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Background
Spatially resolved transcriptomic studies are enabled by various recently developed 
spatial transcriptomic technologies that perform gene expression profiling with spa-
tial localization information on tissues [1–3]. These technologies are based on either 
high-throughput sequencing or single molecular fluorescent in  situ hybridization 
(smFISH) [4] and are achieving increasingly high spatial resolution. For example, 
among the sequencing-based technologies, the old Spatial Transcriptomics (ST) tech-
nology measures gene expression on multiple capture sites known as spots, each of 
which has a diameter of 100 μm and captures mRNA from a neighborhood of likely 
10–40 single cells [5]. The 10x Visium technology improves upon ST technology to 
yield a spatial resolution of 55 μm with each measured spot assaying 1–10 cells. Slide-
seq [6] and the subsequent Slide-seqV2 [7] reach a spatial resolution of 10 μm, provid-
ing near-cellular observation with each measured spot containing 1–3 cells. HDST [8] 
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and Seq-Scope [9] further achieve a spatial resolution of 2 and 0.6 μm, respectively, 
allowing for the measurement of transcripts at a sub-cellular resolution. Moreover, 
some recent sequencing-based technologies, such as STARmap [10] and FISSEQ [11], 
are based on in situ sequencing (ISS) and can directly measure gene expression at the 
single-cell resolution. The upcoming 10x Visium HD technology will also extend the 
commercial 10x Visium to single-cell spatial resolution. Besides the sequencing-based 
technologies, the smFISH-based technologies, such as MERFISH [12], seqFISH [13], 
seqFISH+ [14], and osmFISH [15], can also obtain gene expression measurements 
directly at single-cell resolution.

The abundant availability of spatial transcriptomic datasets with single-cell or 
approximate single-cell resolution provides rich information for comprehensive 
characterization of the spatial transcriptomic landscape of complex tissues at mul-
tiple anatomic scales. Specifically, at the single-cell scale, single-cell resolution spa-
tial transcriptomics enables clustering of cells into distinct cell types [10, 16]. Cell 
type clustering allows for the characterization of the spatial distribution of distinct 
cell types, facilitating the investigation of cell-cell interactions across spatial loca-
tions [17, 18] and the detection of genes with spatial expression patterns across 
cells [19–22]. At the tissue domain scale, single-cell resolution spatial transcriptom-
ics contains crucial information for detecting distinct spatial domains on the tissue 
[23–25]. Spatial domain detection allows for the transcriptomic characterization of 
tissue structures, facilitating the accurate assessment of cell type composition across 
tissue locations and the evaluation of the transcriptomic profiles of tissue microenvi-
ronments [23, 26]. These two key analytic tasks at the two distinct anatomic scales—
cell type clustering at the single-cell scale and spatial domain detection at the tissue 
domain scale—are enabled by multiple recently developed computational methods. 
Specifically, for cell type clustering, existing analysis of single-cell resolution spa-
tial transcriptomics primarily relies on clustering methods developed for single-cell 
RNA sequencing (scRNA-seq) datasets. For example, Seurat [27] and SC3 [28] are 
two common cell type clustering approaches that enjoy robust performance across 
a range of scRNA-seq settings [29, 30] and that have been applied to analyze single-
cell resolution spatial transcriptomics [9]. In addition, tailored cell type clustering 
methods for single-cell resolution spatial transcriptomics are also being developed. 
For example, FICT [31] is a recent method that can combine both gene expression 
and cell localization information available in spatial transcriptomics for enhanced 
cell type clustering. For spatial domain detection, common analytic methods include 
the hidden Markov random field (HMRF) [23], BayesSpace [25], and SpaGCN [24], 
to name a few. These methods allocate tissue locations into distinct spatial domains 
while properly accounting for the spatial correlation among locations. For example, 
both HMRF and BayesSpace rely on a Potts model to impose a spatial dependency 
structure among neighboring tissue locations, while SpaGCN relies on a graph convo-
lutional network to model such spatial dependency. Overall, these recently developed 
computational methods facilitate cell type clustering and spatial domain detection 
in spatial transcriptomics, allowing us to characterize the unique cell type composi-
tion underneath each spatial domain and investigate the cellular and transcriptomic 
mechanisms that underlie tissue function and malfunction [32–34].
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Despite the importance of cell type clustering and spatial domain detection, exist-
ing methods for these analytic tasks have two important limitations. First, all existing 
methods carry out only one of the two analytic tasks, effectively rendering the analysis 
at the two different anatomic scales disconnected from each other. However, cell type 
clustering and spatial domain detection are inherently interconnected analytic tasks, 
with the results obtained at one analysis potentially facilitating the other. In particular, 
knowing the cell type assignments can help better characterize the cell type composition 
across tissue locations, thus facilitating the detection of spatial domains characterized 
by distinct cell type compositions. Conversely, knowing the allocation of spatial domains 
provides crucial information on how cells and cell types are segregated across spatial 
locations, thus facilitating cell type inference and clustering. Second, all existing meth-
ods have focused on analyzing spatial transcriptomic data collected from a single tissue 
section. However, spatial transcriptomic studies often collect multiple adjacent sections 
from the same tissue or collect tissue samples from multiple individuals. Different sec-
tions from the same or similar tissues may contain a similar set of spatial domains and a 
similar composition of cell types. Consequently, modeling multiple tissue sections/sam-
ples together can borrow information across samples to potentially enhance the perfor-
mance of both cell type clustering and spatial domain detection for single-cell spatial 
transcriptomics.

Here, we present a new computational method, BASS (Bayesian Analytics for Spatial 
Segmentation), for multi-scale and multi-sample analysis that overcomes the above two 
limitations. BASS performs multi-scale transcriptomic analyses in the form of joint cell 
type clustering and spatial domain detection, with the two analytic tasks carried out 
simultaneously within a Bayesian hierarchical modeling framework. For both analyses, 
BASS properly accounts for the spatial correlation structure and seamlessly integrates 
gene expression information with spatial localization information to improve their per-
formance. In addition, BASS is capable of multi-sample analysis that jointly models mul-
tiple tissue sections/samples, facilitating the integration of spatial transcriptomic data 
across tissue samples. Note that the multi-section analysis of BASS only requires the 
spatial transcriptomic data to contain multiple tissue sections. For spatial transcriptomic 
data that contain only one tissue section, one can directly apply the single-section analy-
sis of BASS. We illustrate the benefits of BASS through extensive simulations and in-
depth analyses of three spatial transcriptomic datasets that include two with single-cell 
resolution and one from the 10x Visium platform.

Results
Simulation results

A method schematic of BASS is shown in Fig.  1, with details provided in the “Meth-
ods” section. We conducted extensive simulations to evaluate the performance of BASS 
and compared it with existing approaches. Simulation details are provided in “Methods”. 
Briefly, for single tissue section simulations, we obtained the spatial location information 
for cells from a tissue section of the STARmap data and allocated them into four distinct 
cortical layers. We assumed that each spatial domain consisted of multiple cell types, and 
we set the number of cell types to be four. We examined four different scenarios (I–IV) 
by varying the composition of cell types in different spatial domains and simulated gene 
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expression for each cell using the splatter package. We explored nine simulation settings 
for each scenario by varying the number of genes, the proportion of genes that were dif-
ferentially expressed (DE) in each cell type versus the others, and the DE gene strength. 
We applied BASS, HMRF, BayesSpace, and SpaGCN for spatial domain detection. 
Because HMRF requires users to input a value for its spatial parameter β, we explored a 
range of β values and display HMRF for three different βs that correspond to the worst, 
median, and best performance. We refer to the HMRF with the best performance as the 
oracle version, as the spatial parameter β is selected based on the true spatial domains 
that are assumed to be unknown for all other methods. In addition, we applied BASS, 
Seurat, SC3, and FICT for cell type clustering. Because only BASS can perform both cell 
type clustering and spatial domain detection, we also applied BASS to estimate the cell 
type compositions across spatial domains. Besides single tissue section simulations, we 
generated additional tissue sections by introducing a moderate amount of shift on the 
spatial domain boundaries between the four cortical layers (Additional file 1: Fig. S2). 
We then evaluated the performance of BASS for the aforementioned tasks in the inte-
grative analysis of multiple tissue sections. In addition, we examined the performance of 
Seurat and SC3 for cell type clustering in the multiple tissue section analysis. Besides the 
main simulations described above, we also explored various other factors including the 
specified number of cell types/spatial domains, rare cell types, and a random exclusion 
of genes, on the performance of different methods.

Main simulations

First, we evaluated the performance of different methods for spatial domain detection 
on a single tissue section. In the simulations, we found that BASS outperformed HMRF, 
BayesSpace, and SpaGCN across all scenarios (Fig.  2A–D). Specifically, the perfor-
mance of BASS was generally followed by the oracle version of HMRF, SpaGCN, and 

Fig. 1  Workflow of BASS. BASS performs multi-scale and multi-sample analysis for accurate cell type 
clustering and spatial domain detection in spatial transcriptomics. BASS takes input of the gene expression 
matrix and spatial location information from multiple tissue sections and models both information in a 
hierarchical Bayesian framework. In the analysis, BASS treats the cell type label (c) and the spatial domain 
label (z) for each cell on the tissue as latent/hidden variables and infers them through an efficient inference 
algorithm. After analysis, BASS provides the inferred cell type cluster labels, the spatial domain labels, and the 
cell type proportions inside each spatial domain as outputs
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BayesSpace. The performance of BayesSpace was relatively poor, presumably because 
BayesSpace was developed for analyzing the ordered lattice structure of spots from ST 
and 10x Visium platforms and is likely not well suited to analyze data with relatively 
unordered cell locations. The advantage of BASS was especially apparent when the spa-
tial domains consisted of multiple cell types (Fig.  2C,D), highlighting the benefits of 
performing multi-scale analyses and incorporating cell type information for detecting 
spatial domains. In addition, the advantage of BASS was also more apparent in the real-
istic scenario where there were multiple dominant cell types in each spatial domain as 
compared to the simplistic scenario where one cell type dominated each domain. For 
example, in scenario I where one cell type completely dominated one spatial domain, 
BASS, the oracle version of HMRF, BayesSpace, and SpaGCN achieved a median ARI of 
0.99, 0.97, 0.76, and 0.95 (Fig. 2A). In contrast, in scenario IV where the cell types in each 
spatial domain had equal compositions, BASS achieved a median ARI of 0.90 while the 

