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Abstract 

When we speak about heterogeneity in a meta-analysis, our intent is usually to understand the 

substantive implications of the heterogeneity.  If an intervention yields a mean effect size of 50 points, 

we want to know if the effect size in different populations varies from 40 to 60, or from 10 to 90, 

because this speaks to the potential utility of the intervention.  While there is a common belief that the 

I2 statistic provides this information, it actually does not.  In this example, if we’re told that I2 is 50%, we 

have no way of knowing if the effects range from 40 to 60, or from 10 to 90, or across some other range.  

Rather, if we want to communicate the predicted range of effects, then we should simply report this 

range.  This gives readers the information they think is being captured by I2, and does so in a way that is 

concise and unambiguous.  
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Introduction 

The goal of a meta-analysis is not simply to report the mean effect size, but also to report how the effect 

sizes in the various studies are dispersed about the mean.  To report that an intervention increases 

scores by 50 points is only part of the picture.  We need to know also if the impact is consistent, varies 

moderately, or varies widely, from study to study. 

Researchers often use the I2 statistic to quantify the amount of dispersion (Higgins and Thompson, 2002; 

Higgins, Thompson, Deeks, and Altman, 2003).  I2 is an intuitive statistic for many reasons.  It ranges 

from 0% to 100%, so we have a clear sense of where the heterogeneity in any given meta-analysis falls, 

relative to this range.  The range is independent of the specific effect size, and so has the same meaning 

for a meta-analysis of odds ratios as it does for a meta-analysis of mean differences.  I2 is largely 

unaffected by the number of studies in the meta-analysis, and so allows us to compare the I2 for 

different analyses even if the number of studies differs.  Most computer programs report I2, and so it is 

readily available. 

Additionally, there are widely used benchmarks for I2.  For example, I2 values of 25%, 50%, and 75% have 

been interpreted as representing small, moderate and high levels of heterogeneity.  These are seen to 

provide a convenient context for discussing the results of any analysis.  For these reasons, the use of I2 

as the primary basis for discussing how much heterogeneity is present, and the use of benchmarks for 

interpreting the magnitude of heterogeneity, have become ubiquitous in meta-analysis.   

Unfortunately, the use of I2 in this way is inappropriate.  It represents a fundamental misunderstanding 

of what I2 is, and how it should (and should not) be used.  Our goal in this paper is to explain what I2 is, 

how to interpret it, and why its common use is fundamentally wrong.  In place of I2 we will discuss 

indices that do report the dispersion of true effects on an absolute scale.  These are the indices that 

actually address the questions that people think are being addressed by I2. 

The intended audience for this paper is researchers, rather than statisticians.  Therefore, our approach is 

primarily conceptual, rather than mathematical. 

Motivating example 

We will use the ADHD analysis (Castells, Ramos-Quiroga, Rigau, Bosch, Nogueira, Vidal and Casas, 2011) 

as a motivating example. ADHD (attention-deficit hyperactivity disorder), is a condition where people 

have trouble focusing on tasks. This is often treated with the drug methylphenidate, and this meta-

analysis is a synthesis of studies where adults with ADHD were randomly assigned to receive either 

methylphenidate or placebo.  

In this analysis, the effect size is the standardized mean difference (d) between the treated and control 

groups on a cognitive task.  The mean d is 0.50, but we also want to know how the effect size varies 

across populations.   

A simple thought-experiment will make it clear that I2 does not provide this information.  In this analysis, 

I2 is 47%.  What does this tell us about the variation in effect size?  Do the effects range from 0.40 to 

0.60, or from 0.30 to 0.70, or across some other range?  We don’t know. Suppose we’re told that an I2 of 
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47% corresponds to a “moderate” level of heterogeneity.  What is a “moderate” amount of 

heterogeneity in this context?  We still don’t know.   

The fact is that I2 cannot, and was never intended to, provide this kind of information.  That will become 

clear when we explain what I2 is.  To do so, we need to provide some context. 

True-effects vs. observed-effects 

In a primary study with one level of sampling we typically treat the observed scores as identical to the 

true scores.  For example, consider a study where we enroll a sample of students and record their scores 

on a test.  If a student scores 40 on the test, for purposes of the analysis we proceed as though the 

student’s true score is 40.  It follows that there is no distinction between the distribution of true scores 

and the distribution of observed scores.  If we want to know how the scores are distributed, we 

compute the standard deviation of the scores.  If we assume that the scores are normally distributed, 

then most scores fall within two standard deviations on either side of the mean.   

By contrast, in a meta-analysis we need to distinguish between an observed effect size and a true effect 

size in any given study. The observed effect size in a study is the effect size that we see in that study.  It 

serves as the estimate of the effect size in that study’s population, but invariably differs from the true 

effect size in that population due to sampling error. By contrast, the true effect size for a given study is 

the actual effect size in the study’s population. It is the effect size that we would see if we conducted a 

study in that population with an infinitely large sample size, and (it follows) no sampling error.  

LOCATION FIGURE 1 

Figure 1 displays two plots for the ADHD analysis.  The left-hand plot shows the observed effects, while 

the right-hand plot shows an example of how the true effects might be distributed.  The standard 

deviation of observed effects is approximately 0.30, as reflected in line [A]. This line represents an 

interval that extends two standard deviations on either side of the mean (-0.10 to + 1.10), a span of 120 

points.  By contrast, the standard deviation of the true effects is approximately 0.20, as reflected in line 

[B].  This line represents an interval that extends two standard deviations on either side of the mean 

(0.10 to 0.90), a span of 80 points.   

