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ABSTRACT

The prediction of sea surface temperature (SST) on the basis of artificial neural networks (ANNs) can be

viewed as complementary to numerical SST predictions, and it has fairly sustained in the recent past.

However, one of its limitations is that such ANNs are site specific and do not provide simultaneous spatial

information similar to the numerical schemes. In this work we have addressed this issue by presenting basin-

scale SST predictions based on the operation of a very large number of individual ANNs simultaneously. The

study area belongs to the basin of the tropical Indian Ocean (TIO) having coordinates of 308N–308S, 308–

1208E. The network training and testing are done on the basis of HadISST data of the past 140 yr. Monthly

SST anomalies are predicted at 3813 nodes in the basin and over nine time steps into the future withmore than

20 million ANN models. The network testing indicated that the prediction skill of ANNs is attractive up to

certain lead times depending on the subbasin. The ANNmodels performed well over both the western Indian

Ocean (WIO) and eastern IndianOcean (EIO) regions up to 5 and 4months lead time, respectively, as judged

by the error statistics of the correlation coefficient and the normalized root-mean-square error. The prediction

skill of the ANNmodels for the TIO region is found to be better than the physics-based coupled atmosphere–

ocean models. It is also observed that the ANNs are capable of providing an advanced warning of the Indian

Ocean dipole as well as abnormal basin warming.

1. Introduction

a. SST and associated weather phenomena

The knowledge of sea surface temperature (SST) is

fundamental to understanding the local and global cli-

mate variability. The changes in SST cause variations in

the characteristics of weather phenomena, such as tropi-

cal monsoons and cyclones. The relationship between

Indian Ocean SST and the Indian summer monsoon has

been known for a long time (Shukla and Misra 1977). In

particular, a high correlation among the warming of

subbasins of the Indian Ocean (IO) and the amount and

spatial spread of the annual rainfall in India has been well

recognized (Yang and Lau 1998; Reddy and Salvekar

2003). The relative difference in SST across certain

western and eastern subbasins gives rise to the events of

the Indian Ocean dipole (IOD), which in turn leads to

floods and droughts in the countries surround the tropical

Indian Ocean (IO). The IOD is an important phenome-

non occurring in the tropical Indian Ocean (TIO) and

consists of alternate cooling and warming of the western

IO (WIO) and eastern IO (EIO) in the late autumn

months. If the heating of the WIO exceeds that of the

EIO, then it becomes a positive IOD (pIOD) event and

vice versa for a negative IOD (nIOD) event. (Saji et al.

1999; Saji and Yamagata 2003; Yamagata et al. 2004; Cai

et al. 2014). The prediction of SST a few months in ad-

vance also enables the prediction of rainfall across the

Indian subcontinent (England et al. 2009; Sahai et al.

2003; Ummenhofer et al. 2009; Reddy and Salvekar

2003). It is reported that the IO, especially theWIO, has a

higherwarming trend than other oceans (Roxy et al. 2014),

and this leads to more frequent IOD events and the re-

sulting flood and draft situations (Rao et al. 2012; Roxy

et al. 2014).

SST plays a significant role in tropical cyclone (TC)

genesis. The impact of a TC can be evaluated by the

power dissipative index (PDI), which is an integral of

the cube of maximum sustained wind speed in a storm

(Emanuel 2005). The TCs occurring in the northern

IO are found to be in good agreement with the PDI,

especially during the premonsoon season (Sebastian

and Behera 2015). It is also observed that the IO SST

strongly controls the TCs occurring in the Pacific region

(Zhan et al. 2014), the Australian basin (Saha andWasimiCorresponding author: M. C. Deo, mcdeo@civil.iitb.ac.in
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2013), the SouthChina Sea (Wang et al. 2013), andKorean

waters (Choi et al. 2015). SST not only aids in TC genesis

but can intensify a TC and change its path (Michaels et al.

2006; Yu and McPhaden 2011). As per Magee et al.

(2015), a TC occurring over the Pacific region can shift

toward the east or west as per the heating or cooling of

EIO SST anomalies.