Fig. 2  Comparison of different methods for spatial domain detection and cell type clustering in simulations 
on a single tissue section. Boxplots of ARI show the accuracy of different methods for (A–D) spatial domain 
detection and (E–H) cell type clustering. Compared methods for spatial domain detection include BASS, 
HMRF, BayesSpace, and SpaGCN. For HMRF, a list of the spatial parameter βs ranging from 0 to 50 at 
increments of 2 were examined, and the three β values that corresponded to the worst, median, and best 
performance are displayed. Compared methods for cell type clustering include BASS, Seurat, SC3, and FICT. 
I–L Boxplots show the estimated cell type proportions in each spatial domain across simulation replicates, 
where πcr indicates the proportion of cell type c in the spatial domain r. The red dashed lines indicate the 
true proportions. Simulations were conducted under Scenario I (A, E, I), Scenario II (B, F, J), Scenario III (C, G, 
K), or Scenario IV (D, H, L), with the simulation parameters set as the baseline setting: the number of genes 
(nGenes) = 200, the proportion of genes that were differentially expressed in each cell type versus the others 
(de. prob) = 0.2, and the DE gene strength (de. facloc) = 1.1
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oracle version of HMRF, BayesSpace, and SpaGCN only achieved a median ARI of 0.15, 
0.09, and 0.11 (Fig. 2D). In addition, we found that the β value for the oracle version of 
HMRF differed, sometimes quite substantially, under different simulation settings. For 
example, the optimal value of β ranged from 8 to 50 in scenario I (Additional file 1: Fig. 
S3) and ranged from 36 to 50 in scenario III (Additional file 1: Fig. S5). Similarly, the β 
estimates from BASS varied both within and across different simulation settings (Addi-
tional file 1: Fig. S14). In scenario I, the β estimates were larger than those in the other 
scenarios, which was consistent with the relatively high spatial correlation in scenario I 
induced by homogenous cell type composition in each spatial domain as compared to 
the relatively low spatial correlation in the other scenarios due to the heterogenous cell 
type compositions in each domain. Note that while both HMRF and BASS use the Potts 
model that contains the interaction parameter β, the β parameter is not directly compa-
rable between the two methods due to the additional hierarchical modeling components 
introduced in BASS. These results suggest that the optimal β is highly data-dependent 
and highlight the importance of estimating the optimal β in each data set as is done in 
BASS. As expected, the performance of all methods increased as the number of genes 
increased, as the DE gene strength increased, and as the proportion of genes that were 
differentially expressed in each cell type versus the others increased, though the rela-
tive performance of different methods remained largely similar (Additional file 1: Figs. 
S3-S6). Importantly, BASS is relatively robust with respect to the DE gene strength and 
the proportion of DE genes, both of which have substantial impact on the performance 
of HMRF, BayesSpace, and SpaGCN. For example, in scenario II, when DE gene strength 
(determined by the de. facloc parameter) reduced from 1.4 to 0.5, the median ARI of the 
oracle version of HMRF, BayesSpace, and SpaGCN decreased from 0.92, 0.53, and 0.85 
to 0.60, 0.02, and 0.10, respectively (Additional file 1: Fig. S4E vs Fig. S4H). In contrast, 
the median ARI of BASS remained high and reduced only from 0.94 to 0.90 (Additional 
file 1: Fig. S4E vs Fig. S4H). These results highlight the accurate performance of BASS on 
detecting spatial domains.

Next, we evaluated the performance of different methods for cell type clustering on a 
single tissue section. In the simulations, we found that BASS outperformed SC3, Seurat, 
and FICT across all scenarios (Fig. 2E–H). The advantage of BASS over the other three 
methods was especially apparent when cell types displayed spatial patterns on the tis-
sue. For example, in scenario I where cell types displayed strong spatial patterns, BASS 
achieved a median ARI of 0.99 across simulation replicates, while the median ARI from 
SC3, Seurat, and FICT were 0.88, 0.87, and 0.60, respectively (Fig. 2E). In contrast, in 
scenario IV where cell types displayed weak spatial patterns, BASS achieved a median 
ARI of 0.95, while the median ARI from SC3, Seurat, and FICT were 0.92, 0.87, and 0.61, 
respectively (Fig. 2H). The higher performance gain by BASS in the presence of spatial 
patterns highlights the benefits of performing multi-scale analyses and incorporating 
spatial domain information for clustering cell types. The performance gain by BASS was 
especially apparent in the challenging setting where the degree of separability between 
cell types was relatively small, as reflected by a relatively small DE gene strength (Addi-
tional file 1: Fig. S7E vs Fig. S10E), small number of genes (Additional file 1: Fig. S7A 
vs Fig. S10A), or small proportion of DE genes (Additional file 1: Fig. S7I vs Fig. S10I). 
Surprisingly, FICT did not perform as well as SC3 and Seurat, and its performance 
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remained similar regardless of the strength of the spatial correlation pattern of the cell 
types (Fig.  2E–H). The low performance of FICT is likely due to the large number of 
parameters employed in the model, which reduces the degree of freedom and subse-
quently clustering accuracy, especially when the number of cells in the data is small or 
when each cell type consists of a heterogeneous cell population. Indeed, FICT could out-
perform SC3 and Seurat when the number of genes, proportion of DE genes, or DE gene 
strength was relatively large (Additional file 1: Fig. S9B-D, H, K). As expected, the perfor-
mance of all methods increased with increasing number of genes, DE gene strength, and 
proportion of DE genes, though the relative performance of different methods remained 
largely similar except for FICT as described above (Additional file 1: Figs. S7-S10). Com-
paring SC3 and Seurat, we found that SC3 always outperformed Seurat (Fig. 2E–H and 
Additional file 1: Figs. S7-S10), consistent with earlier observations [28]. Overall, BASS is 
effective for cell type clustering, and, when paired with its effectiveness in spatial domain 
detection, can lead to accurate cell type composition estimation across spatial domains 
(Fig. 2I–L and Additional file 1: Figs. S11-S13).

Finally, we evaluated the performance of BASS on integrative analysis of multiple tis-
sue sections. Across all simulation scenarios, we found that the performance of BASS 
for all three analytic tasks, including spatial domain detection, cell type clustering, and 
estimation of cell type compositions across domains, increased with the increasing num-
ber of analyzed tissue sections (Fig. 3 and Additional file 1: Fig. S15). For example, the 
performance gain of BASS on using five tissue sections versus a single section was 3, 6, 
and 55% for the three analytic tasks, respectively in scenario III (Additional file 1: Fig. 
S15). For cell type clustering, the performance of Seurat also increased with increasing 
number of analyzed tissue sections, while the performance of SC3 increased first, but 
then decreased with increasing number of tissue sections (Fig. 3B). The dependence of 
SC3 on the number of tissue sections is expected as SC3 performs an initial clustering 
on a fixed number of randomly selected cells (= 5000), which likely imposes a potential 
upper limit for its performance in large datasets [35]. Similar to the single tissue sec-
tion analysis, the advantage of BASS over the other methods on cell type clustering was 
especially apparent when cell types displayed spatial patterns on the tissue (Fig. 3B and 
Additional file 1: Fig. S15B).

Influence of the specified number of cell types/spatial domains

First, we evaluated the influence of the specified number of cell types on cell type clus-
tering. As expected, when the number of cell types was under-specified, all methods 
aggregated cells of multiple types into the same clusters and produced lower ARIs than 
before (median ARIs = 0.36, 0.41, 0.31, and 0.37 for BASS, SC3, Seurat, and FICT; Addi-
tional file 1: Fig. S16A-C). On the other hand, when the number of cell types was over-
specified, we found that BASS could still accurately assign cells of the same type into 
the same cluster while keeping the redundant clusters to be of minimal sizes, leading to 
only a small ARI loss (Additional file 1: Fig. S16A, C). For example, when the number of 
cell types was specified to be 10 (truth = 4), the median ARI of cell type clustering from 
BASS was 0.90, which represented only a small reduction compared to the median ARI 
of 0.95 when the number of cell types was specified to be the truth (4) (Additional file 1: 
Fig. S16A). In this case, the top 4 clusters with the largest number of cells (Clusters 1–4) 
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corresponded to the 4 cell types, while the remaining 6 clusters were small and consisted 
of only an average of 6% of the total cell population (Additional file 1: Fig. S16C). In con-
trast, SC3, Seurat, and FICT segregated cells of the same type into multiple clusters and 
produced much poorer ARIs than before. Specifically, in the same example above, the 
median ARIs from SC3, Seurat, and FICT were 0.53, 0.53, and 0.45, respectively, which 
were much worse compared to the median ARIs of 0.91, 0.87, and 0.61 when the number 
of cell types was specified to be the truth (4). For these three methods, the 6 clusters that 
did not clearly correspond to the true cell types were large and consisted of an average of 
30, 41, and 54% of cells, respectively (Additional file 1: Fig. S16C).

Next, we evaluated the influence of the specified number of spatial domains on spatial 
domain detection. As expected, when the number of spatial domains was under-speci-
fied, all methods tended to merge different spatial domains into large ones and produced 
poorer ARIs than before (median ARIs = 0.52, 0.11, 0.03, and 0.14 for BASS, HMRF, 
BayesSpace, and SpaGCN; Additional file  1: Fig. S17A). On the other hand, when the 
number of spatial domains was over-specified, similarly to what we have observed in the 

Fig. 3  Comparison of different methods for spatial domain detection and cell type clustering in simulations 
with multiple tissue sections. A Boxplots of ARI show the accuracy of BASS for spatial domain detection 
(y-axis) in the presence of 1, 2, 5, or 10 tissue sections (x-axis). B Line plots display the median ARI by different 
methods for cell type clustering across 50 simulation replicates (y-axis) in the presence of 1, 2, 5, or 10 tissue 
sections (x-axis). Compared methods for cell type clustering include BASS, Seurat, and SC3. C Barplots 
show the median RMSE between the estimated cell type compositions and the true compositions across 
50 simulation replicates (y-axis) in the presence of 1, 2, 5, or 10 tissue sections (x-axis). Simulations were 
conducted under Scenario I, Scenario II, Scenario III, and Scenario IV, with the simulation parameters set as 
the baseline setting: the number of genes (nGenes) = 200, the proportion of genes that were differentially 
expressed in each cell type versus the others (de. prob) = 0.2, and the DE strength (de. facloc) = 1.1
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cell type clustering, BASS could still accurately detect the 4 spatial domains while keep-
ing the redundant domains to be small and contained only a small proportion of cells, 
resulting in only a small reduction in ARI (Additional file 1: Fig. S17A-C). HMRF was 
also relatively robust to the over-specification of the number of spatial domains, presum-
ably because we explored a list of spatial parameters β in HMRF and chose the oracle 
version of HMRF that likely over-fitted the data. In contrast, BayesSpace and SpaGCN 
separated one tissue domain into multiple domains, leading to a substantial loss in ARI 
(Additional file 1: Fig. S17C).

Finally, we evaluated the influence of the specified number of cell types on spa-
tial domain detection in BASS (Additional file 1: Fig. S16D-F) and the influence of the 
specified number of spatial domains on cell type clustering in BASS (Additional file 1: 
Fig. S17D-F). We found that a mis-specified number of spatial domains, regardless of 
whether it was under-specified or over-specified, did not have much influence on the 
performance of cell type clustering. An over-specified number of cell type clusters did 
not influence the performance of spatial domains either. Only an under-specified num-
ber of cell type clusters reduced the performance of spatial domain detection, which is 
presumably due to the relatively poor cell type clustering performance there. Consist-
ent results are obtained using the normalized mutual information (NMI) as evaluation 
criterion, which accounts for the difference between the estimated number of clusters/
domains and the true number (Additional file 1: Fig. S18).

