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A B S T R A C T

In this paper, design of fuzzy proportional derivative controller and fuzzy proportional derivative inte-
gral controller for speed control of brushless direct current drive has been presented. Optimization of
the above controllers design is carried out using nature inspired optimization algorithms such as par-
ticle swarm, cuckoo search, and bat algorithms. Time domain specifications such as overshoot, undershoot,
settling time, recovery time, and steady state error and performance indices such as root mean squared
error, integral of absolute error, integral of time multiplied absolute error and integral of squared error
are measured and compared for the above controllers under different operating conditions such as varying
set speed and load disturbance conditions. The precise investigation through simulation is performed
using simulink toolbox. From the simulation test results, it is evident that bat optimized fuzzy propor-
tional derivative controller has superior performance than the other controllers considered. Experimental
test results have also been taken and analyzed for the optimal controller identified through simulation.

Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Brushless Direct Current (BLDC) motors are widely used in servo
robotic positioning actuators, traction, fans, and blowers due to their
high reliability, high efficiency, low maintenance, and many other
advantages [1]. In the last decade, many number for speed con-
trollers have been developed for the speed control of brushless dc
motor. They are classified as proportional integral derivative con-
troller, fuzzy logic based controller, Neuro fuzzy controller, etc [2–22].

Normally, Proportional Integral derivative controller is an
optimum choice for controlling the speed of the BLDC motor.
However, it has uncertainty problem due to load as well as in set
speed variations. Also, tuning of the proportional integral and de-
rivative (PID) controller leads to uncertainty in the control system
parameters [2]. In order to overcome the above problems, precise
method of control can be provided with help of intelligent system
based on fuzzy logic and neural network approach. But most of the
time, fuzzy logic based controller provides better results than the
conventional and neural network.

Conventional proportional integral (PI) controller has been imple-
mented for BLDC motor in [3]. Direct self control was designed for
brushless dc motor with PI speed controller in [4]. Three phase

brushless dc motor with proportional integral based speed con-
troller has been presented for four quadrant operation in [5]. From
the literatures [3–5], the proportional controller is the most pref-
erable speed controller for BLDC motor, but PI controller produces
sluggish response in the system, and also it produces uncertainty
problem in some operating conditions of the BLDC motor. To avoid
these shortcomings, the fuzzy logic controller has been developed
[6–9]. In [6], adaptive fuzzy logic based speed controller has been
designed for brushless dc motor. In [7], comparative analysis for PI
controller, fuzzy tuned PID controller, fuzzy variable structure con-
troller, and ANFIS controller has been developed for Brushless DC
motor. In [8], adaptive fuzzy PID controller has been developed for
the dc motor. In [9], fuzzy like Proportional Derivative (PD) con-
troller was developed for non linear plant. But the non linearity of
the system depends on the scaling factor of the fuzzy Proportion-
al Derivative controller.

From [6–9], all parameters were in favor of the fuzzy logic based
controller. Even though, performance of the fuzzy logic controller
depends on the scaling factor of the input and output of the fuzzy
logic controller, it also affects the control system performance. In
order to overcome these problems, the tuning of scaling factor of
the PID and fuzzy logic controller with naturally inspired algo-
rithm such as genetic algorithm, particle swarm optimization, and
cuckoo search algorithmwas developed for the optimization of con-
stantparameter in [10–13]. Thedesignand the tuningof PIDcontroller
through the genetic algorithm approach have been presented for
robotic manipulator in [10]. From the simulation result, torque of
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themanipulator has larger overshoot and larger error. In [11], tuning
of PID controller gain by particle swarm optimization (PSO) was
implemented for brushless dcmotor, but the electromagnetic torque
has high overshoot and undershoots in the starting period.