To understand why the standard deviation of the observed effects [A] is wider than the standard 

deviation of the true effects [B], consider what would happen if the true effect size was identical in all 

studies.  While the true effects (at right) would all be the same, the observed effects (at left) would vary 

because of sampling error.  Concretely, the expected variation of the observed effects (VOBS) would be 

equal to the (average) error variance of the individual studies (VERR).  That is, 

 
OBS ERR

V V=    

In the ADHD analysis, the average VERR is 0.0439.  If the true effect for all studies was precisely 0.50, the 

expected value of the variance at left (VOBS) would be 0.0439. 
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While this idea is most intuitive when the true effects are all identical to each other, the same idea holds 

true when the true effects vary.  In this case the expected variation of the observed effects is equal to 

variance of the true effects (T2) plus the (average) error variance of the individual studies.  That is, 

 
2

OBS ERR
V T V= +    

In the ADHD analysis, where T2 is 0.0387 and the average VERR is 0.0439, the variance of observed effects 

is  

 0.0387 0.0439 0.0825
OBS

V = + =    

These estimates of the variance for each plot lead directly to lines [A] and [B].  For the left-hand plot the 

variance is 0.0825, so the standard deviation (the square root of the variance) is 0.2872, which we 

rounded to 0.30.  Two standard deviations on either side of the mean yields a range of -0.10 to +1.10.  

For the right-hand plot the variance is 0.0387, so the standard deviation is 0.01967 which we rounded to 

0.20. Two standard deviations on either side of the mean yields a range of 0.10 to +0.90.   

What is I2? 

Once we recognize that the variance of observed effects incorporates two distinct elements – the 

variation of true effects and variation due to sampling error, we might want a statistic that addresses 

the relationship between these components.  This statistic is I2, defined as 

 = =
2

2 TRUE

OBS OBS

V T
I

V V
.  

Thus, I2 is a proportion.  It deals with the left-hand plot, and tells us that proportion of the variance in 

this plot reflects variation in true effects.  In the ADHD analysis,  

 = =2 0.0387
47%

0.0825
I .  

With reference to Figure 1, one way to think about I2 is that it’s based on the comparison of (a) the 

dispersion of observed effects and (b) the dispersion we would expect based on sampling error alone.  

Another way to think about I2 is that it reflects the amount of non-overlap among confidence intervals.  

In the appendix we present a series of examples to illustrate these aspects of I2.  For purposes of the 

present discussion we will focus on another way of thinking about I2, as follows. 

If I2 tells us what proportion of the variation in observed effects is due to variation in true effects, then 

(by definition) it tells us what proportion of this variation would remain if we could somehow get rid of 

the sampling error.  As such, I2 serves as a bridge between the left-hand plot and the right-hand plot.  If 

we start with the variance of observed effects, and multiply it by the proportion that reflects variance in 

true effects (I2) we get the variance of true effects, at right.  That is, 
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2 2

OBS
T V I= ×    

As such, I2 provides us with a context for describing and interpreting the plot of observed effects.  If I2 is 

near zero, then most of the observed variance would disappear if we were looking at the true effects.  If 

I2 is near one, then most of the observed variance would remain. In the ADHD analysis I2 is 47%, which 

tells us that 47% of the variance would remain. 

Our key point is that I2 is a proportion, and not an absolute value.  As such, it cannot tell us how much 

the effects vary.  If the question is “How much do the effects vary” then the answer must be in the form 

of absolute values, for example “They vary from X1 in some populations to X2 in other populations”.  The 

answer cannot be cannot be in the form of a proportion, such as “They vary 50%”. It’s not even clear 

what that means. 

So, how do we compute and report these absolute values? 

When we are working with a primary study, we compute the standard deviation of the scores.  If the 

scores are normally distributed, some 95% of scores will fall within two standard deviations on either 

side of the mean.  If the mean is 50 and the standard deviation is 20, then most scores will fall in the 

range of 10 to 90.  This range is called a prediction interval, defined as 

 2Prediction Interval Mean S= ± ,   

where S is the standard deviation of the scores.  This range is called a prediction interval, because if we 

were asked to predict the effect size for any one subject (randomly sampled from the population) we’d 

predict that the score would fall in this range.  And we’d be correct some 95% of the time. 

We can take the same approach with a meta-analysis.  We need to work with the standard deviation of 

the true effects (T) as reflected in the right-hand plot, but the idea is the same as for a primary study.  If 

the effects are normally distributed, we expect that the effect size in some 95% of all populations will 

fall within two standard deviations on either side of the mean. This range is called a prediction interval, 

because if we were asked to predict the effect size for any one population (randomly sampled from the 

same universe as those included in the meta-analysis) we’d predict that the effect size would fall in this 

range.  And we’d be correct some 95% of the time. 

When the effect size is a mean difference or a risk difference we can compute the 95% prediction 

interval using 

 2Prediction Interval Mean T= ± ,   

where T is the standard deviation of true effects. In the ADHD analysis (using rounded numbers) the 

mean effect size is a d of 0.50 and T is 0.20.  The prediction interval is given by 

 
0.50 2 0.20 0.10

0.50 2 0.20 0.90

LL

UL

= − × =
= + × =
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This tells us that some 95% of all populations will have an effect size in the range of 0.10 to 0.90.  

