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Abstract

Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expres-

sion levels in seemingly homogeneous populations of cells. However, these experiments

are prone to high levels of unexplained technical noise, creating new challenges for identify-

ing genes that show genuine heterogeneous expression within the population of cells under

study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayes-

ian hierarchical model where: (i) cell-specific normalisation constants are estimated as part

of the model parameters, (ii) technical variability is quantified based on spike-in genes that

are artificially introduced to each analysed cell’s lysate and (iii) the total variability of the ex-

pression counts is decomposed into technical and biological components. BASiCS also

provides an intuitive detection criterion for highly (or lowly) variable genes within the popula-

tion of cells under study. This is formalised by means of tail posterior probabilities associat-

ed to high (or low) biological cell-to-cell variance contributions, quantities that can be easily

interpreted by users. We demonstrate our method using gene expression measurements

from mouse Embryonic Stem Cells. Cross-validation and meaningful enrichment of gene

ontology categories within genes classified as highly (or lowly) variable supports the effica-

cy of our approach.

Author Summary

Gene expression signatures have historically been used to generate molecular fingerprints

that characterise distinct tissues. Moreover, by interrogating these molecular signatures it

has been possible to understand how a tissue’s function is regulated at the molecular level.

However, even between cells from a seemingly homogeneous tissue sample, there exists

substantial heterogeneity in gene expression levels. These differences might correspond to

novel subtypes or to transient states linked, for example, to the cell cycle. Single-cell RNA-

sequencing, where the transcriptomes of individual cells are profiled using next generation

sequencing, provides a method for identifying genes that show more variation across cells

than expected by chance, which might be characteristic of such populations. However, sin-

gle-cell RNA-sequencing is subject to a high degree of technical noise, making it necessary
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to account for this to robustly identify such genes. To this end, we use a fully Bayesian ap-

proach that jointly models extrinsic spike-in molecules with genes from the cells of interest

allowing better identification of such genes than previously described computational strat-

egies. We validate our approach using data from mouse Embryonic Stem Cells.

Introduction

Current technology allows the analysis of gene expression with high resolution. Instead of mea-

suring average expression levels across a bulk population, scientists can now report informa-

tion at the single-cell level using techniques such as single-cell RNA-sequencing (scRNA-seq)

[1]. Unlike bulk experiments, scRNA-seq can uncover heterogenous gene expression patterns

in seemingly homogeneous populations of cells [2], opening the door to important biological

questions that remain otherwise unanswered. However, besides experimental challenges such

as the isolation of single cells and parallel sequencing of multiple cDNA libraries [3], statistical

analysis of single-cell level data is itself a challenge [4]. Firstly, cell-specific measurements can

vary in scale due to differences in total cellular mRNA content [5]. For instance, in Fig 1(a),

each gene has the same expression rate in both cells, yet the expression counts in the first cell

will be roughly twice as much as those from the second cell. In the same spirit, if different se-

quencing depths (the number of times a single nucleotide is read during the sequencing) are

applied to these cells, the scale of expression counts will also be affected. Thus, normalisation is

a crucial issue in this context. Another fundamental problem for interpreting single-cell se-

quencing is the presence of high levels of unexplained technical noise (unrelated to sequencing

depth and other amplification biases) [5]. This creates new challenges for identifying genes

that show genuine biological cell-to-cell heterogeneity—beyond that induced by technical vari-

ation—and motivates the systematic inclusion of spike-in genes in single-cell experiments.

Quantifying genuine heterogeneity in gene expression is an important step as it can lead to the

discovery of co-expressed genes and novel cell subpopulations, among others [4][6]. Recently,

the introduction of Unique Molecular Identifiers (UMI) attached to each cDNA molecule dur-

ing reverse transcription has substantially reduced the levels of unexplained technical noise

and eliminated the effect of sequencing depth changes and other amplification biases in single-

cell experiments. Unlike most scRNA-seq datasets published to date—where expression counts

likely correspond to the number of reads mapped to each gene—UMI based datasets are re-

corded in terms of the number of molecules, producing a meaningful scale for the expression

counts. Nevertheless, our analysis of a mouse Embryonic Stem Cells (ESC) suggests that unex-

plained technical variability can not be completely removed by using UMIs (see Results sec-

tion) and that an accurate quantification of technical variability still remains important.

Throughout, we motivate our method using UMI-based expression counts. However, the

methodology described here is general and can be also extended to traditional scRNA-seq ex-

periments (where expression counts represent the number of short reads mapped to specific

genes) by modifying the interpretation of some model parameters. Typical UMI based scRNA-

seq data can be represented by a q × nmatrix whose entries are the number of mRNA mole-

cules mapped to specific genes (proxy for gene expression) for each cell. More specifically, let

Xij be a random variable representing the expression count of a gene i in cell j (i = 1, . . ., q;

j = 1, . . ., n). Thus, in a homogeneous population of cells where the true concentration of frag-

ments from a gene i is μi (in a suitable unit) and where measurements are not affected by unex-

plained technical error, Xij follows a Poisson distribution with rate ϕj sj μi, where ϕj adjusts the

expression rate in terms of total mRNA content in cell j and sj accounts for changes in capture
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efficiency across cells (for read-based expression counts, the latter also captures differences in

sequencing depth and other amplification biases). Nonetheless, the Poisson model often pre-

dicts smaller variability than is observed in real datasets [7]. This so-called overdispersion is

potentially linked to genes whose expression has a substantially larger biological cell-to-cell

variability than would be expected in a homogeneous population of cells. However, this excess

of variability may also arise from unexplained technical noise [6].