In [12], genetic algorithm has been used for tuning the scaling
factor of fuzzy logic based PID controller, and it was applied for the
speed control of brushless dc motor. From the experimental results
it was pointed out that speed response has uncertainty problem due
to load variations. In [13], the survey has been presented explain-
ing the nature-inspired optimization algorithms for tuning the scaling
factor of the fuzzy logic control. The importance of particle swarm
optimization for large scale optimization was explained in [14]. In
[15], comparison of particle swarm optimization and genetic algo-
rithm for FACTS-based controller design has been explained. In [16],
the comparison of Cuckoo search with standard versions of PSO and
GA has been discussed. Cuckoo search algorithm was applied for
tuning the parameter of two degrees of freedom controller in the
automatic generation control of multi area system which has been
presented in [17]. But with this algorithm also, only steady state
response of the system has improved without significant tran-
sient response improvement. The comparative analysis of swarm
intelligent techniques (cuckoo search, firefly algorithm, and glow-
worm swarm optimization) with population based algorithm (genetic
algorithm) was presented in [18]. The superiority of each swarm
intelligent techniques has been noticed with population based al-
gorithm. The scaling factor of fractional order fuzzy PID controller
tuning by cuckoo search algorithm has been presented in [16]. In
[19,20], bat algorithm was used for tuning the parameters of the
power system stabilizers, and its effectiveness was also reported.
Most of the researchers only concentrated on the GA, PSO, and
Cuckoo algorithm for tuning fuzzy logic controller scaling factors.

The operation of the system under fuzzy logic control not only
depends on the input and output scaling factors of the fuzzy logic
controller but it also depends on the position of the membership
function of the input and outputs of the comptroller. Tuning of mem-
bership function of Fuzzy PWM based on Genetic Algorithm for
battery charging has been outlined in [21]. Genetic fuzzy self-
tuning PID controllers for antilock braking systems have been
presented in [22]. Genetic algorithm has been used for tuning the
antecedent part of the input membership function, and coeffi-
cients of the consequent parts of the Takagi and Sugeno fuzzy
inference system. Totally, 93 parameters have been tuned for the
fuzzy inference system. From this, genetic algorithm takes large com-
putation time for getting optimal parameter for the fuzzy logic
control. Although, overshoot, performance indices, i.e., integral of
absolute error and integral of time multiplied absolute error was
not favored for the fuzzy self tuned PID controller. There is no sig-
nificant literature based on bat algorithm optimized tuning of
parameters in fuzzy logic controller. Flexible job shop scheduling
problem using an estimation of distribution algorithm (EDA) has
been explained, and effectiveness of EDA has been addressed in [23].
But EDA has some disadvantages that are loss of diversity, insuffi-
cient use of local information of solution, and it traps into local
optima.

The objective of this paper is to design the fuzzy PD and fuzzy
PID controller for the speed control of brushless dc motor and op-
timize the input and output scaling factor, antecedent part of the
input membership function, and coefficients of the consequent parts
of the fuzzy inference system of the fuzzy PD controller and fuzzy
PID controller with bat, PSO, and cuckoo search algorithms. The
purpose of optimization is tominimize the objective function in order
to improve the time domain specifications and performance indices
under different operating conditions. Parameters such as over-
shoot, undershoot, settling time, recovery time, steady state error,
root mean squared error, integral of absolute error, integral of time
multiplied absolute error and integral of squared error are mea-

sured and compared for the above controllers with different
operating conditions of the brushless dc motor drive. Based on the
simulation results, best controller is suggested and validated. An
attempt has also been made to prove experimentally the results of
the optimal controller pointed out through simulation study.

The paper is organized as follows: Speed control of BLDC motor
is given in brief in section 2, and design of Fuzzy PD and Fuzzy PID
type speed controller is explained in section 3. Formulation of the
objective function for the fuzzy PD and fuzzy PID controller is pre-
sented in the section 4. Review of nature-inspired optimization
algorithms for tuning of fuzzy PD and fuzzy PID controller has been
provided in section 5. Section 6 discusses the simulation results, and
section 7 provides experimental verification and discussion on
results. Concluding remarks are outlined in section 8.

