and the confidence levels 

for t
b
 (p

b
) and F-value (p). Third, minimum values of some 

parameters are not so problem-dependent but may be well 

related to the statistical significance of x - y relationships: 

R > 0.3; R2 > 0.1; F > 5; t
b
 > 2.5, and probably t

a
 > 2.5. 

However, the exact limits for t-test parameters and F-value 

in a particular study are extracted from statistical tables, 
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which strongly depend on the number of samples. It is 

recommended44,49 to use confidence level 0.05 or 0.01 for 

t-test and F-test. In fact, variable selection should provide 

statistically significant x - y relationships, so model 

validation does not have to deal with poor and individual 

problematic x - y relationships but with the relationship 

between the descriptor block X as a whole and y.

In the light of these facts, it is possible to understand 

the scatterplots for the data sets studied (Figures F20 - F24 

and Table 33). It is rather clear that data set 1 contains 

only one statistically significant descriptor (LogK
ow

), 

whilst another one (N
hdon

) behaves as a poorly distributed 

degenerate variable (there are 126, 24 and 3 samples with 

values N
hdon

 = 1, 2 and 3, respectively). The other three 

descriptors (pK
a
, E

LUMO
 and E

HOMO
) are characterized by 

very high dispersion in their scatterplots and, consequently, 

the x - y relationships are not statistically significant (see 

bold descriptors and values in Table T33). In other words, 

the models built for data set 1 and its subsets are based on 

at least three statistically not significant x - y relationships, 

meaning that the selected variables were not so significant. 

The large number of samples has simply masked their 

deficiencies so that they could not be detected by the five 

validation procedures and, consequently, the model for 

set 1 showed excellent performance in all tests. However, 

successful reduction of data set 1 to 15 samples was not 

possible. Therefore, data set 1 is an example of a large and 

falsely good set for building QSAR models.

Although x - y relationships for data set 2, of moderate 

size, were all statistically significant, it was also not 

possible to reduce the data from 86 to 15 samples. It 

probably contains some non-linear relationships, but this 

is questioned by the following items: a) a few data at high 

values for certain descriptors are not sufficient to confirm 

non-linearities; b) how to interpret the non-linearities in 

terms of fungal genome; and c) how to form subsets since 

three genome descriptors have only three distinct values.

Another set of moderate size, data set 3, has the most 

adequate scatterograms, and is based on statistically 

significant x - y relationships. When it is reduced to 

15 or less samples, only one or two x - y relationships 

become partially insignificant in parameters for a. Data 

set 4, besides being small, is characterized by three x - y 

relationships from which only one is statistically significant 

(ClogP), another is insignificant (MgVol) and the third is 

not sufficiently significant (B1
X.2

). This set is a typical 

example of a small and falsely good data set, which, 

in spite of this fact, showed good performance in some 

validation tests. This is another example indicating the 

need to couple variable selection based on statistical tests 

for x - y relationships and model validation.

A simple way to verify self-consistency of a data is to 

see if the positive or negative contribution of a descriptor 

to y remains the same during the data split and building 

regression models. This contribution can be seen from the 

x - y relationship, using the signs of correlation coefficient 

R or regression coefficient b and the respective regression 

coefficient from the real model. For self-consistent data, 

the sign of R or b for a descriptor should be the same in the 

complete data set and all of its subsets, and also equal to the 

corresponding regression coefficient from the real model. 

In this sense, data set 1 showed being inconsistent both in 

data split and model building (in 3 out of 5 descriptors), 

data set 2 only in modeling (due to non-linearities, as seen 

in 2 out of 8 descriptors), and data sets 3 and 4 and subset 

3 were self-consistent in all descriptors (see Table T39). 

This self-consistency is important from the statistical point 

of view and also for model interpretation and mechanism 

of action.

Conclusions

Four QSAR and QSPR data sets from the literature 

were used to rebuild published or build statistically 

related regression models. These models were validated 

by means of leave-one-out crossvalidation, leave-N-out 

crossvalidation, external validation, y-randomization and 

boostrappings. The five validation tests have shown that 

the size of the data sets, more precisely, of the training 

sets, is the crucial factor determining model performance. 

The larger the data set, the better is its validation statistics. 

Very small data sets suffer from several deficiencies: 

impossibility of making validations (data split is not 

possible or is not sufficient), failure and atypical behavior 

in validations (chance correlation, lack of robustness in 

resampling and crossvalidations). Obtaining satisfactory 

statistics in leave-one-out crossvalidation and fitting and 

even in external validation is not a guarantee for good model 

performance in other validations procedures. Validation 

has to be carried out carefully, with detailed graphical and 

numerical analyses of the results obtained. The critical N in 

LNO at which Q2 is still stable and high, can be determined 

by applying the limit of 0.1 for oscillations in Q2, defined 

as the variation range in single LNO and two standard 

deviations in multiple LNO. It has been demonstrated 

that it is not necessary to perform a large number of 

y-randomization or bootstrap runs to distinguish acceptable 

from non-acceptable regression models. Comparing 

various bootstrap schemes, it has been noted for data sets 

1 - 3 that resampling based on clusters from hierarchical 

cluster analysis, and perhaps on some other schemes, 

gives somewhat more reliable and reasonable results than 
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that relying only on randomization of the complete data 

set. Data quality in terms of descriptor - y relationships 

is the second important factor which influences model 

performance. A reliable model has to be constructed from 

statistically significant x - y relationships, emphasizing 

the important role of variable selection. Statistically 

insignificant x - y relationships in large data sets can be 

masked by data size, resulting in models with excellent 

performance in all validation procedures, but at the end the 

QSAR or QSPR models obtained are false.
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DATA SETS 1-4

Table T1. The QSAR data set 1 for phenols toxicity to ciliate T. pyriformis.a,b,c

No. LogKow pKa E
LUMO

/eV E
HOMO

/eV N
hdon

–log[IGC
50

/molL–1]

Training set

1 0.16 8.45 0.25 –9.16 3 –1.26

3 3.80 11.39 0.46 –8.76 1 1.30

6 3.58 6.75 –0.56 –9.49 1 2.37

8 2.92 10.63 0.36 –8.84 1 0.28

10 4.37 5.72 –0.66 –9.31 2 1.06

11 3.37 6.35 –0.50 –9.39 1 1.41

13 2.97 10.88 0.42 –8.70 1 0.28

15 0.92 8.96 0.53 –8.65 1 –0.52

17 2.96 7.58 –0.29 –9.31 1 1.13

19 2.47 10.22 0.38 –8.85 1 0.08

20 5.63 12.55 0.50 –8.62 1 1.80

21 2.63 6.78 –0.26 –9.37 1 0.74

25 2.55 10.28 0.36 –9.04 1 0.33

29 2.65 8.54 0.06 –9.07 1 0.39

31 1.60 6.98 –0.43 –9.58 1 0.03

32 1.72 8.73 0.02 –9.28 1 0.19

35 2.86 10.37 0.35 –8.76 1 0.71

38 1.98 9.67 –0.28 –9.33 1 0.55

41 3.58 9.67 –0.51 –9.03 1 1.42

43 0.44 9.92 0.20 –9.24 2 –0.95

44 1.56 9.92 –0.54 –9.42 2 –0.08

45 2.90 10.40 0.41 –8.99 1 0.80

47 2.58 9.88 –0.05 –8.50 1 0.75

48 3.30 11.10 0.42 –8.97 1 1.30

49 3.17 8.63 –0.20 –9.26 1 1.75

50 2.42 10.32 0.43 –8.80 1 0.12

51 3.42 6.20 –0.93 –9.66 1 1.64

56 3.87 6.37 –0.90 –9.72 1 2.34

58 2.47 10.15 0.39 –8.98 1 0.11

60 0.49 9.92 0.22 –8.73 2 -0.16

61 2.72 8.96 –0.26 –9.25 1 1.13

63 2.49 9.10 0.04 –9.30 1 0.87

65 1.80 7.80 –0.44 –9.09 1 0.02

69 1.69 9.94 0.32 –8.36 1 –0.30
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No. LogKow pKa E
LUMO

/eV E
HOMO

/eV N
hdon

–log[IGC
50

/molL–1]

Training set

71 1.46 9.19 –0.46 –9.40 1 –0.38

77 2.90 8.88 –0.04 –9.34 1 1.12

78 2.90 10.10 0.42 –9.02 1 0.61

79 1.57 9.65 0.36 –8.88 1 –0.33

80 2.40 10.23 0.25 –8.89 1 0.42

84 3.34 10.60 0.24 –8.61 1 1.04

85 3.63 10.00 0.10 –8.99 1 1.17

88 3.63 9.70 0.11 –9.06 1 1.27

89 3.61 8.20 –0.22 –9.23 1 1.28

94 4.41 10.03 0.14 –8.93 1 1.85

95 2.98 9.55 0.13 –9.04 1 0.80

100 1.92 9.89 0.07 –9.09 1 0.02

101 4.22 10.70 0.35 –8.60 1 1.64

102 3.45 9.63 0.30 –8.80 2 1.80

106 1.95 10.05 –0.35 –9.33 1 0.19

107 0.29 9.90 0.17 –9.03 2 –0.70

109 0.28 9.27 0.19 –8.87 2 –0.97

110 1.46 8.05 –0.38 –9.43 1 –0.30

111 0.90 9.52 0.06 –9.30 1 –0.38

112 0.75 4.49 –0.21 –9.48 2 –1.50

114 1.98 8.85 –0.36 –9.41 1 0.05

115 2.90 9.20 0.02 –9.24 1 0.85

118 1.57 10.20 0.31 –8.65 1 –0.14

119 3.20 9.55 –0.10 –8.68 1 1.39

120 3.03 10.30 0.43 –8.91 1 0.64

121 3.43 10.30 0.45 –8.91 1 0.98

125 1.92 6.06 –0.70 –9.33 1 0.62

126 2.17 9.79 –0.64 –9.39 1 0.04

129 2.88 8.68 –0.34 –9.80 1 0.62

130 2.51 8.92 –0.38 –9.50 1 0.57

133 1.28 8.89 –0.49 –9.11 1 –0.14

135 1.99 9.21 –0.48 –9.45 1 –0.05

139 6.20 10.40 0.43 –8.92 1 2.47

141 1.97 10.26 0.40 –8.96 1 –0.30

142 1.97 10.26 0.43 –8.88 1 –0.18

143 0.80 9.44 0.28 –8.98 2 –0.65

144 1.81 8.34 –0.43 –9.50 1 0.42

147 1.28 8.36 –0.19 –9.51 2 –0.24

148 0.88 8.78 –0.46 –9.66 3 0.38

150 2.19 2.98 –0.46 –9.51 2 –0.51

151 1.28 7.40 –0.48 –9.14 1 –0.03

External validation set

2 2.92 10.48 0.38 –8.81 1 0.36

4 2.84 7.44 –0.25 –9.39 1 1.28

5 2.42 10.50 0.38 –8.93 1 0.12

7 3.58 7.37 –0.51 –9.32 1 2.10

9 3.92 6.80 –0.62 –9.50 1 2.03

12 3.31 7.87 –0.30 –9.33 1 1.40

14 2.96 7.97 –0.19 –9.23 1 1.04

16 1.95 8.58 –0.32 –9.29 1 0.60

18 2.47 10.58 0.44 –8.77 1 0.07

22 2.80 6.75 –0.57 –9.38 1 0.80

23 1.75 7.51 –0.32 –9.46 1 0.47

Table T1. continuation
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No. LogKow pKa E
LUMO

/eV E
HOMO

/eV N
hdon

–log[IGC
50

/molL–1]

External validation set

24 1.10 9.92 0.39 –8.61 1 –0.60

26 2.85 8.67 0.02 –9.05 1 0.60

27 2.36 9.34 –0.01 –9.24 1 0.33

28 3.10 8.85 0.09 –8.89 1 0.69

30 2.16 8.55 0.07 –9.19 1 0.18

33 1.85 10.11 0.42 –8.73 1 –0.36

34 2.50 10.20 0.40 –8.99 1 0.16

36 2.41 10.23 –0.32 –9.19 1 0.31

37 1.92 9.90 –0.33 –9.32 1 0.08

39 1.32 9.99 0.40 –8.79 1 –0.51

40 3.09 9.55 –0.04 –8.74 1 1.09

42 2.87 10.25 0.41 –8.76 1 0.93

46 3.29 8.18 –0.28 –9.54 1 1.57

52 3.07 6.20 –0.90 –9.58 1 1.55

53 1.60 9.35 0.42 –8.94 1 –0.09

54 5.13 10.32 0.47 –8.93 1 1.64

55 2.64 9.03 –0.05 –9.34 1 1.15

57 2.50 8.85 0.03 –9.22 1 0.76

59 1.60 8.61 –0.50 –9.59 1 –0.06

62 2.50 10.07 0.40 –9.04 1 0.23

64 1.92 9.29 0.03 –9.37 1 0.38

66 0.29 9.67 0.33 –8.68 2 –0.99

67 1.44 9.00 –0.53 –9.43 1 0.09

68 1.56 4.08 –0.57 –9.52 2 –0.81

70 0.44 9.83 0.12 –9.26 2 –1.04

72 3.23 9.63 –0.15 –8.95 1 1.35

73 3.30 10.10 0.43 –9.01 1 0.73

74 5.16 9.92 0.47 –8.85 1 2.10

75 3.30 10.30 0.47 –8.91 1 0.91

76 2.08 7.28 –0.25 –9.03 2 0.97

81 3.52 6.40 –0.52 –9.44 1 1.78

82 2.64 9.34 0.02 –9.20 1 0.68

83 3.16 10.60 0.34 –8.61 1 0.70

86 2.98 9.67 0.12 –9.01 1 0.70

87 3.48 9.65 0.14 –8.99 1 1.20

90 3.51 9.54 0.14 –9.04 1 1.08

91 2.49 9.43 0.10 –9.12 1 0.55

92 1.58 8.11 0.01 –8.98 2 0.13

93 1.60 7.95 –0.40 –9.57 1 0.52

96 2.10 10.50 0.33 –8.61 1 0.01

97 2.50 10.00 0.43 –8.92 1 0.21

98 4.75 10.70 0.35 –8.59 1 2.03

99 1.27 9.85 –0.39 –9.00 1 –0.12

103 1.42 7.96 –0.44 –9.10 1 –0.03

104 0.47 9.92 0.28 –8.78 2 –0.18

105 1.44 7.62 –0.44 –9.49 1 0.27

108 0.33 9.23 –0.25 –9.44 2 –0.78

113 1.56 4.58 –0.49 –9.60 2 –1.02

116 3.07 8.89 –0.49 –9.40 1 1.02

117 0.52 9.92 0.29 –9.06 2 –0.83

122 2.90 10.30 0.44 –8.92 1 0.47

123 3.83 10.30 0.46 –8.90 1 1.23

Table T1. continuation
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No. LogKow pKa E
LUMO

/eV E
HOMO

/eV N
hdon

–log[IGC
50

/molL–1]

External validation set

124 1.60 9.34 –0.13 –9.29 2 0.34

127 1.31 9.46 0.26 –8.95 2 –0.39

128 3.42 9.49 0.29 –8.93 2 1.31

131 4.30 12.50 0.44 –8.69 1 1.16

132 2.51 9.09 –0.45 –9.44 1 0.48

134 1.53 9.92 0.04 –8.86 1 –0.23

136 1.97 10.10 0.39 –9.02 1 –0.06

137 1.99 9.05 –0.40 –9.54 1 0.08

138 2.49 9.21 –0.31 –9.35 1 0.62

140 1.65 7.91 –0.45 –9.12 1 0.38

145 3.54 9.92 0.43 –8.90 1 1.29

146 1.48 9.99 0.40 –9.11 1 –0.21

149 1.10 9.92 –0.19 –8.99 2 0.25

152 0.85 9.92 –0.36 –9.57 3 0.18

153 0.99 7.62 –0.50 –8.94 1 0.17
aThis data set was generated by Aptula et al., Quant. Struct.-Act. Relat. 2002, 21, 12. It was used to build MLR models by Yao et al., J. Chem. Inf. Comput. 

