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ABSTRACT

A numerical technique sensitive to both spectral and spatial aspects of sea surface wind measurements is
introduced to transform the irregularly sampled satellite-based scatterometer data into regularly gridded wind
fields. To capture the prevailing wavenumber characteristics (power-law dependence) of sea surface wind vector
components, wavelet coefficients are computed from the scatterometer measurements along the satellite tracks.
The statistics of the wavelet coefficients are then used to simulate high-resolution wind components over the
off-track regions where scatterometer data are not available. Using this technique, daily wind fields with controlled
spectral features have been produced by combining the low-wavenumber wind fields from ECMWF analyses
with the high-wavenumber measurements from the ERS-1 scatterometer. The resulting surface wind fields thus
reflect nearly all available measurements affecting surface wind, including the synoptic surface pressure. The
new surface wind forces a basin-scale quasigeostrophic ocean model such that the average circulation and
energetics are consistent with the previous studies, in which purely synthetic high-wavenumber wind forcing
was used.

1. Introduction

Numerical models of the ocean general circulation
are typically driven by climatological wind datasets of
coarse resolution in both space and time (e.g., Hellerman
and Rosenstein 1983). Increasingly popular alternatives
to climatology are the global, six-hourly, analyzed sur-
face winds produced by numerical weather prediction
centers, such as the European Centre for Medium-Range
Weather Forecasting (ECMWF) and the National Cen-
ters for Environmental Prediction (NCEP). Recently,
spaceborne scatterometers have made available sea sur-
face wind measurements at a higher spatial resolution
over larger areas than previously possible. By synthesis
of high-wavenumber wind components, Milliff et al.
(1996) have demonstrated that circulation patterns and
energetics of a quasigeostrophic (QG) ocean model are
sensitive to high-wavenumber spectral content expected
in wind data from scatterometers. Such models also re-
spond in important ways to wind forcing on timescales
as short as a few days (Large et al. 1991).

The primary focus of this paper is to produce global/
basin-scale surface wind fields with both the frequency
and wavenumber content required by ocean general cir-
culation models. The strategy is to combine surface
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wind analyses from ECMWF with scatterometer winds
from the European Space Agency’s ERS-1 satellite. The
frequency of the former is more than adequate for our
purposes. The remaining technical problem to be ad-
dressed here is that of interpolating/extrapolating the
high-wavenumber variability that is sampled irregularly
by the ERS-1 satellite throughout the model domain.

The satellite scatterometer wind measurements,1 with
swath widths of at most 1500 km, need to be interpolated
between swaths before forcing a typical ocean circu-
lation model. For the purpose of examining the effects
of high-wavenumber wind forcing on ocean dynamics,
the interpolation method must preserve the spectral
characteristics of the measurements. A simple, piece-
wise constant (in time) scheme, such as that used suc-
cessfully by Barnier et al. (1994) to force some aspects
of seasonal cycles in the Indian Ocean, can nevertheless
retain the ‘‘bandlike’’ patterns of measurement discon-
tinuities that affect spatial spectral characteristics of the
wind-forcing field. A more conventional interpolation
scheme based on space–time smoothing can also smear
out storm-scale spatial structures in the wind curl pat-
terns, compromising the spectral characteristics of the
surface wind (Large et al. 1991; Mariano and Brown
1992).

Our wind products are the results of joint interpola-

1 The ADEOS/NSCAT satellite scatterometer (Naderi et al. 1991)
was operational from mid-September 1996 to mid-June 1997.



742 VOLUME 15J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 1. A typical ERS-1 scatterometer sampling pattern for a 24-
h period over the North Atlantic model domain.

tion of wind analyses and measurements, combined with
selective use of statistical extrapolation. The term ‘‘com-
position’’ is used herein to indicate such complementary
use of interpolation and extrapolation. The surface wind
composition technique presented in this paper is based
on spectral models (‘‘power laws’’) predicted by the
two-dimensional (2D) turbulence theory (Leith 1971)
and observed as prevailing characteristics of sea surface
wind (Freilich and Chelton 1986). To numerically cap-
ture these spectral features of surface wind, the com-
position method employs a wavelet-based spectral anal-
ysis for fractal random processes (Wornell 1993). Wave-
let analyses are particularly useful for study of turbulent
flows because they are simultaneously space and wave-
number specific (Farge 1992). While this wavenumber
specificity enables development of a composition meth-
od based on spectral characterization of the wind data,
the spatial specificity makes wavelet analysis a flexible
numerical tool to address the highly irregular and con-
centrated sampling patterns of the scatterometer mea-
surements as well as natural intermittency in the wind.

The input datasets in our wind composition problem
are described in section 2. Section 3 contains the math-
ematical background for our interpolation and spectral
analysis techniques. A wavelet-based spectral analysis
of the scatterometer wind measurements is then pre-
sented in section 4. Sections 5 and 6 describe, respec-
tively, four datasets of composed sea surface wind fields
and corresponding responses of an ocean circulation
model to wind forcing. Section 7 then summarizes the
main results.

2. Surface wind observations

The time variability and low-wavenumber content of
all the composed fields are based on the ECMWF sur-
face (10-m height) wind analyses. Diverse coincidental
meteorological observations (ship, buoy, and aircraft
data, as well as balloon soundings and satellite retriev-
als) have been assimilated to produce these analyzed
fields. We utilize one year (1 July 1992–30 June 1993)
of vector wind fields, sampled daily (at 1200 UTC) and
preinterpolated from the nominally 1.1258 Gaussian grid
onto a regular 18 grid that extends 1008 east–west and
428 north–south over the North Atlantic basin.

The ERS-1 scatterometer has a swath width of about
500 km, with nominal spatial resolutions of 25 km
across-track (a row of 19 independent wind samples)
and 48 km alongtrack (Attema 1991). Figure 1 shows
a typical ERS-1 surface wind sampling pattern for a 24-
h period over the North Atlantic. The spatial coverage
is heterogeneous and, at most, 20% of the basin is sam-
pled during any 24-h period. The figure also exemplifies
occasional data loss due to various postprocessing issues
(Freilich and Dunbar 1993a,b), most notably instru-
mental insensitivity to wind speed below about 2 m s21

as well as ambiguity among two to four solutions for
wind direction. Also, the long-term sampling pattern of

ERS-1 contains a persistent data void in the northeastern
section of the domain, as shown in Fig. 2, due to sys-
tematic switch-off of the scatterometer.

Spatial variability of the surface wind can be studied
statistically using 2D turbulence theory (Leith 1971) and
expressed in terms of (isotropic) spectral energy den-
sities E(k) with respect to wavenumbers k $ 0. Under
the classic turbulence theories, the spectral energy den-
sity functions obey the so-called power law, E(k) } k2g,
where the exponent g is a constant over a range of k.
Indeed, Freilich and Chelton (1986) observed, in the
Seasat scatterometer measurements of surface wind over
the tropical and midlatitude Pacific, that the zonal and
meridional components of wind vectors each satisfy a
power law with g ø 2 for a wavelength range of 200–
2200 km (k ø 0.003;0.03 rad km21). Recently, similar
power laws (for the same wavelength range) in the ERS-
1 scatterometer wind data have been reported (Freilich
and Pazdalski 1995). Our verifications of these power
laws using both the traditional discrete Fourier trans-
form and wavelet analysis are presented later. In con-
trast, the ECMWF wind fields display the ‘‘g ø 2’’
power law only down to wavelengths of about 900 km
or up to wavenumbers of about 0.007 rad km21. The
power-law failure at spatial scales significantly larger
than the grid spacing in the ECMWF fields is presum-
ably due to the numerical smoothing inherent in the
analysis procedure and/or model dynamics.

In the following, ‘‘high wavenumber’’ refers to the
Fourier–spectral band measurable with scatterometers
but not available in most analysis fields produced by
meteorological forecast models (with respect to the g
ø 2 power law). For our particular case, therefore, the
high-wavenumber range corresponds to wavelengths
from the ECMWF drop-off at about 900 km down to
the (along-track) Nyquist interval for the ERS-1 scat-
terometer measurements, which is about 100 km, that
is, a wavenumber range of approximately 0.007 to 0.06
rad km21. This spectral band also corresponds roughly
to a wavelength range of 88–18 and therefore contains
the most energetic scales of the midlatitude ocean ed-
dies.
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FIG. 2. Number of ERS-1 scatterometer samples (valid data) in each of 1/28 3 1/28 bins for
the 1-yr period over the North Atlantic domain. Note the ‘‘edges’’ in the sampling pattern in
the northeastern to north-central regions due to some systematic void in observation.

3. Multiresolution analysis and fractal spectrum

Our ultimate goal is to compare ocean model re-
sponses to various wind-forcing inputs characterized by
distinct wavenumber spectra. The focus of this paper is
the means by which wavenumber-controlled wind fields
are obtained. The wind-forcing fields are produced from
the daily ECMWF analyses, the ERS-1 scatterometer
data, and the spectral statistics of the scatterometer data.
The particular wind-forcing fields (four sets of year-
long, daily fields) are summarized in Table 2 and de-
tailed in section 5. This section presents a technical
background for our methodology.