Non-biological spike-in genes (which are added to the lysis buffer and thence present at the

same level in every cell) can be used to quantify technical noise (differences in capture efficien-

cy and other unexplained sources). A typical example is the set of 92 extrinsic molecules de-

rived by the External RNA Controls Consortium (ERCC) [8]. As the number of spike-in

molecules added to each cell is known from experimental information, this provides a gold

standard to which empirical measurements of spike-in genes’ expression can be compared, en-

abling a quantitative calibration of the technical noise. Similar strategies have also been used in

the context of measurement error problems, where a validation error free group or gold stan-

dard measurements provide information about unknown sources of error (e.g. [9]).

Consistent with previous related literature (e.g. [5], [7]), we introduce a model based on a

Poisson structure. In BASiCS (Bayesian Analysis of Single-Cell Sequencing data), a joint model

of biological and spike-in genes is formulated to simultaneously quantify unexplained technical

noise and cell-to-cell biological heterogeneity using the complete set of data, borrowing infor-

mation between both sets of genes (spike-in and biological) through common parameters in a

hierarchical structure. Additionally, BASiCS incorporates an automated normalisation meth-

od, where normalising constants are treated as model parameters. These constitute major

methodological advantages over previous 3-step approaches, where first datasets are pre-nor-

malised and secondly unexplained technical noise is estimated using only the spike-in genes,

before these parameters are plugged in when modelling biological data (ignoring the uncertain-

ty related to the technical fit).

Fig 1. Graphical representation of gene expression in two cells from a homogeneous population but with different total mRNA content. (a) Three
biological genes have the same expression rates in both cells, however cell 1 doubles cell 2 in terms of total mRNA content. As a result, the expression
counts in cell 1 will be roughly twice as much as those from cell 2, for all genes. In terms of the cell-specific size factors ϕj, an appropriate normalisation in this
case would be e.g. ϕ1 = 2, ϕ2 = 1 (or any other values such that ϕ1/ϕ2 = 2). (b) The same cells after the addition of two molecules of a spike-in gene to each
cell. Because the same number of spike-in molecules are added to each cell, the spike-in expression counts are independent of the total mRNA content of
each cell. Therefore, the cell-specific size factors ϕj are not required when modelling the technical gene.

doi:10.1371/journal.pcbi.1004333.g001
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Materials and Methods

The BASiCS model

Throughout, we analyse the expression counts of q genes, where q0 are expressed in the popula-

tion of cells under study (biological genes) and the remaining q−q0 are spike-in (technical)

genes. Let Xij be a random variable representing the expression count of a gene i in cell j (i = 1,

. . ., q; j = 1, . . ., n). Firstly, we define a model for the technical genes, whose expression counts

are not affected by total cellular mRNA content (see Fig 1(b)), thus the cell-specific size factors

ϕj are not required (in this case, the normalisation must only account for differences in capture

efficiency via the sj’s). Naturally, for spike-in genes, deviations from a Poisson formulation are

due only to unexplained technical variability. We assume that this unexplained technical noise

depends on cell-specific characteristics and that, for a given cell, it affects the expression counts

of all genes in the same manner. Under this assumption, unexplained technical noise can be in-

corporated through the following hierarchical model

Xijjmi; nj �
ind
PoissonðnjmiÞ; nj jsj; y�

ind
Gammað1=y; 1=ðsjyÞÞ;

i ¼ q
0
þ 1; . . . ; q; j ¼ 1; . . . ; n;

ð1Þ

where μi represents the normalised expression rate of gene i in the population of cells under

study and the random effect νj (with E(νjjsj, θ) = sj andVarðnj j sj; yÞ ¼ s2j y) fluctuates around

the capture efficiency normalising constant sj, quantifying unexplained technical noise via a

single hyper-parameter θ, borrowing information across all genes and cells (see Fig 2). The

model in Eq (1) is equivalent to a negative binomial distribution for the expression counts (like

in [7]). In order to accommodate the biological genes, BASICS extends the model in Eq (1) as

Xijjmi; �j; nj; rij�
ind

(

Poissonð�jnjmirijÞ; i ¼ 1; . . . ; q
0
; j ¼ 1; . . . ; n;