Influence of rare cell types

We evaluated the performance of all methods in the presence of rare cell types in the 
simulation. We found that the performance of all methods decreased when we increased 
the number of rare cell types from six to ten, although the performance of BASS 
remained much better than the other methods (Additional file 1: Fig. S19). For example, 
when the rare cell types were randomly distributed across the entire tissue, the median 
F1 scores (MCCs) of BASS, SC3, Seurat, and FICT decreased from 0.78 (0.78), 0.63 
(0.63), 0.57 (0.55), and 0.40 (0.37) to 0.51 (0.50), 0.40 (0.39), 0.35 (0.34), and 0.27 (0.25), 
respectively, when the number of rare cell types increased from six to ten. On the other 
hand, the median ARI from BASS only slightly decreased from 0.84 to 0.76 when the 
number of rare cell types increased from six to ten, indicating that BASS can still accu-
rately detect the major cell types and that the ARI is not an appropriate metric for evalu-
ating the clustering of rare cell types. In contrast, the median ARI from SC3, Seurat, and 
FICT decreased substantially from 0.65, 0.56, and 0.43 to 0.34, 0.43, and 0.35, indicating 
their performance on detecting major cell types was substantially impacted by the pres-
ence of rare cell types. In addition, the performance of BASS on detecting rare cell types 
improved when rare cell types exhibit a domain-specific pattern (Additional file 1: Fig. 
S19). For example, when the number of rare cell types was set to be ten, the median 
F1 score (MCCs) of BASS increased from 0.51 (0.50) to 0.59 (0.59) when the distribu-
tion patterns of rare cell types changed from random to domain specific. In contrast, the 
performance of SC3, Seurat, and FICT remained largely similar. Finally, we found that 
the performance of all methods on detecting spatial domains remained largely similar 
regardless of the number of rare cell types and slightly increased when rare cell types 
exhibit domain-specific distribution patterns, presumably because spatial domains are 
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largely characterized by major cell types and thus their detection is not influenced much 
by the presence of rare cell types (Additional file 1: Fig. S20).

Influence of a random exclusion of genes

We conducted simulations in which we randomly excluded genes from the gene expres-
sion matrix and evaluated its influence on the performance of all methods. As expected, 
for both cell type clustering and spatial domain detection, the performance of all 
methods decreased when fewer genes were retained in the expression matrix, though 
the performance of BASS remained better than the other methods. For cell type clus-
tering, the performance of BASS was also less affected by a random exclusion of genes 
than the other methods (Additional file 1: Fig. S21A). For example, in scenario III, the 
median ARI of SC3, Seurat, and FICT decreased substantially from 0.92, 0.88, and 0.93 
to 0.27, 0.34, and 0.40 while the median ARI of BASS decreased from 0.97 to 0.74 when 
the number of retained genes decreased from 500 to 200. In addition, the performance 
of BASS on cell type clustering was more robust to the random exclusion of genes in 
scenarios I and II than in scenarios III and IV while the performance of SC3, Seurat, 
and FICT remained largely similar across the four scenarios, suggesting that BASS has 
advantages over the other three methods on detecting cell types that display strong spa-
tial patterns (Additional file 1: Fig. S21A). For spatial domain detection, we found that 
both BASS and the oracle version of HMRF were more robust to a random exclusion 
of genes than BayesSpace and SpaGCN (Additional file  1: Fig. S21B). For example, in 
scenario III, when the number of retained genes decreased from 500 to 200, the perfor-
mance reduction in terms of ARI was 2% and 20% for BASS and HMRF while the perfor-
mance reduction was 88% and 63% for BayesSpace and SpaGCN. We also noticed that 
the performance of BASS on spatial domain detection varied a lot in scenarios III and IV 
compared to scenarios I and II (Additional file 1: Fig. S21B). Presumably, this is because 
spatial domains cannot be accurately detected when cell types are not well clustered, 
which is more likely to occur in scenarios III and IV as mentioned above.

Mouse medial prefrontal cortex data by STARmap

We applied BASS to analyze two publicly available spatial transcriptomic data with 
single-cell resolution. The first dataset is from the STARmap technology, consisting of 
three tissue sections obtained from the medial prefrontal cortex (mPFC) of the mouse 
brain from different mice. mPFC is a crucial cortical region located at the front of the 
frontal lobe and plays an essential role in high-level cognitive functions including deci-
sion-making, memory, attention, and emotion [36]. Dysfunction of the mPFC has been 
found in various neurological and psychiatric disorders such as depression and Alz-
heimer’s disease [37]. The mPFC is comprised of four layers (L1, L2/3, L5, and L6) and 
consists predominantly of excitatory pyramidal neurons (about 80~90%) and inhibitory 
GABAergic interneurons (about 10~20%), orchestrating cortical network dynamics and 
communicating with long-distance targets [37]. The three tissue sections include BZ5 
(1049 cells), BZ9 (1053 cells), and BZ14 (1088 cells), with expression measurements col-
lected on a common set of 166 genes. The cells on all tissue sections were carefully anno-
tated to four distinct layer structures that included L1, L2/3, L5, and L6 (Fig. 4A,B and 
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Additional file 1: Fig. S23). We performed single-section analysis on tissue section BZ5 
and multiple-section analysis on all three tissue sections.

We first examined the results from different methods on spatial domain detection. 
In the analysis, BASS detected four spatial domains that highly resemble the expected 
cortical layers (ARI = 0.82; Fig.  4C,D). In contrast, the spatial domains detected by 
HMRF (ARI = 0.57), BayesSpace (ARI = 0.26), and SpaGCN (ARI = 0.36) do not gen-
erally match the underlying truth (Fig.  4C,D), with the ranking of the method gener-
ally consistent with that observed in the simulations. A close look at the detected spatial 
domains revealed that HMRF, BayesSpace, and SpaGCN failed to segregate the corti-
cal layers L2/3 and L5 despite the well-known functional and morphological distinction 
between these two layers [38]. In addition, the four cortical layers detected by BASS 
are well segregated from each other with smooth boundaries between them, while the 
layers detected by BayesSpace and SpaGCN are somewhat intermingled together with-
out smooth tissue boundaries separating them (Fig.  4D). Importantly, the ability of 
BASS for multi-sample integrative analysis further enhanced the spatial domain detec-
tion accuracy on the same tissue section used for the one sample analysis (ARI = 0.85; 
Fig. 4E). In particular, the boundary between the layers L2/3 and L5 was even more pre-
cisely captured in the multi-sample integrative analysis and more closely resembles the 
expected truth as compared to the analysis using only one tissue section. In addition, 
similar to what we have found in the sample of focus, BASS accurately captured the four 
spatial domains in the other two sections, more so than the other methods, in both the 

Fig. 4  Detecting spatial domains in the STARmap dataset. A An anatomic reference atlas obtained from the 
Allen Mouse Brain Atlas displays the spatial domains of the prelimbic area in the mouse prefrontal cortex. B 
Annotated spatial domain labels for the tissue section BZ5 based on spatial gene expression patterns and 
the Allen Mouse Brain Atlas. C Barplots of ARI show the accuracy of different methods for spatial domain 
detection on the tissue section BZ5. The compared methods include BASS, HMRF, BayesSpace, and SpaGCN. 
For HMRF, the range of ARI based on a pre-defined list of βs is shown with an error bar. D The identified 
spatial domains on the tissue section BZ5 are shown for BASS, HMRF, BayesSpace, and SpaGCN. E The 
identified spatial domains on three tissue sections (BZ5, BZ9, and BZ14) were obtained with the multi-sample 
analysis of BASS
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single-section and multi-section analyses (Fig.  4E and Additional file  1: Fig. S23). The 
results confirmed the superior performance of BASS for spatial domain detection and 
multi-sample integrative analysis.

Next, we examined the results from different methods on cell type clustering. We first 
evaluated the performance of different methods for cell type clustering on a single tis-
sue section. Consistent with the simulations, BASS achieved accurate cell type clustering 
(ARI = 0.44), more so than Seurat (ARI = 0.34), SC3 (ARI = 0.37), and FICT (ARI = 
0.27) (Fig. 5A). Specifically, BASS detected major cell types that included six excitatory 
neuronal subtypes, three inhibitory neuronal subtypes, and four non-neuronal subtypes 
with distinct marker gene expression (Fig. 5B and Additional file 1: Fig. S24A). In con-
trast, Seurat erroneously produced a cluster that was a mixture of two other cell types 
(eL6a/eL6b) as evident by their marker gene expression, failed to delineate inhibitory 

Fig. 5  Clustering cell types in the STARmap dataset. A Barplots of ARI display the accuracy of different 
methods for cell type clustering. Compared methods include BASS, Seurat, SC3, and FICT. Results for 
BASS, Seurat, and SC3 are shown for both the single tissue section analysis on the tissue section BZ5 and 
multi-sample analysis (BASSMult, SC3Mult, and SeuratMult) that fitted all the three tissue sections (BZ5, BZ9, 
and BZ14) and evaluated ARI on the section BZ5 (e.g., BASSMult (BZ5)) as well as on all three tissue sections 
(e.g., BASSMult). B–E UMAP visualization of cell type clustering results on BZ5 by B BASS, C Seurat, D SC3, 
and E FICT for analyzing the single section BZ5. F UMAP visualization of cell type clustering results on three 
sections (BZ5, BZ9, and BZ14) by the multi-sample version of BASS. G Cell type compositions estimated by 
the multi-sample version of BASS. Excitatory neurons: eL2/3, eL5a, eL5b, eL5c, eL5d, eL6a, and eL6b; Inhibitory 
neurons: Reln, VIP, SST, and Lhx6; Oligo: oligodendrocytes; Smc: smooth muscle cells; Astro: astrocytes; and 
Micro: microglia
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neuronal subtypes (SST, VIP, Lhx6, and Reln), and produced one NA cluster with no 
clear marker gene expression (Fig.  5C and Additional file  1: Fig. S24B). The resulting 
NA cluster was likely because cells of different cell types were somehow split from their 
main clusters and then combined together. SC3 erroneously clustered smooth muscle 
cells, astrocytes, and VIP inhibitory neurons into the same cluster, despite their vastly 
distinct expression profiles (Fig. 5D and Additional file 1: Fig. S24C). In addition, SC3 
erroneously produced one cluster (eL6a-2) that had similar marker gene expression to 
eL6a-1 and produced two NA clusters with no marker gene expression (Additional file 1: 
Fig. S24C). FICT failed to delineate inhibitory neuronal subtype SST from Reln, failed 
to delineate inhibitory neuronal subtype Lhx6 from VIP, and intermixed different non-
neuronal subtypes (Fig. 5E and Additional file 1: Fig. S24D). Next, we examined the cell 
type clustering results from the multi-sample version of BASS by analyzing three tissue 
sections together (Fig.  5F and Additional file  1: Fig. S25). Consistent with the simula-
tions, the integrative analysis provided more accurate cell type clustering results (ARI = 
0.49; Fig. 5A, F) than analyzing a single tissue sample, highlighting the benefits of multi-
sample analysis. In particular, the multi-sample integrative analysis further delineated 
the excitatory neurons at layer 6 (eL6) into two neuronal subtypes (eL6a and eL6b) and 
segregated the SST inhibitory neurons from the Lhx6 inhibitory neurons (Fig. 5F and 
Additional file 1: Fig. S25A). These cell type clustering results from multi-sample analysis 
were supported by the expression pattern of marker genes (Additional file 1: Fig. S25B). 
For example, the two cell types (eL6a and eL6b) that were clustered together (eL6∗) in 
the single tissue section analysis, but segregated in the multi-sample integrative analysis 
had a distinct expression of marker genes that corresponded to the two excitatory neu-
ronal subtypes (eL6a: Syt6; eL6b: Ctgf). Finally, the multi-sample analysis of BASS also 
outperformed the two other cell type clustering methods (Seurat and SC3) that can be 
adapted to make use of multiple tissue sections in an ad hoc fashion (Fig. 5A and Addi-
tional file 1: Fig. S25C-G).