When the effect size is not a mean difference, the situation is a bit more complicated.  For example, 

when the effect size is a risk ratio, the risk ratio is reported as a ratio, but the standard deviation (T) is 

reported in log units.  To compute the prediction interval we need to convert all numbers into log units, 

compute the interval, and then convert the numbers back into ratio units.  The following study serves as 

an example. 

Tsertsvadze, Fink, Yazdi, MacDonald, Bella, Ansari, Garritty; Soares-Weiser, Daniel, Sampson, Fox, 

Moher, and Wilt (2009) performed a meta-analysis of nineteen studies that evaluated the impact of 

Viagra on sexual function.  Outcome was the patient’s report that he was (or was not) satisfied, and the 

effect-size index is the risk ratio.  In round numbers, the mean effect size is 2.50, which means that (on 

average) patients treated with Viagra were 2.5 time as likely to report satisfaction as compared with 

patients treated with placebo.  In log units, the mean effect size is 0.92, and T is 0.15.  The prediction 

interval in log units is given by 

 
0.92 2 0.15 0.62

0.92 2 0.15 1.22

LL

UL

= − × =
= + × =

 .  

We then convert these values to risk ratios (see appendix for details), which gives us 1.86 and 3.39. We 

expect that in some 95% of all populations, the “risk” ratio for reporting satisfaction will fall in the 

approximate range of 1.86 to 3.39.   

Similarly, when the effect size is prevalence the analysis may be performed using a logit transformation.  

In this case, prevalence is reported as a proportion but T is reported in logit units.  To compute the 

prediction interval we need to convert all numbers into logit units, compute the interval, and then 

convert the numbers back into proportions.  The following study serves as an example. 

Cabizuca, Marques-Portella, Mendlowicz, Coutinho, and Figueira (2009) performed a meta-analysis to 

synthesize data from eleven studies that reported prevalence of PTSD in mothers of children with 

chronic illness or undergoing invasive procedures.  The effect-size index is prevalence, and the mean 

prevalence is 0.180.  In logit units, the mean prevalence is -1.52, and T is 0.59.  The prediction interval in 

logit units is given by 

 
1.52 2 0.59 2.70

1.52 2 0.59 0.34

LL

UL

= − − × = −
= − + × = −

 .  

We then convert these values to prevalence units, which gives us 0.06 and 0.42 (see appendix for 

details). We expect that in some 95% of all populations, the true prevalence will fall in the approximate 

range of 6% to 42%.   
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Finally, when the effect size is a correlation, the analysis may be performed using Fisher’s Z 

transformation.  In this case, the correlation is reported as a correlation but T is reported in Fisher’s Z 

units.  To compute the prediction interval we need to convert all numbers into Fisher-Z units, compute 

the interval, and then convert the numbers back into correlations.  The following study serves as an 

example. 

Wright and Bonett (2002) performed a meta-analysis to synthesize data from 27 studies that reported 

the correlation between attitudinal commitment and job performance.  The effect-size index is the 

correlation, and the mean correlation is 0.175.  In Fisher’s Z units, the mean correlation is 0.177, and T is 

0.119.  The prediction interval in Fisher’s Z units is given by 

 
0.177 2 0.119 0.061

0.177 2 0.119 0.415

LL

UL

= − × = −
= + × =

 .  

We then convert these values to correlations, which gives us -0.06 and 0.39 (see appendix for details). 

We expect that in some 95% of all populations, the true correlation will fall in the approximate range of 

−0.06 to 0.39. 

This formula for the prediction interval works well when the estimates of the mean and the standard 

deviation are reasonably precise.  In the appendix we show how the formula can be modified to take 

account of the fact that these parameters are estimated with error.   

To avoid confusion, note that the prediction interval is not the same as a confidence interval.  The 

confidence interval is an index of precision (based on the standard error) that tells us how precisely we 

have estimated the mean effect size.  As such, it is a property of the sample and strongly driven by the 

number of studies in the analysis.  By contrast, the prediction interval is an index of dispersion (based on 

the standard deviation) that tells us how widely the effects vary across populations.  As such, it is a 

property of the universe of populations and (it follows) not related to the number of studies in the 

analysis. 

When we report the prediction interval, we focus attention on the issue that we really care about, when 

we ask about heterogeneity.  We do so in a way that is unambiguous and concise. And, we are not only 

reporting the extent of dispersion but we are reporting this in the context of the mean.  In the ADHD 

example the effects vary over 80 points.  It’s critical that the 80 points range from 10 to 90 (which we 

might call a trivial beneficial effect to a very strong beneficial effect) and not from minus 20 to plus 60 (a 

harmful effect to a modest beneficial effect). 

The genesis of I2 

To summarize, I2 is a proportion. It tells us what proportion of the variance in the left-hand plot is due to 

variation in real effects rather than sampling error.  By contrast, T is an absolute value.  It tells us how 

the effects in the right-hand plot are distributed.  When we ask about heterogeneity, it’s clearly the 

latter that we care about.  So, how did we arrive at a situation where researchers focus on I2 and use it 

as a surrogate for T? 
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The answer can be traced to the computational issue we introduced earlier.  When we’re working with a 

mean difference (as we are in the ADHD example) T is reported in the same metric as the effect size.  