PoissonðnjmiÞ; i ¼ q
0
þ 1; . . . ; q; j ¼ 1; . . . ; n

ð2Þ

with njjsj; y�
ind
Gammað1=y; 1=ðsjyÞÞ and rijjdi �

ind
Gammað1=di; 1=diÞ; ð3Þ

where νj’s and ρij’s are mutually independent random effects and the cell-specific size factors ϕj
are introduced to normalise the biological expression counts according to differences in total

mRNA content (see Fig 1(a)). As in Eq (1), the νj’s capture cell-to-cell unexplained technical

variability, oscillating around the capture efficiency normalising constants (sj) according to

the strength of unexplained technical variability (θ). The additional random effects, ρij (with

E(ρijjδi) = 1 and Var(ρijjδi) = δi), relate to heterogeneous expression of a gene across cells, quan-

tifying biological cell-to-cell variability via gene-specific hyper-parameters δi, borrowing infor-

mation across all cells (see Fig 2). Unlike previous stepwise approaches (e.g. [5]), BASiCS treats

cell-specific normalising constants (ϕj’s and sj’s) as model parameters, and estimates them by

combining information across all genes (see Fig 2), providing simultaneous inference with all

other model parameters.

Here, the marginal distribution of the expression count of gene i in cell j (integrating out the

random effects νj’s and ρij’s) induces the same expected counts as in [5]. In fact,

EðXijjmi; di; �j; sj; yÞ ¼ �Ii
j sjmi;

with Ii ¼ 1 when i � q
0
and Ii ¼ 0 otherwise:

ð4Þ
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In addition, the variance of these expression counts can be decomposed as

VarðXijjmi; di; �j; sj; yÞ ¼ �Ii
j sjmi þ y½�Ii

j sjmi�
2
þ Iidiðyþ 1Þ½�Ii

j sjmi�
2
: ð5Þ

The first term in Eq (5) is the biological baseline variance—based on a Poisson(�Ii
j sjmi) model.

The second component represents the variance inflation due to unexplained technical variabili-

ty and the final term is linked to biological cell-to-cell heterogeneity. The decomposition in Eq

(5) is similar (as a function of the expected counts) to those proposed in [5] and [7], which

have been validated empirically.

BASiCS: detection of highly and lowly variable genes

Intuitively, highly variable genes (HVG) are those for which a large fraction of the total expres-

sion variability is explained by a biological cell-to-cell heterogeneity component. Here, we

characterise highly variable genes as those for which

si �
diðyþ 1Þ

½ð�sÞ
�
mi�

�1
þ yþ diðyþ 1Þ

> g
H
;

where ð�sÞ
�
¼ median

j2f1;...;ng
f�jsjg;

ð6Þ

Fig 2. Graphical representation of the hierarchical model implemented in BASiCS.Diagram based on
the expression counts of 2 genes (i: biological and i0: technical) at 2 cells (j and j0). Squared and circular nodes
denote known observed quantities (observed expression counts and added number of spike-in mRNA
molecules) and unknown elements, respectively. Whereas black circular nodes represent the random effects
that play an intermediate role in our hierarchical structure, red circular nodes relate to unknownmodel
parameters in the top layer of hierarchy in our model. Blue, green and grey areas highlight elements that are
shared within a biological gene, technical gene or cell, respectively. BASiCS treats cell-specific normalising
constants (ϕj’s and sj’s) as model parameters, and estimates them by combining information across all genes.
Unexplained technical noise is quantified via a single hyper-parameter θ, borrowing information across all
genes and cells. Finally, BASiCS quantifies biological cell-to-cell variability via gene-specific hyper-
parameters δi, borrowing information across all cells.

doi:10.1371/journal.pcbi.1004333.g002
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i.e. when the proportion of the total variability of the expression counts of gene i in a reference

cell (derived from Eq (5), replacing ϕj sj by (ϕs)
�
in order to represent a typical cell within the

analysed sample) that is explained by biological cell-to-cell heterogeneity exceeds a variance

contribution threshold γH. In other words, we characterise as HVG those whose biological cell-

to-cell heterogeneity component explains γH × 100% of the total variability (in a typical cell).

The latter criterion induces contours in terms of δi, which are given by

di >
g
H

1� g
H

" #

ðð�sÞ
�
miÞ

�1
þ y

1þ y

� �

: ð7Þ

Naturally, the contour in Eq (7) is an increasing function of γH. Additionally, it is a decreasing

function of the normalised expression rate μi, which is a welcome feature (previous studies

have shown evidence of lower levels of biological cell-to-cell heterogeneity in highly expressed

genes [5]).