Finally, we examined the spatial distribution of cell types identified by BASS on the 
tissue and assessed the cell type compositions in each spatial domain. Overall, we found 
that excitatory neurons were often enriched in spatially restricted domains while inhibi-
tory neurons and glial cells often dispersed across multiple cortical layers (Additional 
file 1: Fig. S26). Specifically, six out of the seven excitatory neuronal subtypes were highly 
enriched in a single cortex layer, defining the laminar architecture of the cortex: one 
excitatory subtype (eL2/3) was enriched in L2/3; three (eL5a, eL5b, eL5c) were enriched 
in L5; two excitatory subtypes (eL6a, eL6b) were enriched in L6; and the remaining excit-
atory subtype (eL5d), labeled by immediate-early genes Fos, Egr2, and Egr4, was enriched 
in both L2/3 and L5. The four inhibitory neurons, on the other hand, were dispersed 
across multiple cortical layers. For example, the inhibitory neuronal subtype (SST) 
marked by Sst was present across all four layers while the inhibitory neuronal subtype 
(Lhx6) marked by Lhx6 was primarily located at both L5 and L6. For non-neuronal cells, 
oligodendrocytes were mainly located at L6; smooth muscle cells were mainly located at 
L1 whereas astrocytes and microglial cells were dispersed across the entire tissue. Con-
sistent with the distinct distributional pattern of multiple cell types on the tissue, each 
cortical layer was also composed of a distinct mixture of cell types (Fig. 5G). Specifically, 
L1 was mainly composed of non-neuronal cells (astrocytes: 35%; smooth muscle cells: 
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31%; oligodendrocytes: 13%; and microglial cells: 9%), with astrocytes and smooth mus-
cle cells playing key roles in regulating blood-brain barrier function and cerebral blood 
flow [39, 40]. The remaining three cortical layers consisted of mainly excitatory neuronal 
subtypes, with eL2/3 comprising 66% of cells in L2/3; eL5a, eL5b, and eL5c comprising 
62% of cells in L5; and eL6a and eL6b comprising 71% of cells in L6.

Mouse hypothalamus data by MERFISH

The second dataset we examined is from the MERFISH technology, consisting of five 
adjacent tissue sections obtained from the preoptic region of the mouse hypothala-
mus, which is an important region in the center of the brain that comprises multiple 
nuclei and controls many social behaviors such as reproduction and circadian rhythms 
as well as homeostatic functions such as neuroendocrine and cardiovascular regula-
tion [41]. The five sections include Bregma-0.04 (5488 cells), Bregma-0.09 (5557cells), 
Bregma-0.14 (5926 cells), Bregma-0.19 (5803 cells), and Bregma-0.24 (5543 cells), with 
expression measurements collected on a common set of 155 genes. The cells on all tissue 
sections were carefully annotated to eight distinct structures that included the third ven-
tricle (V3), bed nuclei of the strata terminalis (BST), columns of the fornix (fx), medial 
preoptic area (MPA), medial preoptic nucleus (MPN), periventricular hypothalamic 
nucleus (PV), paraventricular hypothalamic nucleus (PVH), and paraventricular nucleus 
of the thalamus (PVT) (Fig. 6A,B and Additional file 1: Fig. S27). We performed single-
section analysis on the tissue section Bregma-0.14 and multi-section analysis on all five 
tissue sections.

We first examined the results from different methods on spatial domain detection. 
In the analysis, BASS detected major spatial domains that highly resemble the under-
lying histological annotations (ARI = 0.58; Fig. 6C,D). In contrast, the spatial domains 
detected by HMRF (ARI = 0.42), BayesSpace (ARI = 0.12), and SpaGCN (ARI = 0.19) 
do not generally match the underlying truth (Fig. 6C,D). For example, HMRF failed to 
segregate the three key regions of hypothalamus (PVT, MPA, and PVH) from each other. 
SpaGCN failed to detect the MPN, MPA, and PVH regions while BayesSpace barely 
detected any segments of the tissue with a smooth boundary except for the V3 and PVT 
regions. In particular, none of the other three domain detection methods could identify 
and segregate the PV region and the MPN region, despite their important structural and 
functional roles in the nervous system. There, PV consists of a thin sheet of small neu-
rons located in the wall of the third ventricle and these neurons regulate the release of 
gonadotropin-releasing hormone (GnRH) and growth hormone (GH) [42, 43], whereas 
MPN occupies a more lateral location than PV and plays an important role in reproduc-
tive and parental behaviors [44]. Importantly, multi-sample integrative analysis of five 
adjacent spatial transcriptomic tissue sections with BASS provided further insights into 
the structural organization of the preoptic region of hypothalamus that could not other-
wise be achieved by the single-sample analysis of the other methods (Fig. 6E and Addi-
tional file 1: Fig. S27). In particular, the eight main spatial domains were present in all 
five tissue sections, with their shape and size varying across sections. For example, from 
anterior to posterior, the PVT and BST regions increased their sizes while the PV and 
MPN regions reduced their sizes.
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Next, we examined the results from different methods on cell type clustering. We 
first evaluated the performance of different methods for cell type clustering on a single 
tissue section. Consistent with the simulations, BASS achieved accurate cell type clus-
tering (ARI = 0.46), more so than Seurat (ARI = 0.37), SC3 (ARI = 0.35), and FICT 
(ARI = 0.34) (Fig.  7A). Specifically, BASS detected major cell types that included five 
excitatory neuronal subtypes, eight inhibitory neuronal subtypes, and seven non-neu-
ronal subtypes with distinct marker gene expression (Fig. 7B and Additional file 1: Fig. 
S28A). In contrast, Seurat failed to delineate excitatory neuronal subtypes E1, E2, and 
E3 and failed to delineate inhibitory neuronal subtypes I1 and I2, despite the distinct 
expression profiles of each subtype (Fig. 7C and Additional file 1: Fig. S28B). However, 
we also noticed that Seurat has split the astrocytes into two clusters (Astro-1 and Astro-
2; Fig. 7C) with very similar overall gene expression pattern (Additional file 1: Fig. S28B). 
We performed a careful differential expression analysis and identified a few genes that 
displayed very subtle expression differences between the two clusters (Additional file 1: 
Fig. S29). Therefore, it is possible that the two clusters may represent two astrocyte 

Fig. 6  Detecting spatial domains in the MERFISH dataset. A An anatomic reference atlas obtained from the 
Allen Mouse Brain Atlas displays the spatial domains of the mouse hypothalamus region. B Annotated spatial 
domain labels for the tissue section Bregma-0.14 based on spatial gene expression patterns and the Allen 
Mouse Brain Atlas. C Barplots of ARI show the accuracy of different methods for spatial domain detection on 
the tissue section Bregma-0.14. The compared methods include BASS, HMRF, BayesSpace, and SpaGCN. For 
HMRF, the range of ARI based on a pre-defined list of βs is shown with an error bar. D The identified spatial 
domains on the tissue section Bregma-0.14 are shown for BASS, HMRF, BayesSpace, and SpaGCN. E The 
identified spatial domains on five tissue sections (Bregma-0.04, Bregma-0.09, Bregma-0.14, Bregma-0.19, and 
Bregma-0.24) were obtained with the multi-sample analysis of BASS. V3: the third ventricle; BST: bed nuclei of 
the strata terminalis; fx: columns of the fornix; MPA: medial preoptic area; MPN: medial preoptic nucleus; PV: 
periventricular hypothalamic nucleus; PVH: paraventricular hypothalamic nucleus; and PVT: paraventricular 
nucleus of the thalamus
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subtypes with very similar expression patterns. Consistent with the simulations, the per-
formance of SC3 was relatively poor, presumably due to the large number of cells in the 
data. Specifically, SC3 assigned microglial cells and immature oligodendrocytes into the 
same cluster; assigned mural cells and endothelial cells into the same cluster; and failed 
to segregate certain neuronal subtypes (e.g., I6 and I7) (Fig. 7D and Additional file 1: Fig. 
S28C). FICT erroneously separated astrocytes into three clusters, separated immature 

Fig. 7  Clustering cell types in the MERFISH dataset. A Barplots of ARI display the accuracy of different 
methods for cell type clustering. Compared methods include BASS, Seurat, SC3, and FICT. Results for BASS, 
Seurat, and SC3 are shown for both the single tissue section analysis on the tissue section Bregma-0.14 and 
multi-sample analysis (BASSMult, SC3Mult, and SeuratMult) that fitted all five tissue sections (Bregma-0.04, 
-0.09, -0.14, -0.19, and -0.24) and evaluated ARI on the section Bregma-0.14 (e.g., BASSMult (Bregma-0.14)) 
as well as on all five tissue sections (e.g., BASSMult). B–E UMAP visualization of cell type clustering results 
on Bregma-0.14 by B BASS, C Seurat, D SC3, and E FICT for analyzing the single section Bregma-0.14. F 
UMAP visualization of cell type clustering results on five sections by the multi-sample version of BASS. G 
Cell type compositions estimated by the multi-sample version of BASS. Excitatory neurons: E1, E2, E3, E4, 
and E5; Inhibitory neurons: I1, I2, I3, I4, I5, I6, I7, and I8; MOD: mature oligodendrocytes; IOD: immature 
oligodendrocytes; Astro: astrocytes; Micro: microglial cells; Epen: ependymal cells; Endo: endothelial cells; and 
Mural: mural cells
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oligodendrocytes into two clusters, and produced a cluster that is a mix of mural cells 
and endothelial cells (Fig. 7E and Additional file 1: Fig. S28D). We applied BASS, SC3, 
and Seurat for multi-sample analysis (Fig. 7F and Additional file 1: Fig. S30). We found 
that multi-sample analysis with BASS yielded similar cell type clustering accuracy as 
the single-section analysis for Bregma-0.14 (ARI = 0.49; Fig. 7B vs Additional file 1: Fig. 
S30B), presumably because the number of cells in the single tissue section was already 
very large. Multi-sample analysis with Seurat improved upon the single-section analy-
sis (ARI = 0.42; Fig. 7A and Additional file 1: Fig. S30C-D) while multi-sample analysis 
with SC3 yielded lower cell type clustering performance as compared to the single-sec-
tion analysis, likely due to its potential reduction in performance with the increased cell 
number, as explained earlier (ARI = 0.33; Fig. 7A and Additional file 1: Fig. S30E-F). The 
comparison for multi-section vs single-section analysis for the three methods was con-
sistent with the simulations and highlighted the benefits of BASS.