The ECMWF and ERS-1 wind datasets have quite
different sampling patterns and resolutions. To combine
the two, an interpolator must provide a common math-
ematical platform for the respective resolutions. Fur-
thermore, the interpolator must allow access to the
wavenumber content of the wind fields in a spatially
selective manner, as the ‘‘high-wavenumber’’ data from
the scatterometer are available only beneath satellite or-
bits (Fig. 1). These tasks of multiscale interpolation and
spatially selective spectral analysis can be accomplished
under a single mathematical framework of multireso-
lution analysis (Mallat 1989; Daubechies 1992; Heij-
mans 1993), which has originally been conceptualized
by Meyer and Mallat as a unifying framework for the
theories of orthonormal wavelet transforms. From the
beginning, development of wavelet transforms has been
intimately connected with modeling and processing of
geophysical signals, and many authors including Dau-
bechies (1992) and Farge (1992) have surveyed cate-
gories and variations of the wavelet transforms. The

orthonormal wavelets, with their energy conservation
property, are particularly suited for spectral analysis.
Their applications in conjunction with turbulence theory
have been investigated (Meneveau 1991; Yamada and
Ohkitani 1991; Farge 1992). In particular, physical pro-
cesses displaying power-law spectra can be considered
as fractal, or statistically self-similar, random processes.
Such processes exhibit strong long-distance correlation
structures that can be captured with orthonormal wave-
lets much more readily than with more traditional, re-
gression-type statistical models (Wornell 1993).

In our approach, multiresolution analysis is imple-
mented with the B-spline polynomial functions (Prenter
1975; Wahba 1990), whose capability to generate or-
thonormal wavelet transforms (Unser and Aldroubi
1992) is especially useful for the wavenumber-sensitive
interpolation/extrapolation problem at hand. Standard
polynomial splines such as B splines are also generally
applicable to interpolation of irregularly sampled data
such as the scatterometer measurements. In the remain-
der of the paper, u(x, y) and y(x, y) denote the zonal
and meridional wind vector components, respectively,
where x and y are the zonal and meridional spatial in-
dices. The wavenumber-controlled spline representa-
tions for the respective wind components are denoted
as û(x, y) and .ŷ(x, y)

a. Multiresolution analysis

We begin with a brief general description of the mul-
tiresolution analysis. For conciseness, we consider a ge-
neric real-valued scalar function u(x) over a 1D domain.
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FIG. 3. The characteristic wavenumber-spectra for the spline ap-
proximation ûj(x) (dashed line) and scale difference (x) (solid line)u9j
for the unit scale of Dj 5 100. The dotted line represents a least square
fit of ideal bandpass filter to the scale-difference spectrum.

Extension to a 2D domain is straightforward and de-
scribed later (section 3c).

The multiresolution analysis consists of a sequence
of approximation (spline function) spaces

· · · , V22 , V21 , V0 , V1 , V2 , · · ·,

where Vj is the space of functions smoothly approxi-
mated at a given resolution parameterized by the integer
j. In essence, Vj specifies and contains a low-pass filtered
version, ûj(x) ∈ Vj, of the signal u(x), as depicted in
Fig. 3. Incrementally finer details of the signal are rep-
resented in Vj as j increases. The approximation spaces
are specified by self-similarity that leads to a fractal
representation of the signal. Each approximation space
contains a scaled version of the same function, and this
scaling value is traditionally chosen to be the smallest
nontrivial positive integer, 2. Thus, for an arbitrary func-
tion f (x),

f (x) ∈ Vj if and only if f (2x) ∈ Vj11 (1)

for all integers j. Under this construct, the inherent
length-scale Dj of the approximated functions in Vj is
given by

Dj 5 22jD0, (2)

which also defines the ‘‘resolution’’ of the approxima-
tion space for a given reference length D0. The scale
parameter D j has the same length unit as x and, as we
will see, it also determines a ‘‘characteristic wave-
length’’ associated with the resolution index j. For the
surface wind composition problem, we use D0 5 111.2
km, which corresponds to 18 of latitude.

A wavenumber-dependent decomposition of a signal
can be achieved in terms of the scale-difference signal

(x) [ ûj11(x) 2 ûj(x).u9j (3)

The space of such difference signals is in the wavelet
space, denoted as Wj. Formally, the wavelet space Wj

is the orthogonal complement of the approximation
space Vj within the next larger space Vj11:

Vj ' Wj, Vj < Wj 5 Vj11,

where ûj11 ∈ Vj11, ûj ∈ Vj, and ∈ Wj. Thus, all theu9j
incremental ‘‘details’’ of the signal beyond an arbitrary
resolution of J are contained in the mutually orthogonal
wavelet spaces WJ, WJ11, WJ12, . . . , so that the non-
overlapping union

VJ < WJ < WJ11 < WJ12 < . . .

completely represents the space of all real-valued func-
tions, or

`

u(x) 5 û (x) 1 u9(x). (4)OJ j
j5J

As exemplified in Fig. 3, (x) is essentially a bandpassu9j
filtered version of the signal u(x), and the multireso-
lution decomposition (4) can be considered as a quan-
tized spectral analysis of u(x) for the scales finer than
J. The resolving power of this spectral analysis, or
equivalently the effective bandwidth of the bandpass
filters, is determined by the self-similar scaling factor
of 2 to be (2D j)21 cycles per unit length for a given j.
This implies a trade-off in using a wavelet spectrum as
opposed to the traditional Fourier spectrum: The band-
width doubles for each increment in j for a wavelet
spectrum, while it remains constant for a discrete Fou-
rier transform. A wavelet-based spectral analysis, how-
ever, gains spatial specificity (totally lacking in the Fou-
rier-based methods) in exchange for this loss in wave-
number resolution, as governed by the uncertainty prin-
ciple (Meneveau 1991). Spatial specificity is critical in
addressing the irregular swath patterns of ERS-1 scat-
terometer data.

1) IMPLICIT NOISE MODEL

Measurement noise is most frequently modeled as an
additive zero-mean process that has finer-scale varia-
bilities than the signal of interest. The portion of noise
removed by a common low-pass filtering or smoothing
operation (e.g., most optimal filters in practice) corre-
sponds to the finescale components of the actual mea-
surement error. This standard treatment of measurement
noise does not seem applicable to the multiresolution
decomposition (4) that models the signal, at least con-
ceptually, to infinitely fine scales. In practice, however,
there is always an upper limit on the resolution of in-
terest, say Jmax, so that the finer-scale signal components

(x), j . Jmax, would not be parts of the signal repre-u9j
sentation and hence be implicitly designated as ‘‘noise’’
in this traditional sense.
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FIG. 4. The basis generating functions: b(x) (dashed line), f (x)
(dotted line), and c(x) (solid line).

2) BASIS FUNCTIONS

All basis functions in the multiresolution analysis
used here are generated from the three functions de-
picted in Fig. 4—the B-spline function b(x) and the
Battle–Lemarié (BL) scaling f (x) and wavelet c (x)
functions (Battle 1987; Lemarié 1988). Both the B-
spline b(x) and BL scaling f (x) functions generate sets
of basis functions that span the approximation space Vj,
but the two functions have different features and hence
utilities as elaborated below. The BL wavelet function
c (x) generates bases that span the wavelet space Wj.
The three basis generating functions used here are piece-
wise cubic polynomials with continuous first and second
derivatives, which have been applied to a variety of
interpolation/analysis problems (Prenter 1975; Inoue
1986; Meneveau 1991). The cubic B-spline function is
given as

 1
3(x 1 2) , 22 # x # 21,

6

2 x
22 x 1 1 , 21 # x # 0,1 23 2

2 x
2b(x) 5 (5)2 x 1 2 , 0 # x # 1,1 23 2

1
32 (x 2 2) , 1 # x # 2,

6
0, otherwise,

and the third-order BL (BL-3) functions f (x) and c (x)
(of Fig. 4) can be derived from the cubic b(x) as detailed
in appendix A. Piecewise linear, quadratic, and higher-
order polynomials for alternative b(x), f (x), and c (x)
are given elsewhere (Unser and Aldroubi 1992; Dau-
bechies 1992).

In multiresolution analysis, the basis functions are

obtained by scaling and translation of a generating func-
tion as

x
j /2b (x) [ 2 b 2 m (6)jm 1 2Dj

x
j /2f (x) [ 2 f 2 m (7)jm 1 2Dj

x
j /2c (x) [ 2 c 2 m , (8)jm 1 2Dj

where scaling and translation are parameterized by j and
m, respectively. Note, for a given j, a unit translation
is determined by the scale parameter Dj, for example,
cj,m11(x) 5 cjm(x 2 D j). For each j, therefore, there is
a grid with the spacing Dj, and a basis function is cen-
tered at each grid point. These basis functions establish
a multiresolution representation of the signal u(x) with
their expansion coefficients. The spline approximation
ûj(x) and scale difference (x) for each j are representedu9j
by series expansions as

û (x) 5 b b (x) ∈ V , (9)Oj jm jm j
m

5 c f (x) ∈ V , (10)O jm jm j
m

and

u9(x) 5 d c (x) ∈ W . (11)Oj jm jm j
m

All basis functions are spatially localized (Fig. 4), lead-
ing to space specificity of the multiresolution analysis.