2. The speed control of the brushless dc motor

Speed control system for BLDC motor is represented in Fig. 1.
Three phase star connected brushless dc motor can be described
by the following five equations (1) to (5) as,

v R i i L
d

dt
i i e eab a b a b a b= −( ) + −( ) + − (1)

v R i i L
d

dt
i i e ebc b c b c b c= −( ) + −( ) + − (2)

v R i i L
d

dt
i i e eca c a c a c a= −( ) + −( ) + − (3)

T k J
d

dt
Te f m

m
L= + +ω

ω (4)

ω
θ

m
md

dt
= (5)

Where Vab, Vbc, and Vca are the phase to phase voltage in volts.
Phase currents of the stator winding represents by ia, ib, and ic in
amperes. L denotes the self inductance of the motor in Henry. Back
electromagnetic force is represented by ea, eb, and ec in volts. Te and
TL are the electromagnetic torque and Load torque of the motor in
N-m. J is the rotor inertia, kf is a friction constant, ωm is the rotor
speed of the motor in rad/s, and θm is the rotor position of the motor
in rad. Fig. 1 shows the speed control system of the brushless dc
motor. The system consists of two loops, such as the inner loop and
the outer loop. Inner loop is used for synchronizing the inverting
gate signal with back electro motive force or rotor position of the
motor. The outer loop is used to sense the actual speed of the motor,
and then it is compared with the reference speed to produce speed
error. The speed error is then processed via controller thus provide

Fig. 1. Speed control system of brushless dc motor.
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the controlling signal to the switching logic and PWM inverter and
control the dc bus voltage thus by controlling the speed of themotor
[7].

3. Design of fuzzy PD and fuzzy PID type speed controller for

the brushless DC motor

Structure of conventional PID controller is shown in Fig. 2. The
control output of the PID controller in time-domain is expressed
in equation (6) as,

u t K e t K e t dt K
de

dt
p i d( ) = ( ) + ( ) +∫ (6)

Where, e (t) represents the tracking speed error, the difference
between the desired input value (ωref), and the actual output (ωact),
u(t) is the control signal to the plant, Kp is the proportional gain,
Ki is the integral gain, and Kd is derivative gain of the PID control-
ler. The design of fuzzy PD controller and fuzzy PID controller is given
below, and their structures are shown in Figs. 3 and 4.

The proportional derivative controller uses the derivative action
to improve closed-loop stability. The basic description of a PD con-
troller is expressed in the equation (7) as,

u t K e t K
de t

dt
p d( ) = ( ) +

( ) (7)

The input to the fuzzy PD controller is the error and rate of change
of error, the control output is the nonlinear function of error and
rate of change of error and given in the equation (8) as,

u t f K e t K
de t

dt
Ke ce u( ) = ∗ ( ) ∗

( )⎛
⎝⎜

⎞
⎠⎟ ∗, (8)

The function f is the input–output map of the fuzzy controller.
Using the linear approximation, the equation (8) rewrite as,

u t K e t K
de t

dt
Ke ce u( ) = ∗ ( ) + ∗

( )⎛
⎝⎜

⎞
⎠⎟ ∗ (9)

u t K K e t K K
de t

dt
e u ce u( ) = ∗ ∗ ( ) + ∗ ∗

( ) (10)

By comparing, the gains in (7) and (10) are related in the fol-
lowing equation (11) and (12) as,

K K Kp e u= ∗ (11)

K K Kd ce u= ∗ (12)

Where, Ke and Kce are input scaling factor of the fuzzy PD con-
troller. Ku is the output scaling factor of the fuzzy PD controller. It
has simple control structure which gives better sensitivity and in-
creases the overall stability of the closed loop system. Also this
structure provides reduced overshoot and enhanced damping to the
overall closed loop system. The nonlinearity of the system can be
handled by appropriate choice of input and outputmembership func-
tions [9].

The internal structure of Fuzzy PD controller has two inputs that
are error (e) and rate of change of error (Δe) and one output (U),
and it is shown in Fig. 5. The inputs are distributed with five tri-
angular membership functions.

Fuzzy inference system is modeled by zero order Takagi-Sugeno
fuzzy inference system. The triangular membership function is de-
scribed by the equation (13) as,
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Where a and c locate the feet of the triangle and the parameter
b locates the peak. The distribution of membership functions for
the error and the rate of change of error are shown in Figs. 6 and
7. Two inputs has range from −1.5*X to 1.5*X and −1.5*V to 1.5*V,
respectively, membership function denote by Negative Big (NB), Neg-
ative Medium (NM), Zero (Z), Positive Medium (PM), and Positive
Big (PB). The range of output is from –H to H. The distribution of
output is shown in Fig. 8. Initially, 25 rules created for fuzzy PD con-
troller and, the overall fuzzy rule is shown in Table 1. Fig. 9 shows
the fuzzy reasoning procedure for a zero order Takagi-Sugeno fuzzy
inference system. The fuzzy part is only in its antecedent. Each rule
has a crisp output, and the overall output is obtained via weighted
average. This fuzzy procedure avoids the time consuming process
of defuzzification required in a Mamdani fuzzy model.