BASiCS quantifies the evidence in favour of a gene being highly variable in terms of the

upper tail posterior probabilities (associated to high biological cell-to-cell heterogeneity com-

ponents) and labels as HVG those genes such that (for a given evidence threshold αH)

pH
i ðgH Þ ¼ Pðsi > g

H
jfxij : i ¼ 1; . . . ; q; j ¼ 1; . . . ; ngÞ > a

H
; ð8Þ

i.e. when such evidence is strong. Analogously, lowly variable genes (LVG) would be those for

which

pL
i ðgL

Þ ¼ Pðsi < g
L
jfxij : i ¼ 1; . . . ; q; j ¼ 1; . . . ; ngÞ > a

L
; ð9Þ

for a given variance contribution threshold γL and an evidence threshold αL. Estimates of these

quantities can be easily computed based on a posterior sample of the model parameters, requir-

ing minimal computational effort (other criteria, such as Bayes Factors, usually require inten-

sive calculations [10]). Tail posterior probabilities have also been used in the context of

differential expression for microarray experiments [11], providing richer and more interpret-

able output than standard hypothesis testing procedures.

Our method for detecting highly (and lowly) variable genes requires the choice of variance

contribution thresholds γH and γL as well as evidence thresholds αH and αL. If there is biologi-

cal motivation behind particular values of γH or γL, these values can be fixed prior to the analy-

sis. However, αH and αL have a technical role, quantifying the uncertainty associated with the

detection of HVG and LVG. For fixed values of γH and γL, we can choose optimal values for αH
and αL as those where the expected false discovery rate (EFDR) and expected false negative rate

(EFNR) coincide. For the rule in Eq (8), these quantities are defined as in [12] and respectively

given by

EFDRa
H
¼

Pq0
i¼1
ð1� pH

i ðgH ÞÞIðp
H
i ðgH Þ > a

H
Þ

Pq0
i¼1

IðpH
i ðgH

Þ > a
H
Þ

and

EFNRa
H
¼

Pq0
i¼1

pH
i ðgH ÞIðp

H
i ðgH Þ � a

H
Þ

Pq0
i¼1

IðpH
i ðgH Þ � a

H
Þ

:

ð10Þ

where I(A) = 1 if A is true, 0 otherwise. Equivalent expressions can be determined for Eq (9), re-

placing pH
i ðgHÞ and αH by pL

i ðgLÞ and αL, respectively. Alternatively, if there is no clear pre-de-

termined choice for γH and γL, choosing a specific common value for the EFDR and the EFNR

(e.g. EFDR = EFNR = 10%) can define optimal values for αH and αL as well as for γH and γL.

Beyond the choice of particular thresholds for the detection of highly and lowly variable

genes, a key advantage of our method is the generation of a natural ranking of the genes in

BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
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terms of the percentage of variance explained by the biological cell-to-cell heterogeneity com-

ponent (σi). For particular threshold choices, our method classifies as highly variable those

genes for which σi is high (above the variance contribution threshold γH) and where there is

strong evidence to support this fact (the probability of {σi> γH} is above the evidence threshold

αH). As a result, BASiCS aims to identify key drivers of cell-to-cell heterogeneity rather than

complete enumeration. Our analysis does not imply that all genes located below these thresh-

olds have stable expression among the analysed cells.

BASiCS: identifiability

Without additional assumptions, the parameters of the model presented in Eq (2) and Eq (3)

cannot be identified. However, the cell-specific capture efficiency normalising terms sj’s can be

identified if we assume that μq0+1, . . ., μq are known. This is not a limitation, because the true

concentration of the spike-in genes added to each cell are known from experimental informa-

tion. In addition, δi’s (quantifying gene-specific biological cell-to-cell heterogeneity) and θ

(quantifying unexplained technical variability) can be identified via the variance of the biologi-

cal and technical expression counts. Nonetheless, the scale of the ϕj’s (cell-specific mRNA con-

tent normalisation) is arbitrary because μ1, . . ., μq0 are unknown. A simple solution is to

impose the restriction n�1
Pn

j¼1
�j ¼ �

0
, which can be achieved by reparameterising the model

in terms of κ1, . . ., κn with

�j ¼ �
0

ekj
P

j¼1
ekj

; j ¼ 1; . . . ; n k
1
¼ 0: ð11Þ

Although this restriction imposes an arbitrary scale to the ϕj’s, this does not affect inference

about relative differences between the μi’s, nor the δi’s. Therefore, standard analyses, such as the

detection of highly variable genes or differential expression, are not affected by particular val-

ues of ϕ0. For simplicity, we recommend ϕ0 = n (this value will be used hereafter in this article).

BASiCS: prior specification and implementation of posterior inference

We assume prior independence between all model parameters, using a flat non-informative

prior for the normalised expression rates μ1, . . ., μq0 and proper informative prior distributions

for all other model parameters. Under this prior, Bayesian inference is implemented using an

Adaptive Metropolis (AM) within Gibbs Sampling (GS) algorithm [13]. This algorithm was

implemented using a combination of C++ and R via the Rcpp library [14]. An R package has

been prepared and is available at: https://github.com/catavallejos/BASiCS

More details about the prior specification and the implementation of posterior inference

can be found in S1 Text and S2 Text, respectively. Information regarding the computational

cost of our method is displayed in S7 Text.