The B-spline representation (9) of the approximation
space is essentially a standard interpolation technique.
The B-spline function is a nonnegative, weighting (dis-
tribution) function [b(x) $ 0, b(x) dx 5 1], which`∫2`

is generally suitable as an interpolator, and it also has
a compact support {b(x) 5 0 for x [22, 2] for the∈/
cubic B spline}, which is desirable for numerical effi-
ciency. On the other hand, the BL scaling-function ex-
pansion (10) of the same approximation space is useful
for its energy conservation property since the wavelet
and scaling basis functions are mutually orthonormal
(normalized to the reference length D0) as

` `

c (x)c (x) dx 5 f (x)f (x) dxE jm jm9 E jm jm9

2` 2`

D , m 5 m9,05 (12)50, m ± m9.

All the basis functions are dimensionless, so that the
respective expansion coefficients bjm, cjm, and djm not
only carry the essential information of the original sig-
nal but also inherit its physical unit as well (e.g., meters
per second for our surface wind composition problem).
Given the multiresolution decomposition (4), either co-
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efficient set {bJm}m or {cJm}m, along with the wavelet
coefficient sets {djm}m for j $ J, would completely spec-
ify the original signal u(x). As mentioned earlier, the
BL coefficient sets {cJm}m and {djm}m conserve the
square magnitude (‘‘energy’’) of the signal.

3) COMPUTATION OF THE COEFFICIENTS AND THEIR

STATISTICS

A variety of methods exist to compute the B-spline
coefficients {bjm}m for a given j based on the samples
{(xk, uk)}k of the function u(x). Because of the highly
irregular sampling pattern of the scatterometer data, we
employ a standard variational approach (Inoue 1986)
summarized in appendix B. By orthonormality, the co-
efficients of scaling/wavelet expansions can be derived
by the inner products

`1
c 5 u(x)f (x) dx (13)jm E jmD0 2`

and
`1

d 5 u(x)c (x) dx. (14)jm E jmD0 2`

In practice, u(x) in these inner products must be inter-
polated/approximated from the sampled data, for ex-
ample, by the B spline.

To control spectral energy densities of the composed
wind fields, we are interested in obtaining statistics of
the wavelet coefficients djm from the scatterometer data,
so that signal components (x) at some prescribedu9j
scales D j can be synthesized using (11) by randomly
generated wavelet coefficients that obey the measured
statistics. The second-order statistics of the wavelet co-
efficients can be obtained directly from the interpolated
signals ûj(x) and, in particular, their scale differences.
To this end, consider the wavelet expansion (11) of a
sampled scale-difference signal (x) over the domainu9j
x ∈ [0, L]. Because the basis functions are spaced by
an interval of Dj, the number M of the wavelet coeffi-
cients is L/D j. By orthonormality of {cjm(x)}m, we then
have an equation analogous to Parseval’s theorem for
Fourier series

L M1 D02 2(u9) dx 5 (d )OE j jmL L m510

M1
j 25 2 (d ) , (15)O jm1 2M m51

which leads to a relationship between the mean-square
values of the wavelet coefficients and corresponding
scale-difference signal

(dj)2 5 22j( )2u9j (16)

for each j, where the overbar denotes spatial averaging
(over x or m). Since the averages of (x) over x andu9j

djm over m are typically zero [as c (x) dx 5 0], (16)`∫2`

yields estimates of the variances of the wavelet coef-
ficients given the scale-difference signal computed as
(3). Scale-dependent estimates of the variance based on
(16) are used to constrain our composition procedure
(sections 4 and 5).

4) DILATION RELATIONSHIP

A key property of the B-spline functions that makes
them especially suitable for the multiresolution analysis
is the dilation relation, which equates the basis function
at a given resolution with a finite linear combination of
basis functions at the next finer resolution (Unser and
Aldroubi 1992). Specifically, the dilation relation for
the cubic B spline (depicted in Fig. 4) is

1 1 3
b(x) 5 b(2x 2 2) 1 b(2x 2 1) 1 b(2x)

8 2 4

1 1
1 b(2x 1 1) 1 b(2x 1 2), (17)

2 8

which allows direct projection of coarse-resolution
spline coefficients to coefficients in a higher-resolution
space,

1
b 5 (b 1 6b 1 b )j11,2m j,m21 j,m j,m11

8Ï2

1
b 5 (b 1 b ). (18)j11,2m11 j,m j,m11

2Ï2

The implication is that even though the inherent sam-
pling interval in the dataset dictates the upper limit of
the resolution at which the spline coefficients can be
computed directly, the spline representation at an ar-
bitrarily high resolution can be obtained (without re-
sampling the coarse-level splines) using (18). In partic-
ular, the coarse ECMWF data are splined this way to
combine with the finer-resolution scatterometer data
(section 5).

b. Spectral analysis of fractal random processes

Wavenumber sensitivity and self-similarity make the
wavelet-based multiresolution analysis especially suit-
able for study of fractal random processes governed by
a spectral energy density function of the form

E(k) 5 E0k2g, k $ 0, g . 0, (19)

where E0 is a constant. If u(x) is such a process, then
there will be a similar geometric ‘‘law’’ in the scale-
dependent energies (square magnitudes) of the bandpass
signal components (x). Indeed, the fractal-spectralu9j
properties detailed by Wornell (1993) indicate that the
intrascale variance of the wavelet coefficients {djm}m

satisfies a discrete power law,
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FIG. 5. A plot of as given by (22). The dotted line represents21«g

numerically simulated ratios of E(kj) to ( )2Dj for the shown rangeu9j
of g.

2g
D02jgvar (d ) } 2 5 , (20)m jm 1 2Dj

where varm( · ) denotes the variance taken over the spatial
index m. Conversely, a signal synthesized from a set of
wavelet coefficients with the geometrically scale-de-
pendent variances (20) would closely approximate a
fractal process with the same power-law exponent g in
(19). Because an orthogonal wavelet analysis quantizes
the wavenumber space, the Fourier spectrum of a wave-
let-synthesized signal exhibits some systematic ripples
over the ideal fractal spectrum (19). Wornell’s results
indicate that the magnitude-bound of such ripples tends
to grow as g increases.

The exact relationship between wavelet-based and
Fourier-based spectral energy densities is difficult to
establish and is dependent on two application-specific
scenarios—the wavenumber resolution of the particular
wavelet function in use and the form of the spectral
density function E(k). The BL-3 wavelets (appendix A,
Fig. 4), based on cubic polynomials, are known to have
a reasonable wavenumber resolution (Unser and Ald-
roubi 1992) and have been applied to studies of tur-
bulence (Meneveau 1991). Using higher-order polyno-
mials (among other approaches) can enhance wavenum-
ber resolution by increasing the regularity2 of the wave-
let. Wavelet bases with high regularity might be
desirable for extreme cases of modeling fractal pro-
cesses with large g (Wornell 1993) and over very fine
scales (Perrier et al. 1995).

To examine the effect of the shape of E(k) on wavelet-
based spectral density, assume that (x) is an ideallyu9j
bandpassed version of the signal over k ∈ [akj, lkj],
where the characteristic wavenumber kj is given as kj

[ 1/Dj. For the BL-3 wavelet, a least square fit (Fig.
3) yields a 5 0.52 and l 5 1.00. The ideal bandpass
approximation then leads to

lkj

2(u9) ø E(k) dk 5 « k E(k ), (21)j E g j j

akj

using the particular form of E(k) satisfying the power
law (19), where

12g 12g(l 2 a )/(1 2 g), g ± 1,
« 5 (22)g 5log(l /a), g 5 1,

where log is the natural logarithm. Then, from (16), we
have the relation between the Fourier energy density
and wavelet coefficient energy

21 2E(k ) 5 « (u9) D ,j g j j

21 25 « (d ) D . (23)g j 0

2 Wavelet functions with higher regularity have faster rates of decay
away from the wavenumbers of support in the Fourier domain (Wor-
nell 1993).

The dimensionless multiplicative factor is plotted21«g

for a range of g in Fig. 5, showing that numerical sim-
ulation (wavelet energies computed for Fourier-synthe-
sized fractal processes) agrees generally well with (22).
Thus, to estimate samples of a (fractal) spectral energy
density function from wavelet coefficients, a value of
g must be preestimated from (20) to obtain .21«g

The multiresolution method of spectral energy esti-
mation (23) certainly lacks the wavenumber resolution
of standard methods based on discrete Fourier trans-
forms; however, due to spatial locality of the wavelet
bases it tends to be robust against the edge effects (Fou-
rier methods usually require ‘‘windowing’’ to pretaper
the ends of the signal). Also, while irregularly sampled
(often the case over multidimensional spaces) datasets
usually require preinterpolation for spectral estimation,
the effects of smoothing in interpolation are quite ex-
plicit in the multiresolution approach, which in fact in-
corporates interpolation procedures.

c. Two-dimensional multiresolution analysis

The basis functions for the 2D approximation space
Vj are just the tensor products of the 1D version de-
scribed previously, leading to the expansions

û (x, y) 5 B b (x)b (y) ∈ V , (24)O Oj jmn jm jn j
m n

5 C f (x)f (y) ∈ V , (25)O O jmn jm jn j
m n

where the 2D coefficients are denoted with capital let-
ters: Bjmn and Cjmn. The corresponding wavelet space Wj

is spanned collectively by the three types of basis func-
tions,

f jm(x)cjn(y), c jm(x)f jn(y), and cjm(x)c jn(y),

which can be referred to as the ‘‘horizontal,’’ ‘‘vertical,’’
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and ‘‘diagonal’’ wavelets, respectively, because of their
sensitivity to (2D) patterns of stripes with the named
orientations (Daubechies 1992). Denoting the respective
wavelet coefficients as , , and , we then haveH V DD D Dmn mn mn

the expansion
H Vu9(x, y) 5 D f (x)c (y) 1 D c (x)f (y)O Oj jmn jm jn jmn jm jn

m n

D1 D c (x)c (y) ∈ W (26)jmn jm jn j

for the 2D scale-difference signal.
Because the basis functions are tensor products of the

1D counterparts, the computational procedures for the 1D
coefficients tend to be directly applicable. It is analogous
to achieving a 2D discrete Fourier transform with a series
of 1D transforms. For example, upscale projection of the
B-spline coefficients can be performed by applying (18)
along each index m and then along each n.