Sci. 2004, 44, 1257. bNames of samples and variables are from the original publications. cThe current data split is made in this work.

Table T1. continuation

Table T2. The QGSAR data set 2 for fungal resistance (P. digitatum strains) to demethylation inhibitors.a,b,c

No. Toxicant/

Straind

CYP51-g CYP51-e PMR1-t CYP51-e*Npi PCR*Npi PMR1-e*Lpi CYP51-e*Lpi PCR*Lpi -log[EC
50

/

molL-1]

Training set

1 T/PD5 1 1 100 1 0.25 1 1 0.25 6.636

2 T/DF1 1 1 100 1 0.25 1 1 0.25 6.937

4 T1/LC2 5 100 100 100 0.75 7 100 0.75 5.225

6 T/I1 5 100 100 100 0.75 7 100 0.75 5.093

7 T/DIS03 5 100 1 100 0.75 0 100 0.75 5.895

9 T/DIS96 5 100 1 100 0.75 0 100 0.75 5.858

10 T/PD5 1 1 100 1 0.25 1 1 0.25 6.840

12 T/PD5-7 5 100 100 100 0.75 1 100 0.75 5.335

13 T/PD5-15 5 100 100 100 0.75 1 100 0.75 5.335

15 T/PD5 1 1 100 1 0.25 1 1 0.25 6.948

17 T/DISp21 1 1 1 1 0.25 0 1 0.25 7.694

19 T/LC2 5 100 100 100 0.75 7 100 0.75 5.146

20 T/DIS33 5 100 1 100 0.75 0 100 0.75 6.177

22 T/DIS33-Y8 5 100 100 100 0.75 7 100 0.75 5.179

23 T/DIS33-B0 5 100 10 100 0.75 7 100 0.75 6.007

27 T/DIS33 5 100 1 100 0.75 0 100 0.75 6.283

29 T/PD5 1 1 100 1 0.25 1 1 0.25 6.937

30 T/LC2M 2 50 100 50 0.37 7 50 0.37 5.840

32 T/DIS33 5 100 1 100 0.75 0 100 0.75 6.177

33 T/LC2 5 100 1000 100 0.75 7 100 0.75 5.189

34 T/DISp21 1 1 1 1 0.25 0 1 0.25 7.539

36 T/DIS5-P26 1 1 100 1 0.25 1 1 0.25 6.937

37 F/PD5 1 1 100 3 0.75 2 2 0.50 6.073

39 F/U1 1 1 100 3 0.75 2 2 0.50 6.058

40 F/LC2 5 100 100 300 2.25 14 200 1.50 5.160

42 F/I1 5 100 100 300 2.25 14 200 1.50 4.799

43 F/PD5 1 1 100 3 0.75 2 2 0.50 6.073

45 F/DIS33 5 100 1 300 2.25 0 200 1.50 6.073

46 F/DIS96 5 100 1 300 2.25 0 200 1.50 5.952
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No. Toxicant/

Straind

CYP51-g CYP51-e PMR1-t CYP51-e*Npi PCR*Npi PMR1-e*Lpi CYP51-e*Lpi PCR*Lpi -log[EC
50

/

molL-1]

Training set

48 F/PD5-21 1 3 100 9 0.75 2 6 0.50 6.122

49 F/PD5-7 5 100 100 300 2.25 2 200 1.50 5.714

51 F/LC2 5 100 100 300 2.25 14 200 1.50 5.241

52 F/PD5 1 1 100 3 0.75 2 2 0.50 6.475

54 F/DISp21 1 1 1 3 0.75 0 2 0.50 6.520

56 F/LC2 5 100 100 300 2.25 14 200 1.50 5.230

57 F/DIS33 5 100 1 300 2.25 0 200 1.50 6.241

59 B/DF1 1 1 100 2 0.50 3 3 0.75 6.081

61 B/LC2 5 100 100 200 1.50 21 300 2.25 5.024

63 B/I1 5 100 100 200 1.50 21 300 2.25 4.546

65 B/DIS33 5 100 1 200 1.50 0 300 2.25 6.298

67 B/LC2 5 100 100 200 1.50 21 300 2.25 5.024

69 B/PD5-21 1 3 100 6 0.50 3 9 0.75 5.984

70 B/PD5-7 5 100 100 200 1.50 3 300 2.25 5.449

72 B/LC2 5 100 100 200 1.50 21 300 2.25 5.113

74 B/DISp12 1 1 1 2 0.50 0 3 0.75 7.324

75 B/DISp21 1 1 1 2 0.50 0 3 0.75 7.324

77 B/LC2 5 100 100 200 1.50 21 300 2.25 5.112

78 B/DIS33 5 100 1 200 1.50 0 300 2.25 6.382

79 P/PD5 1 1 100 3 0.75 3 3 0.75 5.902

80 P/DF1 1 1 100 3 0.75 3 3 0.75 5.664

82 P/PD5 1 1 100 3 0.75 3 3 0.75 6.993

83 P/PD5-21 1 3 100 9 0.75 3 9 0.75 6.023

85 P/PD5-15 5 100 100 300 2.25 3 300 2.25 4.979

87 P/PD5 1 1 100 3 0.75 3 3 0.75 6.993

88 P/DISp12 1 1 1 3 0.75 0 3 0.75 7.023

90 P/ECTp36 1 1 1 3 0.75 0 3 0.75 6.685

External validation set

5 T/M1 5 100 100 100 0.75 7 100 0.75 5.432

8 T/DIS33 5 100 1 100 0.75 0 100 0.75 5.971

11 T/PD5-21 1 3 100 3 0.25 1 3 0.25 6.363

14 T/LC2 5 100 100 100 0.75 7 100 0.75 5.141

16 T/DISp12 1 1 1 1 0.25 0 1 0.25 7.694

18 T/ECTp36 1 1 1 1 0.25 0 1 0.25 7.047

21 T/DIS33-Y4 5 100 100 100 0.75 7 100 0.75 5.641

24 T/DIS33-B13 5 100 10 100 0.75 7 100 0.75 6.124

28 T/LC2 5 100 100 100 0.75 7 100 0.75 5.107

31 T/PD5 1 1 100 1 0.25 1 1 0.25 6.937

35 T/DIS5-L22 5 100 100 100 0.75 7 100 0.75 5.202

38 F/DF1 1 1 100 3 0.75 2 2 0.50 6.015

41 F/M1 5 100 100 300 2.25 14 200 1.50 5.093

44 F/DIS07 5 100 1 300 2.25 0 200 1.50 6.002

47 F/PD5 1 1 100 3 0.75 2 2 0.50 6.479

50 F/PD5-15 5 100 100 300 2.25 2 200 1.50 5.542

53 F/DISp12 1 1 1 3 0.75 0 2 0.50 7.219

55 F/ECTp36 1 1 1 3 0.75 0 2 0.50 6.441

58 B/PD5 1 1 100 2 0.50 3 3 0.75 6.186

60 B/U1 1 1 100 2 0.50 3 3 0.75 6.037

62 B/MI 5 100 100 200 1.50 21 300 2.25 5.093

64 B/DIS07 5 100 1 200 1.50 0 300 2.25 6.227

66 B/DIS96 5 100 1 200 1.50 0 300 2.25 6.148

68 B/PD5 1 1 100 2 0.50 3 3 0.75 6.382

Table T2. continuation
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No. Toxicant/

Straind

CYP51-g CYP51-e PMR1-t CYP51-e*Npi PCR*Npi PMR1-e*Lpi CYP51-e*Lpi PCR*Lpi -log[EC
50

/

molL-1]

External validation set

71 B/PD5-15 5 100 100 200 1.50 3 300 2.25 5.324

73 B/PD5 1 1 100 2 0.50 3 3 0.75 6.424

76 B/ECTp36 1 1 1 2 0.50 0 3 0.75 6.503

81 P/U1 1 1 100 3 0.75 3 3 0.75 5.595

84 P/PD5-7 5 100 100 300 2.25 3 300 2.25 5.294

89 P/DISp21 1 1 1 3 0.75 0 3 0.75 7.039
aThis data set was generated and used to build PLS models by Kiralj and Ferreira, QSAR Comb. Sci. 2008, 27, 289. It was denominated C1 and had six 
outliers which are already excluded in this table. bNames of samples and variables are from the original publication. Abbreviations for toxicants in the 
sample names:  T - triflumizole, F - fenarimol, B - bitertanol and P - pyrifenox. cThe current data split is from the original publication. dA sample is defined 
as combination toxicant-strain-experiment.

Table T2. continuation

Table T3. The QSPR data set 3 for carbonyl oxygen chemical shift in substituted benzaldehydes.a,b,c

No. E
e
/eV E

CC
/eV ∆

HL
/eV σ

b
/Å σ

r
/Å D

CC
/Å Q

C2mul
Q

Omul
δ/ppm

1 70.679 122.756 –9.567 0.071 0.003 1.484 –0.201 –0.317 563.2

2 71.061 122.671 –9.284 0.071 0.004 1.483 –0.209 –0.319 561.4

3 72.252 122.749 –9.047 0.071 0.007 1.481 –0.244 –0.322 526.9

4 72.092 122.819 –8.336 0.071 0.008 1.480 –0.240 –0.326 532.8

5 72.150 122.790 –9.012 0.071 0.006 1.481 –0.241 –0.322 545.7

6 65.144 122.617 –9.335 0.072 0.005 1.485 –0.215 –0.313 568.9

7 70.884 122.591 –8.930 0.072 0.003 1.485 –0.204 –0.313 570.1

8 70.633 122.540 –9.315 0.072 0.007 1.486 –0.196 –0.311 570.3

9 70.181 122.431 –9.140 0.072 0.003 1.487 –0.182 –0.305 593.6

10 68.864 122.302 –9.138 0.073 0.004 1.490 –0.143 –0.294 590.1

11 70.690 122.526 –9.298 0.072 0.005 1.486 –0.198 –0.319 575.0

12 74.926 123.365 –8.695 0.067 0.011 1.471 –0.324 –0.360 505.8

13 71.304 122.324 –9.336 0.073 0.006 1.489 –0.217 –0.307 555.0

14 67.203 121.716 –9.367 0.076 0.005 1.499 –0.093 –0.282 576.0

15 69.963 122.470 –9.366 0.072 0.006 1.487 –0.176 –0.309 573.0

16 70.688 122.499 –9.013 0.072 0.003 1.486 –0.198 –0.310 573.0

17 70.367 122.491 –8.962 0.072 0.003 1.486 –0.188 –0.312 569.3

18 69.915 122.457 –9.310 0.072 0.004 1.487 –0.175 –0.309 570.8

19 71.291 122.541 –9.483 0.072 0.003 1.485 –0.216 –0.311 568.4

20 69.495 122.448 –8.905 0.072 0.005 1.486 –0.162 –0.313 555.2

21 71.519 122.396 –9.437 0.073 0.004 1.488 –0.223 –0.303 574.5

22 70.580 122.597 –9.324 0.071 0.007 1.485 –0.195 –0.311 566.0

23 69.529 122.508 –8.894 0.072 0.006 1.486 –0.163 –0.313 562.3

24 74.885 123.200 –8.548 0.068 0.011 1.473 –0.323 –0.353 507.0

25 74.580 123.258 –8.341 0.068 0.011 1.473 –0.314 –0.355 516.2

26 75.864 123.104 –8.915 0.069 0.013 1.476 –0.351 –0.349 522.8

27 73.652 123.179 –8.188 0.068 0.009 1.474 –0.286 –0.355 512.1

28 74.466 123.250 –8.539 0.068 0.011 1.473 –0.310 –0.356 514.7

29 73.572 123.241 –8.215 0.068 0.012 1.473 –0.284 –0.355 511.8

30 74.560 123.263 –8.347 0.068 0.010 1.473 –0.313 –0.355 509.0

31 73.360 123.193 –8.353 0.068 0.011 1.474 –0.279 –0.357 510.0

32 74.192 123.283 –8.292 0.069 0.015 1.473 –0.302 –0.357 513.9

33 74.230 123.166 –8.570 0.069 0.011 1.475 –0.303 –0.351 518.2

34 75.069 123.302 –8.603 0.068 0.011 1.472 –0.327 –0.357 507.0
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Table T3. continuation