Then, we estimated the cell type composition in each spatial domain and examined 
the spatial distribution of cell types identified by BASS across tissue locations. We found 
that the majority of excitatory and inhibitory neurons were enriched in certain tissue 
regions whereas the majority of glial cells and other cell types were often dispersed 
throughout the tissue (Additional file  1: Fig. S31). Specifically, the excitatory neurons 
(E1, E2, E3, E4, and E5) were highly enriched in the PVT, fx, PVH, and MPA regions, 
with a minor dispersion pattern visualizable across many other regions. Inhibitory neu-
rons (I1, I2, I3, I4, I5, I6, I7, and I8) on the other hand were highly enriched in the BST, 
MPA, MPN, PV, and PVH regions, with a minor dispersion pattern visualizable across 
many other regions. The spatial enrichment of cell types in the hypothalamus underlies 
their structural and functional roles. For example, the inhibitory neurons in BST pro-
ject inhibitory fibers to the lateral hypothalamus and are important for feeding regula-
tion [45]. For non-neuronal cells, mature oligodendrocytes were highly enriched in the 
fx region, which is part of the limbic system and consists of a bundle of nerve fibers that 
carry signals from the hippocampus to other parts of the brain. Continuous oligoden-
drogenesis in the fx region [46] is important for myelination and ensures rapid conduc-
tion of neural signals [47]. The ependymal cells formed the epithelial lining of V3 and 
separated the cerebrospinal fluid in the ventricle from the brain. In contrast, the other 
glial cells (immature oligodendrocytes, astrocytes, microglial cells, endothelial cells, and 
mural cells) were all dispersed across the entire tissue. Consistent with the distinct dis-
tributional pattern of multiple cell types on the tissue, we found that all spatial domains 
in the hypothalamus were composed of a distinct mixture of cell types (Fig.  7G). For 
example, the four regions (V3, BST, PV, and PVT) were each dominated by one cell type 
(V3: ependymal cells; BST: I7; PV: I2; and PVT: E5) and the dominant cell type com-
prised nearly 50% or more cells in the corresponding region. In other regions such as fx, 
MPA, MPN, and PVH, we found a mixture of cell types with comparable proportions. 
For example, the fx was mainly composed of mature oligodendrocytes, astrocytes, E1, 
and E3, with proportion estimates being 0.33, 0.16, 0.14, and 0.12 respectively.

Finally, the accurate detection of tissue domains by BASS also allows us to perform 
additional downstream analysis to further characterize the transcriptomic architecture 
underlying complex tissues. We conducted a differential expression analysis to iden-
tify both cell type marker genes and domain marker genes based on the cell type or 
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spatial domain estimates from BASS. In the analysis, we found that each cell type/spatial 
domain exhibit a unique expression signature, allowing us to identify important gene 
markers for each cell type and each spatial domain (Additional file 1: Figs. S33-S34). In 
particular, we identified top marker genes Slc18a2 and Scg2 for the PV domain and Calcr 
and Nts for the MPN domain, which are important gene candidates for future studies. 
Specifically, Slc18a2 (Solute Carrier Family 18 Member A2) gene encodes a transmem-
brane protein that facilitates the uptake of monoamine neurotransmitters into synaptic 
vesicles and plays an essential role in dopamine regulation [48]. The inhibitory effects 
of dopamine on gonadotrophin secretion have been extensively documented [49–52]. 
Indeed, genetic variants in Slc18a2 in human have been identified to be associated with 
the polycystic ovary syndrome (PCOS), a hormone disorder related to ovaries [53]. The 
important role of Slc18a2 in gonadotrophin secretion may underlie the well-known 
function of PV domain on regulating the release of gonadotropin-releasing hormone 
[42]. As a second example, Calcr (Calcitonin Receptor) encodes a high affinity recep-
tor for the peptide hormone calcitonin. In mice, the amylin-calcitonin receptor signaling 
has been reported to mediate affiliative social contacts [54]. Therefore, the identification 
of Calcr by BASS may provide the transcriptomic mechanism underlying the regulatory 
function of the MPN region in reproductive and parental behavior [44].

DLPFC 10x Visium data with non‑single‑cell resolution

While we have primarily focused on analyzing single-cell resolution spatial transcrip-
tomics, we note that BASS can also be applied to analyze non-single-cell resolution spa-
tial transcriptomics. Specifically, we can treat each spatial location in non-single-cell 
resolution spatial transcriptomics as a “pseudo cell” and directly apply BASS for data 
analysis. Certainly, the cell type assignments for the pseudo cells by BASS no longer have 
the cell type interpretation, and consequently, BASS can only be used for spatial domain 
detection and multi-sample analysis in non-single-cell resolution spatial transcriptom-
ics. To illustrate the benefits of BASS in this context, we applied BASS to analyze the 
DLPFC data from the 10x Visium platform, which consists of 12 tissue sections obtained 
from the human dorsolateral prefrontal cortex of three adult donors (data details in the 
“Methods” section). The spots on each tissue section were carefully annotated by the 
original study [32] into seven laminar clusters that included six neural layers from L1 
to L6 and the white matter (WM). Because DLPFC is not of single-cell resolution, we 
focused our analysis only on spatial domain detection but not cell type clustering. We 
performed single-section analysis on each of the 12 tissue sections and multiple-section 
analysis on the four tissue sections from each donor.

In the single-section analysis, BASS detected major spatial domains that highly resem-
ble the underlying histological annotations for most tissue sections (median ARI across 
sections = 0.48), more so than HMRF (median ARI = 0.30), BayesSpace (median ARI = 
0.44), and SpaGCN (median ARI = 0.40; Fig. 8B and Additional file 1: Fig. S35). Impor-
tantly, the integrative analysis of four tissue sections from each adult donor further 
improved the spatial domain detection (median ARI = 0.51; Fig. 8B) and produced con-
sistent spatial domains across the four sections (Additional file 1: Fig. S35). For exam-
ple, on tissue section 151674, the single-section analysis of BASS (ARI = 0.51), HMRF 
(ARI = 0.23), BayesSpace (ARI = 0.30), and SpaGCN (ARI = 0.51) all failed to detect the 
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consecutive cortical layers (Fig. 8C), presumably due to the poor quality of this tissue 
section. However, the multi-sample integrative analysis with BASS greatly improved the 
detection of spatial domains in this particular sample and produced cortical layers that 
highly resemble the underlying annotations and are consistent across all four sections 
(ARI = 0.60; Fig. 8D). Similar observations can also be made in the other two sets of 
tissue sections (151507-151510 and 151669-151672; Additional file 1: Fig. S35), confirm-
ing the performance of BASS on spatial domain detection and multi-sample integrative 
analysis in non-single-cell resolution spatial transcriptomics.

Computational performance

In terms of both running time and memory usage, BASS is comparable to the other 
spatial domain detection methods and cell type clustering methods (Additional file  1: 
Table S1). For a typical 10x Visium data with about 5000 spots, BASS takes about 8 min 

Fig. 8  Detecting spatial domains in the DLPFC 10x Visium dataset. A A hematoxylin and eosin (H&E) 
staining image for the tissue section 151674. B Manually annotated spatial domain labels for the tissue 
section 151674. C Boxplots of ARI show the accuracy of different methods for spatial domain detection 
across 12 tissue sections. The compared methods include BASS that performs single tissue section analysis, 
BASSMult that performs multi-sample analysis that jointly fitted four tissue sections from each adult donor, 
the oracle version of HMRF, BayesSpace, and SpaGCN. D The identified spatial domains on the tissue 
section 151674 are shown for BASS, HMRF, BayesSpace, and SpaGCN. E The identified spatial domains on four 
tissue sections (151673, 151674, 151675, and 151676) were obtained with BASSMult
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and uses 2 GB of memory. In addition, both the running time and memory usage of 
BASS scale linearly with the sample size of the data, which makes BASS scalable to ana-
lyzing tens to hundreds of thousands of cells/spots.

Discussion
Although BASS, HMRF, and BayesSpace all employ a Potts model, BASS has intro-
duced additional hierarchical modeling structures on top of the Potts model to allow 
for flexible and effective spatial transcriptomic modeling. The additional hierarchi-
cal modeling structures allow BASS to make fundamentally different and more effec-
tive assumptions on the composition of spatial domains as compared to HMRF and 
BayesSpace. Specifically, both HMRF and BayesSpace define the spatial domain to be 
a region with a homogenous gene expression and model the gene expression of all cells 
in a spatial domain with the same distribution, either a multivariate normal distribu-
tion for HMRF or a multivariate t-distribution for BayesSpace. However, spatial domains 
are often composed of multiple cell types characterized by distinct gene expression pro-
files. Modelling gene expression in a spatial domain with the same distribution can be 
insufficient for capturing the gene expression heterogeneity across cell types. Therefore, 
BASS has introduced the cell type composition as an intermediate layer in the hierar-
chical modelling structure to explicitly model distinct gene expression of different cell 
types. Consequently, BASS is able to define a spatial domain to be a region with a unique 
cell type composition to better capture the gene expression heterogeneity within each 
spatial domain and achieve improved performance. In addition, BASS infers the spatial 
interaction parameter β in the Potts model based on the data at hand while HMRF and 
BayesSpace fix the parameter to a user-specified value. The inference of β in BASS also 
contributes to its improved performance. Finally, from the model inference perspective, 
although both BASS and BayesSpace are based on a Bayesian framework, BASS uses the 
Swendsen-Wang algorithm to sample the spatial domain labels while BayesSpace uses a 
Gibbs sampling algorithm. The Swendsen-Wang algorithm is known to have a much bet-
ter mixing rate than the Gibbs sampling algorithm, thus also helping BASS to achieve an 
improved accuracy [55].

The number of cell types and spatial domains are two important hyper-parameters 
that need to be specified in BASS. Given our investigation in the simulation (Additional 
file 1: Figs. S16-S18), here we provide a practical guideline for selecting the optimal num-
ber of these two hyper-parameters for BASS, when the underlying truths are unknown. 
Our recommendation is to start with a relatively large number of cell types and a rela-
tively large number of spatial domains. We recommend to first select the optimal num-
ber of spatial domains, given that spatial domains can be robustly detected by BASS with 
mis-specified cell type number. To do so, we calculate the number of cells in each spatial 
domain and set the number of spatial domains to be the largest one that still leads to a 
relatively large number of cells in each domain determined by the user (e.g., with > 3% of 
cells per domain). After selecting the optimal number of spatial domains, we proceed to 
select the optimal number of cell types. Here, care needs to be taken when selecting the 
optimal number of cell types because the small cell type clusters with a relatively small 
number of cells can either be redundant clusters or represent rare cell types. There-
fore, we recommend examining each small cell type cluster carefully, by, for example, 
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performing a differential expression analysis to examine cell type cluster marker genes. 
Careful examination will allow us to determine whether the small cell type clusters are 
rare cell types or redundant clusters, thus informing the choice of the optimal number of 
cell types.