Fig. 2. Structure of conventional PID controller.

Fig. 3. Structure of fuzzy PD type controller.

Fig. 4. Structure of fuzzy PID type controller.

Table 1

Initial rule base for fuzzy PD controller.

e/Δe NB NM Z PM PB

NB NB NB PM NM NM

NM NB NM Z Z Z

Z NB NM Z PM PB

PM Z Z Z PM PB

PB PM PM PM PB PB
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The fuzzy PD controller has three scaling parameters, i.e., Ke, Kce,
and Ku, and it has three adjustable parameters for the input mem-
bership function and coefficient of consequent part, i.e., X, V, and
H. By varying this parameter, the optimal solution for the speed
control of the brushless dcmotor is obtained. This parameter is tuned
by using particle swarm optimization, cuckoo search and bat algo-
rithm, and it has been outlined in section V.

Regarding the design of fuzzy PID controller, it is straightfor-
ward to imagine a fuzzy PID with three input terms: error, integral
error, and derivative error. A rule base with three inputs and output
will increase the fuzzy rules as mentioned in literature survey, and
also, rules concerning the integral action are troublesome [12]. There-
fore, it is common to separate the integral action as in the Fuzzy
PD plus Integral controller (also known as fuzzy PID controller) in
Fig. 4. The control output is computed and expressed in equation
(14) as,

u t K e t K
de t

dt
e t dt Ke ce u( ) = ( ) +

( )
+ ( )⎛

⎝⎜
⎞
⎠⎟ ∗∫ (14)

By comparing, the gains in (14) and (6) are related in the fol-
lowing equation (15), (16) and (17) as,

K K Kp e u= ∗ (15)

K K Kd ce u= ∗ (16)

K Ki u= (17)

This controller provides all the benefits of PID control. The input
and output scaling factors of the Fuzzy PID controller are Ke, Kce,
and Ku, and it also has three adjustable parameters for the input
membership function and coefficient of consequent part, i.e., X, V,

Fig. 5. Internal structure of fuzzy PD controller.

Fig. 6. Distribution of Membership Function of Error.

Fig. 7. Distribution of Membership Function of Rate of Change of Error.
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and H. By adjusting this scaling factor and adjustable parameters,
optimal results for the speed control of the brushless dc motor can
be obtained. The fuzzy PID controller scaling factor is also tuned
by using particle swarm optimization, cuckoo search and bat algo-
rithm, and it is discussed in the section V.

4. Formulation of the objective functions for tuning of fuzzy

PD and fuzzy PID controller

A system is considered an optimum control system when the
system parameters are adjusted so that the index reaches aminimum
value. To be useful, a performance index must be a number that is
always positive or zero. Then the best system is delineated as the
system that minimizes this index.

Four commonly used performance indices for designing single-
loop control algorithm are explained as follows.

The root-mean-square error (RMSE) is a frequently usedmeasure
of the differences between reference value of the closed loop system
and actual output of the system, and it is expressed in equation (18)
as,

J
t t

T

ref acti

T

i i
1

0

2

=
( ) − ( ) )( )=∑ ω ω (18)

Where ω(t)refi is the reference speed in rad/sec, ω(t)acti actual speed
of the motor in rad/sec at each sample and T is the total simula-
tion time for the optimization. Essentially, the RMSE represents the

Fig. 8. Distribution of coefficient of consequent part of output.

Fig. 9. Fuzzy reasoning of a zero order Takagi-Sugeno fuzzy inference system.
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sample standard deviation of the differences between reference input
and actual output of the system. RMSE is a good measure of the
system accuracy.