No. E
e
/eV E

CC
/eV ∆

HL
/eV σ

b
/Å σ

r
/Å D

CC
/Å Q

C2mul
Q

Omul
δ/ppm

35 74.719 123.219 –8.217 0.068 0.011 1.474 –0.317 –0.353 515.0

36 74.722 123.230 –8.629 0.068 0.010 1.473 –0.318 –0.354 509.0

37 74.194 123.138 –8.139 0.068 0.010 1.475 –0.303 –0.351 520.0

38 74.517 123.116 –8.155 0.069 0.010 1.475 –0.313 –0.349 512.0

39 75.052 123.188 –8.509 0.068 0.011 1.474 –0.328 –0.351 507.0

40 74.628 123.142 –8.202 0.069 0.012 1.475 –0.315 –0.350 513.0

41 70.289 122.517 –8.677 0.073 0.007 1.485 –0.186 –0.313 550.0

42 70.690 122.507 –9.224 0.072 0.005 1.486 –0.199 –0.315 585.0

43 73.273 122.264 –9.205 0.074 0.005 1.490 –0.275 –0.313 565.0

44 71.796 122.477 –9.004 0.071 0.008 1.486 –0.231 –0.322 545.0

45 70.738 122.356 –8.761 0.074 0.011 1.489 –0.200 –0.307 538.0

46 70.328 122.471 –8.461 0.073 0.008 1.487 –0.188 –0.305 560.0

47 74.358 123.155 –8.050 0.069 0.010 1.475 –0.307 –0.350 518.0

48 74.739 123.148 –8.062 0.069 0.010 1.475 –0.318 –0.348 505.0

49 74.237 123.024 –7.968 0.069 0.010 1.476 –0.304 –0.346 517.0

50 74.405 123.092 –7.888 0.069 0.010 1.476 –0.309 –0.346 513.0
aThis data set was generated and used to build PLS models by Kiralj and Ferreira, J. Phys. Chem. A 2008, 112, 6134. bNames of samples and variables are 
from the original publication. cThe ten samples in the external validation set are 2, 5, 7, 10, 22, 26, 27, 34, 41 and 49. This selection is from the original 
publication. Table T4. The QSAR data set 4 for mouse cyclooxigenase-2 inhibition by imidazoles.a,b,c

Table T4. The QSAR data set 4 for mouse cyclooxigenase-2 inhibition by imidazoles.a,b,c

No. Substituent ClogP MgVol/Lmol-1 B1
X.2

/Å –log[IC
50

/molL–1]

1 H 3.09 2.37 1.00 6.16

3 3-F 3.24 2.39 1.00 6.62

4 4-F 3.24 2.39 1.00 6.72

5 2-Cl 3.56 2.49 1.80 5.89

6 3-Cl 3.81 2.49 1.00 7.10

8 2-CH
3

3.29 2.51 1.52 5.75

9 3-CH
3

3.59 2.51 1.00 6.22

10 4-CH
3

3.59 2.51 1.00 6.19

11 3-OCH
3

3.10 2.57 1.00 5.62

12 4-OCH
3

3.10 2.57 1.00 5.54

13 3,4-Cl
2

4.40 2.61 1.00 7.40

14 2,4-F
2

3.38 2.40 1.35 6.26

15 3,4-F
2

3.31 2.40 1.00 6.80

16 3-Cl-4-CH
3

4.24 2.63 1.00 6.64

17 2-CH
3
-3-F 3.44 2.53 1.52 5.77

aThis data set was generated and used to build a MLR model by Garg et al., Chem. Rev. 2003, 103, 703 (Table 17). Two outliers are already excluded. 
bNames of samples and variables are from the original publication. cThe two samples in the external validation set are 4 and 10. This selection was made 
in this work.
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ANALYSIS OF DATA SET 1

Table T5. Results for leave-N-out for the MLR model on data set 1.

N Single LNO Multiple LNOa

Q2
LNO

<Q2
LNO

> σ(Q2
LNO

)

1 0.7725 0.7725 0

2 0.7815 0.7717 0.0041

3 0.7741 0.7710 0.0123

4 0.7854 0.7732 0.0054

5 0.7841 0.7680 0.0101

6 0.7735 0.7649 0.0184

7 0.7710 0.7694 0.0159

8 0.7321 0.7692 0.0220

9 0.7786 0.7630 0.0255

10 0.7690 0.7721 0.0134

11 0.7718 0.7708 0.0116

12 0.7913 0.7578 0.0233

13 0.7576 0.7593 0.0381

14 0.7840 0.7611 0.0279

15 0.7815 0.7573 0.0217

16 0.7812 0.7676 0.0243

17 0.7818 0.7642 0.0505

18 0.7854 0.7527 0.0577

19 0.7948 0.7566 0.0368

20 0.8057 0.7515 0.0387

21 0.8070 0.7548 0.0262

22 0.7924 0.7599 0.0281

23 0.7699 0.7542 0.0324

24 0.7813 0.7486 0.0459

25 0.7669 0.7594 0.0218

26 0.7523 0.7594 0.0274

27 0.7757 0.7527 0.0268

28 0.7809 0.7486 0.0359

29 0.7837 0.7541 0.0274

30 0.7809 0.7302 0.0750

31 0.7913 0.7386 0.0587

32 0.7963 0.7433 0.0613

33 0.7801 0.7429 0.0589

34 0.7747 0.7503 0.0531

35 0.7791 0.7487 0.0552

36 0.7592 0.7446 0.0295

37 0.7842 0.7469 0.0310

Average 0.7787

Standard Deviation 0.0140
aAverage values of Q2

LNO
 and respective standard deviations are reported for multiple LNO (ten times reordered data set).
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Table T6. Ten bootstrappings with HCA clustering (BH), PCA clustering (BP), and only with random selection (BR) for the MLR model on data set 1.

Bootstrapping Q2
BH

R2
BH

Q2
BP

R2
BP

Q2
BR

R2
BR

1 0.7642 0.8229 0.8946 0.9141 0.7428 0.8045

2 0.8078 0.8597 0.7753 0.8371 0.7727 0.8163

3 0.7642 0.8200 0.7835 0.8375 0.7817 0.8439

4 0.7960 0.8485 0.7776 0.8442 0.7945 0.8483

5 0.8115 0.8628 0.8095 0.8520 0.7847 0.8315

6 0.8271 0.8675 0.7453 0.8259 0.7747 0.8330

7 0.7905 0.8377 0.7327 0.7994 0.8021 0.8446

8 0.7712 0.8309 0.7631 0.8218 0.7751 0.8307

9 0.7312 0.7981 0.7645 0.8221 0.7727 0.8247

10 0.7884 0.8431 0.8070 0.8523 0.8202 0.8595

Average 0.7852 0.8391 0.7853 0.8406 0.7821 0.8337

Stand. dev. 0.0281 0.0218 0.0453 0.0304 0.0206 0.0162

The model 0.7725 0.8301 0.7725 0.8301 0.7725 0.8301

Table T7. Twenty-five bootstrappings with HCA clustering (BH), PCA clustering (BP), and only with random selection (BR) for the MLR model on data 
set 1.

Bootstrapping Q2
BH

R2
BH

Q2
BP

R2
BP

Q2
BR

R2
BR

1 0.7704 0.8253 0.7967 0.8417 0.8031 0.8565

2 0.8108 0.8603 0.7577 0.8466 0.7823 0.8434

3 0.7863 0.8406 0.7584 0.8111 0.7817 0.8295

4 0.7868 0.8482 0.7449 0.8269 0.7842 0.8299

5 0.7703 0.8243 0.7252 0.7924 0.7553 0.8237

6 0.7636 0.8285 0.8197 0.8763 0.7677 0.8178

7 0.7745 0.8342 0.8143 0.8540 0.8000 0.8582

8 0.8052 0.8538 0.7409 0.8009 0.7543 0.8171

9 0.7628 0.8245 0.7223 0.7878 0.7124 0.7801

10 0.7669 0.8303 0.6915 0.7286 0.7390 0.8175

11 0.8067 0.8587 0.8024 0.8501 0.7829 0.8462

12 0.8049 0.8509 0.6866 0.7879 0.7924 0.8401

13 0.7842 0.8447 0.8155 0.8598 0.8109 0.8562

14 0.7490 0.8210 0.8210 0.8640 0.7507 0.8109

15 0.8269 0.8761 0.8054 0.8533 0.7845 0.8439

16 0.8041 0.8457 0.8031 0.8442 0.7676 0.8282

17 0.7512 0.8149 0.8180 0.8661 0.7829 0.8318

18 0.8056 0.8542 0.7945 0.8512 0.8074 0.8585

19 0.7639 0.8226 0.7884 0.8455 0.8323 0.8751

20 0.7334 0.8035 0.7973 0.8602 0.8068 0.8483

21 0.7708 0.8365 0.7076 0.7917 0.8230 0.8726

22 0.8071 0.8515 0.7723 0.8268 0.9205 0.9331

23 0.7920 0.8457 0.7940 0.8448 0.7698 0.8263

24 0.7399 0.8036 0.7563 0.8151 0.7872 0.8426

25 0.8400 0.8808 0.8316 0.8689 0.7877 0.8293

Average 0.7831 0.8392 0.7746 0.8318 0.7875 0.8407

Stand. dev. 0.0271 0.0198 0.0430 0.0348 0.0384 0.0283

The model 0.7725 0.8301 0.7725 0.8301 0.7725 0.8301
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Table T8. Ten y-randomizations for the MLR model on data set 1.

Randomization Q2 R2

1 –0.0439 0.0912

2 –0.0380 0.1004

3 –0.1212 0.0442

4 –0.1801 0.0255

5 –0.0260 0.1561

6 –0.0847 0.0769

7 –0.1343 0.0458

8 –0.0167 0.1340

9 –0.1084 0.0571

10 –0.1866 0.0087

Maximum –0.0167 0.1561

Average –0.0940 0.0740

Standard deviation 0.0623 0.0471

The model 0.7725 0.8301

Table T9. Twenty-five y-randomizations for the MLR model on data 
set 1.

Randomization Q2 R2

1 –0.0545 0.0881

2 –0.1419 0.0415

3 –0.0570 0.1166

4 –0.0697 0.1047

5 –0.0260 0.1561

6 –0.0847 0.0769

7 –0.1343 0.0458

8 –0.0167 0.1340

9 –0.1084 0.0571

11 –0.0326 0.1615

12 –0.0821 0.0825

13 –0.0895 0.0672

14 –0.1808 0.0212

15 –0.1146 0.0823

16 –0.1030 0.0619

17 –0.1217 0.0482

18 –0.1192 0.0584

19 –0.1153 0.0450

20 –0.0876 0.0547

21 –0.1808 0.0330

22 –0.0936 0.0709

23 –0.0998 0.0542

24 –0.1802 0.0111

25 –0.0378 0.0126

Maximum –0.0167 0.1816

Average –0.0943 0.0747

Standard deviation 0.0479 0.0455

The model 0.7725 0.8301

Figure F1. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the MLR 
model on data set 1: Q2 = –0.191 + 0.925 r  and  Q2 = –0.176 + 0.842 r, 
respectively.

Figure F2. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the MLR 
model on data set 1:  R2 = –0.012 + 0.813 r   and   R2 = 0.003 + 0.738 
r, respectively.
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ANALYSIS OF DATA SET 2

Table T10. Results for leave-N-out for the PLS model on data set 2.

N Single LNO Multiple LNOa

Q2
LNO

<Q2
LNO

> σ(Q2
LNO

)

1 0.8409 0.8409 0

2 0.8466 0.8415 0.0031

3 0.8394 0.8387 0.0059

4 0.8449 0.8387 0.0056

5 0.8448 0.8418 0.0059

6 0.8499 0.8346 0.0077

7 0.8277 0.8355 0.0048

8 0.8533 0.8394 0.0084

9 0.8342 0.8369 0.0105

10 0.8193 0.8418 0.0078

11 0.7739 0.8377 0.0128

12 0.8386 0.8313 0.0170

13 0.8493 0.8420 0.0098

14 0.7673 0.8405 0.0133

15 0.8291 0.8424 0.0060

16 0.8322 0.8418 0.0078

17 0.8293 0.8377 0.0085

18 0.7567 0.8125 0.0375

19 0.8316 0.8141 0.0345

20 0.8517 0.8292 0.0149

21 0.8554 0.8216 0.0206

22 0.8567 0.8308 0.0214

23 0.8553 0.8272 0.0192

24 0.8389 0.8210 0.0333

25 0.8481 0.8121 0.0348

26 0.8330 0.8194 0.0395

27 0.7881 0.8245 0.0417

28 0.7602 0.8367 0.0240
aAverage values of Q2

LNO
 and respective standard deviations are reported for multiple LNO (ten times reordered data set).

Figure F3. Leave-N-out crossvalidation plot for the PLS model on data set 2, showing the general trend (left) and details (right). Black - single LNO, red 
- multiple LNO (10 times). Single LNO: average Q2 - dot-dash line, one standard deviation below and above the average - dotted lines. Multiple LNO: one 
standard deviation below and above the average - red dotted curved lines. Green - single LNO using the original (not randomized) data set.
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Figure F4. A comparative plot for bootstrappings for the PLS model on data set 2: the real model (black square), models from HCA-based bootstrappings 
(blue squares: 10 iterations - solid, 25 iterations - open), models from bootstrapping based on classes of Y (pink squares: 10 iterations - solid, 25 iterations 
- open), models from bootstrapping based MDR resistance classes (green squares: 10 iterations - solid, 25 iterations - open), and models from simple 
bootstrappings (red squares: 10 iterations - solid, 25 iterations - open).

Table T11. Ten bootstrappings with HCA clustering (BC), with classes of y (BY), with MDR resistance classes (BM) and only with random selection 
(BR) for the PLS model on data set 2.

Bootstrapping Q2
BC

R2
BC

Q2
BY

R2
BY

Q2
BM

R2
BM

Q2
BR

R2
BR

1 0.8595 0.8983 0.8525 0.8853 0.8587 0.8958 0.8345 0.8778

2 0.8433 0.8820 0.8446 0.8822 0.8505 0.8954 0.8361 0.8716

3 0.8435 0.8810 0.7980 0.8447 0.8425 0.8755 0.8406 0.8833

4 0.8496 0.8841 0.8158 0.8559 0.8257 0.8640 0.8411 0.8787

5 0.8386 0.8777 0.8267 0.8729 0.8131 0.8590 0.8782 0.9083

6 0.8302 0.8729 0.8280 0.8687 0.8349 0.8744 0.8455 0.8848

7 0.8819 0.9104 0.8352 0.8739 0.8088 0.8542 0.8524 0.8878

8 0.8915 0.9215 0.8249 0.8624 0.8271 0.8695 0.8849 0.9159

9 0.8834 0.9140 0.8023 0.8468 0.8180 0.8665 0.8651 0.8971

10 0.7956 0.8434 0.8422 0.8766 0.8453 0.8825 0.8288 0.8717

Average 0.8517 0.8885 0.8270 0.8669 0.8325 0.8737 0.8507 0.8877

Stand. dev. 0.0288 0.0232 0.0178 0.0141 0.0167 0.0141 0.0192 0.0150

The model 0.8409 0.8814 0.8409 0.8814 0.8409 0.8814 0.8409 0.8814
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Table T12. Twenty-five bootstrappings with HCA clustering (BC), with classes of y (BY), with MDR resistance classes (BM) and only with random 
selection (BR) for the PLS model on data set 2.

