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Abstract

BASICS OF LAGRANGIAN FOLIATIONS

I . VAISMAN

The paper is an exposition of basic known local and global results on
Lagrangian foliations such as the theoorms of Darboux-Lie, Weinstein,
Arnold-Liouville, a global characterization of cotangent bundles, higher
order Maslov classes, etc .

The notion of a Lagrangian foliation is a basic one in symplectic geometry
and, thereby, in theoretical physics, and still presents many open interesting
problems . In the present paper, we want to review some of the basic known re-
sults for the benefit of readers who are well aquainted with foliations theory but
are less familiar with symplectic geometry, and, also, to present some personal
(already published [V2]-[V5]) results .
Our review covers : the Darboux-Lie theorem which gives the local structure

of the foliation, and the affine structure of the leaves, Weinstein's theorem of
tubular equivalence with a cotangent bundle, the Arnold-Liouville theorem on
action-angle coordinates, a global characterization of cotangent bundles, and
a few other simple global results, secondary characteristic classes of pairs of
Lagrangian foliations, etc .

Details may be found in references such as [LM], [W], [D], [AG], [GS2],
[V3], [V4], etc . Everything in the paper is in the C°°-category.

l . Local Structure Theorems
Let us recall (see for instance, [LM]) that a symplectic manifold is a manifold
M2 n endowed with a closed everywhere nondegenerate 2-form w, and that a
text-book theorem of Darboux then yields a canonical atlas {(q' pi} on M
which is characterized by

(1 .1)

	

w = dq i A dpi

	

(i = 1, . . . , n) .
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(The Einstein summation convention is used.)
On a symplectic manifold, every function f has an associated Hamiltonian

vector field Xf characterized by i(Xf)w = df, and two functions f1, f2 are said
to be in involution if their Poisson bracket

{f1, f2} = -w(Xf11Xfz) T Xflf2 = 0 .

All such fields Xf are infinitesimal automorphisms of w (i .e . Lx jw = 0), and
every infinitesimal automorphism is a locally Hamiltonian vector field . Notice
also that [Xf1 ,Xf,1 = Xifl,fs} .
An n-dimensional submanifold L of M where w = 0 (or, equivalently, which

is locally the set of zeroes of n functions pairwise in involution) is called a
Lagrangian submanifold, and a foliation of M whose leaves are Lagrangian
submanifolds is called a Lagrangian foliation.
Example 1 . M = T*Nn = the cotangent bundle of a manifold N, with w

given by (1.1) where qi are local coordinates on N, and pi are corresponding
covector coordinates, is always a symplectic manifold, and the vertical foliation
by fibers q' = const . i s a Lagrangian foliation . Particular case : M = R2n =
T*Rn . In this case pi = const . also define a horizontal Lagrangian foliation .
Example 2 .

	

The torus M = Ten with cartesian coordinates (q', pi) also
has the symplectic structure (1.1), and the equations pi - axq' = const . (i =
1, . . .,n ; no sum on i) define a Lagrangian foliation of slopes a' E R . If all a'
are irrational ntunbers the leaves are dense in Ten.
Example 3 . [V4] . The same form (1 .1) yields a symplectic structure on the

manifold

where q', pi are cartesian coordinates on the two copies of nn, respectively, Ifa
is the group generated by the transformation q' 1--> Aq', pi 1-~ (1/'\)pi (0 <
A = const . < 1), and the last diffeomorphism is (q, p) i--> (q/IIgl1, lnjjgjj, pl il pil ,
ln(11qjj - jipi¡)) . On Ma, -,ve have again tuvo Lagrangian foliations respectively
given by qi = const ., pi =const . Their leaves are diffeomorphic to Sn -1 x 18 1 .
As a matter of fact, Ma is T*(Sn_

1 x S1) with the zero section removed . If,
following a remark by G . Hector, we keep the zero section, it will belong to one
of the foliations, and the latter will have one compact leaf, while all the other
leaves are non compact .

Various other examples are also known (e.g ., [V4]) . However, it would be
interesting to find more examples which would be significant from various view-
points, particularly from that of foliation theory. The following problem is also
open : _ any Kii,hler manifold has a symplectic structure given by its Mililer form;
find examples (if possible) of Lagrangian foliations on compact Káhler mani-
folds M which are not complex tori . This problem is difficult for the following
reason : the existente of a Lagrangian distribution onM reduces the structure



group of TM from U(n) to O(n), and, consequently, all the odd Chern classes
of M vanish . (See, for instance, [Bv] for the classification of compact KS,hler
manifolds with a vanishing first Chern class .) If the strong hypothesis that the
foliation be parallel is added, M must be a complex torus ([v3]) .
The first basic result about Lagrangian foliations is that, in the same dimen-

sion, all such foliations are locally equivalent . This follows from a particular
case of a theorem which goes back to S . Lie namely.