Alternative method presented in Brennecke et al (2013)

Here, we briefly discuss the 3-step method described in [5] to analyse scRNA-seq data and to

detect HVG in the population of cells under study (notably, BASiCS not only provides a meth-

od for HVG detection, but LVG can also be identified). This method pre-normalises the ex-

pression counts using the method available in DESeq [15], calculating two separate sets of

BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
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normalising constants as:

oB
j ¼ mediani¼1;...;q0

xij
Qn

j¼1
xij

� �1=n

8

>

<

>

:

9

>

=

>

;

and

oT
j ¼ mediani¼q0þ1;...;q

xij
Qn

j¼1
xij

� �1=n

8

>

<

>

:

9

>

=

>

;

; j ¼ 1; . . . ; n

ð12Þ

for biological and technical genes, respectively (in Eq (12), xij represents the observed counts of

a gene i in cell j). In terms of our notation, oB
j and o

T
j play the role of ϕj sj and sj, respectively.

Based on point estimates of these quantities, normalised expression counts are then computed

as x�ij ¼ xij=o
B
j and x

�
ij ¼ xij=o

T
j for biological and technical genes, respectively. When a large

number of genes is being analysed, the variance associated to estimators in Eq (12) is negligible.

However, the expressions in Eq (12) are undefined if one or more of the expression counts of

any analysed gene are equal to zero (the geometric means in the denominators are equal to

zero). A common solution is to exclude those genes with zero counts from the normalisation

calculations (but not from any other downstream analysis). As a result, these estimators be-

come highly unstable, especially for strong levels of technical noise (where a high proportion of

zero counts is typically observed). This is illustrated in Fig 3 (see panels (a) and (b)), where we

simulated data using the same structure as the mouse ESC dataset analysed in the Results sec-

tion, using the model implemented in BASiCS and a range of values for θ (including θ = 0,

where there is no unexplained technical noise). Fig 3(b) also shows that the stepwise approach

Fig 3. Simulated performance of sj’s estimates (method described in [5] and BASiCS). Based on 400 simulated datasets from the model implemented
in BASiCS with the same structure as in the mouse ESC dataset (simulated parameter values defined as posterior medians of the original model fit) and 6
different values for θ. (a) percentage of the simulated spike-in genes (out of 46) without zero counts (i.e. those that can be used when calculating the
estimator proposed in [5]) for different simulated values of θ. (b) and (c) estimates of s1 (first cell) across all simulated datasets for different simulated values
of θ using the method described in [5] and BASiCS (posterior medians), respectively. As the strength of unexplained technical noise increases (larger values
of θ), estimates obtained using the approach described in [5] become highly unstable (we illustrated this using the first simulated cell, but the same
conclusion can be obtained based on any other cell). This is due to a larger proportion of zeros among the simulated expression counts, i.e. less spike-in
genes can be used when estimating s1. In contrast, the stability of the BASiCS estimates is not substantially affected by the strength of unexplained technical
noise.

doi:10.1371/journal.pcbi.1004333.g003
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proposed in [5] does not recover the correct scale for the sj’s (not surprising as their method

was not designed to do so). In contrast, Fig 3(c) shows the superior performance of our ap-

proach. This is not surprising because: (i) our estimates used the actual expression rates of the

spike-in genes (given by the number of mRNA ERCC molecules added to the lysis buffer of

each cell), instead of their empirical counterparts (recovering a correct and meaningful scale

for the sj’s) and (ii) we combined information from all genes (biological and technical) without

having to exclude genes where one or more cell-specific counts were equal to zero.

Using the pre-normalised expression counts, [5] proposes a HVG detection method based

on the relationship between gene-specific sample means and the corresponding coefficients of

variation. An initial fit of this relationship is made using only the spike-in genes (where hetero-

geneous expression is only due to a technical component), quantifying the effect of unex-

plained technical variability. The output of this technical fit is then plugged in when modelling

biological data, characterising as HVG those whose expression variability substantially exceeds

what would be expected due to technical variability (i.e. the level predicted by the technical fit)

—ignoring the uncertainty associated to the technical fit.

Results

Motivating data: mouse ESC presented in Islam et al (2014)

To illustrate BASiCS we consider scRNA-seq data for 7,941 genes (7,895 biological and 46

ERCC spikes) from 41 mouse ESCs. This corresponds to a subset of the dataset presented in

[16], generated by discarding those genes with total count (across all cells) below 41 (i.e. where

the counts are, on average, less than 1 molecule per cell). By doing this, we exclude genes with

very low expression rates, which have less biological relevance. As illustrated in [16], the use of

UMIs (attached to each cDNA molecule during reverse transcription) reduces the strength of

technical noise. Nevertheless, our analysis suggests that unexplained technical variability has

not been completely removed by this technology (see discussion below). S3 Text describes the

input parameters used for the implementation (including prior hyper-parameters values). The

data and code used for the analysis are provided in S1 Data.