The SST has a strong influence on marine biodiversity,

and the knowledge of potential changes in the SST is

helpful in locating likely fishing zones (Solanki et al. 2015;

Lee et al. 2005). In the Arabian Sea (AS) and Madagascar

regions, productivity of the yellowfin tuna is stated to be

lower during the positive IOD and vice versa (Lan et al.

2013). The coral reefs, of great importance in the marine

ecosystem, show lower growth rate in the western and

central IO as a result of their intense warming (Roxy

et al. 2014; Abram et al. 2003). The reefs of theMentawai

Islands were tragically harmed in 1997 as a result of a

strong positive IOD that also led to one of the worst

wildfires in Southeast Asia (Abram et al. 2003).

b. SST predictions

The SST provides vital input to coupled ocean–

atmosphere general circulation models (COAGCMs)

in the form of boundary conditions. Suchmodels require

regularly predicted SST fields for model integration.

Accurate SST predictions can help in understanding

rainfall patterns a few months earlier and also can assist

in tracking the cyclone genesis and in planning the ma-

rine ecosystem. In the past SST predictions have been

reported by many researchers using complex physics-

based models, statistical methods, and nonlinear fore-

casting techniques. The physics-based models include

COAGCMs (Saha et al. 2014; Stockdale et al. 2011; Luo

et al. 2005; Francis et al. 2013) and Modular Ocean

Models (MOMs) (Saha et al. 2006; Alves et al. 2003;

Wang et al. 2011; Thompson et al. 2005). They involve a

large number of assumptions and also require large ex-

ogenous data (Francis et al. 2013) for model start up and

time integration. The performance of physics-based

models depends on the data assimilation schemes and

coupling mechanisms used, and further: these models

predict many parameters at the same time, making

accurate tuning for a single parameter of interest a

difficult task.

The statistical techniques of SST prediction include

linear regression (Kug et al. 2004; Tang et al. 2000;

Tripathi et al. 2006), Markov models (Xue and Leetmaa

2000), analog techniques (Agarwal et al. 2001), canoni-

cal correlation analysis (Collins et al. 2004; Tang et al.

2000), and forced red noise process (Jansen et al. 2009).

Gupta and Malmgren (2009) considered several statis-

tical methods and concluded that the SST predictions

made by all were associated with high values of root-

mean-square (rms) errors. The prediction of leading

principle components or empirical orthogonal functions

of SST is an additional and alternate approach (Álvarez

2003; Álvarez et al. 2004; Wu et al. 2006; Neetu et al.

2011; Tang et al. 2000; Collins et al. 2004).

As an alternative to these traditional methods in the

form of artificial neural networks (ANNs), genetic algo-

rithms and support vector regressions have therefore

been adopted. Tripathi et al. (2006) indicated the useful-

ness of ANN-based SST predictions for monthly scales.

Garcia-Gorriz and Garcia-Sanchez (2007) attempted

prediction of SST using ANN and found that the ANN,

apart from providing good accuracy, also captured an

important climatic event of a heat wave in the summer

of year 2003. Aguilar-Martinez and Hsieh (2009) ex-

plored many nonlinear methods for SST predictions

and found the ANN to be more effective than other non-

linear methods from both a modeling and prediction skill

perspective. Mahongo and Deo (2013) investigated the

skill of SST prediction by ANN on monthly and seasonal

scales and found thatANN is attractive for up to a few time

steps into the future. Patil et al. (2016) explored the use of

combined numerical and neural techniques for updating

the SST predictions and showed that such combined

models performed better than the numerical-onlymethods.

In an another study, Patil andDeo (2017) demonstrated the

usefulness of certain wavelet neural networks in daily SST

predictions.

c. Objective and scope

There are many advantages of ANN over traditional

statistical or numerical methods. Basically, ANNs are

model-free estimators in that no fixed mathematical

form is assumed a priori in between the input and out-

put. They are data oriented rather than model oriented

and learn by examples instead of hard definitions; thus,

they can be viewed as close to the real world. Although

the use of ANN has been found to be very attractive in

many recent studies, it suffers from the limitation of

being site specific in nature. In this work we have tried to

address this by developing SST prediction models ap-

plicable for large spatial domains. Such large domain

predictions should help in truly understanding its com-

petence with physics-based models. We have primar-

ily focused on monthly SST predictions in the IO

region over a time horizon of nine months in advance.