We understand what a standard deviation of 0.20 means.  And, we understand implicitly that if the 

mean effect size is 0.50 and T is 0.20, most effects will fall in the range of 0.10 to 0.90.  It’s likely that if 

all meta-analyses were based on means, researchers would have focused on T. 

However, the situation is more complicated when we’re working with other effect sizes. When we’re 

working with a risk ratio or an odds ratio, T is reported in log units.  Few people have an intuitive sense 

of what a standard deviation of 0.20 (for example) means in log units.  The same idea holds true when 

the effect size is an estimate of prevalence, and the standard deviation might be reported in logit units.  

And it holds true when we are working with correlations and the standard deviation is reported in 

Fisher’s Z units. Because they had no sense of T in these metrics, researchers started using the Q-

statistic (see appendix) or the p-value associated with this statistic as indices of dispersion, and these are 

remarkably poor surrogates for T.   

In an attempt to address this problem, Higgins and Thompson (2002) proposed that researchers instead 

use the I2 statistic.  In a field where the within-study error tends to be relatively constant, I2 may be 

highly correlated with T2 (and T).  This is the case for the analyses reported in the Cochrane Database of 

Systematic Reviews, where the correlation between I2 and T2 is 0.93.  In this limited case, I2 could be 

used to establish some broadly defined rules-of-thumb for small, moderate, and high levels of 

heterogeneity, and these are proffered  in a chapter in the Cochrane Handbook for Systematic reviews 

(Deeks, Higgins and Altman, 2008).  The Handbook explained that to interpret I2 correctly one needed to 

do so in the context of the specific analysis, and that the rules of thumb would not always apply.  The 

same point has been made by Higgins and Thompson (2002), Higgins, Thompson, Deeks, Altman (2003), 

Higgins (2008), Higgins, Thompson, and Spiegelhalter (2009), among others. 

If I2 had been used as intended, it might have served as a useful surrogate for T2 (and T) in some 

contexts.  Unfortunately, the overwhelming majority of papers that employ I2 do not use it as intended.  

Rather, many papers treat I2 as though it were an index of absolute dispersion.  In other words, 

researchers who had interpreted Q or p as reflecting the amount of dispersion, came to interpret I2 as 

reflecting the amount of dispersion.  Thus, the impact if I2 was not to solve the problem that numbers 

were being interpreted incorrectly but merely to shift the problem to another statistic.   

Indeed, it’s striking how often I2 is misinterpreted.  Many papers define I2 correctly as being a 

proportion, and then proceed to interpret the statistic as though it were an absolute value.  We 

deliberately avoid citing examples here, since this mistake is ubiquitous in the literature. 

I2 is not an absolute measure of heterogeneity in a meta-analysis 

This is not the first paper to call attention to this issue. For example, Rucker, Schwarzer, Carpenter and 

Schumacher (2008), and Mittlbock and Heinzl (2006) employed simulations to compare the behavior of 

I2 vs. T2 and came to the same conclusions that we are reporting here. While these papers called 

attention to the problem, the fact that the authors used simulations to compare the indices could help 

perpetuate the myth that I2 and T2 are interchangeable. Our point is that by definition the indices do not 

estimate the same value.  One is a proportion, while the other is an absolute value.  One describes a 

relationship between two elements in the sample while the other describes a different element in the 
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population. Each one is the best (and only) index for a specific purpose (Higgins, 2008). To choose 

between I2 and T2 we should not be asking “which is better” but rather “what question do we want to 

address”.  Consider the following analogy. 

Suppose someone has an income of $200,000 and donates 10% of her income to charity, for a total 

donation of $20,000.  We might ask what proportion of her income this person donates, and the answer 

would be 10%.  We might ask what amount she donated, and the answer would be $20,000.  Each of 

these facts is correct, but the two are not interchangeable.  If we want a clue to the person’s priorities, 

we might be looking to the rate.  If we’re trying to locate people who donated a lot of money, we would 

be looking to the amount.  In the latter case, if we ask “who donates a large amount” and we’re told 

that this person donates 10%, we don’t have the information we need. If her income was $50,000, then 

10% amounts to $5,000, but if her income was $200,000, then 10% amounts to $20,000. Of course, if 

we’re told that she donates 10% and we also know her income, we can multiply one by other and 

compute the amount.  If we have only a general sense of her income, this will be a rough approximation. 

By analogy, suppose that the variation in observed effects (VOBS) is 200, and that 10% of that reflects 

variation in true effects (I2), so the variation in true effects (T2) is 20.  We might ask about the ratio of 

true to total variance in the observed effects, and the answer would be 10%.  We might ask about the 

variance in true effects and the answer would be 20.  Each of these facts is correct, but the two are not 

interchangeable.  If we want to know how much the true effects vary, we are looking for an amount, and 

not a proportion.  Of course, if we’re told that the proportion is 10% and we also know the variance of 

observed effects, we can multiply one by other and compute the variance of true effects. If we have only 

a general sense of the variance of observed effects, this will be a rough approximation. 

When we ask about heterogeneity in a meta-analysis, we’re almost always asking about the amount, not 

the rate.  We want to know how widely the effects vary.  We want to know if the intervention will be 

helpful in all populations, or helpful in some and harmful in others.  This information is provided by the 

statistics that describe the population we’ve illustrated in the right-hand plot – T, and the prediction 

interval.  Statistics that describe aspects of the left-hand plot have no relevance.  Thus, in the motivating 

examples introduced earlier – 

• In the ADHD analysis the fact that I2 is 47% tells us nothing about the range of effects.  By 

contrast, the prediction interval tells us that in most populations, ADHD will increase the mean 

score by at least 0.10 standard deviations, and as much as 0.90 standard deviations. 