A fairly useful performance index is the integral of absolute error
(IAE), and it is expressed in the equation (19) as,

J t t dt
ref act

T

2

0

= ( ) − ( )∫ ω ω (19)

IAE integrates the absolute error over time. It doesn’t add weight
to any of the errors in a systems response. It tends to produce a
slower response in the system but results in a fairly good under
damped system.

A very useful criterion that penalizes long duration transient is
known as the integral of time multiplied absolute error (ITAE). It
is expressed in equation (20) as,

J t t t dt
T

ref act3

0

= ∗ ( ) − ( )( )∫ ω ω (20)

The ITAE criterion tries tominimize timemultiplied absolute error
of the control system. The time multiplication term penalizes the
error more at the later stages than at the start and therefore effec-
tively reduces the settling time.

Another useful performance index is the integral of the square
of the error (ISE) criterion, and it is expressed in equation (21) as,

J t t dt
ref act

T

4

2

0

= ( ) − ( )( )∫ ω ω (21)

By focusing on the square of the error function. It penalizes pos-
itive and negative values of the error.

In addition, in order to improve the system performance, one
more performance indices is introduced in this paper, i.e., addi-
tion of the four performance indices (RMSE + IAE + ITAE + ISE), and
it is expressed in equation (22) as,

J J J J J5 1 2 3 4= + + + (22)

The five performance indices are considered as the objective func-
tion used for fuzzy PD and fuzzy PID controller tuning to ensure
stability and attain superior damping to sudden load disturbance
and set speed change.

5. Review of nature-inspired optimization algorithms for

tuning of fuzzy PD and fuzzy PID controller

Optimization methods are extensively applied in numerous
domain fields’ areas such as electrical engineering, electronics
engineering, and mechanical engineering, etc. During the last
couple of years, many optimization algorithms have been created
based on the nature inspired resemblance. However, these algo-
rithms are not always able to solve some problems in the best
way. Although it has been shown that these are good methods to
solve complex problems, there are no methods yet to know the
optimal parameters to solve problems that can be set at the
beginning when using the algorithms. In this section, we briefly
described the optimization algorithms used in this paper, i.e.,
particle swarm optimization, cuckoo search algorithm, and bat
search algorithm for tuning of the input and output scaling factor
and parameter of antecedent and consequent part of the fuzzy PD
and fuzzy PID controller. The following subsections briefly de-
scribe the basic theory of each algorithm in its original form. This
description is considered necessary to grasp the ideas behind the
use of fuzzy PD and Fuzzy PID logic in enhancing the original
Meta-heuristic methods by providing them with dynamic param-
eter adaptation capabilities.

5.1. Particle swarm optimization

Particle Swarm Optimization (PSO) is a population based sto-
chastic optimization technique developed by Kennedy and Eberhart
in 1995 inspired by the social behavior of bird flocking or fish school-
ing. The particle swarm concept was motivated from the simulation
of social behavior. PSO requires only primitive mathematical op-
erators, and is computationally inexpensive in terms of bothmemory
requirements and time. A swarm in PSO consists of a number of par-
ticles. Each particle represents a potential solution to the optimization
task. Each particle represents a candidate solution. Each particle
moves to a new position according to the new velocity which in-
cludes its previous velocity and the moving vectors according to the
past best solution and global best solution. The best solution is then
kept; each particle accelerates in the directions of not only the local
best solution but also the global best position. If a particle discov-
ers a new probable solution, other particles will move closer to it
in order to explore the region. The basic steps for PSO are given in
the flowchart as shown in Fig. 10.

A swarm is composed of m particles flying in the D-dimension
in a certain speed. Every particle changes its position on the basis
of considering its own historical best position and other particles’
historical best position. The position for the ith particle is
x x x xi i i iD= …( )1 2, , , where 1 ≤ i ≤ m and m is the size of the particle
swarm. The speed for the ith particle is v v v vi i i iD= …( )1 2, , ,
where 1 ≤ i ≤ D and D is the dimension of search space. The histor-
ical best position for the ith particle (pbest) is p p p pi i i iD= …( )1 2, , .
The best position for the whole swarm (gbest) is
p p p p g mg g g gm= …( ) ∈ …{ }1 2 1 2, , , , .