Bootstrapping Q2
BC

R2
BC

Q2
BY

R2
BY

Q2
BM

R2
BM

Q2
BR

R2
BR

1 0.8630 0.8964 0.8272 0.8696 0.8416 0.8842 0.8118 0.8603

2 0.8623 0.8988 0.8459 0.8878 0.8599 0.8954 0.8654 0.8988

3 0.8119 0.8577 0.8246 0.8641 0.8751 0.9039 0.8018 0.8477

4 0.7878 0.8359 0.8001 0.8476 0.8159 0.8579 0.8445 0.8787

5 0.8222 0.8599 0.8227 0.8669 0.8801 0.9087 0.8322 0.8715

6 0.8484 0.8867 0.8800 0.9120 0.7887 0.8402 0.9198 0.9417

7 0.8484 0.8834 0.8058 0.8473 0.8147 0.8550 0.8210 0.8608

8 0.8195 0.8615 0.8676 0.9073 0.8563 0.8929 0.8909 0.9197

9 0.8539 0.8887 0.8763 0.9039 0.8072 0.8530 0.8213 0.8719

10 0.8467 0.8823 0.8375 0.8807 0.7426 0.7797 0.8003 0.8504

11 0.8241 0.8636 0.8642 0.8959 0.8679 0.9014 0.8689 0.9012

12 0.8450 0.8841 0.8431 0.8787 0.8442 0.8822 0.8454 0.8802

13 0.8320 0.8794 0.8356 0.8606 0.8368 0.8732 0.8376 0.8823

14 0.9035 0.9297 0.8738 0.9043 0.8358 0.8752 0.8585 0.8906

15 0.8455 0.8853 0.8439 0.8841 0.8410 0.8803 0.8315 0.8721

16 0.8440 0.8811 0.8251 0.8735 0.8620 0.8961 0.8438 0.8838

17 0.7844 0.8168 0.8468 0.8867 0.8584 0.9001 0.7630 0.8146

18 0.8416 0.8809 0.8468 0.8867 0.8710 0.9014 0.8214 0.8662

19 0.8517 0.8895 0.8681 0.8996 0.8213 0.8625 0.8146 0.8580

20 0.8624 0.8999 0.8195 0.8579 0.7962 0.8474 0.8300 0.8711

21 0.8578 0.8901 0.8342 0.8733 0.8013 0.8511 0.7871 0.8344

22 0.8395 0.8804 0.8290 0.8681 0.8403 0.8808 0.8520 0.8882

23 0.8262 0.8661 0.8292 0.8663 0.8016 0.8471 0.8302 0.8640

24 0.8458 0.8835 0.8037 0.8507 0.8419 0.8811 0.7972 0.8385

25 0.7902 0.8241 0.8514 0.8868 0.8166 0.8570 0.8470 0.8822

Average 0.8383 0.8762 0.8401 0.8784 0.8327 0.8723 0.8335 0.8732

Stand. dev. 0.0264 0.0244 0.0225 0.0188 0.0323 0.0284 0.0332 0.0268

The model 0.8409 0.8814 0.8409 0.8814 0.8409 0.8814 0.8409 0.8814

Table T13. Ten y-randomizations for the PLS model on data set 2.

Randomization Q2 R2

1 0.0304 0.2332

2 –0.2744 0.0257

3 –0.1390 0.1047

4 –0.1468 0.1293

5 –0.2112 0.1165

6 –0.1667 0.1203

7 –0.1892 0.0728

8 –0.3055 0.0920

9 –0.1855 0.0938

10 –0.1616 0.1207

Maximum 0.0304 0.2332

Average –0.1749 0.1109

Standard deviation 0.0901 0.0526

The model 0.8409 0.8814
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Table T14. Twenty-five y-randomizations for the PLS model on data 
set 2.

Randomization Q2 R2

1 –0.1859 0.0827

2 –0.1017 0.1257

3 –0.2452 0.0731

4 –0.1850 0.0602

5 –0.1861 0.1117

6 –0.0807 0.1708

7 –0.0462 0.1939

8 –0.1062 0.1289

9 –0.2632 0.0640

11 –0.0306 0.1461

12 –0.1365 0.1260

13 –0.1653 0.1317

14 –0.2246 0.0880

15 –0.1668 0.0995

16 –0.1735 0.1269

17 –0.1802 0.0521

18 –0.2296 0.0730

19 –0.2282 0.1212

20 –0.1912 0.0807

21 –0.2293 0.0516

22 –0.1348 0.1441

23 –0.2692 0.0333

24 –0.1812 0.1043

25 –0.0817 0.1492

Maximum –0.0306 0.1939

Average 0.0662 0.0412

Standard deviation 0.0776 0.0508

The model 0.8409 0.8814

Figure F5. The y-randomization plot for the PLS model on data set 2: 
black square - the real model, blue squares - 10 randomized models, red 
squares - 25 randomized models.

Table T15. Comparative statistics of 10 and 25 y-randomizations for the PLS model on data set 2.

Parametera 10 iterations 25 iterations

Maximum (Q2
yrand

) –0.030 –0.031

Maximum (R2
yrand

) 0.233 0.194

Standard deviation (Q2
yrand

) 0.090 0.078

Standard deviation (R2
yrand

) 0.053 0.051

Minimum model-random. diff. (Q2
yrand

)b 9.67 11.23

Minimum model-random. diff. (R2
yrand

)b 12.32 13.53

Confidence level for min. diff. (Q2
yrand

)c <0.0001 <0.0001

Confidence level for min. diff. (R2
yrand

)c <0.0001 <0.0001

Randomizations %, conf. level > 0.0001 (Q2
yrand

)d 0 0

Randomizations %, conf. level > 0.0001 (R2
yrand

)d 0 0

y-Randomization intercept (r
yrand

 vs. Q2
yrand

)e –0.219 –0.262

y-Randomization intercept (r
yrand

 vs. R2
yrand

)e 0.077 0.035
aStatistical parameters are calculated for Q2 from from y-randomization (Q2

yrand
) and R2 from y-randomization (R2

yrand
). bMinimum model-randomizations 

difference: the difference between the real model (Table 1) and the best y-randomization in terms of correlation coefficients Q2
yrand

 or R2
yrand

, expressed in 
units of the standard deviations of Q2

yrand
 or R2

yrand
, respectively. The best y-randomization is defined by the highest Q2

rand
 or R2

rand
. cConfidence level for 

normal distribution of the minimum difference between the real and randomized models. dPercentage of randomizations characterized by the difference 
between the real and randomized models (in terms of Q2

yrand
 or R2

yrand
) at confidence levels > 0.0001. eIntercepts obtained from two y-randomization plots 

for each regression model proposed. Q2
yrand

 or R2
yrand

 is the vertical axis, whilst the horizontal axis is the absolute value of the correlation coefficient r
yrand

 
between the original and randomized vectors y. The randomization plots are completed with the data for the real model (r

yrand
 = 1.000, Q2 or R2).



Kiralj and Ferreira S15Vol. 20, No. 4, 2009

Figure F6. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the PLS 
model on data set 2: Q2 = –0.219 + 1.044 r  and  Q2 = –0.262 + 1.007 r, 
respectively.

Figure F7. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the PLS 
model on data set 2: R2 = 0.077 + 0.7956 r  and  R2 = 0.035 + 0.759 r, 
respectively.

ANALYSIS OF DATA SET 3

Table T16. Results for leave-N-out for the PLS model on data set 3.

N Single LNO Multiple LNOa

Q2
LNO

<Q2
LNO

> σ(Q2
LNO

)

1 0.8951 0.8951 0

2 0.8939 0.8949 0.0015

3 0.8774 0.8960 0.0028

4 0.8875 0.8917 0.0043

5 0.8965 0.8941 0.0058

6 0.8691 0.8896 0.0130

7 0.8982 0.8958 0.0039

8 0.8795 0.8935 0.0072

9 0.8868 0.8935 0.0068

10 0.8968 0.8926 0.0086

11 0.8937 0.8889 0.0127

12 0.8898 0.8849 0.0140

13 0.8926 0.8883 0.0105

14 0.9009 0.8902 0.0114

15 0.8717 0.8976 0.0067

16 0.8559 0.8963 0.0072

17 0.8892 0.8900 0.0187

18 0.8701 0.8863 0.0222

19 0.8915 0.8919 0.0125

20 0.8956 0.8750 0.0255

21 0.9120 0.8816 0.0242

22 0.9108 0.8781 0.0189

23 0.9091 0.8867 0.0110

24 0.9069 0.8854 0.0155

25 0.9066 0.8875 0.0156
aAverage values of Q2

LNO
 and respective standard deviations are reported for multiple LNO (ten times reordered data set).
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Figure F8. Leave-N-out crossvalidation plot for the PLS model on data set 3, showing the general trend (left) and details (right). Black - single LNO, red 
- multiple LNO (10 times). Single LNO: average Q2 - dot-dash line, one standard deviation below and above the average - dotted lines. Multiple LNO: one 
standard deviation below and above the average - red dotted curved lines. Green - single LNO using the original (not randomized) data set.

Table T16. Ten bootstrappings with HCA clustering (BC), with classes of y (BY) and only with random selection (BR) for the PLS model on data set 3.

Bootstrapping Q2
BC

R2
BC

Q2
BY

R2
BY

Q2
BR

R2
BR

1 0.8821 0.9108 0.8864 0.9130 0.8848 0.9102

2 0.8922 0.9185 0.8799 0.9066 0.8952 0.9209

3 0.8874 0.9178 0.8710 0.9003 0.8885 0.9209

4 0.8786 0.9050 0.8933 0.9179 0.9064 0.9324

5 0.8911 0.9161 0.8938 0.9175 0.8903 0.9172

6 0.9015 0.9246 0.8759 0.9038 0.8791 0.9076

7 0.8941 0.9222 0.8917 0.9148 0.9154 0.9394

8 0.8820 0.9086 0.8924 0.9202 0.8820 0.9092

9 0.8773 0.9095 0.9050 0.9281 0.8922 0.9190

10 0.8861 0.9111 0.9031 0.9262 0.8929 0.9176

Average 0.8872 0.9144 0.8892 0.9148 0.8927 0.9194

Standard deviation 0.0076 0.0064 0.0111 0.0092 0.0110 0.0101

The model 0.8951 0.9154 0.8951 0.9154 0.8951 0.9154
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Table T17. Twenty-five bootstrappings with HCA clustering (BC), with classes of y (BY) and only with random selection (BR) for the PLS model on 
data set 3.

Bootstrapping Q2
BC

R2
BC

Q2
BY

R2
BY

Q2
BR

R2
BR

1 0.8861 0.9119 0.9018 0.9215 0.8821 0.9106

2 0.9060 0.9309 0.8791 0.9061 0.9003 0.9233

3 0.8761 0.9034 0.8955 0.9225 0.8957 0.9203

4 0.8806 0.9076 0.8976 0.9178 0.8871 0.9128

5 0.8939 0.9182 0.8948 0.9225 0.8774 0.9039

6 0.8824 0.9092 0.9176 0.9390 0.9107 0.9316

7 0.8776 0.9069 0.8908 0.9163 0.8772 0.9036

8 0.8776 0.9069 0.8857 0.9106 0.8940 0.9182

9 0.8870 0.9124 0.9073 0.9260 0.8809 0.9055

10 0.8804 0.9090 0.8917 0.9151 0.8739 0.9013

11 0.8855 0.9126 0.8927 0.9190 0.9158 0.9347

12 0.8956 0.9172 0.9051 0.9288 0.8899 0.9171

13 0.8959 0.9216 0.8939 0.9172 0.8756 0.9028

14 0.8902 0.9193 0.8941 0.9165 0.8770 0.9042

15 0.8920 0.9086 0.8711 0.8998 0.8933 0.9177

16 0.8935 0.9168 0.8836 0.9091 0.8853 0.8982

17 0.8962 0.9216 0.8963 0.9199 0.8734 0.9013

18 0.8989 0.9146 0.8774 0.9037 0.8941 0.9177

19 0.9024 0.9292 0.9085 0.9308 0.8895 0.9148

20 0.8950 0.9231 0.8835 0.9089 0.8736 0.9017

21 0.8767 0.9048 0.8756 0.9035 0.9003 0.9293

22 0.9004 0.9310 0.8900 0.9165 0.9041 0.9139

23 0.8914 0.9154 0.8834 0.9102 0.9101 0.9347

24 0.8795 0.9119 0.8897 0.9154 0.8797 0.9057

25 0.8870 0.9124 0.9223 0.9294 0.8872 0.9108

Average 0.8891 0.9151 0.8932 0.9170 0.8891 0.9134

Standard deviation 0.0087 0.0078 0.0125 0.0094 0.0125 0.0110

The model 0.8951 0.9154 0.8951 0.9154 0.8951 0.9154

Table T18. Ten y-randomizations for the PLS model on data set 3.

Randomization Q2 R2

1 –0.2014 0.0539

2 –0.1909 0.0582

3 –0.0200 0.1402

4 –0.0356 0.1401

5 –0.2101 0.0519

6 –0.1969 0.0178

7 –0.1950 0.0847

8 –0.1780 0.0358

9 –0.1458 0.0715

10 –0.5926 0.0692

Maximum –0.0200 0.1402

Average –0.1966 0.0723

Standard deviation 0.1553 0.0403

The model 0.8951 0.9154
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Table T19. Twenty-five y-randomizations for the PLS model on data 
set 3.