 

• In the Viagra analysis, the fact that I2 is 52% tells us nothing about the range of effects. By 

contrast, the prediction interval tells us that in most populations, Viagra will increase the 

success rate by at least 86% and as much as 339% as compared with placebo. 

 

• In the PTSD analysis, the fact that I2 is 85% tells us nothing about the range of prevalence.  By 

contrast, the prediction interval tells us that the prevalence of PTSD varies from 6% in some 

populations to 42% in others. 

 

• In the Commitment/Performance analysis, the fact that I2 is 64% tells us nothing about the 

range of correlations.  By contrast, the prediction interval tells us that the correlation between 

commitment and performance varies from −0.06 in some populations to 0.39 in others. 
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Should we ever report I2? 

In light of this, one might ask if I2 has any legitimate role in a meta-analysis. We believe it does, but we 

need to distinguish between observed effects and true effects. 

When we want to describe the plot of observed effects, the I2 statistic serves an important and unique 

function.  It provides context for the plot, telling us what proportion of the observed variance is likely to 

remain if we could somehow remove the sampling error.  Since we almost invariably display the plot, it’s 

helpful to report a statistic that provides this context.   

When we want to describe the plot of true effects, the statistic of choice will always be the prediction 

interval.  However, when we’re reading an analysis that does not report the prediction interval nor the 

statistics we would need to compute it, I2 can be useful. The correct use of I2 in this case is not as a 

surrogate for the dispersion (equating a large value of I2 with a lot of dispersion) but rather to provide 

context for the forest plot. For example, if I2 is near zero, then we know that most of the dispersion in 

the forest plot would disappear if we could somehow remove the sampling error.  Conversely, if I2 is 

near one, then we know that most of the observed dispersion would remain.  The approach will yield 

only a very rough approximation for the variance of true effects, but it is better than nothing. 

Conclusions 

When we ask about “heterogeneity” of effects we usually are asking about the substantive or clinical 

implications of the heterogeneity.  Because this is what researchers care about, researchers generally 

assume that this is what is being captured by I2.  A small value of I2 is interpreted as meaning that the 

effect size is comparable across studies. A large value of I2 is interpreted as meaning that the effect size 

varies substantively across studies. 

In fact, I2 does not tell us how much the effect size varies.  Rather, it tells us what proportion of the 

observed variance would remain if we could eliminate the sampling error – if we could somehow 

observe the true effect size for all studies in the analysis.  I2 can be used together with the observed 

effects to give us a sense of the true effects.  For example, if we are presented with a plot of the 

observed effects we can use I2 to mentally re-scale the plot and get some sense of how the true effects 

are distributed. However, this approach yields only a rough estimate of the actual dispersion.   

If we care about the range of effects, then we should report the range of effects, which we call the 

prediction interval.  For example, we can report that the effect size varies from a d-value of 0.10 in some 

studies to 0.90 in others. This provides the information that people need, and that they think is being 

provided by I2.   

An Excel™ spreadsheet for computing the prediction interval is available from the first author, and at 

www.Meta-Analysis.com. 
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Appendix 

Part 1.  Relationship among various statistics for heterogeneity 

When researchers discuss heterogeneity, they typically report an array of statistics which may include Q, 

df, p, I2, I, T2, and T.  Here, we outline the relationship among these statistics. 

Computing Q and df 

The Q-value refers to the distribution of observed effects.  The Q-value is the sum of squared deviations 

of all effects about the mean, on a standardized scale.  Concretely, 

 

2

i

i

X

X M
Q

SE

 −
=   

 
∑    

where Xi is the effect size in the ith study, M is the mean effect size using fixed-effect weights, and SEXi is 

the standard error of the ith study (which is assumed to be known).  On this scale, the value of Q we 

would expect to see based on sampling error alone is equal to df (the degrees of freedom) which is the 

number of studies minus 1.   

These two numbers (Q and df) serve as the basis for all the other statistics, as follows. 

Computing a p-value 

If all studies share a common true effect size (and we knew the true standard errors), then Q would be 

distributed as chi-squared with degrees of freedom equal to the number of studies minus 1.  So we 

could evaluate Q with reference to the chi-squared distribution, to get a p-value.  If p is less than alpha 

(typically set at 0.10 for this test) we reject the null, and conclude that some of the dispersion reflects 

variation in true effects. 

Computing I2 

We can define I2 as 

 
2 Q df

I
Q

−
=  .  

In the numerator, since Q is the total sum of squares while df is the sum of squares attributed to 

sampling error, the difference is the sum of squares due to variance in true effects. In the denominator, 

Q is again the total.  So, I2 is the ratio of true to total.   

Q and df are on a standardized scale.  To convert either of these numbers to the metric of the effect size 

we would divide by C, a value based on the study weights.  If we divide the numerator by C we get T2, 

and if we divide the denominator by C we get VOBS.  So, we can rewrite the equation as  
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2
2

OBS

T
I

V
= ,  

which is the formula presented in the text.  Equivalently, we could write this as 

 

2
2

2

TRUE

ERR TOTAL

VT
I

T V V
= =

+
,  

which may be more intuitive. 