The speed and the position of the particle can be updated by the
following formulations:

Fig. 10. Flowchart for Particle Swarm optimization.
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v t v t c r p t x t c r p t x tid id id id gd id+ = + −( ) + −( )( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 (23)

x t x t v tid id id+ = + +( ) ( ) ( )1 1 (24)

Where c1 and c2 are learning factors and are positive constant,
x tid ( ) is the position vector for the ith particle, v tid ( ) is the asso-
ciated speed vector. Due to the learning factor, the particles have
the capability of self-summing up and learning from the excellent
individual of the group, the particle could be close to its own his-
torical best position as well as to the historical best position of the
group. The learning factors c1 and c2 are usually set as 2. The values
of r1 and r2 are randomly distributed in [0,1]. The speed of par-
ticles is restricted within the maximum speed Vmax. Shi and Eberhart
introduced the idea of inertia weight to improve an algorithm’s as-
tringency, and the revised formulation of the speed is shown in
following equation,

v t v t c r p t x t c r p t x tid id id id gd id+ = + −( ) + −( )( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2ω (25)

Where ω is the inertia weight, the value of which decides the
quantity inherited from the current speed of the particle. If it is
chosen properly, then the particle will have the balanced ability of
exploitation and development.

5.2. Cuckoo search algorithm

In 2009, Xin-She Yang and Suash Deb proposed a new
metaheuristic optimization technique named Cuckoo search algo-
rithm. It is based on the brood parasitic breeding behavior of some
species of cuckoos. It follows the cuckoo’s strategy of finding other
bird’s nest where they would lay eggs. Cuckoos try to find a nest
in which host has just laid its eggs so that their eggs would hatch
before the host because of this fact that cuckoo eggs hatch earlier
than their host eggs. Other interesting feature of cuckoo birds is the
mimicry in color and pattern of eggs of some of the host species.
It would help in their ability to reproduce and survival of eggs or
their chick. The cuckoo’s chick forced out the egg or young of the
host from the nest. It would increase its share in food by frequent
calling and by mimic the call of host’s chick. Some host birds are
able to detect the contamination of their nest by cuckoos or they
can distinguish between their eggs and cuckoo’s eggs, then they will
either throw these foreigner eggs or vacate their nest and develop
a new shelter or nest. The main theme of this algorithm is to choose
the best nest with potentially good solutions or eggs. Each nest is
a representative of a potential candidate [16,17]. The three signif-
icant rules that are used for implementing CSA algorithm are
discussed as follow:

1. Each cuckoo lays single egg and places it in an arbitrarily chosen
nest.

2. The best nests carry the potential solution which will move onto
next generation.

3. The available host nests are limited and a host bird can find the
foreign eggs by a probability ‘p’ which ranges [0, 1].

For generating a new nest for cuckoos, a law named Levy flight
is used which is as follows:

x t x t Levyc c+( ) = ( ) + ⊕ ( )1 0 0α λ (26)

Where α0(α0 > 0) is step size and is related to the problem speci-
fied in the equation (26) represents a randomwalkwhich is aMarkov
chain which means its next step depends on the current location
and the transition probability. The random walk proves to be more
promising in exploring the search space due to its longer step length
in long run. The Levy flight is characterized by random walk which

is derived from the Levy distribution with an infinite variance and
infinite mean. The Levy distribution in the proposed CSA is devel-
oped using the exponential law proposed by Mantegna. In this, the
step size should be taken as λ0/100, where λ0 is the search space
size as Levy distribution may be too strong for larger step size that
new solutions may be opted out from the searched space [24]. The
basic steps for CSA are given in the flowchart as shown in Fig. 11.

5.3. BAT algorithm

The bat algorithm uses the echolocation behavior of bats. These
bats emit a very loud sound pulse (echolocation) and listens for the
echo that bounces back from the surrounding objects. Their signal
bandwidth varies depending on the species. Each sound pulse in-
cludes frequency, loudness, and pulse emission rate. Most bats use
signals with tuning frequencies while the rest use fixed-frequency
signals. The frequency range used by these creatures is between 25