Theorem 1.1 . (Theorem of Darboux-Lie.) If .C is a Lagrangian foliation of
a symplectic manifold (M2n,w), the latter can be covered by a canonical atlas
{(q", pi)} (i = 1, . . . . n) such that .C has the local equations q' = const., and w
is given by (1.1).

Proof.. We start by taking local independent first integrals q' of .C(i = l, . . . ,
n), in convenient neighbourhoods . Then .C has equations q' = const ., and
since .C is Lagrangian, the Hamiltonian vector fields -Xq : are tangent to G,
and [Xq¡, Xq; ] = X{q¡,q' } = 0. Now, it is classical that one can find local
coordinates p' such that Xq; = á/áp;, and we see that w takes the form

(1 .3)

	

w = dq' A dpf +
12aifdq' A dqj .

Since w is closed, the last term of (1.3) is closed as well, whence Nij depend lo-
cally on q' alone, and the mentioned term equals, say d(Aj(q)dq') . Accordingly,
if we take the new local coordinates pi = pt - A¡(q), we are done .

Coordinates such that (1.3), but not necessarilly (1 .1), holds are called semi-
canonical, and it is mainly such coordinates which we shall use in the sequel .
An easy computation shows that the transition functions of semicanonical coor-
dinates defined on domains U,,, Up are locally of the form

which proves (e.g ., [W])
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Theorem 1 .2 .
(i) The mapping df H--+ -Xf restricted to germs of projectable functions f

defines an isomorphism V*.C i:z--i T.C, where TG is the tangent bundle, and V,C
is ¡he transversal bundle TM/T£ of .C .

(ii) The leaves of .C are afine manifolds such that the Hamiltonian fields
of projectable functions are the parallel vector fields of the corresponding tor-

sionless fíat connection V of the leaves .

It is interesting that (by (i) above) TC has a canonical structure of a projecta-
ble vector bundle, since V,C has such a structure (as for an arbitrary foliation) .
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Furthermore a choice of a transversal distribution T1,C ~ V.C of T,C yields a
projectable structure of TM, which is noncanonical, but useful however .

0
Concerning (ii) of Theorem 1 .2, if the restriction of V to each leaf is geode-

sically complete, the foliation .C is said to be complete . Since compact affine
manifolds may be noncomplete, it is difficult to give completeness results for
Lágrangian foliations . For instance, all the leaves of the two Lagrangian fo-
liations of Example 3 are noncomplete (even the compact one if added), since
they are affinely covered by Rn\{0} . We quote also the following open pro-
blem : assume that the Lagrangian foliation .C has a complete leaf L o ; which
hypotheses would ensure that Lo has a saturated neighbourhood consisting of
complete leaves?
The ideas which led to (1 .3) can also give a more general result namely.

Theorem 1 .3 . ([W]) Let ,C be a Lagrangian foliation of (M,w), and leí
N be an n-dimensional embedded submanifold of M which is transversal to
the leaves of ,C . Then, th,ere is an open neighbourhood U of N in M such thai
(U, -/U,£/U) is eg4ivalent with a neighbourhood V of N seen as the zero section
of iis cotangent bundle T*N, where T*N is endowed with a symplectic fórm of
the semicanonical type (1.3) . Moreover if N is a Lagrangian submanifold, V is
to be taken with the canonical symplectic structure (1 .1).

Proof. Let U be a tubular neighbourhood of N such that ,C/U is a simple
foliation (every leaf of G/U has one asid only are intersection point with N).
Then the local coordinates qi of N(i = 1, . . . . n) are first integrals of £1u 5
and they may be used to put w in the local form (1.3), while, also, p ; = 0
are the local equations of N. This last condition is obtained after performing a
translation on the p;, if necessary. This may prevent us from making afterwards
the other translation indicated at the end of the proof of Theorem 1 .1, and,
hence, from reaching the canonical form (1.1) .
Now, since pi = 0 have a geometric meaning, the form (1.4) of the transition

functions reduces to
k

= gQ(qá),

	

piQ = E aq;1~k
k=1 Q

which are precisely the transition functions of the cotangent bundle T*N . This
proves our assertion . If N is Lagrangian p; are involutive functions, and (1.3)
reduces to (1.1) .
A very important local structure theorem of a different kind is the Arnold-