Computing T2 

We can use Q and df to compute an estimate of the variance of true effects, T2, using 

 
2 Q df

T
C

−
=    

In this formula the numerator is the sum of squares that reflects variation in true effects, but it is on a 

standardized scale.  C is a factor based on the study weights that we applied when we standardized the 

deviations.  Concretely,  

 

2

i

i

i

W
C W

W
= −∑∑ ∑

   

where Wi is the weight for study i, which is 1/Vi, the within-study error variance for that study. When we 

divide by C we reverse that process, so that T2 is in the same metric that was employed for the synthesis.  

The standard deviation of true effects, T, is then 

 
2

T T=  .  

Note that there are other ways to compute an estimate of the variance of true effects, T2. The method 

described here was proposed by DerSimonian and Laird (1986). 

Part 2.  Understanding I2 

In the text we explained that I2 is the ratio of true to total variance in the observed effects, and 

proposed three ways to think about this ratio.   

• We can compare the standard deviation of observed effects to the (average) standard error of 

the individual studies.   

• We can look at the extent to which each study effect size is unique (the non-overlap among 

confidence intervals).   
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• We can think of I2 as providing a bridge between the observed effects and the true effects, by 

telling us what proportion of the variance would remain if we could remove the sampling error. 

Here, we use a series of examples to illustrate these concepts.  In these examples we assume that all 

studies in the meta-analysis share a common standard error, which enables us to illustrate these 

concepts.  In any real analysis the same concepts would apply, but the computations would be more 

complicated since we would need to define what we mean by VERR. 

LOCATION FIGURE 2 

Figure 2 includes four rows, each representing a fictional meta-analysis. 

I2 reflects the relationship between the standard deviation across studies and the typical standard 

error of the observed effect size from an individual study   

One way to think about I2 is that it’s based on the comparison of [A] the dispersion of observed effects 

and [B] the dispersion we would expect based on sampling error alone.   We can see this by studying the 

left-hand column, which shows the observed effects for each meta-analysis.   

Beneath each plot is a line [A] that reflects the dispersion of the observed effects.  Inside each plot, each 

effect size is bounded by a line [B] that reflects the error with which the effect size is estimated.  If all 

studies in an analysis shared the same true effect size, then [A] should be the same length as [B].  So it’s 

the discrepancy between the two lines that reflects the variation in true effects. 

The observed effects fall at precisely the same points in all four analyses, and so line [A], which reflects 

the dispersion of these points, is identical in all four analysis. However, as we move from top to bottom, 

line [B], which reflects the error variance, narrows.  

• In the first analysis, line [A1] is no wider than line [B1], and so no part of [A1] reflects variation in 

true effects.  In this case the ratio of true to total variance (I2) is 0%.   

 

• In the second analysis, line [A2] is a little wider than line [B2], and so a small part of [A2] is 

assumed to reflect variation in true effects.  In this case the ratio of true to total variance (I2) is 

25%. 

 

• In the third analysis, line [A3] is a substantially wider than line [B3], and so more of [A3] is 

assumed to reflect variation in true effects.  In this case the ratio of true to total variance (I2) is 

50%. 

 

• In the fourth analysis, line [B4] has essentially no width (no error), and so almost all of [A4] is 

assumed to reflect variation in true effects.  In this case the ratio of true to total variance (I2) is 

100%. 

I2 reflects the extent of non-overlap among confidence intervals 

A second way to think about I2 is that it reflects the amount of non-overlap among confidence intervals.   
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In the top analyses (where I2 is 0%) there is a great deal of overlap among confidence intervals, and so 

no evidence that the effect size in any population is clearly different from the effect size in any other 

population.  Put another way, there is no evidence that any of the dispersion represents variation in true 

effects (rather than sampling error).  In this case, I2 is 0%.  

By contrast, in the fourth analysis (where I2 is 100%) there is no overlap in confidence intervals, and so 

there is clear evidence that the effect size varies from one population to the next.  Put another way, 

there is clear evidence that virtually all of the dispersion reflects variation in true effects (there is no 

sampling error to speak of).  In this case, I2 is 100%. 

The same idea applies in the middle cases, but it will be harder to see.  For example, in the second row 

there is only minimal overlap in the confidence intervals for the first and last studies.  In this case I2 is 

25%.  In the third row there is no overlap in the confidence intervals for the first and last studies.  In this 

case I2 is 50%. 

I2 provides context for the forest plot of observed effects 

The final way of looking at I2 is perhaps the most useful.  It provides context for the forest plot.  Since I2 

tells us what proportion of the variation in observed effects is due to variation in true effects, then (by 

definition) it tells us what proportion of this variation would remain if we could somehow get rid of the 

sampling error.  Put another way, we start by looking at the plot of observed effects.  I2 tells us what 

that plot would look like if each study had a sample-size that approached infinity, so that we were 

plotting the true effects.  As such, I2 serves as a bridge between the left-hand plot and the right-hand 

plot. 

Put simply, if we start with the variance of observed effects, and multiply it by the proportion that 

reflects variance in true effects (I2) we get the variance of true effects, at right.  In the top case this 

proportion is zero and the variance at right is zero.  In the bottom case this proportion is one and the 

variance at right is identical to the variance at left.  The two other cases fall in the middle. 