Randomization Q2 R2

1 –0.0928 0.1172

2 0.0671 0.2237

3 –0.2499 0.0504

4 –0.2531 0.0446

5 –0.1525 0.0732

6 –0.1101 0.0784

7 –0.0417 0.1719

8 –0.1675 0.0851

9 –0.0631 0.1259

11 –0.1041 0.0833

12 –0.1200 0.0750

13 –0.0770 0.1466

14 –0.1658 0.0514

15 –0.0236 0.1409

16 –0.0847 0.2243

17 –0.0874 0.1239

18 –0.2212 0.0261

19 –0.1092 0.0935

20 –0.1526 0.0813

21 –0.0401 0.1307

22 –0.1790 0.0864

23 –0.0561 0.1082

24 –0.1154 0.1088

25 –0.2619 0.0403

Maximum 0.0671 0.2243

Average –0.1188 0.1037

Standard deviation 0.0776 0.0508

The model 0.8951 0.9154

Figure F9. The y-randomization plot for the PLS model on data set 3: 
black ball - the real model, blue balls - 10 randomized models, red balls 
- 25 randomized models.

Table T20. Comparative statistics of 10 and 25 y-randomizations for the PLS model on data set 3.

Parametera 10 iterations 25 iterations

Maximum (Q2
yrand

) –0.020 0.067

Maximum (R2
yrand

) 0.140 0.224

Standard deviation (Q2
yrand

) 0.155 0.078

Standard deviation (R2
yrand

) 0.040 0.051

Minimum model-random. diff. (Q2
yrand

)b 11.79 10.67

Minimum model-random. diff. (R2
yrand

)b 19.24 13.60

Confidence level for min. diff. (Q2
yrand

)c <0.0001 <0.0001

Confidence level for min. diff. (R2
yrand

)c <0.0001 <0.0001

Randomizations %, conf. level > 0.0001 (Q2
yrand

)d 0 0

Randomizations %, conf. level > 0.0001 (R2
yrand

)d 0 0

y-Randomization intercept (r
yrand

 vs. Q2
yrand

)e –0.304 –0.231

y-Randomization intercept (r
yrand

 vs. R2
yrand

)e –0.004 0.016
aStatistical parameters are calculated for Q2 from from y-randomization (Q2

yrand
) and R2 from y-randomization (R2

yrand
). bMinimum model-randomizations 

difference: the difference between the real model (Table 1) and the best y-randomization in terms of correlation coefficients Q2
yrand

 or R2
yrand

, expressed in 
units of the standard deviations of Q2

yrand
 or R2

yrand
, respectively. The best y-randomization is defined by the highest Q2

rand
 or R2

rand
. cConfidence level for 

normal distribution of the minimum difference between the real and randomized models. dPercentage of randomizations characterized by the difference 
between the real and randomized models (in terms of Q2

yrand
 or R2

yrand
) at confidence levels > 0.0001. eIntercepts obtained from two y-randomization plots 

for each regression model proposed. Q2
yrand

 or R2
yrand

 is the vertical axis, whilst the horizontal axis is the absolute value of the correlation coefficient r
yrand

 
between the original and randomized vectors y. The randomization plots are completed with the data for the real model (r

yrand
 = 1.000, Q2 or R2).
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Figure F10. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the PLS 
model on data set 3: Q2 = –0.304 + 1.207 r  and  Q2 = –0.231 + 0.972 r, 
respectively.

ANALYSIS OF DATA SET 4

Table T21. Results for leave-N-out for the MLR model on data set 4.

N Single LNO Multiple LNOa

Q2
LNO

<Q2
LNO

> σ(Q2
LNO

)

1 0.7977 0.7977 0

2 0.7093 0.8012 0.0284

3 0.7230 0.7460 0.0536

4 0.6846 0.7778 0.0664

5 0.8494 0.7713 0.0764

6 0.5663 0.6719 0.2721

7 0.7706 0.7178 0.1872
aAverage values of Q2

LNO
 and respective standard deviations are reported for multiple LNO (ten times reordered data set).

Figure F12. Leave-N-out crossvalidation plot for the MLR model on data 
set 4. Black - single LNO, red - multiple LNO (10 times). Single LNO: 
average Q2 - dot-dash line, one standard deviation below and above the 
average - dotted lines. Multiple LNO: one standard deviation below and 
above the average - red dotted curved lines. Green - single LNO using 
the original (not randomized) data set.

Figure F11. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the PLS 
model on data set 3: R2 = –0.004 + 0.891 r  and  R2 = 0.016 + 0.768 r, 
respectively.
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Table T22. Ten bootstrappings with HCA clustering (BC) and only with random selection (BR) for the MLR model on data set 4.

Bootstrapping Q2
BC

R2
BC

Q2
BR

R2
BR

1 0.7868 0.8937 0.8043 0.8979

2 0.7059 0.8739 0.8160 0.9076

3 0.7948 0.8963 0.8209 0.9108

4 0.6379 0.8682 0.8372 0.9171

5 0.7620 0.8647 0.7741 0.9000

6 0.7705 0.8801 0.6337 0.8880

7 0.7705 0.8801 0.7490 0.8872

8 0.5760 0.8551 0.8216 0.9117

9 0.7560 0.8755 0.8100 0.9023

10 0.7620 0.8647 0.7873 0.8888

Average 0.7322 0.8752 0.7865 0.8997

Stand. dev. 0.0716 0.0130 0.0564 0.0112

The model 0.7977 0.8857 0.7977 0.8857

Table T23. Twenty-five bootstrappings with HCA clustering (BC) and only with random selection (BR) for the MLR model on data set 4.

Bootstrapping Q2
BC

R2
BC

Q2
BR

R2
BR

1 0.7868 0.8937 0.8876 0.9285

2 0.7796 0.8929 0.8543 0.9075

3 0.7298 0.8760 0.7764 0.8839

4 0.7721 0.8796 0.6932 0.8662

5 0.7664 0.8616 0.8042 0.9005

6 0.6773 0.8681 0.7314 0.8708

7 0.7462 0.8886 0.8334 0.9067

8 0.8372 0.9171 0.7796 0.8929

9 0.7620 0.8647 0.7033 0.8731

10 0.8106 0.9031 0.8145 0.8950

11 0.7835 0.8861 0.8065 0.9017

12 0.6306 0.8570 0.6998 0.8431

13 0.7721 0.8796 0.8074 0.9005

14 0.6953 0.8690 0.7939 0.8955

15 0.8160 0.9076 0.7879 0.8972

16 0.6379 0.8682 0.8158 0.9147

17 0.7059 0.8739 0.8100 0.9023

18 0.6993 0.8639 0.6827 0.8859

19 0.7873 0.8907 0.8069 0.9034

20 0.6379 0.8682 0.7879 0.8972

21 0.7705 0.8801 0.7764 0.8839

22 0.7930 0.8798 0.7796 0.8828

23 0.6345 0.8748 0.8224 0.8994

24 0.8074 0.9005 0.7344 0.8748

25 0.7764 0.8839 0.7873 0.8888

Average 0.7446 0.8811 0.7831 0.8919

Stand. dev. 0.0623 0.0153 0.0507 0.0175

The model 0.7977 0.8857 0.7977 0.8857
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Table T24. Ten y-randomizations for the MLR model on data set 4.

Randomization Q2 R2

1 –1.1201 0.0511

2 –1.0796 0.0494

3 –0.5260 0.1987

4 –0.6397 0.1189

5 –0.2905 0.2057

6 –0.5428 0.3060

7 –0.8073 0.0584

8 –0.3572 0.1894

9 –0.4147 0.1759

10 –0.2020 0.4037

Maximum –0.2020 0.4037

Average –0.5980 0.1757

Standard deviation 0.3164 0.1150

The model 0.7977 0.8857

Table T25. Twenty-five y-randomizations for the MLR model on data 
set 4.

Randomization Q2 R2

1 –0.6768 0.2281

2 –0.5245 0.2219

3 –0.6821 0.0685

4 –0.9890 0.1179

5 –0.3997 0.2255

6 –0.5940 0.1220

7 –0.5796 0.2874

8 –0.5530 0.2320

9 –0.3110 0.3728

10 –0.9104 0.0214

11 0.0926 0.5633

12 –0.7789 0.0541

13 –0.4595 0.1575

14 –0.2211 0.3617

15 –0.0381 0.4240

16 –0.8862 0.0185

17 –0.9625 0.0099

18 –1.0739 0.0114

19 0.0086 0.3491

20 –0.4680 0.2169

21 –0.5269 0.1176

22 –0.5318 0.1148

23 –0.7300 0.1343

24 0.2062 0.4832

25 –0.3210 0.2831

Maximum 0.2062 0.5633

Average –0.5164 0.2079

Standard deviation 0.3409 0.1534

The model 0.7977 0.8857

Figure F13. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the MLR 
model on data set 4: Q2 = –0.989 + 1.710 r  and  Q2 = –0.739 + 1.069 r, 
respectively.

Figure F14. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the MLR 
model on data set 4: R2 = –0.011 + 0.830 r  and  R2 = 0.077 + 0.616 r, 
respectively.
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ANALYSIS OF DATA SUBSET 3

Table T26. The QSPR data subset 3 for carbonyl oxygen chemical shift in substituted benzaldehydes.a,b,c

No. E
e
/eV E

CC
/eV ∆

HL
/eV σ

b
/Å σr/Å D

CC
/Å Q

C2mul
Q

Omul
δ

exp
/ppm

4 72.092 122.819 –8.336 0.071 0.008 1.480 –0.240 –0.326 532.8

6 65.144 122.617 –9.335 0.072 0.005 1.485 –0.215 –0.313 568.9

7 70.884 122.591 –8.930 0.072 0.003 1.485 –0.204 –0.313 570.1

8 70.633 122.540 –9.315 0.072 0.007 1.486 –0.196 –0.311 570.3

9 70.181 122.431 –9.140 0.072 0.003 1.487 –0.182 –0.305 593.6

13 71.304 122.324 –9.336 0.073 0.006 1.489 –0.217 –0.307 555.0

14 67.203 121.716 –9.367 0.076 0.005 1.499 –0.093 –0.282 576.0

19 71.291 122.541 –9.483 0.072 0.003 1.485 –0.216 –0.311 568.4

27 73.652 123.179 –8.188 0.068 0.009 1.474 –0.286 –0.355 512.1

32 74.192 123.283 –8.292 0.069 0.015 1.473 –0.302 –0.357 513.9

33 74.230 123.166 –8.570 0.069 0.011 1.475 –0.303 –0.351 518.2

36 74.722 123.230 –8.629 0.068 0.010 1.473 –0.318 –0.354 509.0

37 74.194 123.138 –8.139 0.068 0.010 1.475 –0.303 –0.351 520.0

46 70.328 122.471 –8.461 0.073 0.008 1.487 –0.188 –0.305 560.0

48 74.739 123.148 –8.062 0.069 0.010 1.475 –0.318 –0.348 505.0
aThis data subset was generated from data set 3 (Table T3). bNames of samples and variables are from the original publication for data set 3. cThe two 
samples in the external validation set are 7 and 37. This selection is based on HCA analysis of this data subset.

Table T27. Results for leave-N-out for the PLS model on data subset 3.

N Single LNO Multiple LNOa

Q2
LNO

<Q2
LNO

> σ(Q2
LNO

)

1 0.7785 0.7785 0

2 0.7626 0.7811 0.0164

3 0.7787 0.7752 0.0281

4 0.8366 0.7738 0.0313

5 0.6233 0.7393 0.0672

6 0.6735 0.7593 0.0788

7 0.8214 0.7168 0.1231

Averageb 0.7891

Standard deviationb 0.0326
aAverage values of Q2

LNO
 and respective standard deviations are reported for multiple LNO (ten times reordered data set). bValues calculated from Q2

LNO
 

for N =1, 2, 3, 4.
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Figure F15. Leave-N-out crossvalidation plot for the PLS model on data 
subset 3. Black - single LNO, red - multiple LNO (10 times). Single LNO: 
average Q2 - dot-dash line, one standard deviation below and above the 
average - dotted lines. Multiple LNO: one standard deviation below and 
above the average - red dotted curved lines. Green - single LNO using 
the original (not randomized) data set.

Table T28. Ten bootstrappings with HCA clustering (BC), with classes of Y (BY) and only with random selection (BR) for the PLS model on data subset 
3.

Bootstrapping Q2
BC

R2
BC

Q2
BY

R2
BY

Q2
BR

R2
BR

1 0.7879 0.9134 0.8176 0.8995 0.7479 0.8932

2 0.7773 0.9042 0.8176 0.8995 0.8541 0.9077

3 0.8567 0.9075 0.8495 0.9022 0.7501 0.8942

4 0.8176 0.8995 0.7970 0.9184 0.7556 0.8919

5 0.7505 0.8882 0.7695 0.8970 0.7890 0.9058

6 0.7251 0.8599 0.7186 0.8907 0.7611 0.8958

7 0.7293 0.8623 0.7498 0.8957 0.9065 0.9385

8 0.7959 0.9105 0.7479 0.8932 0.7342 0.8512

9 0.7511 0.9144 0.7627 0.8966 0.7501 0.8594

10 0.7695 0.8970 0.7505 0.8882 0.7405 0.8843

Average 0.7761 0.8957 0.7781 0.8981 0.7789 0.8922

Standard deviation 0.0406 0.0199 0.0407 0.0083 0.0568 0.0245

The model 0.7785 0.8968 0.7785 0.8968 0.7785 0.8968
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Table T29. Twenty-five bootstrappings with HCA clustering (BC), with classes of Y (BY) and only with random selection (BR) for the PLS model on 
data subset 3.