Liouville theorem. In order to formulate it let us consider the torus Tn , and its
cotangent bundle T*Tn with the canonical symplectic structure (1 .1), where q'

are cartesian coordinates on Tn . Then pi = const . is a Lagrangian foliation of
T*Tn which is transversal to the foliation by fibers, and whose leaves are the
orbits of the natural free actión of Tn on T*Tn . We call this the horizontal
foliation of T* Tn :



Theorem 1.4 . (Liouville, Arnold) Let ,C be a Lagrangian foliation of (M,w),
and Lo be a leaf of ,C which is compact and has a trivial holonomy. Then Lo has
an open .C-saturated neighbourhood U in M such that (U,w/U,£/U) is equiva-
lent to the horizontal foliation of T*Tn in a neighbourhood of ¡he zero section,
the latier being ¡he image of Lo by the mentioned equivalente . Particularly,
.C/U consisis of the orbits of a free action of Tn by symplectic equivalentes of
U.

Proof.. See for instante [D] . As a consequence of the well known local stability
theorexn, under the given hypotheses Lo has an open saturated neighbourhood
U which is diffeomorphic to V x Lo , for some open disk V of ffñn centered at the
origin, and such that the leaves of .C/U are the fibers of the projection onto V, Lo
corresponding to the origin . Hence ,C/U may be seen as the foliation defined by
equations fi = const ., where fi (the cartesian coordinates in V) are functions
on U, which are functionally independent and pairwise in involution . The
Hamiltonian vector fields Xf, are globally defined and everywhere independent
on the leaves of .C/U, and, since the leaves are compact, Xfi are complete
vector fields . They also commute ({fi, fi } = 0 => [Xf; , Xf; ] = X{f; f; } = 0),
and, hence their flows define symplectomorphisms of U which .yield a transitive
and locally free action of Rn on the leaves of .C/U with the discrete isotropy
subgroups G xo C Rn, where xo runs on a cross section of U over V .

Accordingly, the leaves of G/U are tori F8n/G,,, and have angular coordinates
w" E [0, 27r] such that
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The local coordinates (cp", si) satisfy

where já

	

= Ji(fk ), det (fi) :~ 0, and the flows of á/ócp' 2 are symplecto-
morphisms of U . Since our functions are defined locally, these properties
imply that a local change of coordinates si = si(fk) can be done such that

(1 .7)

	

{si, sJ} = 0,

	

{w'', si} = 6! .

Hence, they are semicanonical coordinates for w/U, and, like in the proof of
Theorem 1.1, translations

w, =
Sp',

+ 0'(s)

Ó
n

can be found such that (si, cp) ) be canonical coordinates of w/U (i .e ., besides
(1 .7) also {cp',cpj} = 0 holds, and w/U = dcp 2 n dsi) .

Clearly ypi are also angular coordinates on the tori-leaves of G/U, while (in
view of a mechanical interpretation) si are called action coordinates . If, with
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referente to the identification Lo ~d T', we define the mapping U -+ T*T' given
by q' = cp', pi = si, we get exactly the equivalente announced by Theorem
1 .4 .
The existente of action angle coordiüates is very important for the integration

of Hamiltonian dynamical systems (e.g ., [LM]).
A globalization of Theorem 1.4 for locally trivial fibrer bundles with La-

grangian fibre was given by Duistermaat [D] . Generalizations from T" to non-
commutative Lie groups G where given by Dazord and Delzant [DD], [Dz] .

In view of the local results of Section 1, it is natural to ask for conditions
of global equivalente of a Lagrangian foliation with the fiber foliation of a
cotangent bundle . In order to formuate an answer, we define first a certain
cohomological obstruction [V4] .
Let {U« ; (q«, P9)} -EA be an atlas of semicanonical coordinates of the sym-

plectic manifold (M,w) with respect to its Lagrangian foliation G . Hence,
formulas (1 .3) and (1 .4) hold good. Then, we define the local Euler vector
fields

E«

on U« , and notice that (1 .4) implies

(2.2)

2 . Simple Global Results

Ep - E« =

Accordingly, {Ep - E« } define a 1-cocycle ofM with coefficients in the sheaf
T.C of germs of projectable sections of the tangent bundle of ,C . (Remember
that Theorem 1 .2 . (i) gave us a projectable structure on TG), and we get a
corresponding cohomology class

(2.3)

	

£(£) E Hl(M, T£),

which we call the Euler obstruction of ,C .