We can multiply the variance at left by I2 to get the variance at right,  

 
2 2

OBS
T V I= × ,   

Or, we can multiply the standard deviation at left by I to get the standard deviation at right,  

 
OBS

T S I= × .  

In Figure 2, this idea is captured by the relationship between line [A] and line [C] for each analysis.  Line 

[A] is intended to capture some 95% of the observed effects.  Since most effects fall within two standard 

deviations on either side of the mean, line [A] has a length of 4 times SOBS. Line [C] is intended to capture 

some 95% of the true effects so line [C] has a length of 4 times T.  Thus, if we know the length of [A], we 

can multiply that by I to get the length of [C].  Note that we multiply by I rather than I2 because the 

standard deviation (and these lines) are in linear units rather than squared units.  Concretely,  
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 = ×C A I .  

In each of the four analysis the standard deviation of observed effects is 27.4, so most of the observed 

effects fall in range that covers 110 points [A1, A2, A3, A4].  In the first analysis I is 0%, so most true 

effects fall in a range that covers 0 points [C1].  In the second analysis I is 50%, so most true effects fall in 

a range that covers 55 points [C2]. In the third analysis I is 71%, so most true effects fall in a range that 

covers 77 points [C3]. In the fourth analysis I is 100%, so most true effects fall in a range that covers 110 

points [C4].  

The right-hand plot on each row is intended as an example of how the true effects would be distributed 

if they followed a uniform distribution with the specified mean and standard deviation.  By plotting a 

distribution of observed effects (at left) and true effects (at right), we make it easy to compare the two 

plots.  However, we don’t mean to imply that the true effect for each study at the right corresponds to 

the same study at the left.  Nor do we intend to suggest that we would expect the effects to follow a 

uniform distribution. These points apply also to Figure 3 and Figure 4. 

While Figure 2 serves to illustrate how I2 operates, it is potentially misleading in one critical respect.  If 

we look at Figure 2 in isolation we might note that I2 is strongly correlated with T, and might conclude 

that it could serve as a useful surrogate for the range of effects. However, the reason that I2 is strongly 

correlated with T for the examples in this Figure is that VOBS is the same in all four of these fictional 

analyses.  

While higher values of I2 tend to be associated with higher values of T2 on average, once we allow VOBS to 

vary, the correlation between I2 and T2 becomes much weaker, and one can no longer serve as a 

surrogate for the other. To make this point we introduce a series of analyses in Figure 3, and then 

compare Figure 2 with Figure 3. 

LOCATION FIGURE 3 

The four analyses in Figure 3 follow precisely the same pattern as the four analyses in Figure 2.  That is, 

the observed effects are identical for all four analyses, as reflected in line [A].  But as we move from top 

to bottom, line [B], which reflects the error variance, narrows.  The I2 values for the four rows are 0%, 

25%, 50%, and 100%.  All of the points we made for Figure 2 apply here as well.  

The difference between the two Figures is that whereas the variance of observed effects in Figure 2 was 

750, the variance of observed effects in Figure 3 is 187.5.  Therefore, when we compare any row in 

Figure 3 to the corresponding row in Figure 2,  

• The variance of observed effects is one-fourth as large, and so the variance of true effects is 

one-fourth as large.   

• The standard deviation of observed effects is half as large, and so the standard deviation of true 

effects is half as large. 

For example, the second row in each Figure has an I2 value of 25%.  In Figure 2 this corresponds to a 

prediction interval of 55 points but in Figure 3 it corresponds to a prediction interval of 27 points.  

Similarly, the third row of each Figure has an I2 value of 50%.  In Figure 2 this corresponds to a prediction 
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interval of 78 points but in Figure 3 it corresponds to a prediction interval of 39 points. The key point is 

that I2 by itself does not tell us how much the effects vary.  Any value of I2 (except for zero) can reflect 

virtually any range of effects. 

LOCATION FIGURE 4 

It should be clear that when VOBS is allowed to vary, I2 cannot be used as a surrogate to tell us how much 

the effects vary on an absolute scale.  In fact, when VOBS is allowed to vary, I2 does not even tell us how 

much the effects vary on a relative scale.   

For example, compare the second row of Figure 2 (where VOBS was 750) with the third row of Figure 3 

(where VOBS was 187.5).  To facilitate this comparison, we have excerpted these rows into Figure 4. In 

the top row I2 is 25% and the prediction interval is 55 points wide.  In the bottom row I2 is 50% and the 

prediction interval is 39 points wide.  Thus, the larger value of I2 corresponds to the smaller range of 

effects.  If we apply the benchmarks of “small” for 25% and “moderate” for 50%, the I2 value with 

“small” heterogeneity has more variance than the one with “moderate” heterogeneity. 

Part 3. Computing prediction intervals 

In the text, the formula we used for the prediction interval was  

 2Interval M T= ±    

If we are primarily interested in the width of the interval (which was our goal in this paper), this formula 

is the one to use.  This formula yields a correct interval when the estimates of the mean and the 

standard deviation are correct.   

In any real analysis these values are estimated with error, and if we want to take account of that error, 

the appropriate formula (Higgins, Thompson and Spiegelhalter, 2009; Riley, Higgins and Deeks, 2011) is 

 = ± + 2

( )df M
Interval M t V T    

This formula includes three adjustments to the simple formula. 

• First, we’ve replaced T with the square root of T2.  This is the identical value, but this format 

allows us to combine two variance components in the next step. 