Normalisation

Fig 4 summarises posterior inference for the cell-specific normalising terms ϕj’s and sj’s. Panel

(a) suggests there is a substantial heterogeneity in the total mRNA content per cell (ϕj) and a

relatively good correspondence between our estimates and the ones produced by the method in

[5]. In the context of UMI datasets, the sj’s can be understood as a measure of changes in cap-

ture efficiency. In the ideal case, all the sj coefficients should approach 1 (i.e. all gene molecules

are captured). Instead, in the case of the analysed mouse ESCs, the posterior medians of the sj’s

vary between 0.31 and 0.44 across cells (see panel (b)), suggesting that part of the original mole-

cules are lost throughout the experiment (this is particularly critical for lowly expressed genes,

as they might not be captured at all). As shown in panel (b), the BASiCS estimations of the sj’s

show good concordance with the empirical proportions of total spike-in molecules captured in

each cell. The small scale difference between the posterior medians of the sj’s and these empiri-

cal proportions is due to a highly skewed posterior distribution of the sj’s; however posterior

modes closely match these values (see panels (c) and (d)). Panel (b) also shows a strong dis-

crepancy between the methods when estimating the sj’s. Our method suggests that the scale of

the technical counts does not substantially vary among cells, which is more reasonable when

analysing UMI-based counts. Finally, an important feature of our method is a direct quantifica-

tion of the uncertainty related to estimation of all normalising constants ϕj’s and sj’s (by means

of high posterior density intervals), an element that was ignored in [5].

BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
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Fig 4. Normalisation. (a) and (b): for each of the 41 mouse ESCs, vertical lines represent the 95% high posterior density interval (blue dot located at the
posterior median) of cell-specific normalising constants ϕj (cellular mRNA content) and sj (interpreted in terms of capture and reverse transcription efficiency
for UMI counts), respectively. While BASiCS suggests substantial heterogeneity in the total amount of molecules per cell (ϕj), the scale of the technical
counts remains stable among cells (sj). This is expected when using UMI protocols, where counts should not be affected by sequencing depth and other
amplification biases. Red dots are the values estimated by the stepwise method described in [5]. There is a good agreement of the methods in terms of
cellular mRNA content (ϕj), but the estimations of sj according to [5] suggest stronger differences than what is expected when using UMI protocols. In (b),
black dots represent the proportion of total spike-in molecules captured in each cell. Our estimations of the sj’s are in better agreement with these empirical
measurements (suggesting BASiCS infers a more adequate reverse transcription efficiency level). (c) and (d) histogram of a Markov Chain Monte Carlo
sample from s1 and s2, respectively. These posterior distributions are highly skewed and thence the posterior modes are a closer match to the empirical
capture proportions than the corresponding posterior medians.

doi:10.1371/journal.pcbi.1004333.g004
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Variance decomposition and detection of HVG/LVG

Despite the use of UMIs, posterior inference strongly suggests the presence of unexplained

technical noise in gene expression measurements (see Fig 5). In fact, the posterior distribution

of the unexplained technical variability parameter θ is concentrated away from zero (see panel

(b)). In addition, even though the posterior distribution of the cell-specific normalising terms sj
is homogeneous across cells, panel (a) shows substantial differences among the cell-specific

random effects (νj). Overall—across all genes—the unexplained technical component explains

approximately 28% of the total variability of expression counts in a typical cell. The data also

exhibit strong evidence of biological cell-to-cell heterogeneity. In fact, in the case of the ana-

lysed mouse ESC dataset, the posterior median of σi (defined in Eq (6)) is above 62% for 50%

of the 7,895 biological genes (see Fig 6(a)). In addition, Fig 6(b) shows a strong relationship be-

tween the biological cell-to-cell heterogeneity (δi) and the gene-specific expression rates (μi)

which is coherent with the contours in Eq (7) that are decreasing functions of μi.

In practice, we define variance contribution thresholds (γH and γL) and evidence thresholds

(αH and αL) for the detection of HVG and LVG by setting the EFDR and the EFNR (defined as

in Eq (10)) equal to 10% (see Table S1 in S4 Text). Using this rule, we obtain γH = 0.79, γL =

0.41 (with corresponding evidence thresholds αH = 0.7925, αL = 0.7650). Therefore, we label as

highly variable those genes for which there is strong evidence of a biological cell-to-cell hetero-

geneity component that explains more than 79% of the total expression variability. Similarly,

we set γL = 0.41, thus defining as LVG those with strong evidence that the biological cell-to-cell

heterogeneity explains less than 41% of the total expression variability. Posterior estimates of

the detection probabilities associated to each gene are displayed in Fig 7. While LVG are

Fig 5. Cell-specific random effects linked to unexplained technical variability. (a): for each of the 41 mouse ES cells, vertical lines represent the 95%
high posterior density interval (blue dot located at the posterior median) of the random effects related to unexplained technical cell-to-cell variability (νj). (b):
histogram of a Markov Chain Monte Carlo sample from θ. Posterior inference strongly suggests the presence of unexplained technical noise in gene
expression measurements. In fact, the posterior distribution of θ is concentrated away from zero and—even though the posterior distributions of the sj’s are
highly homogeneous across cells (see Fig 4(b))—there is a strong heterogeneity among the posterior distributions of the νj’s (evidenced by non-overlapping
95% high posterior density intervals).