á
p

	

a
(ga)~p "~, .

í-1 pi

Theorem 2 .1 . [V4] The triple (M, w, £) is globally equivalent to a cotangent
bundle T*N endowed with a semicanonical symplectic form iff. i) .C is complete;
ii) the leaves of .C are simply connected, iii) £(C) = 0.

Proof:. i), ii), and iii) are obviously necessary conditions for the fiber foliation
of a cotangent bundle . Particularly, iii) follows since, in this case, cpáp = 0 in



(2.5)
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Conversely, by (2.2), E(.C) = 0 means

C9

	

C9
4páa(ga) álj = oá(gp)- - O'(ga)apa >

ap%

qa = qa,

	

?~a = pa - 0;(qa)

a
EIL = ~( L + p,(xo»

á~ii-1

(2.4)

	

wa = dqa A dl:á + Na,

where Na are closed projectable 2-forras . . .
The equations of F must have the local form

~z	~t

	

z

	

z
(g

i
i ,

	

i
qz = qi,

	

iZ =c1l),
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where we have summation on i, and E0á(q«) (alapá) define a 0-cochain inz
T,C . Then

give a semi-canonical atlas with vanishing terms cpáQ in (1 .4) . For this new
atlas, (2.1) yields a global Euler vector faeld E.

Hypotheses i), ii) show that the leaves of .C are affinely equal to 18' . Let L
be one such leaf, xo E L f1 Ua , and l:L be the global affine coordinates defined

0
on L by the exponential mapping of the leafwise fiat connection V (Theorem .
1 .2, (ii» at xo . It follows easily that

	

p' - p«(xo ) on L fl Ua , and

Hence E 'has one aizd only one vanishing point z(L) on each leaf L, and if z(L)
belongs to some U,, the locus N of z(L), L E ,C, has equations p° = 0 in U, .

It follows . that N is a differentiable manifold with the local coordinates
and the local coordinates

	

yield the equivalence of (M, w, .C) with the
fiber foliation of T*N . Notice that the canonical form is obtained on T*N by
the construction above iff N is a Lagrangian submanifold ofM.
The previous result may be completed by

Theorem 2.2 . 1 Let (Ma, e:wa , £a ) (a = 1, 2) be two Lagrangianly foliated ma-
nifolds which satisfy the conditions of Theorem 2.1 . Then, they are equiva-
lent iff there exists a foliation equivalence F : (M,,£,) ---> (M2 , .C2) such that
wl -. F*wz is á projectably exact form .

Proof.. If the eqúivalence requested exists we may use it as F, and then
w1 - F*wz = 0.

Conversely, if F exists, the construction of Theorem 2 .1 yields two differen-
tiably equivalent cotangent bundles T*Na (a = 1,2) with local coordinates
(q , já ), and with two symplectic formsá
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such that w2 - F*wl = dA, where A = Xi(g1)dq' . The lattest condition
immediately implies that the second equation (2.5) must be of the form ji =
= 1;; + a?(q' ), and that the mapping S : Ml -> M2 defined by

(2.6) q2 = lil'c = C+al - Ai

(which has a global meaning) is an equivalente (M1 , w1 , .Cl) r,- (M2, W2,£2)-
Remarks .

1) For simple Lagrangian foliations C it suffices to assume only hypotheses
i) and ii) in Theorem 2.1, and the results of Theoem 2.1 and 2 .2 are contained
in [AG] .

2) Example 3 of Section 1 gives a Lagrangian foliation ,C with non simply
connected leaves, and £(.C) = 0 .

3) £(C) = 0 is equivalent with the existente of a 1-form A = pidq', where
dq' = 0 defines .C, such that w - dA is projectable . Indeed, then {(q', pi)} is
a semicanonical atlas with vanishing germs cpáa in (1.4) . From this, it follows
that £(.C) never vanishes on a compact manifoldM since wn = (dA)n .

4) A similar cohomology class like £(.e) appeared in the theory of afiine
manifolds, namely the radiante obstruction [GH] .

Another interesting question is that of the global rigidity of a Lagrangian
foliation . To be more precise, the existente of the local canonical coordinates of
Theorem 1.1 for a triple (M, w, .C) means that M is endowed with some pseu
dogroup structure, and we should study the deformations of this pseudogroup
structure (e.g ., [GS1]) . Following is one simple result in this direction .