Bootstrapping Q2
BC

R2
BC

Q2
BY

R2
BY

Q2
BR

R2
BR

1 0.7475 0.8539 0.8063 0.9203 0.7792 0.9016

2 0.7705 0.8958 0.7099 0.8876 0.8567 0.9075

3 0.8176 0.8995 0.7374 0.8918 0.7214 0.8804

4 0.8495 0.9022 0.7302 0.8859 0.7293 0.8623

5 0.8495 0.9022 0.7879 0.9134 0.7444 0.8858

6 0.8567 0.9075 0.7296 0.8876 0.8176 0.8995

7 0.7959 0.9105 0.7348 0.8938 0.7501 0.8942

8 0.7479 0.8932 0.8063 0.9203 0.8541 0.9077

9 0.7479 0.8932 0.8098 0.9201 0.7296 0.8876

10 0.7342 0.8512 0.8063 0.9203 0.7706 0.8979

11 0.7394 0.8532 0.7879 0.9134 0.7382 0.8855

12 0.7505 0.8882 0.7695 0.8970 0.7475 0.8539

13 0.7292 0.8652 0.7879 0.9134 0.7231 0.9038

14 0.7511 0.9144 0.7348 0.8938 0.7501 0.8942

15 0.7342 0.8907 0.8017 0.9232 0.7465 0.8735

16 0.8093 0.8954 0.8567 0.9075 0.7367 0.8556

17 0.7292 0.8652 0.8531 0.9037 0.7183 0.8517

18 0.7498 0.8957 0.8314 0.9280 0.7542 0.8606

19 0.7496 0.8583 0.7970 0.9184 0.7342 0.8512

20 0.8148 0.9242 0.7380 0.8892 0.7628 0.9014

21 0.7501 0.8942 0.7099 0.8876 0.8202 0.9015

22 0.7511 0.9144 0.7879 0.9134 0.7496 0.8854

23 0.7556 0.8919 0.7498 0.8957 0.7475 0.8539

24 0.8531 0.9037 0.8196 0.9199 0.7705 0.8958

25 0.7296 0.8876 0.7348 0.8938 0.8559 0.9086

Average 0.7726 0.8901 0.7767 0.9056 0.7643 0.0201

Standard deviation 0.0437 0.0206 0.0432 0.0140 0.0427 0.0201

The model 0.7785 0.8968 0.7785 0.8968 0.7785 0.8968
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Figure F16. A comparative plot for bootstrappings for the PLS model 
on data subset 3: the real model (black square) its external validation 
(green square), models from HCA-based bootstrappings (blue squares: 10 
iterations - solid, 25 iterations - open), models from bootstrapping based 
on classes of Y (pink squares: 10 iterations - solid, 25 iterations - open), , 
and models from simple bootstrappings (red squares: 10 iterations - solid, 
25 iterations - open).

Table T30. Ten y-randomizations for the PLS model on data subset 3.

Randomization Q2 R2

1 –1.0528 0.0931

2 –0.4425 0.3529

3 –0.1817 0.6157

4 –0.1583 0.4801

5 –0.1583 0.4801

6 0.0198 0.4445

7 –0.4868 0.4298

8 –0.8862 0.2171

9 –0.5164 0.3825

10 –1.2110 0.1653

Maximum 0.0198 0.6157

Average –0.5074 0.3661

Standard deviation 0.4175 0.1619

The model 0.7785 0.8968

Table T31. Twenty-five y-randomizations for the PLS model on data 
subset 3.

Randomization Q2 R2

1 –0.4923 0.2017

2 –0.4502 0.2120

3 –0.5006 0.3392

4 –0.6806 0.1838

5 –0.9556 0.2263

6 0.0029 0.4618

7 –0.1742 0.4167

8 0.2178 0.5924

9 –0.6725 0.1585

11 –0.5339 0.2831

12 –1.5136 0.1719

13 –0.4559 0.2486

14 –0.6581 0.3188

15 –1.1838 0.1467

16 –1.2932 0.2028

17 –0.4852 0.4049

18 –1.0034 0.0888

19 –1.2538 0.1834

20 –0.3780 0.3315

21 –0.6874 0.2471

22 –0.5331 0.1824

23 –1.3436 0.1321

24 0.1273 0.4754

25 –0.5868 0.3387

Maximum 0.2178 0.5924

Average –0.6178 0.2830

Standard deviation 0.4669 0.1334

The model 0.7785 0.8968

Figure F17. The y-randomization plot for the PLS model on data subset 
3: black square - the real model, blue squares - 10 randomized models, 
red squares - 25 randomized models.
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Table T32. Comparative statistics of 10 and 25 y-randomizations for the PLS model on data subset 3.

Parametera 10 iterations 25 iterations

Maximum (Q2
yrand

) 0.020 0.218

Maximum (R2
yrand

) 0.616 0.592

Standard deviation (Q2
yrand

) 0.418 0.467

Standard deviation (R2
yrand

) 0.162 0.133

Minimum model-random. diff. (Q2
yrand

)b 1.82 1.20

Minimum model-random. diff. (R2
yrand

)b 1.74 0.51

Confidence level for min. diff. (Q2
yrand

)c 0.069 0.230

Confidence level for min. diff. (R2
yrand

)c 0.082 0.610

Randomizations %, conf. level > 0.0001 (Q2
yrand

)d 70% 80%

Randomizations %, conf. level > 0.0001 (R2
yrand

)d 70% 100%

y-Randomization intercept (r
yrand

 vs. Q2
yrand

)e -0.900 -0.958

y-Randomization intercept (r
yrand

 vs. R2
yrand

)e 0.191 0.148
aStatistical parameters are calculated for Q2 from from y-randomization (Q2

yrand
) and R2 from y-randomization (R2

yrand
). Values typed bold represent obvious 

critical cases. bMinimum model-randomizations difference: the difference between the real model (Table 1) and the best y-randomization in terms of 
correlation coefficients Q2

yrand
 or R2

yrand
, expressed in units of the standard deviations of Q2

yrand
 or R2

yrand
, respectively. The best y-randomization is defined 

by the highest Q2
rand

 or R2
rand

. cConfidence level for normal distribution of the minimum difference between the real and randomized models. dPercentage 
of randomizations characterized by the difference between the real and randomized models (in terms of Q2

yrand
 or R2

yrand
) at confidence levels > 0.0001. 

eIntercepts obtained from two y-randomization plots for each regression model proposed. Q2
yrand

 or R2
yrand

 is the vertical axis, whilst the horizontal axis is 
the absolute value of the correlation coefficient r

yrand
 between the original and randomized vectors y. The randomization plots are completed with the data 

for the real model (r
yrand

 = 1.000, Q2 or R2). 

Figure F19. The plot for determining the linear regression equations 
for 10 (blue) and 25 (red) models from y-randomizations of the PLS 
model on data subset 3: R2 = –0.191 + 0.732 r  and  R2 = 0.148 + 0.642 
r, respectively.

Figure F18. The plot for determining the linear regression equations for 
10 (blue) and 25 (red) models from y-randomizations of the PLS model 
on data subset 3: Q2 = –0.900 + 1.667 r  and  Q2 = –0.958 + 1.590 r, 
respectively.
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SAMPLES REORDERING EFFECT ON LEAVE-N-OUT CROSSVALIDATION

The effect of sample randomization can be noticed 
when a model is validated by means of two LNO modes: 
a single LNO using the original (not reordered) data set, 
and a multiple LNO with the reordered (randomized) data. 
This is illustrated in the LNO plots for data sets 1 (Figure 
F20), 2 (Figure F3), 3 (Figure F8) and 4 (Figure F12), and 
subset 3 (Figure F15). Green curves are from single LNO 
for original data, compared to red curves for multiple 
LNO. The green curves do not show randomization effect 
on LNO for data set 1, probably due to relatively large 
number of samples and certain statistically insignificant 
x - y relationships, and also for subset 3. Data sets 2, 3 and 
4, on the contrary, show green curves above the red curves 
from N = 1 to critical N at which Q2

LNO
 is still stable.

The randomization effect on LNO is more obvious 
when Pearson correlation coefficients between all variables 
(descriptors and y) and the row index of X (i.e., OrdNum, 
the ordinal number or position of a sample in a data set), 
are calculated for the original data, randomized data 
prior to LNO, new randomized data sets for single and 
multiple LNO (Tables T33 - T37 and Figure F21). This 
analysis shows significant correlations (absolute values of 
correlation coefficients over 0.30 are highlighted) between 
OrdNum and variables in two cases: a) small to moderate 
original data sets 2, 3, and 4 and subset 3 (15 - 56 samples); 
and b) small to moderate randomized data sets 3 and 4 and 

Figure F20. Comparative leave-N-out crossvalidation plot for the MLR 
model on data set 1. Black - single LNO, red - multiple LNO (10 times), 
and green - single LNO using the original (not randomized) data set.

subset 3 (15 - 50 samples). The smaller the data set, the 
higher is the probability for chance correlation between 
OrdNum and variables, what results in virtually higher 
Q2

LNO
 than in reality. By randomizing the original data, 

and especially by performing multiple LNO with several 
runs, one may reduce this chance correlation even for 
small data sets.

Table T33. Correlation coefficients between the row indexa of data set 1 and all variablesb in singlec and multipled leave-N-out (LNO) crossvalidation 
runs.

Descriptor Original S-LNO M-LNO-1 M-LNO-2 M-LNO-3 M-LNO-4 M-LNO-5 M-LNO-6 M-LNO-7 M-LNO-8 M-LNO-9 M-LNO-10

LogK
ow

–0.2076 0.0832 0.1072 0.0978 0.1571 –0.0886 0.0117 0.0431 0.1765 0.2014 –0.1055 0.1112

pK
a

–0.0761 –0.0937 –0.1219 0.0976 0.1256 –0.0248 0.0111 0.2204 0.1258 0.0695 0.0613 0.0335

E
LUMO

–0.1343 –0.0979 –0.1235 0.0970 0.1433 –0.0132 0.1278 0.0768 –0.0115 –0.0930 –0.0901 0.1255

E
HOMO

–0.1725 –0.0405 –0.1516 0.0210 0.0925 –0.0614 0.1131 0.1201 –0.0000 –0.0535 –0.0163 0.0931

N
hdon

0.0973 0.0680 –0.0453 0.0493 –0.1707 0.2014 0.0360 –0.0960 –0.2787 –0.0747 –0.0827 –0.0493

y –0.2040 0.0317 0.0988 0.1269 0.1719 –0.1107 0.0226 0.0283 0.2049 0.1877 –0.0885 0.0766

AARe 0.1486 0.0692 0.1080 0.0816 0.1435 0.0833 0.0537 0.0974 0.1329 0.1133 0.0741 0.0815
aThe row index for X or y is the OrdNum, the ordinal number or position of a sample in the data set. bMolecular and other descriptors and the dependent 
variable y. cSingle LNO using X with originally ordered (Original) and randomly reordered (S-LNO) samples. dTen multiple LNO (M-LNO) run using X 
with randomly re-ordered samples. eAverage of absolute correlation coefficients.
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Table T34. Correlation coefficientsa between the row indexb of data set 2 and all variablesc in singled and multiplee leave-N-out (LNO) crossvalidation 
runs.

Descriptor Original S-LNO M-LNO-1 M-LNO-2 M-LNO-3 M-LNO-4 M-LNO-5 M-LNO-6 M-LNO-7 M-LNO-8 M-LNO-9 M-LNO-10

CYP51-g –0.1755 0.0577 –0.1755 0.1755 0.1325 0.1599 0.0193 –0.1046 –0.0834 –0.0427 –0.0600 0.0711

CYP51-e –0.1805 0.0696 –0.1642 0.1853 0.1165 0.1617 0.0223 –0.1024 –0.0703 –0.0323 –0.0628 0.0876

PMR1-t –0.0267 –0.0829 0.1481 0.0639 –0.0831 0.1226 0.2091 0.1425 –0.1371 0.0362 –0.1062 0.0850

CYP51-e*Npi 0.1150 –0.1017 –0.1012 0.1380 0.1302 0.1437 –0.0248 –0.1104 –0.0887 –0.1016 –0.0347 0.0585

PCR*Npi 0.3409 –0.1957 –0.0578 0.0885 0.1172 0.0856 0.0026 –0.0663 –0.1499 –0.0892 0.0116 0.0363

PMR1-e*Lpi 0.1778 0.0039 0.0032 0.0689 –0.1401 0.0835 0.1316 0.0817 –0.0244 0.0362 –0.1283 –0.1462

CYP51-e*Lpi 0.2141 –0.0161 –0.1623 0.0593 0.0994 0.0598 0.0476 –0.0799 0.0109 –0.1216 0.0018 –0.0637

PCR*Lpi 0.4860 –0.0704 –0.1481 0.0131 0.0415 –0.0117 0.0812 –0.0202 –0.0018 –0.1113 0.0360 –0.1308

y 0.0143 –0.0038 0.0932 –0.2035 0.0764 –0.1299 –0.1297 –0.0601 0.1572 –0.0695 0.1218 –0.0827

AARf 0.1923 0.0669 0.1171 0.1107 0.1041 0.1065 0.0742 0.0853 0.0804 0.0712 0.0626 0.0847
aCorrelation coefficients with absolute value greater than 0.30 are typed bold and indicate chance correlation. bThe row index for X or y is the OrdNum, the 
ordinal number or position of a sample in the data set. cMolecular and other descriptors and the dependent variable y. dSingle LNO using X with originally 
ordered (Original) and randomly reordered (S-LNO) samples. eTen multiple LNO (M-LNO) run using X with randomly re-ordered samples. fAverage of 
absolute correlation coefficients.

Table T35. Correlation coefficientsa between the row indexb of data set 3 and all variablesc in singled and multiplee leave-N-out (LNO) crossvalidation 
runs.

Descriptor Original S-LNO M-LNO-1 M-LNO-2 M-LNO-3 M-LNO-4 M-LNO-5 M-LNO-6 M-LNO-7 M-LNO-8 M-LNO-9 M-LNO-10

E
e

0.5076 0.0949 0.1407 0.0575 –0.1888 0.0635 0.0045 –0.0507 0.1439 0.1214 0.1908 –0.1330

E
CC

0.3455 0.0906 0.1727 0.0167 –0.1716 0.0840 0.0846 –0.0124 0.1594 0.0196 0.2338 –0.0371

∆
HL

0.6466 –0.0210 0.3903 0.0605 –0.1444 –0.0356 0.2341 0.0818 0.0718 0.0414 0.1616 –0.2051

σ
b

–0.3140 –0.0831 –0.1223 –0.0013 0.1629 –0.1262 –0.1400 0.0020 –0.1047 –0.0144 –0.2263 –0.0052

σ
r

0.5748 0.1643 0.3680 0.1362 –0.2463 –0.0196 0.1012 0.0084 0.1725 0.0745 0.1815 –0.2277

D
CC

–0.3603 –0.0880 –0.1727 –0.0157 0.1691 –0.1063 –0.0894 0.0176 –0.1446 –0.0101 –0.2385 0.0382

Q
C2mul

–0.4845 –0.1368 –0.1830 –0.0760 0.2348 –0.1148 –0.0253 0.0306 –0.2149 –0.0868 –0.1665 0.1153

Q
Omul

–0.4416 –0.1062 –0.2009 –0.0430 0.2013 –0.1228 –0.1201 0.0078 –0.1432 –0.0805 –0.2272 0.0694

y –0.4989 –0.0814 –0.2411 –0.0496 0.2182 –0.0617 –0.1332 –0.0034 –0.1767 –0.1379 –0.3076 0.1470

AARf 0.4638 0.0963 0.2213 0.0507 0.1930 0.0816 0.1036 0.0239 0.1480 0.0652 0.2149 0.1087
aCorrelation coefficients with absolute value greater than 0.30 are typed bold and indicate chance correlation. bThe row index for X or y is the OrdNum, the 
ordinal number or position of a sample in the data set. cMolecular and other descriptors and the dependent variable y. dSingle LNO using X with originally 
ordered (Original) and randomly reordered (S-LNO) samples. eTen multiple LNO (M-LNO) run using X with randomly re-ordered samples. fAverage of 
absolute correlation coefficients.