We have compared our ANN predictions with leading

COAGCMs and MOMs, and assessed the potential of

ANNs in capturing weather phenomena of extreme

IOD and unusual basin warming. The ANN-based real-

time prediction of IOD events is an additional feature of

this study.
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This paper is structured as follows. Section 2 describes

the reanalysis data used in the training of ANN models.

Section 3 gives details of the ANN modeling, while

section 4 discusses the prediction skill and the seasonal

dependency of the SST anomaly (SSTA) over the TIO

region. Section 5 presents validations of SSTA predictions

with respect to some important oceanic events, including

IOD and basin warming. An attempt to predict real-

time IOD with the help of ANN is described in section 6,

which is followed by a discussion summary in section 7.

2. Data

The Hadley Centre Sea Ice and SST dataset (HadISST)

is used in this study. HadISST is reconstructed from vari-

ous datasets by a two-stage reduced-space optimal in-

terpolationmethod. The sets of data include theMetOffice

Marine Data Bank (MDB), the International Compre-

hensive Ocean–Atmosphere Data Set (ICOADS), the

Global Telecommunication System (GTS,) and the Ad-

vanced Very High Resolution Radiometer (AVHRR)

SST. To improve the quality of data and to capture various

climate and oceanic signals, gridded observations were su-

perimposed onto reconstructed datasets. Being a blend of

diverse SST products, HadISST is however prone to bias,

whichwas adjusted by smootheningwith appropriate filters

for gridded observations and by using in situ observations.

The bias adjustment has produced a uniform variance over

the time scale.Additional details in this regard canbe found

in Rayner et al. (2003). The HadISST data have replaced

earlier Global Sea Ice and SST datasets (GISST), and they

are in the form of monthly SST fields with 18 spatial reso-

lution and run through January 1870 to the present. The

data are updated on the 10th day of every month and are

available for one month prior to the latest month. In this

study we have used data from January 1870 toAugust 2017

(147yr and 8 months), incorporating a total of 1772 ob-

servations at each grid.

Although other types of monthly SST datasets were

available—for example, Extended Reconstructed SST

(ERSST), Centennial In Situ Observation-Based Esti-

mates (COBE), Lamont-Doherty Earth Observatory

(LDEO), and Kaplan SST—they have either coarser

spatial resolution or do not have regular time updates. A

coarse resolution may not capture significant oceanic

and climate signals, while irregular time updates are

more suitable for the purpose of analysis rather than

forecasting (Yasunaka and Hanawa 2011).

3. ANN modeling details

In this study we have used the feed-forward back-

propagation (FFBP) architecture of ANN for predicting

future values of monthly SSTA. Although alternative ar-

chitectures are available in the form of radial basis func-

tions, generalized regression neural network, and wavelet

neural network, FFBP was preferred in view of its simple

configuration and fast processing speed appropriate for

the present problem. A review of ANN applications in

ocean science and engineering by Jain and Deo (2006)

and Deo (2010) indicated that the use of FFBP is com-

mon and also adequate for many applications, although

hybrid networks like the wavelet neural network can also

be of benefit (Patil and Deo 2017). The SSTA data were

formed by subtracting the long-term mean from absolute

SST values. The use of anomalies in place of absolute values

enabled a more appropriate comparison of the predicted

versus target SST. The ANN had three layers, namely, in-

put, hidden, and output, in which the input layer consisted

of neurons representing the sequence of past SST values.

To determine the most appropriate number of past SST

values, 60 different combinations were experimented. Ex-

amples of these combinations are given in the appendix.

The number of neurons in the hidden layer was set by

trials, aimed at getting the best performance in training

as judged by the error statistics mentioned subsequently.