Theorem 2 .3 . Let Nn be a manifold such that H'(N, R) =H2 (N, il) = 0.
Then the fiberfoliation of T*N is infinitesimally rigid as a Lagrangian foliation.

Proof. Infinitesimal rigidity of our pseudogroup structure holds if
H1 (T*N, -) = 0, where E is the sheaf of germs of infinitesimal automorphisms
of the structure [GS1]. For any (M,w,G), a germ of E is represented by a
vector field which preserves ,C and w, and this means

(2.7)

	

X = ii (q)~qi + 77i(p, q)

	

Z '

where (q',pi) are canonical coordinates, and

(2.8) arjs -

	

a~i arti _ ai7;
apj

- - aq ; , aqj - aqi .

For X of (2.7), if we write down i(X )w in canonical coordinates, we see
that ¡(X )w = df for a germ of a certain function f of the form a'(q)pi + l3(q),
and if. we denote by A the sheaf of germs of such afine functions, we get an
isomorphism E .^s dA, and an exact sequence of sheaves

(2.9)

	

0-->R--+A- d-+ (dAtiE))0.



Accordingly, under the hypotheses of Theorem 2.3, we get H1(T*N, ZE)
H' (T* N, A) .

But the cohomology of A can be computed . Indeed, for any (M,£, w), if
4) denotes the sheaf of germs of projectable functions, A is a locally free -¿-
module sheaf generated by {pi, l} . Hence A is the sheaf of germs of projectable
sections in a certain projectable vector bundle, and we have [V1]

(2 .10)

BASICS OF LAGRANGIAN FOLIATIONS
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Hk
(M A)

= ker{df : r(A (q,¿
A°k£) --> T'( .,4 ®<D

A0,k+1
p}

im{df : r(A ®p A0,k-1£)
__> r(A®,~ nok£)} '

where df is the exterior dif erential along the leaves, I' denotes global section
spaces, and AOk ,C is the sheaf of germs of diferential k-forms containing only
differentials of transversal coordinates of .C .

In our case M=T*N, and H*(T*N, A) is the limit of a spectral sequence
with E2k = H"(N, ~-lk ("F", A)), where 7-lk("F", A) is the sheaf defined by U C
N ~-4 Hk (7r -1 (U), A) (U is open, and 7r : T*N -4 N is the natural projection) .
From (2.10), and since the fibers of 7r are contractible, we get Hk ("F", A) = 0
for k >_ 1, H°(7r-1(U),A) = [C°°(U)]n+l . This implies Ehk = 0 for k >_ 1, and
for k = 0, h > 1 . Therefore Hk(T*N,A) = 0 for k > 1, and we are done.

Another important global question is that of the existence of a transver-
sal projectable connection for a Lagrangian foliation G . It turns out that this
question is related to the interesting notion of an affine transversal distribution
[M1], which is defined as a transversal distribution -r£ of ,C such that the natu-
ral process of lifting paths from a transversal submanifold of ,C to paths tangent
to -r£ yields affine mappings between the leaves of G. Such a distribution has
local equations of the form

(2 .11)

	

0¡ = dpi -{- ti9(p, q)dg 1 = 0,

where (q 2 , pi ) are semicanonical coordinates and tic are affine functions . The
existence of an affine transversal distribution is characterized by the vanishing
of a certain cohomological obstruction which we shall not describe here [M2],
[V4] . But we give

Theorem 2.4 . [V4] If .C has an affine transversal distribution, the tran-
sversal bundle VC has a projectable connection . The converse also holds if
E(C) = 0.

Proof.. Since V.C .,r T*,C (theorem 1.1, i)) it sufiices to prove the results
of Theorem 2 .4 for the tangent bundle T,C instead of V.C . On T.C, for any

0
transversal distribution -r£, we may extend the fiat partial connection V along
the leaves (Theorem 1 .2, ii)) to a full connection by adding to it

0

VXY= prTe[X,Y],

	

VX E -r,C,

	

Y E T.C .
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0

	

0
If R denotes the curvature operator of this connection V, we obviously have
0

R(YI,Y2)Y = 0 for all Y1, Y2,Y E T,C, and the connection will be projectable
0

iff R(X,Y1 )Y = 0 for X E r,C,Y,,Y E T.C [M1].
By definition, r,C is affine iff for every foliation preserving infinitesimal

transformation X E r,C, and every parallel field Y E T,C, [X, Y] is again a
0

parallel field . In the computation of R(X, Y1 )Y, we may always assume that X
is leaf preserving and YI,Y are parallel (since the result depends only on the

0
point-values of these vector fields) . By doing this, we get easily R(X, Y1 )Y = 0.