Of interest here is relating the 2D wavelet energy to
the 1D energy profiles (dj)2 . The narrow scatterometer
swaths (Fig. 1) allow reliable estimation of energy pro-
files only in the 1D along-track directions; however, the
wind components must be synthesized over the North
Atlantic basin using the energy statistics of the 2D wave-
lets. We assume statistical isotropy (Freilich and Chelton
1986) so that the 1D energy profiles (dj)2 computed
along lines parallel to the x and y axes are identical.
Then by fixing y to be a constant, cross-sectional scale
differences can be obtained by collecting terms involv-
ing cjm(x) from (26) as

V Du9(x) 5 D f (y) 1 D c (y) c (x),O O Oj jmn jn jmn jn jm[ ]m n n

5 d (y)c (x),O jm jm
m

from which the cross-sectional wavelet coefficients can
be obtained as the terms in square brackets. Taking the
average of these 1D coefficients over m as

V Dd (y) 5 D f (y) 1 D c (y)O Oj jn jn jn jn
n n

and then computing the square averages along y as in
(15), noting orthogonality between f and c, would yield

( )2 1 ( )2 5 22j(dj)2 .V DD Dj j (27)

Similarly, computing the wavelet energy profile along
a fixed x would yield

( )2 1 ( )2 5 22j(dj)2 .H DD Dj j (28)

Although (27) and (28) imply ( )2 5 ( )2 (consistentH VD Dj j

with the isotropic assumption), distribution of the 1D
energy profile between the diagonal and horizontal or
vertical portions is difficult to infer without further in-
formation or assumption. An assumption of identical
distribution then leads to

( )2 5 ( )2 5 ( )2 5 22( j11)(dj)2 ,H V DD D Dj j j (29)

which is quite adequate for the purpose of synthesizing

geometrically unbiased fields (i.e., no dominating pat-
terns of stripes).

4. Scale-dependent statistics of the scatterometer
data

Freilich and Chelton (1986) have studied spectral
characteristics of an earlier scatterometer wind dataset
from the Seasat-A satellite. Because of the relatively
narrow (approximately 500 km) satellite swath, they
avoided direct calculation of full 2D spectra and instead
computed 1D spectra along the swath and inferred the
2D properties under isotropy and incompressibility as-
sumptions. Our multiresolution analysis of the ERS-1
satellite scatterometer follows an analogous approach
employing along-track computations in conjunction
with isotropic assumptions.

We have collected about 50 tracks each from the four
‘‘seasonal’’ months of July 1992, October 1992, January
1993, and April 1993. Only those tracks spanning at
least half the latitudes of the North Atlantic domain (218,
Fig. 1) were considered. For each track, the 2D coef-
ficients Bjmn were computed (appendix B) over the sat-
ellite swath at the resolution of j 5 2 (D2 5 27.8 km)
for both wind vector components. The resulting analytic
fields, given by (24), were then sampled alongtrack at
the midpoint of the swath at the interval of D2. These
alongtrack samples were in turn splined to produce a
set of one-dimensionally supported wind data [ûj(y 9),

], y9 ∈ [0, L], for each j, 23 # j # 2. The along-ŷ (y9)j

track scale-difference signals (y 9) and (y 9) for theu9 y9j j

resolutions of j 5 23, 22, 21, 0 were then computed
from (3). This particular set of resolutions covers the
high-wavenumber band of our interest; the coarsest
scale of analysis, D23 ø 900 km, corresponds to the
expected maximum wavenumber in the ECMWF anal-
ysis data at which a g ø 2 power law is observed, while
the finest scale, D0 5 111.2 km, approaches the Nyquist
limit for the alongtrack ERS-1 scatterometer sampling
interval.

a. Seasonal variances and power-law exponents

The first and second moments of the scale differences
are computed along y9 from each of the four seasonal
ensembles of the tracks. As expected, the computed
mean is zero

5 0, 5 0u9 y9j j (30)

for each j and each of the four months. The variances
( )2 and ( )2 , plotted as standard deviations in Fig. 6,u9 y9j j

display a seasonal pattern of having higher values in
‘‘winter/autumn’’ than ‘‘summer/spring,’’ where the
seasonal difference is more pronounced for lower-res-
olution (lower wavenumber) signals. It is difficult to
infer from the available information whether or not the
lack of seasonal variations at higher wavenumbers is a
result of dominance by the measurement noise. Also,
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FIG. 6. The seasonal root-mean-squares (square roots of the vari-
ances) of the zonal and meridional scale differences (y) and (y)u9 y9j j

for the resolutions of, from top to bottom lines, j 5 23, 22, 21, 0
(i.e., for the respective scales of 889.6, 444.8, 222.4, and 111.2 km).
The four seasonal data points were linearly interpolated over the
annual axes shown.

FIG. 7. Spectral energy densities computed from alongtrack samples of the scatterometer measurements of wind vector
components. The solid and dashed lines are the Fourier spectra of the zonal (u) and meridional (y) components,
respectively. The corresponding wavelet spectra are marked by ‘‘V’’ and ‘‘1,’’ respectively.

the lower-resolution scale differences have larger mag-
nitudes than those of higher resolution, which is in
agreement with the fractal energy models of the wind.
Spectral energy densities have been estimated by (23)
from the multiresolution variances [( )2 , ( )2] as wellu9 y9j j

as by applying a conventional Fourier-based method3 to
[û2(y 9), ]. These energy densities are plotted inŷ (y 9)2

Fig. 7, showing reasonable agreements between the two
spectral estimation methods. The plots of energy density
clearly indicate a power-law dependence in the spectra.
The power-law exponents computed from both Fourier
and wavelet spectra by least square fits are given in
Table 1 along with standard deviations for each ‘‘sea-
son.’’ These exponent values are generally in good
agreement with the corresponding midlatitudinal values
(2.31 zonal, 2.11 meridional) observed by Freilich and
Chelton (1986) in the Seasat data from the summer of
1978 over the Pacific. The fidelity of the estimated ex-
ponents, as measured by the smaller standard deviations,

3 Welch’s averaged periodogram with the Hanning window and FFT
length of 256 is used.
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TABLE 1. The power-law exponents g computed from along track samples of the scatterometer measurements of wind vector components
(u, y), using Fourier-based and wavelet-based methods. The high-wavenumber range of 0.007 to 0.06 rad km21 (1/8 to 1 cycle per degree)
is considered.

Zonal (u)

Fourier Wavelet

Meridional (y)

Fourier Wavelet

July 1992
October 1992
January 1993
April 1992

2.35 6 0.68
2.44 6 0.63
2.42 6 0.63
2.29 6 0.53

2.26 6 0.51
2.43 6 0.67
2.26 6 0.58
2.49 6 0.54

2.10 6 0.63
2.30 6 0.65
2.23 6 0.55
2.03 6 0.62

2.05 6 0.53
2.20 6 0.60
2.28 6 0.71
2.03 6 0.67

All data 2.38 6 0.62 2.35 6 0.58 2.17 6 0.62 2.14 6 0.64

FIG. 8. Wavelet coefficients for the scatterometer data (middle third)
along with samples of Gaussian (left third) and log spike (right third)
distributions having the same variance as the wavelet coefficients.
The wavelet resolution for the shown coefficients is j 5 0, while the
order of the log spike distribution is n 5 4. The prominent spikes in
the middle section are believed to be examples of intermittent large-
magnitude events.

is much higher in those reported by Freilich and Chel-
ton, which might be attributed to differences in scat-
terometer sampling and instrumentation—the Seasat
used a Ku-band (14.6 GHz) radar, while the ERS-1 data
were obtained from a C-band (5.3 GHz) radar.