Table T36. Correlation coefficientsa between the row indexb of data subset 3 and all variablesc in singled and multiplee leave-N-out (LNO) crossvalidation 
runs.

Descriptor Original S-LNO M-LNO-1 M-LNO-2 M-LNO-3 M-LNO-4 M-LNO-5 M-LNO-6 M-LNO-7 M-LNO-8 M-LNO-9 M-LNO-10

E
e

0.6074 –0.1385 –0.0138 –0.3049 0.3157 –0.1725 –0.2515 0.4093 –0.1385 –0.1385 –0.2413 0.6744

E
CC

0.4509 –0.0597 –0.2841 –0.1276 0.4816 0.0622 0.0004 0.2778 –0.0597 –0.0597 –0.3364 0.4872

∆
HL

0.5795 –0.2181 –0.1522 –0.2237 0.1677 –0.0861 –0.1166 0.4812 –0.2181 –0.2181 –0.4683 0.4326

σ
b

–0.4701 0.0886 0.2385 0.2657 –0.5246 –0.1295 –0.0477 –0.2793 0.0886 0.0886 0.2317 –0.4565

σ
r

0.5803 0.1950 –0.4131 0.0696 0.3157 –0.0696 –0.2878 0.5013 0.1950 0.1950 –0.6777 0.6267

D
CC

–0.4584 0.0673 0.2586 0.1787 –0.4668 –0.0778 0.0021 –0.3028 0.0673 0.0673 0.3091 –0.5068

Q
C2mul

–0.5163 0.0910 0.2006 0.1692 –0.5001 –0.0444 0.0560 –0.2107 0.0910 0.0910 0.2682 –0.6044

Q
Omul

–0.5114 0.0611 0.2646 0.1746 –0.4950 –0.1096 0.0243 –0.3742 0.0611 0.0611 0.3040 –0.5541

y –0.5971 0.0973 0.2155 0.1517 –0.4268 –0.0875 0.1800 –0.3810 0.3282 0.5054 0.3307 –0.6955

AARf 0.5302 0.1130 0.2268 0.1851 0.4104 0.0933 0.1074 0.3575 0.1386 0.1583 0.3519 0.5598

aCorrelation coefficients with absolute value greater than 0.30 are typed bold and indicate chance correlation. bThe row index for X or y is the OrdNum, the 
ordinal number or position of a sample in the data set. cMolecular and other descriptors and the dependent variable y. dSingle LNO using X with originally 
ordered (Original) and randomly reordered (S-LNO) samples. eTen multiple LNO (M-LNO) run using X with randomly re-ordered samples. fAverage of 
absolute correlation coefficients.
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Table T37. Correlation coefficientsa between the row indexb of data set 4 and all variablesc in singled and multiplee leave-N-out (LNO) crossvalidation 
runs.

Descriptor Original S-LNO M-LNO-1 M-LNO-2 M-LNO-3 M-LNO-4 M-LNO-5 M-LNO-6 M-LNO-7 M-LNO-8 M-LNO-9 M-LNO-10

ClogP 0.3623 –0.0646 0.1501 –0.2715 0.3010 0.1021 –0.0234 0.1319 0.0371 –0.0141 –0.5656 0.0694

MgVol 0.5268 –0.2474 –0.5023 0.0793 0.4343 0.4078 0.2134 0.0831 –0.1529 0.1416 –0.3588 0.2681

B1
X.2

0.0482 –0.1585 0.0012 –0.1826 –0.3049 –0.0042 0.0657 0.0970 0.1525 –0.1741 0.2139 –0.2139

y –0.0244 0.2429 0.6429 –0.2265 0.0638 –0.0759 –0.1541 0.0986 0.1250 –0.0460 –0.5194 –0.1308

AARf 0.2404 0.1784 0.3241 0.1900 0.2760 0.1475 0.1142 0.1026 0.1169 0.0939 0.4144 0.1706
aCorrelation coefficients with absolute value greater than 0.30 are typed bold and indicate chance correlation. bThe row index for X or y is the OrdNum, the 
ordinal number or position of a sample in the data set. cMolecular and other descriptors and the dependent variable y. dSingle LNO using X with originally 
ordered (Original) and randomly reordered (S-LNO) samples. eTen multiple LNO (M-LNO) run using X with randomly re-ordered samples. fAverage of 
absolute correlation coefficients.

Figure F21. Representative chance correlations between the row index (OrdNum) and variables in the data sets with originally ordered samples: A) data 
set 1, B) data set 2, C) data set 3, D) data subset 3, and E) data set 4
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SAMPLES REORDERING EFFECT ON y-RANDOMIZATION

When the same correlation analysis from LNO is 
performed for 10 + 25 data sets from y-randomization, which 
were obtained first by reordering (randomizing) the samples 
in the whole set and a posteriori randomizing only y, similar 
conclusions can be drawn (Table T38). Larger data sets 1 and 
2 (75 and 50 samples) do not show significant correlation 
coefficients, data set 3 (50 samples) possesses one critical 
correlation, whilst data set 4 and subset 3 (15 samples) have 

ten correlation coefficients above 0.30.
When using the original instead of reordered data for 10 

y-randomizations, the results show that there is no effect for 
larger sets 1 (Figure F22) and 2 (Figure F23), but is visible 
for smaller set 3 (Figure F24), subset 3 (Figure F25) and set 4 
(Figure F26). The effect can be noticed as a shift of Q2 and R2 
towards higher values relative to the normal y-randomization 
procedure.

Table T38. Correlation coefficients between y and OrdNuma in y-randomization.b*

Set 1 Set 2 Set 3 Subset 3 Set 4

Originalc –0.2040 0.0143 –0.4989 –0.5971 –0.0244

Re-orderedd 0.0317 –0.0038 –0.0814 0.0973 0.2429

y-R10-1 0.1322 –0.1080 –0.2216 –0.0358 0.2452

y-R10-2 –0.1867 0.0140 –0.1235 0.0261 –0.0655

y-R10-3 0.1668 0.0479 –0.0663 –0.2572 0.3567

y-R10-4 0.0899 0.2588 0.0391 –0.0428 –0.1477

y-R10-5 –0.2235 0.2478 0.2140 –0.0098 0.0957

y-R10-6 0.0499 0.1844 –0.2932 –0.5810 0.1144

y-R10-7 0.0165 –0.0529 –0.1966 0.3282 0.1236

y-R10-8 –0.2058 0.0268 0.2203 0.5054 0.3584

y-R10-9 0.0441 –0.0935 –0.1300 –0.1778 0.1247

y-R10-10 –0.2310 –0.0352 0.1378 0.1291 –0.1359

y-R25-1 –0.1770 0.0550 0.0998 –0.4141 –0.0897

y-R25-2 –0.2189 –0.0423 –0.0054 0.0463 0.1377

y-R25-3 –0.1343 –0.0963 –0.1591 –0.1252 0.4300

y-R25-4 0.1972 –0.1300 0.0004 –0.3551 0.0362

y-R25-5 0.1405 –0.0487 0.1384 –0.5050 –0.3774

y-R25-6 –0.1792 0.0220 0.0531 0.0406 –0.3354

y-R25-7 –0.0087 –0.0124 –0.1452 –0.5235 0.1466

y-R25-8 –0.0691 –0.1661 0.2999 –0.1264 –0.0635

y-R25-9 0.0850 0.1182 –0.0999 0.2671 –0.1247

y-R25-10 0.2185 0.1239 –0.2131 0.1948 0.3627

y-R25-11 –0.1041 0.0767 0.1457 0.2815 0.1296

y-R25-12 –0.0937 0.1939 0.0193 –0.0004 –0.3150

y-R25-13 –0.1239 –0.0477 –0.1114 –0.1422 0.2440

y-R25-14 –0.0398 –0.0852 0.1172 0.2377 0.5087

y-R25-15 0.0653 –0.0496 –0.1009 0.3419 –0.3966

y-R25-16 –0.0387 0.0372 –0.2133 0.1810 –0.0957

y-R25-17 0.0280 –0.1866 –0.2335 0.0156 0.2558

y-R25-18 –0.2136 –0.0252 –0.0933 0.2555 –0.0463

y-R25-19 –0.1357 –0.0046 –0.1250 –0.6297 –0.0092

y-R25-20 0.1065 –0.0857 0.0651 –0.3976 –0.2409

y-R25-21 –0.0856 –0.0338 –0.0650 0.2878 –0.2365

y-R25-22 –0.0341 –0.0072 0.2350 0.5616 –0.2863

y-R25-23 –0.0363 –0.0059 0.2447 0.0034 0.2891

y-R25-24 –0.0628 0.0814 –0.2725 0.1871 0.3090

y-R25-25 –0.0180 0.0359 –0.0407 –0.0548 –0.1917

yR-AbsAvere 0.1132 0.0812 0.1411 0.2363 0.2122
aPearson correlation coefficients are calculated for all 10 (y-R10) and 25 (y-R25) y-randomizations. bOrdNum, the ordinal number or position of a sample 
in the data set, is the row index for X or y is the OrdNum. cOriginally ordered samples in a data set. dRe-ordered samples in a data set. eAverage absolute 
value for all 10 + 25 y-randomizations. *All correlation coefficients greater than 0.30 are typed bold.
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Figure F22. The effect of sample reordering to y-randomization plot for 
the MLR model on data set 1. Black ball - the real model, blue balls - 10 
randomized models with re-ordered samples in X, and red balls - 10 
randomized models with originally ordered samples in X. The studied 
effect cannot be observed.

Figure F23. The effect of sample reordering to y-randomization plot for 
the PLS model on data set 2. Black ball - the real model, blue balls - 10 
randomized models with re-ordered samples in X, and red balls - 10 
randomized models with originally ordered samples in X. The studied 
effect cannot be observed.

Figure F24. The effect of sample reordering to y-randomization plot for 
the PLS model on data set 3. Black ball - the real model, blue balls - 10 
randomized models with re-ordered samples in X, and red balls - 10 
randomized models with originally ordered samples in X. The studied 
effect can be noticed as the systematic shift of Q2 and R2 towards higher 
values.

Figure F25. The effect of sample reordering to y-randomization plot 
for the PLS model on data subset 3. Black ball - the real model, blue 
balls - 10 randomized models with re-ordered samples in X, and red 
balls - 10 randomized models with originally ordered samples in X. The 
studied effect can be noticed as the systematic shift of Q2 and R2 towards 
higher values.
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Figure F26. The effect of sample reordering to y-randomization plot for the MLR model on data set 4. Black ball - the real model, blue balls - 10 randomized 
models with re-ordered samples in X, and red balls - 10 randomized models with originally ordered samples in X. The studied effect can be noticed as the 
systematic shift of Q2 and R2 towards higher values.

Figure F27. The scatterplots for the complete data set 1 (153 samples). The best x - y correlation profile is marked in red.

ANALYSIS OF x - y RELATIONSHIPS
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Figure F28. The scatterplots for the complete data set 2 (86 samples). The best x - y correlation profile is marked in red.

Figure F29. The scatterplots for the complete data set 3 (50 samples). The best x - y correlation profile is marked in red.
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Figure F30. The scatterplots for the complete data subset 3 (15 samples). The best x - y correlation profile is marked in red.

Figure F31. The scatterplots for the complete data set 4 (15 samples). The best x - y correlation profile is marked in red.
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Table T39. Statistics for univariate descriptor - dependent variable (x - y) relationships in all the data sets and subsets studied.

Data set Subset na Descriptorb Rc a (σ
a
)d b (σ

b
)d t

a,n–1
 (p

a
)e t

b,n–1
 (p

b
)e R2f F

1,n–2
 (p)g

1 Complete set 153 LogK
ow

 [+] 0.881 –1.02(7) 0.63(3) –14.0 (<0.0001) 22.8 (<0.0001) 0.776 522.0 (<0.0001)

pK
a
 [+] 0.025 0.4(4) 0.01(4) 0.9 (0.36) 0.3 (0.76) 0.0006 0.1 (0.76)

E
LUMO

 [–] –0.100 0.49(6) –0.2(2) 7.6 (<0.0001) 1.2 (0.22) 0.010 1.5 (0.22)

E
HOMO

 [+] –0.006 0.4(20) –0.02(22) 0.2 (0.86) 0.07 (0.94) 0.00003 0.005 (0.94)

N
hdon

 [+] –0.410 1.4(2) –0.7(1) 8.1 (<0.0001) 5.5 (<0.0001) 0.168 30.5 (<0.0001)

Training set 75 LogK
ow

 [+] 0.890 –1.1(1) 0.64(4) 10.3 (<0.0001) 16.6 (<0.0001) 0.792 277.0 (<0.0001)

pK
a
 [+] 0.082 0.1(6) 0.04(6) 0.2 (0.86) 0.7 (0.48) 0.007 0.5 (0.48)

E
LUMO

 [–] –0.106 0.5(1) –0.2(3) 4.9 (<0.0001) 0.9 (0.36) 0.011 0.8 (0.36)

E
HOMO

 [+] 0.021 1.0(29) 0.3(3) 0.4 (0.73) 0.2 (0.86) 0.0004 0.03 (0.86)

N
hdon

 [+] –0.408 1.3(2) –0.7(2) 5.8 (<0.0001) 3.9 (0.0002) 0.170 14.9 (0.0002)

External 

validation set

78 LogK
ow

 [+] 0.871 –0.97(10) 0.62(4) 9.3 (<0.0001) 15.5 (<0.0001) 0.759 238.8 (<0.0001)

pK
a
 [+] –0.047 0.7(6) –0.03(6) 1.3 (0.21) 0.4 (0.68) 0.002 0.2 (0.68)

E
LUMO

 [–] –0.093 0.49(9) –0.2(2) 5.8 (<0.0001) 0.8 (0.42) 0.009 0.7 (0.42)