The number of neurons in the output layer was 1 and this

belonged to the predicted value. Although many alter-

native transfer functions are available to train an ANN,

we have used the tan-sigmoid transfer function in the

hidden layer and linear in the output layer as done inmany

other studies (Jain and Deo 2006). The training samples

were divided into subsets of training, cross validation, and

testing in proportions of 75%, 5%, and 20%, respectively.

The SST data belonging to the TIO region were

extracted from the global HadISST information. The

SST values here are specified at each node of 18 3 18

rectangular grids. The total number of nodes was 3813.

At each node the absolute SST was converted into its

anomaly values by subtracting the long-term mean of

30 yr varying from 1961 to 1990. A separate ANNmodel

was set up to predict the SSTA for a given lead time and

such lead times (months) were nine in total. Thus, there

were 3813 3 9 ANNs. Each ANN model was trained

with 60 sets of input combinations (see the appendix).

During training and for every input combination, 10

different random initial conditions (numbers) were used

to reduce the effect of initial conditions. The optimiza-

tion algorithm of Levenberg–Marquardt (LM) was used

for training, as it has the advantage of providing fast and

efficient training (Marquardt 1963; Hagan and Menhaj

1994). The training aim was to minimize the mean

squared error between the realized and the target out-

put. The resulting best model out of those corresponding

to 10 different initial conditions and 60 different input

combinations was retained. Thus, a total of 38133 9 best
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models were retained out of 20.5902 million ANNs, re-

sulting from 3813 nodes, nine lead months, 60 input

combinations, and 10 initial conditions. These details in

the form of a flowchart can be seen in Fig. 1. The details

of ANN functioning along with those of the training

process can be seen in Anderson (1995).

4. Prediction skill of SSTA in TIO

This section describes the prediction skill of SSTA in the

TIO during the testing phase of 27 years, ranging from

January 1990 to December 2016, in terms of the error

statistics of the correlation coefficient (r), normalized

root-mean-square error (NRMSE). Figure 2 shows the

spatial variation of r between the observed and predicted

SSTA when the lead time changed from 1 to 9 months.

It can be seen that the prediction skill (r. 0.5) is good up

to 3 months in most parts of the TIO and becomes worse

after 5 months. This performance is improved compared

with the predictions based on the numerical CFSv2

model, in which case the skill was found to worsen after

3 months by Zhu et al. (2015). Figure 2 indicates that

with the increasing prediction horizon, the SSTA pre-

dictions in the AS region remain attractive until 3 months

versus 5 months in the Bay of Bengal (BoB) region. The

EIO region is associated with poorer skill than the other

TIO regions. An accurate prediction even up to 6 months

into the future can be seen in the WIO region unlike other

regions of the TIO. The southwestern part of the TIO,

eastward from Madagascar, belongs to the highest

prediction skill among the other regions of the TIO with

r. 0.4 even at 9 months lead time. We find that com-

pared to the persistence model–based predictions in

Zhu et al. (2015), our ANN-predicted SSTA is much

better even up to 5 months lead time compared to their

2-months-ahead predictions for which the r value ex-

ceeded 0.4, with the exception of the WIO region.

The WIO and EIO subbasins have importance in the

formation of IOD. Hence, the model skill in these re-

gions was further analyzed. Figure 3 shows the average

prediction skills in WIO and EIO. In the WIO region,

r is more than 0.6 up to 4 months lead and falls there-

after, but it remains above 0.4 until 9 months. A similar

observation can be made for the EIO region, except that

FIG. 1. Flowchart for modeling monthly SSTA using ANN.
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here the skill starts decreasing after 3 months. We have

noted that this prediction skill is better than a few cou-

pled physics-based models, such as SINTEX-F, CFSv1,

the Predictive Ocean Atmosphere Model for Australia

[POAMA 15b (P15b)], and the ECMWF Seasonal

Forecast System 3 (ECSys3) (Shi et al. 2012).

The statistic NRMSE is a ratio of RMSE to the standard

deviation of observed data; hence, when predictions have

the standard deviation exceeding that of the observations,

the limit of predictability is supposed to have been reached.