BASS can also be applied to other spatial transcriptomic technologies after necessary 
pre-processing steps. For example, some recent spatial transcriptomic technologies, 
such as HDST [8] and Seq-Scope [9], are of subcellular resolution, with each measured 
spot capturing transcripts from part of a cell. For these technologies, we can in principle 
first aggregate the expression levels measured on the multiple spots of the same cell into 
units of cells and then apply BASS on the aggregated gene expression measurements. 
However, accurate characterization of cell boundaries and matching spots to cells for 
these technologies remain as computational challenging tasks [9]. Existing approaches 
either performs data binning [8, 9], which aggregates expression measurements of neigh-
boring spots into grids with size of single cells (10 μm-sided) or takes advantage of his-
tology images to identify cell boundaries (e.g., watershed algorithm) and then matches 
spots to each cell [9]. However, neither approach is ideal. For data binning, aggregated 
spots of each grid do not necessarily belong to the same cell. For the histology-image-
based method, it is challenging to segment cells with small sizes [9]. To address these 
challenges, new computational tools may be needed to facilitate the integration of both 
histology images and spatial expression data to improve the cell boundary detection.

There are several important future extensions for BASS. For example, while we have 
primarily focused on using gene expression data as input, we note that the BASS mod-
eling framework is flexible and can be easily used to incorporate information from the 
histology images in the form of additional feature input to further enhance its perfor-
mance. As another example, we have used the low-dimensional components from the 
principal component analysis (PCA) on the normalized gene expression matrix as 
input for BASS. We note that BASS is not restricted to PCA and can be paired with 
other dimension reduction methods with their low-dimensional components as input. 
For example, SPICEMIX [56] and SpatialPCA [57] are dimension reduction meth-
ods recently developed for spatial transcriptomics and have shown promising results 
for either cell type inference or spatial domain detection. Using the latent factors from 
SPICEMIX or SpatialPCA as input for BASS could potentially enhance its performance. 
Finally, BASS can be modified to take advantage of its normal-gamma prior on the 
mean parameters of the gene expression for informative gene selection. Specifically, the 
feature-specific scaling factor (λj) in BASS reflects how informative the jth feature is in 
distinguishing different cell types, with a larger λj indicating a more informative expres-
sion feature. Therefore, when the gene expression matrix is used as input for BASS, we 
can identify cluster informative genes by inspecting the parameter λj. We followed this 
idea and applied BASS to the BZ5 sample in the STARmap data set. Indeed, genes with 
large λj estimates are marker genes of different cell types (Additional file  1: Fig. S32). 
For example, Bgn and Mgp, which had the highest λj estimates, are marker genes of the 
smooth muscle cells; Sst, Pnoc, Npy, and Vip are marker genes of different inhibitory 
neurons; Itgam is a marker gene of the microglial cells; and Pcp4 is a marker gene of the 
excitatory neurons in layer 6 (eL6a and eL6b) (Additional file  1: Fig. S32B). However, 
applying BASS directly on the gene expression matrix instead of the low-dimensional 
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space can be computationally intense and may also suffer from the noise contained in 
the expression matrix. Therefore, further thoughts and methodological development in 
the future is likely necessary to make this strategy practical.

The accurate cell types and spatial domains detected by BASS can be paired with many 
other analytic tools to further improve various downstream applications to reveal addi-
tional biological insights. For example, SpatialCorr [58] is a recent method that aims to 
identify sets of genes with spatially varying correlation structures within or between 
pre-determined spatial domains. The spatial domains detected by BASS can be paired 
with SpatialCorr to detect genes with coordinated regulation within or between tissue 
regions. Knowing such coordinated regulation can help identify novel cell subpopula-
tions and provide important insights into the gene regulatory network within the sub-
population [58]. As another example, trajectory analysis can be carried out on the cell 
types or the spatial domains inferred by BASS to facilitate the investigation into can-
cer progression, cell type differentiation, and structural feature development [57, 59]. In 
addition, because spatial transcriptomic studies often collect data from multiple adja-
cent sections, tools such as PASTE [60] and GPSA [61] for aligning adjacent tissue sec-
tions can be paired with BASS for 3D tissue construction [60] or 2D construction of a 
larger tissue area [9]. There, the accurately detected cell types and spatial domains from 
BASS allow us to explore the spatial domain structures and spatial distribution patterns 
of cell types in 3D or a larger 2D tissue area.

Conclusions
In conclusion, we have presented BASS for multi-scale and multi-sample analysis in sin-
gle-cell resolution spatial transcriptomics and for spatial domain detection and multi-
sample analysis in non-single-cell resolution spatial transcriptomics. In comparison to 
existing approaches, BASS produces both accurate cell type and spatial domain assign-
ments, and allows for an integrative analysis of spatial transcriptomics across multiple 
tissue sections. We have illustrated the benefits of BASS through both simulations and 
in-depth analyses of three spatial transcriptomic datasets.

Methods
BASS: model and inference

Our method applies to a wide variety of spatial transcriptomic data types obtained by 
high-resolution spatial transcriptomic technologies which can measure gene expres-
sion at the single-cell level or approximately the single-cell level. These technologies 
include in situ sequencing (ISS)-based ones such as STARmap [10] and FISSEQ [11]; 
single molecular fluorescent in situ hybridization-based (smFISH) ones such as MER-
FISH [12], seqFISH [13], seqFISH+ [14], and osmFISH [15], as well as the upcoming 
10x Visium HD. For these data types, we perform transcriptomic analyses in the tis-
sue at two different anatomical scales. Specifically, at the single-cell scale, we perform 
clustering analysis to both identify cell types and assign cell type labels to each indi-
vidual cell. At the tissue domain scale, we segment the tissue into spatial domains 
in a de novo fashion and characterize the cell type composition in each detected 
domain. We carry out the two analyses at different scales jointly in a coherent fashion 
based on a Bayesian hierarchical model, which allows us to seamlessly integrate gene 
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expression information with spatial information to improve the effectiveness of both 
analyses. Importantly, our method allows for multi-sample integrative analysis of spa-
tial transcriptomic data measured on multiple tissue sections in the same anatomic 
region, which allows us to borrow critical biological information across tissue sec-
tions to further enhance the analytic performance.

We describe our method in this section, with its inference details provided in the 
Additional file 1: Supplementary notes. To set up notations, we assume that the spa-
tial transcriptomic study measures gene expression for a common set of P genes on L 
different tissue sections. We denote the number of cells measured on the lth tissue 
section as Nl, with l ∈ {1, …, L}. We assume that the cells across all tissue sections 
belong to C different cell types, and we denote c(l)

i
 as the cell type label for the ith cell 

on tissue section l, with c(l)
i

∈ {1, . . . ,C} . To simplify the algebra, we combine the cell 
type labels across all cells on section l into an Nl-vector of c(l) = c

(l)
1 , · · · , c

(l)
Nl

T

 . In 

addition, we assume that the tissue consists of R different spatial domains, each char-
acterized by a distinct cell type composition. We denote z(l)

i
 as the spatial domain 

label for the ith cell on tissue section l, with z(l)
i

∈ {1, . . . ,R} . We also combine the 
spatial domain labels across all cells on section l into an Nl-vector of 
z(l) =

(

z
(l)
1 , · · · , z

(l)
Nl

)T

 . We further combine cell type and spatial domain labels across 

all sections into vectors of c = (c(1)T, …, c(L)T)T and z = (z(1)T, …, z(L)T)T, with the vector 
size for both being 

∑

L

l=1Nl . We denote πr = (π1r, …, πCr)T as the C-vector of the cell 
type composition in the rth spatial domain, where πcr represents the proportion of 
cell type c in the spatial domain r, with 

∑

C

c=1πcr = 1 . We treat the cell type label c(l)
i

 , 
spatial domain label z(l)

i
 , and cell type composition in each spatial domain πcr as 

unknown and aim to infer them using both the gene expression measurements and 
spatial location information obtained from spatial transcriptomics.

For the gene expression measurements, we combine cells across all L tissue sections, 
conduct library size normalization [62, 63] followed by a log2-transformation (after add-
ing a pseudo-count of 1), and perform dimension reduction on the normalized expres-
sion matrix to extract J low-dimensional expression features. We denote  X(l) as the 
resulting Nl × J low-dimensional expression feature matrix for section l, where x(l)

i
 is the 

J-vector of expression features for the ith cell there, with i ∈ {1, …, Nl}. Dimension reduc-
tion removes noise from the original expression matrix and preserves and compresses 
the gene expression information into a low-dimensional manifold [64]. Dimension 
reduction can be performed with any standard methods, and we simply use the princi-
pal component analysis following the recommendation of [64]. In both the simulation 
study and real data applications, we extract the top 20 principal components (PCs) as 
expression features. With the extracted low-dimensional expression features, we per-
form data alignment and batch effect adjustment to align expression data from different 
tissue sections using Harmony [65] per recommendation of [66]. For the spatial location 
information, we construct a neighborhood graph V(l) among cells on each tissue section 
l by identifying for each cell its k nearest neighbors. With both expression and location 
information, we consider the following three equations to model the relationship among 
gene expression features, cell type labels, spatial domain labels, cell type compositions, 
and neighborhood graphs in a hierarchical fashion:
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Above, the first equation models the expression feature of the ith cell on section 
l,x(l)

i
 , as depending on its cell type label c(l)

i
 . In particular, conditional on the ith cell 

belonging to the cell type c, x(l)
i

 follows a normal distribution with a c-cell-type-spe-
cific mean parameter vector μc and a variance-covariance matrix Σ that is shared 
across cell types. The second equation models the probability of the ith cell belong-
ing to the cell type c as depending on the underlying spatial domain. In particular, 
conditional on the ith cell belonging to the spatial domain r, c(l)

i
 follows a categorical 

distribution characterized by the r-domain-specific cell type composition vector πr. 
The third equation models the spatial domain label of the ith cell on section l, z(l)

i
 , as a 

function of the neighborhood graph V(l) through a homogeneous Potts model charac-
terized by an interaction parameter β [67, 68]. The Potts model encourages similarity 
in spatial domain label assignment for neighboring cells, thus allowing for smooth 
segmentation of the tissue into spatial domains. The probability mass function of the 
corresponding Potts model is defined as

where i ∼ i′ denotes all neighboring pairs in the graph V(l); I
(

z
(l)
i

= z
(l)

i′

)

 is an indicator 

function that equals 1 if both the ith and i′th cells belong to the same spatial domain and 
equals 0 otherwise; β is the interaction parameter that determines the extent of the spa-
tial domain similarity among neighboring locations; and C(l)(β) is the normalizing con-
stant, also known as the partition function that ensures the above probability mass 
function to have a summation of one across all possible configurations of z(l). Intuitively, 
the Potts model encourages spatial domain similarity on neighboring locations and bor-
rows spatial domain information from neighboring locations to infer the spatial domain 
label on a location of focus, thus resulting in smoothed boundaries of the detected tissue 
regions.