Conversely, assume that T,C has a projectable connection, and £(G) =
= 0. Then a germ of M may be seen as a germ of the cotangent bundle of a
transversal submanifold of G, and the projectable connection of T,C induces a
connection V in this cotangent bundle . Locally (and if (q Pi) are again the
canonical coordinates of a cotangent bundle), V may be written as

Erk
0(alaq`)(dq') = kji(g)(dgk)

(Here (dq3) is seen as the basis of the fibers of the cotangent bundle .) The
tangent vector of the paths of V-parallelism satisfy

dpk + EI' (q)pi dq' = 0,

and we see that they define an affine transversal distribution r,C . (See details
in [V4]) .

3 . Pairs of Lagrangian Foliations

This is again an important configuration for physical interpretations (par-
ticularly for quantum physics) . Such pairs appear in R" . Other examples are
offered by Examples 2,3 of Section 1 .

A geometrically simple but rarely appearing case is that of a pair (£1, .C2) of
everywhere transversal Lagrangian foliations on a symplectic manifold (M, w) .
Such a system (M, w, £1,,C2) can be called a bilagrangian manifold .

Theorem 3.1 . A bilagrangian manifold has a canonical torsionless sym-
plectic connection 7 which preserves £1 ,£2 . V has zero curvature iff either
i) the manifold is locally equivalent to R2n with the horizontal and vertical fo
liations, or ii) TG2 is an afne transversal distribution of £1 .

Proof:: (E.g ., [V2],' [V4]) We shall denote by indices a = 1, 2 the compo-
nents along .C1, £2, and define 0 as a sum of connections . Start by

(3 .1)

	

VX,Y2 = [XI,Y2]2, VXZ Y1 = [X2,Y1]1 .



(3.2)
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Then ask Ow = 0 which yields

w(Vx,Y1, Z1) = 0, w(Vx2Y2, Z2) = 0
w(Vx 1 Y1, Z2) = XI (w(Y1, Z2)) - w(Y1, [X1, Z2]2),

w(VX Z Y2, Z1) = X2 (w(Y2, Z1)) -w(Y2, [X2, Z1]1) .

V is thereby determined, and the computation of its torsion gives 0 in view of
the integrability of ,C 1 ,G2 .

Now, V can be seen as a connection on the principal bundle of frames
(Ei, E2+ ,) (i = 1, . . . , n) which put w in the canonical form (Le ., w(Ej, Ej+n ) =
- -w(Ei+n , E;) = Sü), and E; E T.C1 , Ei+n E T,C2 . It follows that V has zero
curvature iff there are local parallel frame fields of this type . Moreover, since 0
has no torsion the corresponding parallel vector fields Ei, Ej+n commute, and
we may define Ei = a/aq', Ej+n = a1apj . The local coordinates (q', pi) show
the local equivalente with R2n .

Finally, in R 2
n, TC2 is of course afflne for £1 . To get the converse result,

let (q',pi) be canonical coordinates for .C1 (particularly, dq' = 0 defines ,C1 ),
and let then ,C2 be spanned by Qi = (a/aq') - tí(a/apj). Then (3.1), (3.2)
yield the following local equations of 17

(3 .3) Valan¡(a1apj) = 0,vQ;(a1ap;) = Ek=1 a á2k ,
n ate

halar ; Qi = 0,

	

OQ; Qi = -~k=1 a

	

Qk-

The integrability condition of C2 is

ath

	

at;
Ti7la =

	

iaxi
-
ax

t9
at;

z ap s
t ath

9 -' = 07

	

'
s=1 ap9

and using this, the only perhaps nonvanishing parts of the curvature of V will
be

a2t; a
si(

a

	

Q'
)a

	

=
,

~pkapi

	

-- apkapi aph'

a2ta
Q(api , Qj)Qk = -

Hence V = 0 iff ti are afiine functions .

Q
apiaph

h .