For both regions NRMSE is below 1.0 up to the 9 months

lead time, but the EIO has a higher NRMSE than theWIO.

This difference can be due to the variations in the SSTA of

both regions in that the WIO has higher persistence than the

EIO. For both regions the average limit of predictability is

up to 9months, but theEIOreached it faster than theWIO.

For assessing the long-range predictability, seasonal

prediction skills were further analyzed. Figure 4 shows

the same for both the western and eastern regions in the

IO responsible for generating IOD episodes. It is seen

that the WIO had better predictability in autumn than in

spring. In autumn r is more than 0.6 even at 6-months-

ahead prediction in the WIO region, whereas in spring r

is limited to 3 months. The opposite seems to be true for

the EIO region, where the spring season corresponded

to a better skill (r . 0.6) up to 7 months lead time than

the 2 months lead time of the autumn season. Thus,

the IOD prediction is better in spring than in autumn.

FIG. 2. Spatial variation of the coefficient of correlation between observed and predicted SSTAs usingANNover TIOas a function of lead time

from (top left) 1 to (bottom right) 9 months. The rectangle shows the region with the best performance, especially at higher lead times.
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Although IOD usually occurs in September–November,

the prediction was good only up to a lead time of 2 months,

unlike the case of early spring months. Despite thatMarch

and October are both warmer months, the ANN perfor-

mance in March was better for both the WIO and EIO

regions (r . 0.6; lead time: 3–6 months), whereas in Oc-

tober it was better only for the WIO region (r . 0 0.6;

lead time: 6 months) and it deteriorated in the EIO

region (r. 0.6; lead time: 2 months). This clearly indicates

that the accuracy of IOD prediction largely depends on the

prediction skill in the EIO region, especially in autumn.

5. Event-based validation

In the preceding sections, we presented different

prediction skills of the SSTA over the TIO region.

FIG. 3. Variation of r and NRMSE with lead time averaged over WIO and EIO regions.

FIG. 4. Variation of r with lead times (months) from December to January during SSTA predictions over (left to right) the WIO, EIO

regions, and IOD index.
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However, this pertained to an overall or average ANN

performance. We subsequently checked the ability of

the trained ANN in capturing the events of extreme

IOD and basinwide warming. This is discussed below.

a. IOD events

We have analyzed the ANN predictions at the time of

two extreme pIOD events, in 1997 and 1994, and one

nIOD event, 1996 (Webster et al. 1999; Yamagata

et al. 2004).

1) 1997 PIOD EVENT

The pIOD that happened in the year 1997 was very

strong and in this event not only the SSTA in the WIO

was more than that in the EIO but both regions had

SSTA exceeding 1.58C. This strong IOD had profoundly

impacted the local climate. The worst wildfires of

Southeast Asia, the destruction of coral reefs on the

Mentawai Islands in late 1997, and the damage to the

ecosystem in various parts of the TIO (WIO, central IO,

Sumatra, and Indonesia) have been attributed to it

(Abram et al. 2003). Figure 5 shows the observed SSTA

during September–November and their comparison

with 1-month-ahead predictions of SSTA.

It may be seen that the predicted SSTA had captured

the warm and cold fronts (08C contour) well. Apart from

this a warm band starting from the AS, extending to the

central part from the WIO, and ending in the south-

eastern part was also fairly predicted fairly. A warm

(cold) bias is seen in the WIO and EIO. The EIO has a

higher bias compared to the WIO. Further, the BoB

region was supposed to be cool during pIOD, but in 1997

it became unusually warm. Such unusual warming of the

BoBwas also fairly represented in the ANN predictions.

2) 1994 PIOD EVENT

Another extreme pIOD was observed in 1994 in

which both the WIO and EIO regions exceeded SSTA

beyond118 and218C, respectively. This event caused an

unusually hot and dry summer in East Asia (Kawamura

et al. 1998; Guan and Yamagata 2003). Figure 6 shows a

comparison of a 1-month-ahead prediction and observa-

tion for the 1994 pIOD.