We treat all the hyper-parameters in the above equations (μc, Σ, πr, β) as unknown 
and specify priors on the hyper-parameters in order to infer them based on the data 
at hand. The hyper-parameters in the first two equations (μc, Σ, πr) are relatively easy 
to infer algorithmically. We simply specify conjugate priors on them to facilitate 
computation. In particular, we specify a normal-gamma prior for μj [69], an inverse-
Wishart prior for Σ, and a Dirichlet distribution for πr (details in the Additional file 1: 
Supplementary notes). The hyper-parameter β in the Potts model, however, is difficult 
to infer algorithmically because of the normalization constant C(l)(β), which requires 
evaluating the probability mass function of the Potts model over all possible config-
urations of z(l) and is thus known to be NP hard. Indeed, because of the inference 
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difficulty, previous relevant studies that use the Potts model often examine a set of 
pre-determined values of β and select a proper value among them based on visualiza-
tion of the detected spatial domain [23, 25]. This approach requires knowing the spa-
tial domain a priori, defeating our purpose of detecting spatial domain in a de novo 
fashion. Therefore, we treat β as unknown in the present study and seek to infer it 
along with the other hyper-parameters. In particular, we specify a uniform prior on 
β in the form of Unif(0, βmax). The lower bound of zero in the uniform distribution 
represents one extreme case of a lack of smoothness in the detected spatial domain 
boundaries, as the spatial domain labels in the neighboring locations are no longer 
informative of the spatial domain label in the location of focus. We set the upper 
bound βmax in the uniform distribution to be a large number (set to be four here), rep-
resenting the other extreme case where spatial location information is highly inform-
ative and where the resulting spatial domain boundaries are extremely smooth.

With the above model setup, we develop a Gibbs sampling algorithm in combina-
tion with a Metropolis-Hastings algorithm to perform parameter inference. Algorithm 
details are provided in the Additional file 1: Supplementary notes. Briefly, the sampling 
algorithm updates one parameter at a time based on its conditional distribution. The 
conditional distributions for the parameters other than z(l) and β are in known distribu-
tional forms and are sampled directly through Gibbs sampling. The conditional distribu-
tion of β is not straightforward to sample because of the normalization constant in the 
Potts model as explained above. Instead of computing the normalizing constant directly, 
we estimate the ratio of two normalizing constants by adapting the Swendsen-Wang 
algorithm [68, 70], which allows us to sample β from its conditional distribution through 
a Metropolis-Hastings algorithm. Inferring β enables adaptive and accurate detection 
of the spatial domain. In the presence of multiple tissue sections, we infer β based on 
the first tissue section to reduce the computational burden. Similarly, we sample z(l) 
from its conditional distribution by using the Swendsen-Wang algorithm to achieve a 
faster mixing rate. Importantly, we also post-process the sampling results to address the 
label switching issue [71] associated with the sampling of z and c  in the correspond-
ing mixture models. Label switching occurs in mixture models because the posterior 
distribution is invariant to the labeling of the mixture indicators z or c. Consequently, 
the posterior samples can switch between the symmetric high posterior density areas, 
making it challenging to properly summarize the posterior samples. We deal with the 
label switching problem by post-processing the posterior samples based on the iterative 
version 1 of the equivalence class representation (ECR) algorithm [72] implemented in 
the label.switching package (version 1.8) [73]. Through our algorithm, we estimate the 
key parameters of interest that include the cell type labels c, the cell type composition 
πr of the rth region, and spatial domain labels z, across all tissue sections. These esti-
mates allow us to comprehensively characterize the tissue architecture in a multi-scale 
and multi-sample fashion.

Simulation design

Main simulations

We conducted extensive simulations to evaluate the performance of our method and 
compared it with existing approaches. To do so, we obtained the spatial locations of 
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1127 cells from the STARmap mouse cortex data (data details in the next section) and 
used the location information to allocate cells into four major spatial domains. These 
domains corresponded to distinct cortical layers and were obtained based on the expres-
sion patterns of cortical layer markers in the original study. We assumed that each spa-
tial domain consisted of multiple cell types, and we set the total number of cell types 
on the tissue to be four for ease of simulation construction. We varied the composition 
of cell types in different spatial domains through creating four simulation scenarios. In 
scenario I, we assumed that each spatial domain only contained one cell type and that 
each cell type was only assigned to one domain. In the remaining three scenarios II–IV, 
we assumed that each spatial domain contained three cell types and that the missing cell 
type in each domain was different from those in the other spatial domains. In scenarios 
II and III, we selected one unique cell type in each spatial domain to be the dominant cell 
type. We set the probability of each cell belonging to the dominant cell type to be either 
90% (scenario II) or 50% (scenario III) and set the probability of each cell belonging to 
the two non-dominant cell types to be either 5% (scenario II) or 25% (scenario III). In 
scenario IV, we set the probability of each cell belonging to either of the three cell types 
in each spatial domain to be equal (1/3). Therefore, scenario I represents one extreme 
case where one cell type completely dominates a spatial domain; scenario IV represents 
the other extreme case where the cell types in each spatial domain have equal composi-
tions while scenarios II and III are in-between these two extreme cases. In each scenario, 
we assigned the cell type for each cell randomly from a categorical distribution with the 
corresponding probability vector being the cell type composition of the spatial domain 
where the cell resides.

With the cell type assignment, we simulated gene expression for each cell using the 
splatter package (version 1.16.1) [74], which provides gene expression data that largely 
resemble the real data (Additional file 1: Fig. S1). In splatter, we set the group parameter 
to be four and varied the number of genes (nGenes) to be either 200, 500, 800, or 1,000, 
resembling those typically captured by single-cell resolution spatial transcriptomic 
technologies [75]. We set the proportion of genes that are differentially expressed (DE) 
(de. prob) in each cell type versus the others to be either 0.1, 0.2, or 0.3. We set the DE 
strength, determined by de. facloc, to be 0.5, 0.7, 1.1, or 1.4, corresponding to 1.5-fold, 
two-fold, three-fold, or four-fold change in expression. We randomly selected an equal 
proportion of DE genes to be upregulated or downregulated. We set the other param-
eters, including the library size parameters and biological coefficient of variation (BCV) 
for incorporating the mean-variance trend, all based on 111 eL2/3 cells from the STAR-
map data, using the splatEstimate function provided in the splatter package.

For each simulation scenario described above, we set a baseline simulation setting 
with nGenes set to be 200, de. prob set to be 0.2, and de. facloc set to be 1.1. We then 
varied each of the three parameters (nGenes, de. prob, de. facloc) one at a time on top 
of the baseline scenarios to examine the influence of each parameter on method per-
formance. We examined a total of eight simulation settings for each scenario, with 50 
simulation replicates in each setting. We then applied BASS on the expression features 
along with spatial localization information to detect spatial domains, infer cell types, and 
estimate domain-specific cell type compositions. We evaluated the performance of spa-
tial domain detection and cell type inference using the adjusted random index (ARI), 



Page 27 of 35Li and Zhou ﻿Genome Biology          (2022) 23:168 	

which measures the similarity between the estimated spatial domain or cell type labels 
and the truth. We also evaluated the estimation accuracy of the cell type compositions 
across spatial domains by comparing the estimated composition to the underlying truth. 
Because the inference results are invariant to a permutation of cell type labels or spatial 
domain labels, the cell type or spatial domain indexes are arbitrary. For example, refer-
ring to a group of cells as cell type 1 is the same as referring to the same group of cells as 
cell type 2. Therefore, we could not directly compare the estimated cell type composition 
in each inferred spatial domain with the underlying truth. Instead, we first identified the 
permutation of the estimated spatial domain labels that best matched the truth as well 
as the permutation of the estimated cell type labels that best matched the truth, before 
comparing the cell type composition in each domain with the ground truth.

In addition to simulating and analyzing a single tissue section, we also simulated mul-
tiple tissue sections and evaluated the performance of BASS for multi-sample integrative 
analysis. Specifically, we generated additional tissue sections based on the same spatial 
locations of the 1127 cells but with slightly different spatial domain allocations, creating 
varying spatial domain boundaries between the four cortical layers on different tissue 
sections. Specifically, we set the number of tissue sections (L) to be either 1, 2, 5, or 10. 
In each section, we set the spatial domain boundaries to be vertical and created new 
boundaries by horizontally moving the original boundaries based on a uniform distribu-
tion with step size set to be approximately 10% (= 500) of the tissue width (Additional 
file 1: Fig. S2). We followed similar procedures to assign cell types in each scenario and 
simulated gene expression for each cell under the baseline simulation setting and a more 
challenging setting (with de. facloc set to be 0.7, on top of the baseline setting) using the 
splatter package. For each simulation setting, we performed 50 simulation replicates. In 
each replicate, we applied BASS to jointly analyze all tissue sections for spatial domain 
detection, cell type inference, and estimation of cell type compositions across spatial 
domains. We again evaluated the performance of spatial domain detection and cell type 
inference using ARI and evaluated the estimation accuracy of the cell type compositions 
by comparing the estimated composition to the underlying truth using root mean square 
error (RMSE).

Additional simulations

Besides the main simulations described above, we also performed additional simulations 
to evaluate the influence of various other factors—including the specified number of cell 
types and spatial domains, rare cell types, and a random exclusion of genes—on method 
performance, as detailed below.

Influence of the specified number of cell types and spatial domains  We performed addi-
tional simulations to evaluate the influence of the specified number of cell types and 
the number of spatial domains on method performance. Specifically, we focused on the 
baseline simulation setting of scenario III and specified either the number of cell types 
or the number of spatial domains to be 2, 4, 6, 8, or 10 while fixing the other to be the 
truth (4). We then evaluated the impact of the two parameters on both cell type clus-
tering and spatial domain detection for BASS and the corresponding task for the other 
methods based on three criteria: the overall agreement between the estimated labels and 
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true labels measured by ARI and NMI; the number of estimated cell types and/or spatial 
domains; and the proportion of cells in each cell type cluster and/or spatial domain.

Influence of rare cell types  We created additional simulations to evaluate the perfor-
mance of all methods in the presence of rare cell types. Specifically, we assumed that the 
tissue consisted of four major cell types along with either six or ten rare cell types. We 
assumed that the major cell types consisted of 70% of cells in the data while the rare cell 
types consisted of the remaining 30% of cells. This way, each rare cell type consisted of 
5% (~ 56 cells) or 3% (~ 34 cells) of the total cell population. We assumed that the com-
position of major cell types in different spatial domains was the same as that in the sce-
nario III, where each spatial domain contained three major cell types with a 2:1:1 ratio. 
For rare cell types, we examined two settings where the rare cell types exhibit either a 
random distribution pattern or a domain-specific pattern. In the setting of a random dis-
tribution pattern, we assumed that the rare cell types were randomly distributed across 
the entire tissue. In the setting of a domain-specific pattern, we assumed that each rare 
cell type was located only in one spatial domain. In these rare cell type simulations, in 
addition to ARI, we also evaluated the performance of all methods using the F1 score 
and Matthews correlation coefficient (MCC) following previous papers on rare cell type 
clustering [76–78].