(See [V4] for other results about the curvature of bilagrangian manifolds.)
More often, pairs of Lagrangian manifolds will have a certain nontransver-

sality set S C M. Nontransversality leads to the existente of some interesting
secondary characteristic classes which, in fact, appear in the more general si-
tuation of a pair of Lagrangian subbundles L1 , L2 of a symplectic vector bundle
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7r : E ---> M i.e ., a bundle with 2n-dimensional fibres, and endowed with an
everywhere nondegenerate cross-section w of A2E . A Lagrangian subbundle is
defined in the same way as a Lagrangian submanifold . The simplest such class
in the famous Maslov class of the asymptotic analysis of the partial differen-
tial equations of quantum physics [GS2] . We give a short description of there
characteristic classes, while refering the interested reader to [V3] for details .

Since the unitary group U(n) is a compact maximal subgroup of the
symplectic group Sp(n, R), the structure group of a symplectic vector bun-
dle E -> M is reducible to U(n), and, in fact, there is a homotopy class of such
reductions . Let us fix one such reduction, and let J be the corresponding com-
plex structure tensor of E. Let us look at the principal bundle U(E, J) -> M
of the unitary frames (e ;, Jei) (i = 1, . . . , n), or in the complex form

(3.4)

	

el = 1(e¡ - vC-1-Je ;),

of the reduced structure. Then a connection 0 on U(E, J) has local equations

(3.5)

	

Dei = O ej,

and curvature forms

(3.6)

	

O; = dOi - Oh h 8

where 0 and O take values in the unitary Lie algebra u(n) .
Accordingly, we get the real Chern classes ck(E) (k = 1, . . . , n) which

do not depend on the choice of J (since two such choices are homotopically
related), and they are represented by the differential forms

(3.7)

	

~(0)ck =

	

(
-1)

k

	

óji . . .) k Orl A . . . A Wk
(27r-,/--l)kk!

	

ii . . .ak

	

71

	

%k

where ck are the Chern polynomials

(3.8)

	

ck(A) = (2ir_,

	

)k
tr Ak A

	

(A E u(n)),

and ¿ni(0) is the classical Chern-Weil homomorphism .
A Lagrangian subbundle L of E is equivalent to a further reduction of

the structure group of E from U(n) to O(n) . The corresponding principal
subbundle of frames U(E, J, L) consists of unitary frames (3.4) where el E L,
and corresponding connections (3.5) will have antisymmetric matrices 0, O .
Such connections will be called L--orihogonal unitary connections, if seen on
U(E, J), and for them we obviously have ¿~I(O)Ch-1 = 0 (h = 1, 2, . .

1
).
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Now, let La,(a = 1, 2) be two Lagrangian subbundles of E, and 6a be L a-
orthogonal unitary connections . Let x(61,62) denote the comparison mapping
defined by the two connections (e.g ., [V3]) . The classical formula

(3.9)

	

0(62)ck - A(61)ck = d,¿~i(61,02)Ck

shows that Z~(61,62)C2h_1 are closed forms, and, therefore, define cohomology
classes

(3.10)

	

Ph(E,L1,L2) = [Inl(61,62)C2h-1] E H4h-3 (M,R) .

Wé call p,h the hth Maslov class since p1 coincides (up to a constant factor)
with the original Maslov class .

The explicitation of (3.10) is as follows . Express both connections 6a by
using some common local unitary bases (et), and let ( ,ya g ) be the corresponding
connection matrices . (They take values in u(n) and not in ((n) = the orthogonal
Lie algebra, in general .) Put

(3 .12)

aL = ^l2= - 'res,

	

'rt = ^11 +t«,

	

0 <- t < 1,

and let O t be the curvature matrix of ^y t . Then

x(60 61)C2h-1 = (-1)h+1 (27f)2h-zh-2)!*
1 {6j1 """)2h-1 Y1

	

b2

	

'2h_1 1
81 . . .82h_1 a .%1

	

Ot72 A . . . A Ot72h_l Jdt .
0

The general construction of secondary characteristic classes, analogous to
the one in foliation theory (e .g ., [L1]) amounts to the following . Take the
differential graded algebra

WL,, = R[c', c1, . . ., cl

® [C2, e42, . . . , C2[n/2]]®
O A(u1 , u2,1 . . )un),

where c2p, c2 9 , u s are generators of degrees 4p, 4q, 2t - 1 respectively, and

dc2p = dc29 = 0,

	

du2s-1 = 0,

	

du2s = C2s - c2v

Define p : WLn -+ AM by

P(C2p) _ lnl( 61)C2p, P(C29 ) = 0(62)C2q,

P(us) = O(01,62)Cs,

where c are the Chern polynomials and 6a are La-orthogonal unitary connec-
tions (a = 1, 2) . p induces p* : H*(WLn ) -> H *(M, R) and the classes of i m p*



572

	

I . VAISMAN

which are not primary characteristic classes are the secondary characteristic
classes of (E, L1, L2)-

A computation similar to one in [L1] (see [V3]) gives

H*(WLn) = WL � = R[c2', e4', . . ., el

(3.13)

	

®R [c2, c4, . . . , c2f./21] ® n(ui, us) . . . , u2fn/21+(-1) � -1 ),

and the conclusion is that the secondary characteristic classes are algebraic
combinations of the Pontrijagin classes of L1, L2 and of the Maslov classes
(3.10) [V3] .