A similar nature in predictions (as in the 1997 pIOD)

resulted in the pIOD of 1994. Moreover, this 1994 pIOD

has shown better predictability than the earlier 1997

pIOD, if we look at the 08C contour. In case of the 1994

pIOD, the SSTA predictions of November were better

than those of September and October.

3) 1996 NIOD EVENT

To understand the difference between the pIOD and

nIOD cases, we have considered the nIOD that oc-

curred in 1996. Figure 7 shows the observed nIOD ver-

sus corresponding 1-month-ahead predictions. In 1996

nIOD some part of the WIO at the 08C contour was not

represented properly. Except for this, both the warm

and cold regions were well simulated in the nIOD.

FIG. 5. (top) Observed SSTA vs (bottom) ANN-predicted SSTA for a 1-month lead time during (left to right) September, October, and

November of the extreme pIOD of 1997. Within each panel, the left square and right rectangles focus on the WIO and EIO regions, re-

spectively; the upper square with the open top focuses on an unusual warming in the BoB region. The thick black contour is the 08C SSTA.
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In both the pIOD and nIOD predictions, bias was

observed in both colder and warmer regions, but their

separation boundaries were well followed, unlike the

case with the Modular Ocean Model as in Thompson

et al. (2005), where intrusion of the colder region in the

WIO (or EIO) for pIOD (or nIOD) was observed along

with a higher bias than the ANN predictions. Com-

paring the pIOD and nIOD predictions, the pIOD had

shown more bias than the nIOD. Also, the ANN pre-

diction of the relatively milder event of the 1994 pIOD

was more accurate than that of the 1997 pIOD.

b. Abnormal basinwide warming in TIO

The TIO basin was observed to be abnormally warm

during years 2000 and 2008. This warming had severely

affected the Indian summer monsoon in which the

FIG. 6. As in Fig. 5 but during the extreme pIOD of 1994 (and without the upper square).

FIG. 7. As in Fig. 6 but during the extreme nIOD of 1996.
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Indian subcontinent experienced a suppressed rainfall,

especially in the central part of India, and enhanced

rainfall over the equatorial and southern tropical IO

(Krishnan et al. 2003; Rao et al. 2010). Figure 8 shows

the averaged SSTA during June–September (JJAS) of

2000 and 2008 over the TIO and its comparison with

predicted JJAS SSTA.

In the year 2000, tropical and southeastern parts were

warmer than other parts and the southeastern one was the

warmest with the SSTA moving up to 0.758C. A normal

coolingwas observed in theAS, theBoB, theEIO, and the

southwestern part of the TIO. Another thing to notice

was a very cold spot (approximately less than20.758C) in

the western AS above the Somali coast. Predictions in

JJAS of 2000 simulated the 08C SSTA contour well in the

TIO. Colder regions (08 to 20.58C) of the southeastern

part of the AS and BoB were also captured very well.

Also, the cold spot of the western AS and a small part in

the EIO near the coast of Sumatra were well located along

with matching of the magnitudes. Only the southeastern

warmingwas somewhat underestimated in the predictions.

The colder regions of 2008 were smaller than those

of 2000, and the warming of the tropical and south-

eastern parts was enhanced. This enhancedwarming was

more than 18C. In 2008, these colder regions were well

captured like in the year 2000. Similarly, the warmer

zones of tropical and southeastern parts have shown

underestimation. In general, the basinwide warming of

2000 was better modeled than that of 2008.

c. Abrupt Red Sea warming

It is known that the Indian Ocean is undergoing con-

tinuous warming with the changing climate (Rao et al.

2012; Cheng et al. 2017). Such warming was also noticed in

the Red Sea. The Red Sea has a rich marine ecosystem

with a high amount of biodiversity and coral reefs. Because

of the warming of the Red Sea, the growth of coral reefs

and other marine life has slowed down by 30% in the re-

cent past (Cantin et al. 2010). Suchwarming on the order of

0.78C is experienced after the year 1994 (Raitsos et al. 2011).