The surface wind over the North Atlantic is generally
more energetic over the winter months because of fre-
quent storms. The ‘‘seasonal’’ differences in our power-
law exponents are reflections of differences in [( )2 ,u9j
( )2] mentioned earlier. That is, the signal energy isy9j
larger in winter/autumn than summer/spring for each
scale, but the lower-resolution signals have proportion-
ally larger annual variations than the higher-resolution
signals. The power-law exponents are consequently
larger (more rapidly decaying energy spectra) in the
more energetic winter/autumn signals.

b. Distribution of the wavelet coefficients

Statistically, turbulent activity becomes increasingly
intermittent as the scale decreases. Such intermittency
in turbulence is reflected in the shape of the probability
density function as having more pronounced ‘‘tails’’
than the Gaussian distribution (Yamada and Ohkitani
1991; Meneveau 1991). For the purpose of generating
wind-forcing datasets, this deviation from the Gaussian
distribution has technical effects in the statistical syn-

thesis of the high-wavenumber components. In partic-
ular, computation of wind stress curl tends to be sen-
sitive to localized intense activities, and it is desirable
that the observed and synthesized distributions of the
high-wavenumber wind components are alike.

To observe scale-dependent distributions in the high-
wavenumber range, we have computed using (14) the
wavelet coefficients djm, j 5 23, . . . , 0, for the sampled,
alongtrack ERS-1 data [û2(y9), ]. The wavelet co-ŷ (y9)2

efficients do indeed exhibit more intense activity than
random samples synthesized from a Gaussian distri-
bution with the identical mean (zero) and variance, as
exemplified in Fig. 8. The figure also shows samples
from a distribution with the density function

n1 a
f (x) 5 log , 2a # x # a (31)1 22a(n!) |x|

that appears to simulate the observed wavelet coefficient
sets better by visual inspection, especially with respect
to intermittent and intense activities. The probability
density function (31) features a logarithmic spike at the
mean value of x 5 0, while the variance is given by
the parameter a as a2/3n11. Although this ‘‘log spike’’
distribution is bounded by the parameter a, the chances
of sampling a value near the two extremes are higher
than for the Gaussian counterpart. Also, as the order n
of the density function increases, divergence from the
Gaussian distribution becomes more pronounced. In
particular, for a given value of variance, the bounding
parameter a increases exponentially with the order n.
For numerical generation of the log spike samples, the
corresponding cumulative distribution function F (z) [

f (x) dx, given asz∫2`

0, z # 2a,
kn1 z 1 a

F(z) 5 1 log , 2a # z # a,O 1 22 2a k! |z|k50
1, z $ a,

(32)

can be useful in transforming the standard uniform dis-
tribution (yielding samples of z ∈ [0, 1]) to the log spike
distribution [by, e.g., a piecewise linear approximation
of the inverse F21(z)].

Normalized histograms of the wavelet coefficient
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FIG. 9. Normalized histograms, marked with circles, of 1000 wave-
let coefficients for the scatterometer data (at resolution of j 5 0).
The dashed and solid lines are, respectively, the Gaussian and log
spike (order 4) probability density functions with the same variance
as the shown coefficients. The right plot uses a logarithmic vertical
axis for a better view of the ‘‘tails.’’

TABLE 2. The four wind-forcing datasets.

LO Low wavenumber
Wind fields interpolated from the daily ECMWF analysis wind data.

HI-Sub High wavenumber, by substitution of scatterometer data
The LO fields regionally substituted by the daily (GMT) composite of the ERS-1 scatterometer data.

HI-Bln High wavenumber, blending of satellite swaths
The HI-Sub fields statistically and regionally (off-swath only) augmented to blend away the satellite swaths evident in HI-

Sub. The wavenumber augmentation is based on spectral statistics measured from the scatterometer data.
HI-stat High wavenumber, purely statistical

The LO fields augmented statistically as in HI-Bln but over the whole basin instead of regionally. No actual scatterometer
data are incorporated.

samples are compared with the Gaussian and log spike
probability density functions. As depicted in Fig. 9, the
larger tails of the log spike distributions can capture the
intermittent events considerably better than the corre-
sponding Gaussian distribution. As expected, deviation
from the Gaussian distribution becomes more pro-
nounced for the finer scales, as the order n of the best-
fitting log spike distribution tends to increase with the
resolution of wavelet. An order of 3 or higher is required
to qualitatively fit the wavelet coefficient samples at the
scale of D0, while for the coarse scale of D23, an order
of 1 or even the Gaussian distribution is adequate.

5. Composed wind fields

For comparison of ocean model responses, four sets
of year-long, daily 2D wind fields u [ (u, y) are pre-
pared by combining the ECMWF analyses with the
ERS-1 scatterometer data. Each of four composed wind
sets contains distinct high-wavenumber content while
sharing a common low-resolution dataset, as summa-

rized in Table 2. The corresponding wind stress on the
ocean surface can then be computed as

t 5 raCD|u|u, (33)

where |u| [ (u2 1 y 2)1/2 is the wind speed, ra is the air
density at 1000-hPa temperature, and CD is the neutral
10-m drag coefficient given by Large and Pond (1981).
To force the ocean circulation model described in the
next section, we have computed the wind stress curl, or
the vertical component of the curl of t (neglecting the
relatively small spatial derivatives of CD),

¹ 3 tz

] ]
5 r C (|u|y) 2 (|u|u) ,a D [ ]]x ]y

]y ]u
215 r C |u| 2 1 |u|a D5 1 2]x ]y

]y ]u ]u ]y
2 23 y 2 u 1 uy 2 ,1 2 6[ ]]x ]y ]x ]y

(34)

over the ocean model grid of 1/58 3 1/68 for each of
the four datasets. As mentioned previously, spline ap-
proximation (24) for each u and y allows analytic com-
putation of the spatial derivatives in (34). Note that the
expression inside the curly brackets in (34) would ap-
proach zero as the wind speed approaches zero.

a. Vector components and their energy spectra

The 2D B spline and BL wavelet are applied to the
ECMWF and scatterometer datasets to obtain the vector
components of wind fields in Table 2. The wind data
for each day are processed independently. Also, each of
the wind vector components (u, y) are processed sep-
arately and identically; thus, we only present the pro-
cedures applied to the u component for brevity.

The control or low-wavenumber wind dataset, re-
ferred to as the LO dataset hereafter, is obtained by
applying a 2D cubic B spline to each of the daily (1200
UTC) ECMWF analysis fields. The resulting wind field
is denoted as u[LO](x, y) and computed as



752 VOLUME 15J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 10. The spectral energy densities of the wind vector com-
ponents (u, y) for each of the four wind datasets (Table 2). Solid
lines represent LO, dotted line HI-Sub, dash–dot line HI-Bln, and
dashed line HI-stat.

u[LO] (x, y) 5 [û0(x, y)]ECMWF, (35)

where the subscript ‘‘ECMWF’’ on the right-hand side
indicates the input dataset used to compute the spline
coefficients (appendix B). The spline scale of D0 5
111.2 km ( j 5 0) is used to approximate the particular
sampling interval (18 latitude–longitude) of the
ECMWF dataset. Previous analysis (e.g., Milliff et al.
1996) of the ECMWF fields have shown their g ø 2
power law to hold only for wavenumbers up to 0.007
rad km21 (900-km wavelength), corresponding to a
spline resolution of j 5 23. A similar result is shown
by the 30-day average spectral energy density (from
January 1993) of both LO wind components (Fig. 10,
solid lines). It is possible, however, that the LO wind
fields locally contain some high-wavenumber variance
not reflected in the basinwide Fourier energy spectra of
Fig. 10 because both the ECMWF dataset and the B
splines are capable of resolving higher wavenumbers.

The heterogeneous partial coverage of the scatter-
ometer winds (Fig. 1) leads to three high-wavenumber
counterparts to the LO wind dataset. The first is akin
to that employed by Barnier et al. (1994) and is referred
to as the HI-Sub dataset. It is obtained by substituting
the daily scatterometer data into the background LO
fields along the ERS-1 orbital swaths. The HI-Sub wind
component fields were computed as

u[HI-Sub](x, y) 5 u[LO](x, y) 1 [û2(x, y)]ERS1 · var , (36)

where the spline dataset ‘‘ERS1 ·var’’ for the second
term on the right-hand side is the high-wavenumber
variability signal extracted from the scatterometer ob-
servation. Specifically, if we let (x̃, ỹ, ũ) be a data point
in the scatterometer observation set, the corresponding
ERS1·var data point is (x̃, ỹ, ũ9), where ũ9 [ ũ 2 u[LO](x̃,
ỹ) is an ECMWF-detrended version of the ERS-1 ob-
servation. The cross-track resolution of the ERS-1 data
is 25 km, so the spline resolution is set at j 5 2, or at
a scale of D2 5 27.8 km. The variational spline analysis
method described in appendix B is particularly useful
for the irregularly sampled scatterometer data because
the data-sparse regions are handled appropriately (splined
to be zero) in a robust manner, maintaining fidelity in
the low-wavenumber background field, even in the
regions away from the satellite swaths. The spline also
smoothly tapers the edges along the satellite swaths,
reducing effects of discontinuity. Figure 11 (first and
second panels) shows examples of meridional wind
component fields and the associated wind stress curl
fields for both the LO and HI-Sub datasets. It is evident
that the scatterometer dataset increases finescale infor-
mation, especially in the curl field. As expected, spa-
tially heterogeneous composition of the high-resolution
features in the HI-Sub data is also quite evident in Fig.
11, as the satellite tracks can be identified clearly in the
curl field. Despite the highly heterogeneous spatial cov-
erage, this enhancement by the scatterometer dataset
restores much of the expected g ø 2 power-law spectral

characteristics, as indicated by the dotted lines of Fig.
10. These energy spectra of the HI-Sub set deviate from
the expected power law only in the wavenumber range
of approximately 0.007–0.014 rad km21, or a wave-
length range of 900–450 km. Above and below this
wavenumber range, the power-law relationship holds.
An apparent effect of the heterogeneous sampling pat-
terns of the scatterometer data to spectral density is a
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range-specific (900–450-km wavelengths) energy dis-
sipation.