E
HOMO

 [+] –0.039 –0.4(28) –0.1(3) 0.2 (0.87) 0.3 (0.74) 0.002 0.1 (0.74)

N
hdon

 [+] –0.408 1.3(2) –0.7(2) 5.8 (<0.0001) 3.9 (0.0002) 0.166 15.2 (0.0002)

2 Complete set 86 CYP51-g [–] –0.722 6.9(1) –0.27(3) 66.4 (<0.0001) 9.6 (<0.0001) 0.522 91.6 (<0.0001)

CYP51-e [–] –0.726 6.61(8) –0.011(1) 80.7 (<0.0001) 9.7 (<0.0001) 0.528 93.8 (<0.0001)

PMR1-t [–] –0.502 6.6(1) –0.008(2) 53.8 (<0.0001) 5.3 (<0.0001) 0.252 28.3 (<0.0001)

CYP51-e*Npi [+] –0.624 6.45(8) –0.004(1) 76.0 (<0.0001) 7.3 (<0.0001) 0.389 53.5 (<0.0001)

PCR*Npi [–] –0.556 6.7(1) –0.6(1) 54.2 (<0.0001) 6.1 (<0.0001) 0.309 37.5 (<0.0001)

PMR1-e*Lpi [–] –0.678 6.39(7) –0.09(1) 87.3 (<0.0001) 8.4 (<0.0001) 0.459 71.3 (<0.0001)

CYP51-e*Lpi [+] –0.634 6.45(8) –0.004(1) 76.9 (<0.0001) 7.5 (<0.0001) 0.402 56.4 (<0.0001)

PCR*Lpi [–] –0.564 6.7(1) –0.6(1) 55.2 (<0.0001) 6.3 (<0.0001) 0.318 39.1 (<0.0001)

Training set 56 CYP51-g [–] –0.721 6.9(1) –0.27(4) 50.7 (<0.0001) 7.6 (<0.0001) 0.519 58.3 (<0.0001)

CYP51-e [–] –0.726 6.6(1) –0.011(2) 61.6 (<0.0001) 7.8 (<0.0001) 0.528 60.3 (<0.0001)

PMR1-t [–] –0.461 6.5(2) –0.008(2) 39.6 (<0.0001) 3.8 (0.0003) 0.213 14.6 (<0.0001)

CYP51-e*Npi [+] –0.631 6.5(1) –0.004(1) 58.7 (<0.0001) 6.0 (<0.0001) 0.398 35.7 (<0.0001)

PCR*Npi [–] –0.568 6.7(2) –0.7(1) 42.4 (<0.0001) 5.1 (<0.0001) 0.322 25.7 (<0.0001)

PMR1-e*Lpi [–] –0.690 6.40(9) –0.08(1) 68.9 (<0.0001) 7.0 (<0.0001) 0.476 49.0 (<0.0001)

CYP51-e*Lpi [+] –0.661 6.5(1) –0.005(1) 60.9 (<0.0001) 6.5 (<0.0001) 0.437 42.0 (<0.0001)

PCR*Lpi [–] –0.590 6.7(2) –0.7(1) 43.9 (<0.0001) 5.4 (<0.0001) 0.348 28.8 (<0.0001)

External 

validation set

30 CYP51-g –0.729 6.8(2) –0.25(4) 42.4 (<0.0001) 5.6 (<0.0001) 0.531 31.7 (<0.0001)

CYP51-e –0.729 6.6(1) –0.010(2) 51.6 (<0.0001) 5.6 (<0.0001) 0.531 31.7 (<0.0001)

PMR1-t –0.587 6.6(2) –0.009(2) 37.3 (<0.0001) 3.8 (0.0006) 0.344 14.7 (0.0007)

CYP51-e*Npi –0.609 6.4(1) –0.004(1) 47.3 (<0.0001) 4.1 (0.0003) 0.371 16.5 (0.0004)

PCR*Npi –0.529 6.6(2) –0.6(2) 32.9 (<0.0001) 3.3 (0.003) 0.280 10.9 (0.003)

PMR1-e*Lpi –0.656 6.4(1) –0.10(2) 51.8 (<0.0001) 4.6 (<0.0001) 0.430 21.1 (<0.0001)

CYP51-e*Lpi –0.579 6.4(1) –0.004(1) 46.1 (<0.0001) 3.8 (0.0008) 0.336 14.1 (0.0008)

CYP51-g –0.510 6.6(2) –0.5(2) 32.7 (<0.0001) 3.1 (0.004) 0.260 9.8 (0.004)

3 Complete set 50 E
e
 [–] –0.856 1289(65) –10.4(9) 19.8 (<0.0001) 11.5 (<0.0001) 0.733 131.7 (<0.0001)

E
CC

 [–] –0.892 8592(589) –66(5) 14.6 (<0.0001) 13.7 (<0.0001) 0.796 187.0 (<0.0001)

∆
HL

 [–] –0.827 111(42) –49(5) 2.6 (0.01) 10.2 (<0.0001) 0.683 103.6 (<0.0001)

σ
b
 [+] 0.862 –2650(69) 11437(971) 3.9 (0.0003) 11.8 (<0.0001) 0.743 138.7 (<0.0001)

σ
r
 [–] –0.891 602(5) –7799(575) 123.9 (<0.0001) 13.6 (<0.0001) 0.793 183.9 (<0.0001)

D
CC

 [+] 0.907 –5131(380) 3830(257) 13.5 (<0.0001) 14.9 (<0.0001) 0.823 222.4 (<0.0001)

Q
C2mul

 [+] 0.892 641(8) 402(29) 85.0 (<0.0001) 13.6 (<0.0001) 0.795 185.9 (<0.0001)

Q
Omul

 [+] 0.928 938(23) 1205(70) 40.8 (<0.0001) 17.3 (<0.0001) 0.862 298.8 (<0.0001)

Training set 40 E
e
 [–] –0.851 1250(71) –10(1) 17.7 (<0.0001) 10.0 (<0.0001) 0.725 100.0 (<0.0001)

E
CC

 [–] –0.874 8295(700) –63(6) 11.9 (<0.0001) 11.1 (<0.0001) 0.764 122.8 (<0.0001)

∆
HL

 [–] –0.849 132(42) –47(5) 3.2 (0.003) 9.9 (<0.0001) 0.721 98.1 (<0.0001)

σ
b
 [+] 0.846 –236(80) 11020(1127) 3.0 (0.09) 9.8 (<0.0001) 0.716 95.7 (<0.0001)
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Data set Subset na Descriptorb Rc a (σ
a
)d b (σ

b
)d t

a,n–1
 (p

a
)e t

b,n–1
 (p

b
)e R2f F

1,n–2
 (p)g

3 Training set 40 σ
r
 [–] –0.891 601(5) –7674(635) 115.9 (<0.0001) 12.1 (<0.0001) 0.794 146.1 (<0.0001)

D
CC

 [+] 0.894 –4954(448) 3710(302) 11.1 (<0.0001) 12.3 (<0.0001) 0.799 150.7 (<0.0001)

Q
C2mul

 [+] 0.892 638(8) 392(32) 79.1 (<0.0001) 12.1 (<0.0001) 0.795 147.3 (<0.0001)

Q
Omul

 [+] 0.915 921(30) 1152(82) 34.1 (<0.0001) 14.0 (<0.0001) 0.838 196.5 (<0.0001)

External 

validation set

10 E
e

–0.901 1548(172) –14(2) 9.0 (<0.0001) 5.9 (0.0002) 0.812 34.7 (0.0004)

E
CC

–0.945 9715(1129) –75(9) 8.6 (<0.0001) 8.1 (<0.0001) 0.892 66.1 (<0.0001)

∆
HL

–0.779 11(149) –60(17) 0.1 (0.95) 3.5 (0.007) 0.607 12.4 (0.008)

σ
b

0.905 –367(150) 12904(2146) 2.4 (0.04) 6.0 (0.0002) 0.819 36.2 (0.0003)

σ
r

–0.889 610(15) –8437(1537) 41.7 (<0.0001) 5.5 (0.0004) 0.790 30.1 (0.0006)

D
CC

0.946 –5817(773) 4295(522) 7.5 (<0.0001) 8.2 (<0.0001) 0.895 67.6 (<0.0001)

Q
C2mul

0.901 661(22) 464(79) 30.0 (<0.0001) 5.9 (0.0002) 0.812 34.6 (0.0004)

Q
Omul

0.978 1021(37) 1444(109) 27.8 (<0.0001) 13.3 (<0.0001) 0.957 176.0 (<0.0001)

4 Complete set 15 ClogP [+] 0.632 3(1) 0.9(3) 3.0 (0.009) 2.9 (0.011) 0.400 8.7 (0.01)

MgVol [–] –0.107 8(5) –0.7(18) 1.8 (0.10) 0.4 (0.70) 0.012 0.2 (0.70)

B1
X.2

 [–] –0.451 7.4(6) –0.9(5) 12.1 (<0.0001) 1.8 (0.09) 0.203 3.3 (0.09)

Training set 13 ClogP [+] 0.698 3(1) 1.0(3) 2.7 (0.02) 3.2 (0.007) 0.487 10.4 (0.008)

MgVol [–] –0.041 7(5) –0.3(21) 1.4 (0.20) 0.1 (0.89) 0.002 0.02 (0.89)

B1
X.2

 [–] –0.449 7.4(7) –0.9(6) 10.9 (<0.0001) 1.7 (0.12) 0.201 2.8 (0.12)

Sub-1 Complete set 15 LogK
ow

 [+] 0.861 –1.0(3) 0.6(1) 3.6 (0.003) 6.1 (<0.0001) 0.741 37.1 (<0.0001)

pK
a
 [+] 0.115 –0.04(130) 0.06(14) 0.03 (0.97) 0.4 (0.68) 0.013 0.2 (0.68)

E
LUMO

 [–] –0.174 0.4(3) –0.4(6) 1.7 (0.1) 0.6 (0.53) 0.030 0.4 (0.53)

E
HOMO

 [–] 0.017 0.9(69) 0.05(75) 0.13 (0.90) 0.06 (0.95) 0.0003 0.004 (0.95)

N
hdon

 [–] –0.416 1.4(6) –0.7(4) 2.3 (0.04) 1.6 (0.12) 0.173 2.7 (0.12)

Sub-3 Complete set 15 E
e
 [–] –0.816 1166(122) -9(2) 9.5 (<0.0001) 5.1 (0.0002) 0.666 25.9 (0.0002)

E
CC

 [–] –0.859 7650(1176) –58(10) 6.5 (<0.0001) 6.0 (<0.0001) 0.737 36.5 (<0.0001)

∆
HL

 [–] –0.827 128(79) –48(9) 1.6 (0.13) 5.3 (0.0001) 0.683 28.0 (0.0001)

σ
b
 [+] 0.846 –219(134) 10771(1884) 1.6 (0.12) 5.7 (<0.0001) 0.716 32.7 (<0.0001)

σ
r
 [–] –0.855 601(10) –7417(1248) 58.5 (<0.0001) 5.9 (<0.0001) 0.731 35.3 (<0.0001)

D
CC

 [+] 0.872 –4532(791) 3426(534) 5.7 (<0.0001) 6.4 (<0.0001) 0.760 41.2 (<0.0001)

Q
C2mul

 [+] 0.894 643(14) 412(57) 45.6 (<0.0001) 7.2 (<0.0001) 0.800 51.9 (<0.0001)

Q
Omul

 [+] 0.920 913(43) 1129(133) 21.0 (<0.0001) 8.5 (<0.0001) 0.847 72.1 (<0.0001)

Training set 13 E
e
 [–] –0.814 1151(131) –9(2) 8.8 (<0.0001) 4.6 (0.0006) 0.662 21.5 (0.0007)

E
CC

 [–] –0.857 7499(1264) –57(10) 5.9 (<0.0001) 5.5 (0.0001) 0.734 30.3 (0.0002)

∆
HL

 [–] –0.826 123(87) –47(10) 1.4 (0.18) 4.9 (0.0004) 0.682 23.6 (0.0005)

σ
b
 [+] 0.841 –229(150) 10891(2111) 1.5 (0.15) 5.2 (0.0002) 0.708 26.6 (0.0003)

σ
r
 [–] –0.844 603(12) –7592(1452) 49.7 (<0.0001) 5.2 (0.0002) 0.713 27.3 (0.0003)

D
CC

 [+] 0.868 –4432(858) 3358(579) 5.1 (0.0002) 5.8 (<0.0001) 0.754 33.6 (0.0001)

Q
C2mul

 [+] 0.889 641(16) 408(63) 41.2 (<0.0001) 6.4 (<0.0001) 0.789 41.2 (<0.0001)

Q
Omul

 [+] 0.918 910(48) 1124(147) 19.1 (<0.0001) 7.7 (<0.0001) 0.843 58.9 (<0.0001)

aNumber of samples in a given data set or its subset.
bStatistically not significant relationships are typed bold. Molecular descriptors which are characterized by most or all of such relationships are also typed 
bold. This means that the data set containing such descriptors is not statistically justified. Signs “+” and “–“ in square brackets for a particular descriptor 
denote its positive or negative regression coefficient in the regression model.
cPearson correlation coefficient between a descriptor and the dependent variable y.
dRegression coefficients a and b from a linear regression equation for y and descriptor x: y = a + b x. Statistical errors on the coefficients a and b are σ

a
 

and σ
b
, respectively. The values of the coefficients are rounded to significant figures and the respective errors are given in brackets.

eStudent t-test parameters for the regression coefficients a and b are t
a,n–1

 = a/σ
a
 and t

b,n–1
 = b/σ

b
, respectively. The parameters are for n number of samples, i.e., 

n-1 degrees of freedom. Corresponding probabilities p
a
 and p

b
, i.e., probabilities that the regression coefficients are not statistically significant (statistically 

not different from zero), are given in brackets, rounded to one or two significant figures.
fExplained fitted variance, defined in Table 1 as the coefficient of multiple determination. In the special case of linear regression, it may be considered as 
the coefficient of (univariate) determination.
gF-value from F-test and the corresponding probability in brackets, i.e., the probability that the obtained linear regression equation is not statistically 
significant (obtained by chance). F-values are given for one variable and n-2 degrees of freedom. F-value is rounded to one digit and its probability is 
given for one or two significant figures.

Table T39. continuation
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Figure F32. The scatterplots illustrating some of the relationships between statistical parameters from Table T33. The analytical relationship F - t
b
 is 

marked in red.