Fig. 11. Flowchart for Cuckoo search algorithm.
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KHz to 150 KHz. Bat algorithms are based on the following aspects;
all bats use echolocation and distinguish the difference between
victim and obstruction. Bats are flying with a random velocity, in
a random location, with a variable frequency, loudness, and the pulse
emission rate [19,20,25]. Bat algorithm is bad at exploration and
exploitation. In order to tackle with the problemmentioned above,
distribution of the population modification structure has been pro-
posed for the original algorithm. The flowchart for the proposed bat
algorithm is shown in Fig. 12. Bat algorithm for optimization of
tuning of the adjustable parameter in fuzzy PD and fuzzy PID con-
troller as follows:

Step1:

Formulation of Objective function J(S) for optimization with
S = (S1. . . Sd), where d is the number of tuning parameter.
The fitness function can be defined as a particular type of ob-
jective function that is used to summarize, as a single
figure of merit. In general, the fitness function should be a

measure of how closely the model prediction matches the ob-
served or expected data for a given set of model parameters. The
notion of fitness is fundamental to the application of evolution-
ary algorithms; the degree of success in their application may
depend critically on the definition of a fitness that changes neither
too rapidly nor too slowly with the design parameters of the op-
timization problem. The fitness function must guarantee that
individuals can be differentiated according to their suitability for
solving the optimization problem.
In evolutionary algorithms, the performance of the individual
run is measured by a fitness function. After each iteration, the
members are given a performance measure derived from the
fitness function, and the “fittest” members of the population will
propagate for the next iteration. In this paper, to assure stabil-
ity and attain superior damping to sudden load disturbance and
set speed variations, the parameters of the controllers may be
chosen tominimize the objective function described by the equa-
tions (18–22) is considered as a fitness function for the

Fig. 12. Flowchart for the Bat algorithm.
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Table 2

Parameters of the PSO, Cuckoo, and Bat algorithm.

PSO Cuckoo search Bat algorithm

Generation 10 Generation 10 Generation 10

Population size 10 Number of nests 10 Population size 10

Cognitive parameter (c1) 2 Discovery rate (pa) 0.25 β = σ 0.9

Social parameter (c2) 2 P10 0.9

Initial weight (Wmin) 0.9 R1
0 0.9

Final weight (Wmax) 0.4 fmin 0

fmax 100

Trial 50 Trial 50 Trial 50

(a)

(b)

Fig. 13. (a). Optimization of the fuzzy PD, fuzzy PID controller using PSO, Cuckoo search and Bat algorithm. (b). Initial membership function for error, rate of change of

error and output surface of fuzzy PD and fuzzy PID controller.

ARTICLE IN PRESS

Please cite this article in press as: K. Premkumar, B.V. Manikandan, Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor, Engineering Science

and Technology, an International Journal (2015), doi: 10.1016/j.jestch.2015.11.004

9K. Premkumar, B.V. Manikandan/Engineering Science and Technology, an International Journal ■■ (2015) ■■–■■



Table 3

Optimal value of tuning parameter of the Fuzzy PD controller with PSO, Cuckoo search and Bat algorithm.

RMSE (J1)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 66.7792 139.0034 14.3992 56.4864 82.2190 16.9855 0.1074 0.1550 0.1204 0.0186 429.7240

Cuckoo 36.0998 111.5952 58.1305 36.9542 101.9201 110.7451 0.1235 0.1554 0.1315 0.0104 642.5300

Bat 118.8531 143.9291 98.3967 5.4544 127.3857 140.1068 0.1026 0.1557 0.1074 0.0160 248.7020

IAE (J2)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 150.0000 0.1000 19.9640 82.3017 131.0437 150.0000 0.0082 0.0134 0.0095 0.0020 387.4590

Cuckoo 0.4399 0.9269 137.4575 97.3321 4.5031 149.5709 0.0091 0.0133 0.0102 0.0015 909.3230

Bat 66.1901 8.6379 42.3185 64.3631 85.0581 44.1775 0.0080 0.0134 0.0085 0.0016 252.8630

ITAE (J3)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 48.5968 147.0557 50.4469 48.6462 61.7448 147.1379 0.0005 0.0014 0.0007 0.0003 384.1950

Cuckoo 82.2899 94.4075 24.8378 149.7029 150.0000 63.9726 0.0005 0.0014 0.0008 0.0004 603.4860