The second high-wavenumber wind dataset is referred
to as HI-Bln. It represents a successful attempt (Fig. 11,
third panels) to reduce the artificial heterogeneity in
high-wavenumber variance by using high-wavenumber
synthesis off the satellite orbital swaths. The synthetic
information could lead to improved ocean model per-
formance if it truly reflects key statistics of the actual
wind fields. Statistical synthesis is a viable technique
here because full fields of (u, y) at the spatial resolutions
of interest are currently available neither from mea-
surements nor weather forecast analyses. The HI-Bln
wind component fields were calculated from

u (x, y),[HI-Sub]

under satellite swaths,
0u (x, y) 5[HI-Bln]

u (x, y) 1 [u9(x, y)] ,O[LO] j ERS1·spect j523
off swath,

(37)

where the subscript ‘‘ERS1 · spect’’ indicates that the
difference signals (x, y) have been obtained from (26)u9j
using 2D wavelet coefficients, generated statistically,
based on wavelet spectra of the seasonal ERS-1 data.
The high-wavenumber resolution range of j 5 23 to 0
spans 900–100-km scales. The seasonal alongtrack
wavelet energy values ( )2 were linearly interpolated,u9j
as indicated in Fig. 6, to yield monthly estimates of
(dj)2 using (16), which in turn allows estimation of the
2D wavelet coefficient variances ( )2 , ( )2 , ( )2H V DD D Dj j j

using (29). By construction, the means of the wavelet
coefficients are zero. The log spike distribution (31) of
order 3 was used to generate the coefficient samples.
The spectral energy density of the resulting HI-Bln wind
fields achieves a g ø 2 power-law relationship, as shown
in Fig. 10 (dash–dot lines). The small ripples on the
spectral energy plots are caused by the inherent wave-
number quantization of the orthonormal wavelet anal-
ysis as predicted by Wornell (1993). The meridional
component and wind stress curl fields (Fig. 11, third
panels) show no visible indication of satellite swaths.
Note that the high-resolution signatures of the scatter-
ometer measurements visible in HI-Sub are duplicated
in HI-Bln, even though in the latter the patterns over
the satellite swaths are blended well with the statistically
generated wind components in the off-track gaps.

Finally, we have also prepared a fourth dataset gen-
erated by augmentation of the LO dataset with basin-
wide, purely statistical, high-wavenumber wind com-
ponents. This dataset, referred to as HI-stat and shown
in the fourth panels of Fig. 11, contains no actual scat-
terometer measurements (reflecting only their statistical
information) along the satellite swaths. The wind com-
ponent fields in this dataset were generated as

0

u (x, y) 5 u (x, y) 1 [u9(x, y)] (38)O[HI-stat] [LO] j ERS1·spect
j523

over the whole basin. Their energy density spectra, the
dashed lines in Fig. 10, attain a g ø 2 power law, as
in the case with the HI-Bln set.

b. Average curls of wind stress

The energy density spectra of the wind stress curl
fields tend to be flatter than the wind component spectra,
as expected from high-pass spectral characteristics of
differential operators such as those in (34). The curl
spectra for the scatterometer-enhanced HI-Sub and HI-
Bln sets, shown in Fig. 12 as dotted and dash–dot lines,
respectively, display this flatness over the entire high-
wavenumber range, from 0.007 to 0.06 rad km21 (wave-
lengths of about 100–900 km). The curl spectrum for
the HI-stat set (dashed line) with purely statistical spec-
tral enhancement is, however, significantly steeper in
this high-wavenumber range, suggesting that the first-
and second-order statistics under a homogeneity (bas-
inwide) assumption are not sufficient to capture realistic
high-wavenumber wind stress curl characteristics.

Figure 12 indicates that the ERS-1 wind stress curl
spectra do not obey a single power law, which is in
agreement with an earlier analysis by Freilich and Paz-
dalski (1995). Comparing the curl spectra of LO and
HI-stat sets in the figure, it is also evident that spectral
enhancement of wind vector components in the specific
wavenumber range of 0.007–0.06 rad km21 has in-
creased the energy density of the wind stress curl over
a much wider wavenumber range, especially in the low
wavenumbers. Such cross-wavenumber enhancing ef-
fects are exaggerated by incorporation of the scatter-
ometer data, as indicated by the HI-Sub and HI-Bln curl
spectra (in comparison to the LO curl spectrum). A like-
ly cause is the nonlinear relation (34) between the sur-
face wind vector components and wind stress curl.

It would be possible to synthesize wind component
fields whose wind stress curl has a spectral characteristic
similar to those with the scatterometer data, using spa-
tially homogeneous statistics as in the construction of
the HI-stat set. First, components at finer scales (e.g.,
D1) than the upper bound of the high-wavenumber range
must be synthesized. The curl energy in the high wave-
number would then be enhanced by the cross-wave-
number effects just described. Second, the synthesis at
all scales must be performed with exaggerated inter-
mittency (e.g., by using a higher-order log spike distri-
bution) than observed, to obtain the effects of hetero-
geneity. We have not pursued such ad hoc approaches
in order to adhere to the actual statistical observations
of the scatterometer data. We also feel that the wind
vector components have better established spectral char-
acteristics through the power laws, upon which a more
robust composition scheme can be designed.

6. Ocean model responses
Each of the four wind datasets (Table 2) are used to

drive a general circulation scale calculation of the North
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FIG. 11. (a) Fields of meridional wind component and (b) wind stress curl over a 408 3 8.58 region for the four wind
datasets (Table 2). Contour intervals are 1 m s21 for the wind component and 3 3 1027 N m23 for the wind stress curl.
The thicker contour lines represent contours of northward wind components and positive curl (including the zero contour
lines), while thinner lines represent southward wind and negative curl. The horizontal and vertical axes are longitudes
and latitudes, respectively.
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FIG. 11. (Continued )

Atlantic Ocean. The ocean model and experimental de-
sign are taken from Milliff et al. (1996). In that work,
the general circulation response of a high-resolution
(1/58 3 1/68), five-level, quasigeostrophic model was
studied as a function of controlled wavenumber content
in the wind stress curl forcing fields. In the absence of
coincident scatterometer observations, the high-wave-

number forcing in Milliff et al. (1996) was synthesized,
via a global Fourier method, from smoothed represen-
tations of the ECMWF analyses according to a g 5 2
power-law dependence. (No high-resolution wind ob-
servations were used to control the synthesis in the pre-
vious study.) As before, the ocean model initial fields
in the present study are identical for each of the four
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FIG. 12. The spectral energy densities of the wind stress curl for
each of the four wind datasets (Table 2). Solid lines represent LO,
dotted line HI-Sub, dash–dot line HI-Bln, and dashed line HI-stat.

calculations performed. Each wind-forcing dataset is then
used to drive a 20-yr calculation in a repeating annual
cycle mode (the wind stress curl fields for each dataset
are blended smoothly between the final 10 days of June
1993 and the first 10 days of July 1992). Average cir-
culation and basin-average energetics are computed using
the final 5 years of integration for each experiment.

In the previous study by Milliff et al. (1996), the
ocean model general circulation response to high-wave-
number content in the forcing exhibited improved en-
ergetics (eddy and mean kinetic energy fields) and pat-
terns of circulation in the upper ocean. The circulation
pattern of the Azores Current (188–348N, 408–208W) in
the eastern basin was more like the observed climatol-
ogy when the forcing fields contained realistic variance
on horizontal scales of 48–88. The dynamics of the im-
proved response were demonstrated to be essentially
linear, such that differences in the annual average wind-
forcing fields (Fig. 13) are informative. We should ex-
pect enhancements in the ocean model general circu-
lation driven by the new datasets to be consistent with
the previous results driven by synthetic high-wavenum-
ber winds. We will compare among the four wind-forc-
ing datasets the annual average wind stress curl fields
and upper-ocean streamfunction responses. In addition
we will examine basin-integrated measures of eddy and
mean kinetic energies (EKE and MKE, respectively).

In contrast to Milliff et al. (1996), the LO wind-forc-
ing dataset in the present study is taken directly from
the ECMWF analyses. The high-wavenumber cutoff is
now neither a homogeneous function of space nor is it
well known from region to region. The annual average
wind stress curl for the LO wind-forcing dataset is
shown in Fig. 13a, and the upper-ocean streamfunction
response is in Fig. 14a. Figure 14a demonstrates that in
the region of the Azores Current, the analysis fields
contain sufficient power at wavenumbers corresponding

to scales of 48–88 (see also Fig. 2 in Milliff et al.) to
affect improvements in the general circulation patterns
noted above.