• Second, we’ve added the variance of the mean (VM) to account for the fact that the true mean 

may be lower or higher than M. 

• Third, we’ve replaced the factor of 2 with the critical t-value for df, to account for the fact that 

the standard deviation is being estimated. The degrees of freedom for t can be taken to be the 

number of studies minus two.  

In the ADHD analysis the effect-size index is the standardized mean difference, d.  The mean effect size 

is 0.502, the variance of M is 0.005, T2 is 0.039, and the number of studies is 17.  The prediction interval 

is given by 
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0.5058 2.1314 0.0387 0.0054 0.0582

0.5058 2.1314 0.0387 0.0054 0.9534

LL

UL

= − + =

= + + =
 .  

We expect that in some 95% of all populations, the true effect size will fall in the approximate range of 

0.06 to 0.95. 

In the Viagra analysis, the mean effect size is 2.497.  In log units, the mean effect size is 0.915, VM is 

0.002, T2 is 0.022, and the number of studies is 19.  The prediction interval in log units is given by 

 
0.9153 2.1098 0.0223 0.0024 0.5840

0.9153 2.1098 0.0223 0.0024 1.2465

LL

UL

= − + =

= + + =
 .  

We then convert these values to risk ratios, using 

 
exp(0.5840) 1.7933

exp(1.2465) 3.4782

LL

UL

= =
= =

 .  

This tells us that in some 95% of all populations, the true effect size will fall in the approximate range of 

1.8 to 3.5.  

In the PTSD analysis, the mean prevalence is 0.180.  In logit units, the mean prevalence is -1.519, VM is 

0.039, T2 is 0.346 and the number of studies is 11.  The prediction interval in logit units is given by 

 
1.5185 2.2622 0.3460 0.0389 2.9221

1.5185 2.2622 0.3460 0.0389 0.1149

LL

UL

= − − + = −

= − + + = −
 .  

We then convert these values to prevalence units using 

 

exp( 2.9221)
0.0511

exp( 2.9221) 1

exp( 0.1149)
0.4713

exp( 0.1149) 1

LL

UL

−
= =

− +
−

= =
− +

 .  

This tells us that in some 95% of all populations, the true prevalence will fall in the approximate range of 

5% to 47%. 

In the Commitment/Performance analysis, the mean correlation is 0.1754.  In Fisher’s Z units, the mean 

correlation is 0.1772, VM is 0.0009, T2 is 0.0142 and the number of studies is 27.  The prediction interval 

in Fisher’s Z units is given by 
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0.1772 2.0596 0.0142 0.0009 0.0769

0.1772 2.0596 0.0142 0.0009 0.4304

LL

UL

= − + = −

= + + =
 .  

We then convert these values to correlations units using 

 

exp(2 0.0769) 1
0.0758

exp(2 0.0769) 1

exp(2 0.4304) 1
0.4057

exp(2 0.4304) 1

LL

UL

× − −
= = −

× − +
× −

= =
× +

 .  

This tells us that in some 95% of all populations, the true correlation will fall in the approximate range of 

−0.08 to 0.41. 

In these three examples the “correct” formula had only a modest impact on the prediction interval as 

compared with the naïve formula, but this will not always be the case.  In particular, if the number of 

studies is small, the adjustment will be substantial.  When the number of studies is small, the interval 

may be so wide, as to be uninformative.  In this case, the take-home message should be that we need 

more data.  We cannot obtain a useful estimate of the standard deviation in a meta-analysis with three 

studies, any more than we can obtain a precise estimate of the standard deviation in a primary study 

with three subjects. 
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Figure 1. Observed effects for the ADHD analysis (at left) and true effects (at right). The line underneath 
each plot represents the mean effect plus/minus two standard deviations.  The standard deviation of 
observed effects is around 0.30, while the standard deviation of true effects is around 0.20.  The true 
effects do not correspond to any actual studies, but are simply meant to show one set of possible effects 
with a standard deviation of 0.20. 

Figure 2. Four fictional meta‐analyses.  The left‐hand column shows the observed effects.  As we move 
from top to bottom the observed variance remains constant and the error variance decreases, so the 
ratio of true to total (<i>I<sup>2</sup></i>) increases from 0% to 100%.  The right‐hand column shows a 
possible distribution of true effects.  When <i>I<sup>2</sup></i> is 0% the variance of true effects is 0.  
When <i>I<sup>2</sup></i> is 100% the variance of true effects is the same as the variance of observed 
effects. 

Figure 3. Four fictional meta‐analyses.  These follow the same pattern as the analyses in Figure 2.  The 
difference is that the variance of observed effects here is one‐fourth as large, and so the variance of true 
effects for any row is one‐fourth as large.  Similarly, the standard deviation of observed effects is one‐
half as large, and so the prediction interval for any row is one‐half as large.  (This does not apply to row‐
1, where <i>I<sup>2</sup></i> is 0%.) 

Figure 4. This Figure collates Row‐2 from Figure 2 and Row‐3 from Figure 3.  In the top row, the variance 
of observed effects is 750, <i>I<sup>2</sup></i> is 50%, and the prediction interval is 55 points wide. In 
the second row, the variance of observed effects is 187.5, <i>I<sup>2</sup></i> is 25%, and the 
prediction interval is 39 points wide.  Thus, the larger value of <i>I<sup>2</sup></i> corresponds to the 
smaller range of effects. 
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