doi:10.1371/journal.pcbi.1004333.g005
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Fig 6. Biological cell-to-cell heterogeneity. (a): Histogram of the posterior medians of gene-specific biological cell-to-cell heterogeneity variance
contributions σi (defined in Eq (6)) across the 7,895 biological genes. (b): For each of the 7,895 biological genes, posterior medians of biological cell-to-cell
heterogeneity term δi (log scale) against posterior medians of expression level μi (log scale). Red lines represent the contours in Eq (7), related to HVG (log
scale) at different levels of the variance contribution threshold γH. Blue lines represent the equivalent contours linked to LVG at different levels of the variance
contribution threshold γL. These contours were estimated based on posterior medians of ϕj’s, sj’s and θ.

doi:10.1371/journal.pcbi.1004333.g006

Fig 7. HVG and LVG detection. (a) and (b): for each of the 7,895 biological genes, gene-specific expression rate μi (log scale) against the probability of
being HVG (pH

i
ðgHÞ) and the probability of being LVG (pL

i
ðgLÞ), respectively. Setting the EFDR and the EFNR equal to 10%, the corresponding variance

contribution thresholds are γH = 79% and γL = 41%. Black dashed lines located at optimal (i.e. when EFDR and EFNR coincide) evidence thresholds αH =
0.7925 and αL = 0.7650, respectively. The 133 and 589 genes classified as HVG and LVG are highlighted in red and blue, respectively.

doi:10.1371/journal.pcbi.1004333.g007
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typically associated with large expression rates, the expression rates of HVG are concentrated

in a lower range. With these variance contributions and evidence thresholds, we detect 133

HVG and 589 LVG (highlighted in Fig 7, panels (a) and (b), respectively).

Biological interpretation of HVG and LVG

Among the 133 genes classified as HVG, there is an enrichment of genes related to cell differen-

tiation (see Table S2 in S5 Text). These HVG include (posterior medians of σi are shown in pa-

renthesis) Dppa3 (85.1%) for which [17] previously showed heterogeneous expression in

mouse ES cells via in situ hybridisation. Other genes for which [17] found heterogeneous ex-

pression did not pass our criteria, yet we estimate a substantial component of biological cell-to-

cell heterogeneity associated to most of them: Esrrb (79.7%), Zfp42 (75.9%), Krt8 (67.8%),

Nanog (66.4%), Atf4 (64.6%),Whsc2 (56.3%), Rest (48.7%), Fscn1 (47.5%) and Pa2g4 (27.5%).

In particular, some of these genes would be classified as HVG if a slightly less conservative

EFDR and EFNR threshold was adopted. Our results are more conservative than those accord-

ing to the method described in [5] (see Fig 8(a)), where 1,363 genes were labelled as HVG. This

is not surprising as their method suggests stronger heterogeneity among the cell-specific nor-

malising constants sj’s, potentially inducing spurious heterogeneous expression in genes that

remain otherwise stable. In addition, as shown in Fig 8(b), there is a relatively good correspon-

dence between our results and the list of HVG published by [16] (their heuristic method classi-

fied as HVG those with substantially larger expression variability than would be predicted by a

Poisson model, arguing that the need of normalisation and quantification of unexplained tech-

nical noise is removed by the use of UMIs). There are 23 genes classified as HVG by both meth-

ods (also detected by [5]), including e.g. Sprr2b (91.6%), Dqx1 (90.9%) Ccdc48 (90.9%),Mreg

(89.1%) and Fst (88.1%). Several of the genes presented as HVG by [16] but not by us are bor-

derline according to our criteria and exhibit a substantial, yet less predominant, intra-tissue

heterogeneity (the posterior medians of σi are above 68% for 75% of them). For example, Lefty1

exhibits a heterogeneous pattern of expression, which BASiCS reflects by estimating σi = 79.4%

(yet the data does not provide enough evidence to conclude thatmore than γH = 79% of the

Fig 8. Comparison of HVG detection among different methods. For each of the 7,895 biological genes, posterior medians of biological cell-to-cell
heterogeneity term δi (log scale) against posterior medians of expression level μi (log scale). While the methods described in [16] and [5] only provide a
characterisation of HVG, BASiCS is able to detect those genes whose expression rates are stable among cells.

doi:10.1371/journal.pcbi.1004333.g008
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expression variability of Lefty1 can be attributed to a biological cell-to-cell heterogeneity com-

ponent). Nonetheless, other genes identified as highly variable by [16], such as Gapdh (35.7%),

are far from being labelled as HVG by our method (pH
i ð0:79Þ ¼ 0:009). The latter is more rea-

sonable, in view of the extensive use of Gapdh as a reference gene in mouse ESCs [18].