In Fig. 9 progression of the warming is shown from

1990 to 2016 for the two cases: observed andmodeled. In

early 1990 the sea region was cooler, but from 1994 it

started warming and continued with 2010 as the warmest

year during which the SSTA was more than 18C

throughout the year. The right column of Fig. 9 shows

the ANN-based SSTA predictions, which also depicts a

similar progression pattern of warming from 1990 to

2016. The peak year of 2010 was also noticed clearly in

these predictions. The annual average SSTA (observed

FIG. 8. Seasonally averaged (left) SSTA observations vs (right) predicted SSTA for a 1-month lead in JAS in

(top) 2000 and (bottom) 2008 over the TIO. Within each panel the left (right) rectangle highlights the northern

Somali (west coast of Sumatra) region.
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as well as predicted) during this peak warming year of

2010 is shown separately in Fig. 10. Most of the warming

occurred in the northern part of the Red Sea.

6. Real-time prediction of IOD

We have also attempted a real-time forecast of the

IOD events. As the HadISST data are updated at every

10th day of the preceding month, a complete SSTA for

the past month from the given current month was not

available. To fill this gap we used the National Oceanic

and Atmospheric Administration (NOAA), version 2

(v2), reanalysis dataset on the monthly scale. These data

also consist of an amalgamation of various datasets,

optimally interpolated to spatial grids of 18 3 18.

Apart from filling the gap, the NOAA data were also

used to carry out a correlation test across the NOAA, v2,

and HadISST data for a period of 32yr, varying from 1982

to 2016, over the complete TIO region. A correlation of

more than 0.9 was observed (results not shown here) across

FIG. 9. Evolution of the intraseasonal warming over the Red Sea from 1990 to 2016. (left) Spatial average of

observed SSTA. (right) As in the left panel, but for the predicted SSTA for a 1-month lead time.
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these datasets in almost every part of the TIO except for a

small region in the EIO. This indicated an appropriateness

of the NOAA data in the gap filling of the HadISST data.

Trained ANN models for the WIO and EIO regions

were fed with the abovementioned data, and predictions

of SSTA were made for five time steps (months). Such

predicted WIO and EIO SSTA indices were subtracted

to get real-time IOD forecasts. Figure 11 shows an IOD

forecast for a prediction horizon of 5months, varying from

November 2017 to March 2018. As the HadISST data

were available until August 2017, the latest NOAA data

for September and October 2017 have been used for in

filling. We also compared our real-time ANN predictions

with the IOD forecasts issued by the Bureau of Meteo-

rology using POAMA. POAMA is a coupled model

and has the Bureau of Meteorology Research Centre at-

mospheric model, version 3.0 (BMRC), as atmospheric

component and Australian Community Ocean Model

version 2.0 (ACOM2) as the ocean component. Figure 12

shows the POAMA’s real-time forecast from November

2017 to July 2018 and indicates that the ANN predictions

are comparablewith the POAMA-based real-time forecast.

7. Discussion and conclusions

In this study we developed ANN-based models to

predict monthly SSTA over a large spatial domain

rather than at specific sites as in earlier studies with

ANNs. The prediction horizon was of 9 months. The

database used for this purpose was the HadISST re-

analysis data available for more than 140 yr from

January 1870 onward. The performance of such models

was evaluated over the entire TIO region. The pre-

diction skill for the lead time of one month was found to

be very attractive with the correlation coefficient r ex-

ceeding 0.8 for most of the TIO region. Although the

accuracy decreased for the higher 2 and 3 months lead

time, still the r value was more than 0.6 for the eastern

AS, BoB, and WIO regions and for the southern (128–

248S) TIO region. It was found that the prediction

skill of the developed ANNs was in general good over

a lead time of 4 months. The ANN models performed

well over the WIO and EIO regions up to 5 months and

4 months, respectively, as judged by the error statistics

of r and NRMSE. Such ANN prediction skills were seen

to be better than some physics-based and coupled

models applied over the TIO region. The relative un-

derperformance of the latter models could be due to the

absence of any appropriate data assimilation scheme

used in corresponding predictions. The correlation skills

of ANN predictions were comparable with those of the

CFSv2 coupled model. The seasonal predictive skills of

ANNs were found to be more attractive in the WIO

region than the same in the EIO region. The EIO region

exhibited a less persistent SSTA time history and also

showed rapid changes during the monsoon season

FIG. 10. Spatial variation of (left) observed SSTA vs (right) predicted SSTAduring the warmest year, 2010, over the