Therefore, only the Maslov classes are of interest . One has

Theorem 3 .2 . The Maslov classés hh(E, L1, L2) do not depend on ¡he
choice of the La -orthogonal unitary connections Bala = 0, l), as well as on ¡he
choice of ¡he unitary reduction of the siructure group of E (i .e ., ón J) .

	

They
only depend on the homotopy classes (via Lagrangian subbundles) of L1, L2 ,
and vanish if L1,L2 are homotopic to transversal Lagrangian subbundles.

Proof.. Eacept for the last assertion, the results follows by rather clear
homotopy arguments . If L1,L2 are transversal we may choose J such that
L2 = JL1 , and then use el = e2 . By (3 .11), we shall obtain ,u2h_ 1 = 0

We refer the reader to [V3] for concrete computations of Maslov classes,
and we shall finish here by indicating another interesting feature namely, the
residual character of the Maslov classes .

Let us first generalize the definition of residues as given in [BB] . Let M'
be an oriented differentiable manifold, and S a compact subset of M whose
connected components Sh(h = 1, . . .,p) have disjoint tubular neighbourhoods
Uh with projections 7rh : Uh

	

Sh, and U = Uh=1Uh . Then, a cohomology
class u E H'(M, R) is said to be S-residual if for every U as above there are
canonically (but not necessarily uniquely) defined k-forms AU with a compact
support included in U which represent u, and such that if U' C U, AÚ, _
= AU + dp, where supp p = compact C U .

If this happens, and if Xh = AU/U,,, Poincaré duality provides us with a
class ah E H�i-k(Uh, F8) characterized by

(3 .14)

	

JIP = 1-\h n W

	

(VSp E nm-kUh, dW = 0),
ah Un

and the homology class
(3 .15)

	

res S,, u = (7rh),ah E H,,,-k(Sh,R),
is called the residue of u along Sh. By the last condition in the definition of
S-residuality, the residues do not depend en the choice of U. Furthermore, if
M is compact it follows obviously that the following residues theorem holds

p
(3 .16) h

PM(ZM)* resshu,
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where Pm denotes Poincaré duality on M, and iM is the inclusion Sh C M.
The simplest situation is when Sh are submanifolds . For residue theories

where S is a stratified set see the recent work of D . Lehmann [L2] . (See
also [G1], [G2] .) At our knowledge the residual classes studied until now
were primary characteristic classes (e.g ., Chern classes [BB]) . We can prove
that the Maslov classes , which are secondary characteristic classes, also have
an S-residual character along the nontransversality set S of the Lagrangian
subbundles L1, L2 . Therefore, by the residues theorem (3.16) these classes are
determined by local information around S, at least if S is nice enough as above.

To show the residual character of Ph(E, L1, L2 ), we start with a unitary re-

duction associated to a complex structure J on El m\s such that L2 = JL1 . J
exists because L1, L2 are transversal along M\S. Then, we construct a unitary
reduction of Elm by a complex structure J which equals J outside a tubu-
lar neighbourhood V such that V = compact C U (the U of the residuality
definition) . (J may be obtained by a convenient partition of unity argument,
see details in [V5]) . Furthermore, we take 01 to be a L1 -orthogonal J-unitary
connection . Over M\S, el is also L2-orthogonal, and we can construct an
L2-orthogonal J-unitary connection 02 over M which equals 01 outside the
neighbourhood V introduced above . (Use again the partition of unity argu-
ment.) Then, by (3.11) the form ¿ns(e1, e2)c2h-1 has a compact support in-
cluded in U, and it yields the form Au of the definition of S-residuality. If
U' C_ U, a technical analysis [V5] shows that Inl(BO,B1)c2h-1 is "homotopically
deformed" to ¿~I(eó, Bi )c2h-1 via forms with compact support in U .

This justifies the residual character of the Maslov classes .
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