The enrichment of lowly and mildly expressed genes within those highlighted as highly vari-

able is not an artefact of our method and relates to the characteristics of the analysed mouse

ESC dataset. In fact, the analysed sample includes cells from a fairly homogeneous population

of cells and highly expressed genes are mostly related to key processes that are common to all

cells, acting as housekeeping genes. To validate this, we analysed the dataset described in [19],

which contains 3,005 samples from a highly heterogeneous population of cells. In such a set-

ting, our analysis reveals that BASiCS is capable of detecting highly variable genes across the

whole range of expression levels (see S8 Text).

In terms of LVG, neither [5] nor [16] can be employed. Our results are validated by a strong

enrichment of genes related to core cellular processes such as translation and translational

elongation (see Table S2 in S5 Text). In particular, we include Eif5b (12.7%) which has been

previously shown to have homogeneous expression in mouse ESCs [17]. Our list of LVG also

includes e.g.:Mir466d (4.0%), Hsp90ab1 (5.8%), Gm6251 (11.4%), Zfp207 (13%) and Arpc1b

(14.0%). Gapdh is not labelled as LVG, however the posterior distribution of its associated σi is

heavily skewed towards small values and it would be included in the LVG list if we used a

slightly higher EFDR and EFNR threshold.

Cross-validation

As well as enabling estimation of the degree of unobserved technical noise, the spike-in genes

can also be used to validate our method. We performed a cross-validation-type procedure

where, for each of the 46 ERCC spike-in genes in turn, we modified the dataset by treating the

selected technical gene as if it were a biological one. As the number of added mRNA molecules

of these technical genes is known from experimental information, this experiment allows an as-

sessment of our estimates of gene-specific normalised expression levels (μi). As shown in Fig 9

(a), our estimates are gathered around the true values, except for lowly expressed technical

genes, where the experiment suggests a small positive bias. Estimates according to [5] are high-

ly correlated with the true values, however the true scale has not been recovered (not surprising

as their method is not designed to estimate the right scale of the sj’s, see Fig 3). In addition, we

can use this analysis to validate posterior inference on the cell-to-cell biological heterogeneity

components (δi) and our detection criteria for HVG and LVG (see Fig 9, panels (b), (c) and

(d)). As expected, none of the spike-in genes were detected as HVG by our criteria. On the

other hand, there is strong evidence that 21 (out of 46) spike-in genes fall in the LVG category,

with some others just failing to overcome our conservative criteria.

Discussion

Single-cell measurements of gene expression can expose heterogeneous behaviour within seem-

ingly homogeneous populations of cells [2]. BASiCS incorporates an integrated normalisation

method where cell-specific normalising constants are estimated as model parameters. In partic-

ular, we normalise expression counts according to the mRNA content of each cell. These so-

called size factors are biologically important since they can partially reflect cell cycle stage (cells

tend to contain more mRNA molecules in later stages of the cell cycle [20]). To demonstrate

this idea, we analysed the mouse ESC dataset described in [20], where the cell cycle stage of the

analysed cells was recorded. BASiCS estimates substantially larger mRNA content for those

BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
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Fig 9. Cross-validation experiment. (a) true versus estimated normalised expression level μi for each of the 46 ERCC spike-in genes (log-scale). Our
estimations are gathered around the true values, except for lowly expressed technical genes, where the experiment suggests a small positive bias.
Estimations according to [5] are highly correlated with the true values, however the true scale has not been recovered (not surprising as their method is not
designed to estimate the right scale of the sj’s, see Fig 3). (b): Fig 8(a) superimposing (in black) estimated values for each of the 46 ERCC spike-in genes. (c)
and (d): panels (c) and (d) of Fig 7 superposing (in black) estimated probabilities associated to each of the 46 ERCC spike-in genes. As expected, none of the
spike-in genes were detected as HVG by our criteria. On the other hand, there is strong evidence in favour of being LVG for 21 of the technical genes (and
some others are borderline according to our conservative criteria).

doi:10.1371/journal.pcbi.1004333.g009
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cells captured during G2 and M phases (with respect to those in earlier stages of the cell cycle).

A summary of this analysis is displayed in S6 Text.

Additionally, our joint model of biological and spike-in genes allows biological cell-to-cell

variability to be teased apart from other technical sources of variability as well as facilitating

the generation of a calibrated decision rule, based on easily interpretable posterior probabilities,

for selecting highly or lowly variable genes in the population of cells under study. Such infor-

mation can uncover sub-populations of cells with distinct patterns of gene expression as well as

producing a natural ranking of genes according to their biologically variability.

Among others, future extensions of BASiCS include the implementation of differential ex-

pression analyses. BASiCS also provides a basis to build more complex downstream analyses

including cluster analyses and spatial models, among others. In addition, fast advances in tech-

nology suggest that the number of sequenced cells will dramatically increase in the near future

(e.g. the one described in [19]), hence we foresee that a parallel implementation of the algo-

rithm (e.g. using graphical processing units) might be necessary to cope with such large data-

sets more efficiently.
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