Red Sea. Note: Both observed and predicted SSTA were averaged over all months in the year 2010.
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leading to its underperformance in the EIO region. The

skill ofANNs to predict the IODevents was better in the

spring season than in late autumn; the skill of IOD

predictions during the autumn season was affected as

result of the moderate skill of SSTA prediction in the

EIO region for autumn. This suggests that the IOD

prediction skill was mainly controlled by the SSTA

prediction skill in the EIO region during autumn.

The ANN predictions had shown good response in

capturing prominent oceanic events. Both pIOD and

nIOD were simulated satisfactorily. The less strong

event of 1994 pIOD was more prominently captured

than the 1997 pIOD event.

Similar results were seen for the basin-scale prediction

of the IOD events in which the warming in the year

2000 was well predicted than the more severe warming

of 2008. Further, the 1996 nIOD was better predicted

than both pIOD events. Abrupt warming of the Red Sea

was also reflected reasonably in the ANN predictions.

In some regions a bias (cold or warm) was observed in

the ANN-predicted SSTA, which could be due to high

data nonlinearity for a givenANN architecture to model.

FIG. 11. Forecasts of the IOD index in real time usingANNmodels developed withHadISST

data for November 2017 toMarch 2018. The horizontal lines indicate the limits for positive and

negative IOD index. If the given index is beyond the horizontal dashed lines, then it is only

recognized as a positive/negative IOD index.

FIG. 12. Real-time IOD forecasts by the POAMA coupled model. IOD forecasts from 30 different ensembles (gray thin lines) and ensemble

mean IOD forecasts (gray thick line for ensemble mean and black for past analyses; adapted from Australian Bureau of Meteorology 2017).
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However, such bias was also seen in earlier coupled

models (Huang et al. 2007; Xue et al. 2013; Zhu et al.

2015). In the future, bias removal schemes can be adopted

to address this issue. Similarly, the use of alternative

networks can also help in improving the network per-

formance (Patil et al. 2016; Patil and Deo 2017).

It is reported that extreme IOD events might happen

more frequently in the future (Cai et al. 2014). The pIOD

andnIODevents can cause increasing floods and droughts,

respectively, in India as well as in the countries surround-

ing the TIO. The pIOD and nIOD are, respectively, as-

sociatedwith the rise and fall of tropical cyclone frequency.

Singh (2008) reported that such a heightened frequency of

the tropical cyclones in the postmonsoon season had a lag

of 2 months with the nIOD. Thus, the IOD prediction

discussed in this work can help not only in forewarning

flood or droughts but also the tropical cyclones in the

countries surround the TIO region. Similarly, the pre-

diction of the IOD along with that of unusual basin

warming can help in issuing an advisory for fish

landing patterns (Lan et al. 2013), bleaching of coral

reefs, and wildfires (Abram et al. 2003).

In the exercise of real-time prediction of IOD events

during the five months of November 2017–March 2018,

it was found that the ANN predictions were comparable

to IOD predictions from POAMA. However, there

was a slight decreasing trend in the predicted real-time

IOD that was contrary to POAMA. This inconsis-

tency may have arisen from adding the latest data from

NOAA, v2, to the HadISST data.

In summary we can say that ANN is an attractive and

workable alternative to complex physics-based coupled

models that additionally require a large amount of tuning

effort. The ANN-based models can be postprocessed

with appropriate bias correction procedures to en-

hance their performance (Chen et al. 2000; Chisanga

et al. 2017).
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APPENDIX

Input Combinations for Modeling Monthly SSTA

Various combinations of preceding values in a given

SSTA time series were selected as input to the ANNs.

Table A1 shows some examples.
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