Figure 13b depicts the annual average wind stress curl
for the HI-Sub dataset. The effect of scatterometer ob-
servations on the high-wavenumber content of the an-
nual-average field is obvious (presence of finescale fea-
tures) but is spread heterogeneously across the domain.
For example, the structure of the positive wind stress
curl signal offshore of Cape Hatteras (368–448N, 728–
508W) in Fig. 13a is superposed in Fig. 13b by a pop-
ulation of high-amplitude, small-scale features of wind
stress curl. Conversely, in the southwestern portion of
the domain, large-scale positive (at 128N, 768W) and
negative (at 198N, 728W) centers in Fig. 13a remain
largely unaltered in Fig. 13b. Moreover in Fig. 13b,
there are dominant patterns in the north-central and
northeastern portions of the basin that are reminiscent
of swath tracks from the sampling scheme of the ERS-
1 scatterometer. Figure 2 demonstrates that these signals
are indeed artifacts that correspond to positions in the
ERS-1 orbit when the scatterometer instrument was
turned off, presumably in favor of the synthetic aperture
radar instrument that competed for onboard power.

These sampling artifacts in the northeastern basin per-
sist in the annual average wind stress curl from the HI-
Bln dataset as well. The ocean model responds (Figs.
14b and 14c) to this artifact, altering the circulation
pattern in the North Atlantic Current region of the 5-yr
average solutions. The local nature of the HI-Sub and
HI-Bln syntheses cannot compensate for the large-scale
artifacts in the inadequately sampled scatterometer data.
However, this is not the case in Fig. 13d for the HI-stat
dataset with spatially homogeneous high-wavenumber
content. The average ocean model response (Fig. 14d)
is characterized by increased (decreased) maxima (min-
ima), and the hint of smaller spatial scales versus the
average solution driven by the LO dataset.

The first row of Table 3 infers Gulf Stream transport,
for each of the 5-yr average solutions, by estimating a
(normal) derivative of the streamfunction, integrated in
the vertical over the top two model levels (pycnocline
to surface). The derivative is estimated between the
same two grid locations offshore of the separation point.
The synthesis techniques, emphasizing scatterometer
observations that are local in space (HI-Sub and HI-
Bln), decrease the average transport by about 10% rel-
ative to the LO case. The more global and statistically
homogeneous method (HI-stat) increases the average
Gulf Stream transport by only about 1%.

The basin-average, upper-ocean response in terms of
kinetic energy (Table 3) demonstrates about a 5% de-
crease in HI-Sub and HI-Bln solutions relative to LO,
and about an 8% increase in the HI-stat case. Similar
tendencies, with slightly larger amplitudes, are evident
for basin-average MKE, reflecting the energetics of the
large-scale circulation patterns. However, the most
marked effects occur for basin-average EKE that in-
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creases as the high-wavenumber energy density of the
forcing fields. The upper-level EKE response increases
by 26%, 37%, and 20% for HI-Sub, HI-Bln, and HI-
stat, respectively. These changes are reflecting model
responses to wavenumbers greater than about 0.014 rad
km21 (or scales finer than 48), where the LO dataset
displays orders of magnitude less variance than the other
three datasets (Fig. 12), and are comparable to similar
measures described in Milliff et al. (1996).

7. Summary and discussion

Techniques of multiresolution analysis have been ap-
plied to create wind-forcing datasets that combine high-
resolution, swath-based observations from a scatter-
ometer with low-resolution, uniformly sampled analysis
fields from operational weather centers. The particular
daily wind fields presented here are based on all obser-
vational data assimilated into the ECMWF analysis
fields—sea level pressure, winds, temperature and hu-
midity at the surface and aloft, and satellite cloud and
temperature sounding retrievals. The ERS-1 scatterometer
then provides a several-fold increase in resolution and
quantity of surface wind observations incorporated into
the daily wind fields.

The new methodology includes both local and global
approaches that preserve either the actual scatterometer
observations themselves or regional and temporal aver-
ages of their statistics. In our approach, the syntheses are
additionally guided by spectral properties that derive
from the theory of 2D turbulence and the existing ob-
servations of high-resolution surface winds over the
ocean. Average ocean circulation simulations, driven by
the wind fields created by the new techniques, are con-
sistent with the previous experiments by Milliff et al.
(1996), especially with respect to sensitivity of circulation
patterns and eddy kinetic energies to the high-wavenum-
ber forcing. The model responses are, therefore, not de-
pendent on the particular techniques used to enhance the
high-wavenumber components in the wind forcing. The
model simulations also demonstrate the utility of the new
methods for preparation of hybrid high-wavenumber
wind datasets to force ocean general circulation models.

The multiresolution analysis technique with an or-
thonormal wavelet basis can perform the traditional Fou-
rier-based spectral decomposition over a quantized wave-
number set. In particular, the wavelet and Fourier bases
lead to consistent estimates of spectral energy densities
and power-law dependencies, but the wavelet-based tech-
nique has an advantage of spatial specificity. This ad-
vantage is most significant during statistical synthesis of
the high-wavenumber wind components between satellite
swaths. It is also useful when the winds are not spatially
stationary in the alongtrack direction. Generally, a wave-
let-based technique is suitable for regionally dependent
(i.e., spatially specific) spectral analysis. Annual com-
posite averages of the high-wavenumber components of
the scatterometer data do indeed display a spatially struc-

tured distribution over the North Atlantic domain. Such
regional heterogeneity is exaggerated in wind stress curl
fields (Fig. 13). Also, low-wavenumber energy in wind
stress curl can be sensitive to an energy source in wind
vector components at higher wavenumbers—a possible
pathway by which high-wavenumber wind components
affect large-scale ocean circulation. The log spike dis-
tribution function is an alternative to the Gaussian dis-
tribution for characterization and synthesis of processes
exhibiting intermittency; however, characterization via
statistical intermittency is not a substitute for determining
regionally dependent statistics, especially to capture the
spatial and spectral structures of the wind stress curl
fields. The basinwide homogeneous statistics used in gen-
eration of the HI-Bln and HI-stat wind sets can thus be
improved by introducing regional dependence. Studies
on spatial heterogeneity of high-wavenumber statistics
are currently under way.

The application of the new methodology to the North
Atlantic provides a stringent test. Figure 2 demonstrates
a sampling artifact in the northeastern part of the basin
that introduces a strong bias in the observations. The
ERS-1 scatterometer instrument was turned off system-
atically such that the northeastern basin was rarely or
never sampled, while regions of the western basin were
frequently sampled. The step function character of the
artifact is exacerbated in the production of wind stress
curl fields that involve spatial derivatives normal to the
feature. The sampling bias is not accounted for in the
local method (i.e., HI-Bln) that has been developed here
to perform statistical extension of the high-wavenumber
signal, while preserving all high-resolution wind obser-
vations as they occur. Conversely, the more global meth-
od (i.e., HI-stat) is not sensitive to the bias, but it does
not preserve measured high-resolution local patterns of
the wind stress curl field. The HI-Bln method thus seems
more applicable to regional and time-specific simulations,
while the HI-stat method might be appropriate for studies
of the energetics and climatology of the general circu-
lation (Barnier et al. 1991; Milliff et al. 1996).

We emphasize that the HI-Bln and HI-stat methods are
flexible enough to be made more regionally and tem-
porally specific. The methodology presented in the paper
provides numerical tools to introduce regional and tem-
poral statistics in the analyzed wind fields. A remaining
issue is to improve statistical characterization of the high-
wavenumber wind components in terms of regional vari-
ability and temporal correlation through adequately sam-
pled measurements. For example, regional statistics from
the NSCAT scatterometer (Naderi et al. 1991), with a
1500-km swath width, might alleviate the sampling ar-
tifacts noted above. The wider swath also seems useful
in relaxing the isotropic assumption (section 4), which
might not be appropriate near coastlines.
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FIG. 13. The yearly average wind stress curl fields for (a) LO, (b) HI-Sub, (c) HI-Bln, and (d) HI-stat. The contour interval is
1027 N m23. The thicker contour lines represent positive values (including zero).
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APPENDIX A

Series Representations of Battle–Lemarié
Wavelet Functions

An orthonormal basis for the wavelet spaces can be
generated by scaling and translation of a single function
called the wavelet function or the mother wavelet. In
the B-spline multiresolution analysis, a standard wavelet
function is the Battle–Lemarié wavelet function c (x)

that can be generated from the corresponding B-spline
function as an infinite series,

c(x) 5 g b(2x 2 p), (A1)O p
p

which yields the orthonormal wavelet basis {cjm(x)} as

x
j /2c (x) 5 2 c 2 m , (A2)jm 1 2Dj

x
j /25 2 g b 2 2 2m 2 p , (A3)O p 1 2Dp j

and

1
5 g b (x) (A4)O p j11,2m1p

pÏ2
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FIG. 13. (Continued )

for an order-dependent set of coefficients gp. Table A1
lists the coefficients for the third-order polynomial
wavelet (BL-3), used in conjunction with the cubic B-
spline function (5).