Influence of a random exclusion of genes  Finally, because spatial transcriptomic tech-
nologies vary widely in terms of the number of genes they can profile, we conducted 
additional simulations, where genes were randomly excluded from the gene expression 
matrix during model fitting, to understand its influence on the performance of all meth-
ods. Specifically, we focused on the setting where the number of genes was set to be 
1000 and where the other parameters were set to be the baseline for all four simulation 
scenarios. We randomly excluded genes from the simulated expression count matrix and 
evaluated settings where 100, 200, or 500 genes were retained.

Method comparison

We compared BASS with several existing methods for spatial domain detection and 
cell type clustering. For spatial domain detection, we compared BASS with HMRF [23], 
BayesSpace [25], and SpaGCN [24]. Both HMRF and BayesSpace rely on a Potts model 
to impose a spatial dependency structure among neighboring cells, while SpaGCN relies 
on a graph convolutional network and constructs a weighted undirected graph to model 
the spatial dependency among cells. We used the Giotto package (version 1.0.4) [79] to 
fit HMRF and followed the online tutorial of Giotto for data pre-processing. Specifi-
cally, we excluded cells that did not contain any expressed gene and excluded genes that 
were not expressed in any cell. We normalized the count matrix for the remaining cells 
and genes with a default scale factor of 6000 and performed log-transformation. We 
then selected the top 100 genes with spatial coherent expression patterns as measured 
by the BinSpect-kmeans (Binary Spatial Extraction) method in Giotto. Afterwards, we 
constructed a spatial network with the default Delaunay method and fitted the HMRF 
model with the Potts parameter β set to be a fixed value, which ranged from 0 to 50 at 
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increments of 2. We show HMRF results in simulations for three different βs that cor-
respond to the worst, median, and best performance in terms of the median ARI across 
50 simulation replicates. In the real data, we determined the optimal β to be the value 
that gives rise to the highest ARI compared to the ground truth obtained through the 
manual annotation—thus, the results of HMRF in the real data are likely overly optimis-
tic. For BayesSpace, we used the BayesSpace package (version 1.2.1) with default settings 
and followed the online tutorial of BayesSpace for model fitting. For SpaGCN, we used 
the SpaGCN package (version 1.2.0) with default settings and followed the online tuto-
rial of SpaGCN for model fitting. In particular, the spatial parameter (p), representing 
the percentage of total expression contributed by neighborhoods, was set to be its rec-
ommended value of 0.5. Note that all the above compared methods could only analyze 
one tissue section at a time. Therefore, we only compared the multiple-section version 
of BASS with the single-section version of BASS to illustrate the benefits of integrative 
analysis of multiple tissue sections.

For cell type clustering, we compared BASS with Seurat [27], SC3 [28], and FICT [31]. 
Both Seurat and SC3 are commonly used for cell type clustering in single-cell RNA-seq 
studies and have been shown to outperform a wide range of cell type clustering methods 
as demonstrated in two recent benchmarking papers [29, 30]. For Seurat, we used the 
Seurat package (version 3.2.3) for model fitting. We followed the Seurat online tutorial 
to normalize and scale the expression count data and extracted top 20 PCs as expres-
sion features for the subsequent clustering analysis. Seurat uses a resolution parameter 
to indirectly determine the number of clusters. We ran Seurat on a range of resolution 
parameters (0.1 to 4 at increments of 0.1) and identified the first value that resulted in 
the desired number of cell types. For SC3, we used the SC3 package (version 1.20.0) with 
default settings for model fitting. For FICT, we followed the sample code with its recom-
mended settings for model fitting. Finally, we extended Seurat and SC3 to make use of 
the expression data from multiple tissue sections. Specifically, we extracted a common 
set of genes from all tissue sections and simply stacked the expression matrix from all 
sections to serve as the input. We then applied Seurat and SC3 on the combined data 
for cell type clustering through their own analytic pipelines. As FICT can only analyze 
one tissue section at a time, we did not include FICT in our comparison when analyzing 
multiple tissue sections.

Differential gene expression analysis and cell type annotation

We performed differential expression (DE) analysis to identify marker genes for each cell 
type cluster inferred by BASS and the other methods. In particular, we used the Seurat 
package (version 3.2.3) [27] to examine one gene at a time and used a Wilcoxon rank-
sum test to identify genes that were DE in one cell type as compared to the remaining 
cell types. Then, we annotated each cell type by comparing the identified DE genes with 
previously known cell type marker genes.

Mouse medial prefrontal cortex data by STARmap

We obtained the STARmap data based on the online resources provided in the origi-
nal study [10]. For single tissue section analysis, we focused on the tissue section “BZ5” 
that measured the medial prefrontal cortex (mPFC) region of the mouse brain. The data 
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contains expression values in terms of count for 166 genes measured on 1127 single cells 
along with their centroid coordinates on the tissue. Among the 166 genes, 112 of them 
are putative cell-type markers and 48 of them are activity-regulated genes. After remov-
ing 78 “NA” cells, which were not confidently identified to be any cell type, we retained a 
total of 166 genes measured on 1049 single cells for further analysis. Following [24, 80], 
we assigned the cells into four spatial domains that included the cortical layers L1 (86 
cells), L2/3 (167 cells), L5 (449 cells), and L6 (347 cells), based on the spatial expression 
patterns of marker genes that included Bgn (L1), Cux2 (L2/3), Tcerg1l (L5), and Pcp4 
(L6). Note that mPFC lacks the L4 cortical layer [81]. In addition, we obtained cell type 
labels for all cells from the original study [10] to serve as the ground truth for evaluat-
ing the performance of cell type clustering. A total of 15 cell types were described in the 
original study, and these cell types were obtained through repeated clustering with care-
ful marker gene examination.

For multiple tissue section analysis, we obtained two additional tissue sections “BZ9” 
and “BZ14” that were measured on the same mPFC region from different mice. We fol-
lowed the same procedure described above to filter cells and retained the same set of 
166 genes measured on 1053 cells (BZ9) and 1088 cells (BZ14) along with their centroid 
coordinates for further analysis. Similarly, cells on the two additional tissue sections 
were carefully annotated to the four cortical layers. In the analysis, we set the number of 
spatial domains to be the truth (four) and set the number of cell types to be 15 following 
[10] for all methods for the analyses on a single tissue section as well as the integrative 
analysis across multiple tissue sections.

Mouse hypothalamus data by MERFISH

We obtained the MERFISH data set that measured the mouse preoptic region of the 
hypothalamus from Dryad [16]. For single tissue section analysis, we focused on the tis-
sue section at Bregma-0.14 mm from animal 1. The data contains expression values of 
160 genes measured on 6605 single cells along with their centroid coordinates on the 
tissue. In the original study [16], among the 160 genes, 85 of them were pre-selected 
as either known markers for major cell classes or relevant to neuronal functions of the 
hypothalamus; 70 were identified with scRNA-seq as neuronal cluster markers; and the 
remaining 5 genes represented the measurement of barcodes not assigned to any RNA 
and served as blank controls. Among the 6605 cells, 679 cells were annotated to be the 
“Ambiguous” class as they were identified as putative doublets [16]. After removing the 
blank genes and ambiguous cells, we retained a total of 155 genes measured on 5926 
single cells for further analysis. The downloaded data contained normalized gene expres-
sion values, which were previously computed as the total counts per cell divided by the 
cell volume (for 135 genes measured by the combinatorial smFISH) or by the arbitrary 
fluorescence units per μm3 (for 20 genes measured by the non-combinatorial, sequen-
tial FISH) and further scaled by 1000 [16]. In addition, we assigned the cells to 8 spa-
tial domains based on spatial gene expression patterns and the histology diagram of the 
mouse brain from the Allen’s brain atlas [80]. These spatial domains included the third 
ventricle (V3; 311 cells), bed nuclei of the strata terminalis (BST; 1539 cells), columns of 
the fornix (fx; 400 cells), medial preoptic area (MPA; 1655 cells), medial preoptic nucleus 
(MPN; 824 cells), periventricular hypothalamic nucleus (PV; 211 cells), paraventricular 
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hypothalamic nucleus (PVH; 703 cells), and paraventricular nucleus of the thalamus 
(PVT; 283 cells). In addition, we obtained the cell type labels from the original study [16] 
to evaluate the performance of cell type clustering.

For multiple tissue section analysis, we obtained four additional tissue sections 
adjacent to Bregma-0.14 mm from the same animal. These include tissue sections at 
Bregma-0.04, -0.09, -0.19, and -0.24. We followed the same procedure described above 
to filter genes and cells. We retained the same set of 155 genes measured on 5488 cells 
(Bregma-0.04), 5557 cells (Bregma-0.09), 5803 cells (Bregma-0.19), and 5543 cells 
(Bregma-0.24) along with their centroid coordinates for further analysis. Similarly, cells 
on the four additional tissue sections were carefully annotated to the eight brain struc-
tures in the hypothalamus. For both the analyses of a single tissue section and the inte-
grative analysis of multiple tissue sections, we set the number of spatial domains to be 
the truth (8) and the number of cell types to be 20 for all methods.

Human dorsolateral prefrontal cortex data by 10x Visium

We obtained the human dorsolateral prefrontal cortex (DLPFC) data set that was meas-
ured on the 10x Visium platform [32]. DLPFC data contains expression values of 33,538 
genes measured on two pairs of tissue sections from three independent neurotypical 
adult donors. Each pair consists of two directly adjacent, 10 μm serial tissue sections 
with the second pair located 300 μm posterior to the first, resulting in a total of 12 tis-
sue sections. We excluded spots that were not mapped to the tissue region in the his-
tology image and retained a total of 33,538 genes measured on 4226 (151507), 4384 
(151508), 4789 (151509), 4634 (151510), 3661 (151669), 3498 (151670), 4110 (151671), 
4015 (151672), 3639 (151673), 3673 (151674), 3592 (151675), and 3460 (151676) spots 
along with their spatial locations for further analysis. In addition, we obtained manually 
annotated labels of seven laminar clusters that included six cortical layers from L1 to 
L6 and white matter (WM) from the original publication as our ground truth to evalu-
ate the performance of spatial domain detection. We focused our analysis only on spa-
tial domain detection because the clustering of spatial spots no longer has the cell type 
interpretation. For single tissue section analysis, we analyzed each of the 12 tissue sec-
tions separately. For multiple tissue section analysis, we jointly analyzed four tissue sec-
tions from each adult donor because they contained similar tissue structures. For both 
the analysis on a single tissue section and the integrative analysis of multiple tissue sec-
tions, we set the number of spatial domains to be the truth (7) for all methods. In addi-
tion, for BASS, we extracted the top 3000 spatially variable genes with SPARK-X [22] 
before performing dimension reduction. We set the number of cell types to a relatively 
large number (15) to capture the expression heterogeneity.
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