Analogously, an orthonormal basis of the approxi-
mation spaces Vj can be generated by the accompanying
Battle–Lemarié scaling function f (x) (or the father
wavelet) as

†f(x) 5 h b(x 2 p) (A5)O p
p

for given (Table A1 for BL-3). This linear transfor-†hp

mation (A5) is invertible; thus, the orthonormal basis
{f jm(x)} spans the same approximation space Vj as the
corresponding B-spline basis. Note the scaling of x by
2 in the right-hand side of (A1) but not in (A5). An
expression closer to (A1) can be obtained by applying

the dilation relation, such as (17) for the cubic poly-
nomial case, to (A5)

f(x) 5 h b(2x 2 p) (A6)O p
p

for given hp (Table A1 for BL-3). The orthonormal ap-
proximation (spline) basis {f jm(x)} can then be obtained
as

1
f (x) 5 h b (x). (A7)Ojm p j11,2m1p

pÏ2

Using (A4) and (A7), the orthonormal expansions in
the approximation and wavelet spaces Vj and Wj can
both be expressed in terms of B-spline expansions in
Vj11 as
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FIG. 14. The 5-yr average surface streamfunction outputs from the quasigeostrophic model forced by the (a) LO, (b) HI-Sub,
(c) HI-Bln, and (d) HI-stat datasets. The contour interval is 2000 m2s21. The solid (dashed)lines represent positive (negative)
values.

1
c f (x) 5 (c ∗ h) b (x) (A8)O Ojm9 jm9 j m j11,m

m9 mÏ2

1
d c (x) 5 (d ∗ g) b (x), (A9)O Ojm9 jm9 j m j11,m

m9 mÏ2

where the asterisk (*) denotes a convolution-like op-
eration defined as (cj ∗h)m [ Sp cjphm22p. These B-spline
expansions are especially useful in synthesis using the
multidimensional wavelet bases.

Although the sets of series coefficients {hp}, { },†hp

and {gp} are infinite, they are all decaying sequences
(in magnitudes). Thus, (A1) and (A6) can be readily
approximated by finite, truncated series. In particular,
the first 11 values from Table A1 have been used for

each of hp and gp to obtain the BL-3 wavelet and scaling
functions depicted in Fig. 4.

APPENDIX B

Variational Computation of B-Spline Coefficients

This section presents a solution for the 2D spline
problem (24). The simpler expressions for the corre-
sponding 1D solution to (9) can be derived straightfor-
wardly (by fixing the dimensional variable y and re-
moving variations indexed by n and q).

Consider solving for the B-spline coefficients {Bmn}
in
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FIG. 14. (Continued )

TABLE 3. Selected quantities computed from the outputs of the model runs driven by the three wind datasets. KE, MKE, and EKE denote,
respectively, the total, mean, and eddy kinetic energy. Subscripts for KE, MKE, and EKE represent model levels from shallow to deep. The
‘‘Gulf Stream transport’’ is computed from the streamfunction off shore from the separation point in the first two levels (above the pycnocline).

LO HI-Sub HI-Bln HI-stat

Gulf Stream transport [Sv]
KE1 [106 (cm s21)2]
KE112 [106 (cm s21)2]
MKE1 [106 (cm s21)2]
EKE1 [106 (cm s21)2]

24.75
1.60
1.96
1.04
0.68

22.22
1.52
1.85
0.95
0.86

22.98
1.52
1.94
0.96
0.93

25.08
1.73
2.13
1.07
0.82

MKE2 [106 (cm s21)2]
EKE2 [106 (cm s21)2]
MKE1/KE1

EKE1/KE1

MKE2/KE112

EKE2/KE112

0.15
0.27

64.7%
42.5%

7.4%
13.9%

0.13
0.30

62.5%
56.8%

7.2%
16.1%

0.14
0.34

63.1%
61.2%

7.4%
17.3%

0.16
0.33

62.1%
47.3%

7.5%
15.5%
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TABLE A1. The B-spline expansion coefficients (truncated sets) for
the third-order Battle–Lemarié scaling and wavelet functions. Note
that the wavelet coefficients gp are shifted by one in index.

p gp11 hp
†hp

0
61
62
63
64
65

2.8917341102
22.0052105784

0.5422790147
20.0120714056

0.1440886662
20.1459124924

1.3092136400
0.6486655983

20.2245146233
20.2018631209

0.1026593789
0.0750921494

1.9697616818
20.6724304853

0.2687042436
20.1185199448

0.0551914644
20.0265203391

66
67
68
69

610
611

0.0030183628
0.0283439282
0.0191492593

20.0224619831
20.0049649034

0.0083303250

20.0484029951
20.0316642402

0.0232635628
0.0143355627

20.0113665505
20.0067610866

0.0129981659
20.0064574918

0.0032398631
20.0016377760

0.0008328361
20.0004255524

612
613
614
615
616
617

0.0038529062
20.0047050427
20.0016375943

0.0021567614
0.0009314220

20.0011244360

0.0056263956
0.0032703371

20.0028133652
20.0016088144

0.0014179888
0.0008010435

0.0002183103
20.0001123697

0.0000580049
20.0000300159

0.0000155658
20.0000080875

618
619
620
621
622
623

20.0004545335
0.0005541175
0.0002408389

20.0002844463
20.0001225537

0.0001440664

20.0007192446
20.0004024699

0.0003667111
0.0002036419

20.0001877710
20.0001036210

0.0000042091
20.0000021939

0.0000011450
20.0000005984

0.0000003130
20.0000001639

624
625
626
627
628
629
630

0.0000639078
20.0000740140
20.0000329938

0.0000379572
0.0000171718

20.0000195819
20.0000089218

0.0000964925
0.0000529703

20.0000497379
20.0000271824

0.0000257055
0.0000139945

20.0000133156

0.0000000859
20.0000000451

0.0000000237
20.0000000124

0.0000000065
20.0000000034

0.0000000018

M N

û(x, y) 5 B b(x 2 m)b(y 2 n), (B1)O O mn
m51 n51

given the measurements of the unknown field u(x, y)
and their observational positions denoted as ũk, x̃k, and
ỹk, respectively, for k 5 1, 2, . . . , K. The resolution
parameter j is assumed given and fixed throughout this
section and hence is dropped for brevity in notations.
Without loss of generality, the origin of the coordinates
(x, y) is selected (e.g., at near the lower-left corner of
the analysis domain) so that the translation parameters
can take on the values of m 5 1, 2, . . . , M and n 5
1, 2, . . . , N. The goal is to find a continuous approx-
imation û(x, y) that minimizes the approximation error

K

d 2S (u) [ w̃ \u(x̃ , ỹ ) 2 ũ \ , (B2)O k k k k
k51

where is the data weight representing relative con-dw̃k

fidence in the data and reflecting measurement noise
variance. (A formulation incorporating correlations
among the measurement noise processes can be obtained
as a straightforward extension.)

Variational approach to spline is especially useful in
dealing with datasets with irregular sampling patterns
(Prenter 1975; Wahba 1990). Typically, a spline ap-
proximation that minimizes a regularized version of the

objective function (B2) is sought. Inoue (1986) has used
a standard regularization term

2 2 2
2] ] ]

10 01 20R (u) [ w̃ u 1 w̃ u 1 w̃ u
2( ( ( ( ( (]x ]y ]x

2 2
2 2] ]

02 111 w̃ u 1 w̃ u (B3)
2( ( ( (]y ]x]y

(the so-called thin plate model), where w̃il are the
weights that constrains the roughness of the solution
field. Given a particular sampling pattern of the data,
methods to choose optimal values for these regulari-
zation weights can be considered (Bauer et al. 1997),
although qualitative judgment of the interpolated field
is still necessary in practice (Inoue 1986). The regular-
ized approximation problem then becomes

` `

min S (u) 1 R (u) dx dy. (B4)E E
u(x,y) 2` 2`

By substituting in the spline approximation (B1) for u(x,
y), this minimization problem becomes finitely vecto-
rized, and the minimizing set of spline coefficients can
be obtained as the solution of the sparse and linear sys-
tem of equations

M N

A B 5 E , p 5 1, 2, . . . , M,O O pqmn mn pq
m51 n51

q 5 1, 2, . . . , N, (B5)

defined by the parameters
10 10 01 01 20 20˜ ˜ ˜A 5 w̃ I 1 w̃ I 1 w̃ Ipqmn p2m,q2n p2m,q2n p2m,q2n

02 02 11 11˜ ˜1 w̃ I 1 w̃ Ip2m,q2n p2m,q2n

K

d1 w̃ b( x̃ 2 p)b( ỹ 2 q)b(x̃ 2 m)b( ỹ 2 n)O k k k k k
k51

and
K

dE 5 w̃ ũ b(x̃ 2 p)b( ỹ 2 q),Opq k k k k
k51

where the precomputable definite integrals areilĨp2m,q2n

given by
` ` i i l l] ] ] ]

ilĨ [ b(x) b(x 1 p 2 m) b(y)p2m,q2n E E i i l l]x ]x ]y ]y
2` `

3 b(y 1 q 2 n) dx dy.

Because of the compact support of the cubic B-spline
function, most Apqmn’s are zero. In particular, the cubic
B-spline (5) has a support of x ∈[22, 2], and a matrix
version of the corresponding (B5) is in fact a nested
septidiagonal system. Inoue (1986) provides a FORTRAN

code to set up this linear system of equations.
In summary, under this scheme, computation of the
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spline coefficients Bjmn amounts to solving the sparse
system of linear equations (B5) for each j, given the
measured and precomputed quantities denoted by sym-
bols with tildes .( ˜)
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