Bat 104.3006 10.2912 38.2921 33.6826 100.2072 126.6734 0.0004 0.0009 0.0005 0.0002 271.4610

ISE (J4)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 26.2795 81.5246 26.6294 125.1210 148.0905 75.6607 0.0031 0.0096 0.0045 0.0022 426.7350

Cuckoo 4.7749 89.7148 61.6997 113.4746 81.9585 149.9967 0.0032 0.0093 0.0048 0.0023 540.2730

Bat 72.6903 126.7381 31.4841 82.8827 94.5138 4.8897 0.0030 0.0094 0.0036 0.0019 263.7860

RMSE + IAE + ITAE + ISE (J5)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average Computation Time (sec)

PSO 10.3533 19.7405 50.7451 99.9594 83.7049 150.0000 0.1381 0.1525 0.1440 0.0052 405.4830

Cuckoo 36.5949 79.8609 24.5980 78.3844 99.9910 49.4134 0.1221 0.1521 0.1281 0.0102 483.2470

Bat 16.0324 17.1473 117.9016 44.0223 90.7856 144.8829 0.1138 0.1538 0.1175 0.0121 305.2550

Fig. 14. Convergence graph for tuning parameter of the fuzzy PD controller.
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optimization,
For fuzzy PD and fuzzy PID controller: d = 6, S1 = Ke, S2 = Kce,
S3 = Ku, S4 = H, S5 = X, and S6 = V.
The range for tuning parameter in fuzzy PD controller and fuzzy
PID controller is given in equation (27) as,

0 150< ≤Ke Kce Ku H X and V, , , , , (27)

Sep 2: Initialize the bat population Si and initial velocity Li for
(i = 1, 2. . . n), where n is the number of bat populations.
Step 3: Define pulse frequency fi at Si. Initialize pulse rates Pi,
maximum number of iterations and the loudness factor Ri

Step 4: Loop:
Start;
t=0;
While (t <Maximum number of iterations)
t=t+1; iteration count.
Generate new solutions by adjusting frequency and updating ve-

locities and locations/solutions by the equation (28–30)

f f f fi = + −( )min max min γ (28)

L L S S fi
t

i
t

i
t

b i= + −( )− −1 1 (29)

S S Li
t

i
t

i
t= +−1 (30)

Where, γ is a random vector drawn from a uniform distribu-
tion and frequency range fmin = 0 and fmax = 100. Sb is a global best
for every iteration or generation.

The second term of the Equation (29) provides local search with
guidance of the best solution in the standard algorithm. Exclusive
usage of this termmay cause premature convergence problem, thus
solutions get stuck at a local minimum. When the best solution is
near a local minimum toward the end of optimization process, the
ith solution can have no chance to get away from that undesired local
minimum as the movement of the ith particle depends on such best
solution toward the end of the optimization process [26]. For this
purpose, the velocity equation has been modified to perform the
situation that the kth solution could also affect the ith solution. The
equation (29) modified as,

L L S S f S S fi
t

i
t

i
t

b i i
t

k
t

i= + −( ) + −( )−1
1 2ξ ξ

ξ ξ1 2 1+ =

Where Sk is one of the best solutions randomly chosen among
the population i k≠( ), ξ1 is learning factor ranging from ωmin to ωmax .
As the value of ξ1 increases, the effect of the best solution (Sb) is
higher than the kth solution and vice versa. The ξ1 value has to be
updated as iterations proceed in order that the solution can switch
from global to local search.

Fig. 15. Error membership function of fuzzy PD controller after optimization using PSO, Cuckoo search and bat algorithm.
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ξ ω ω1 1= −( ) +−
max mine iter

Where, “iter” is the current iteration number, ωmax and ωmin are
maximum and minimum inertia weight. The inertia weights of the
optimization are chosen as 0.9 and 0.1 respectively. This proce-
dure called as distribution of the population modification structure.

If (random number (0 to 1) > Pi)
Select a solution among the best solutions and generate a local

solution around the selected best solution using the equation (31),

S S Ri
t

b
t= + ε (31)

Where, ε is a random number. While Rt = < Rt
i
> is the average

loudness of all the bats at this time step (t).
End if
Generate a new solution by flying randomly
If (random number (0 to 1) < Ri & J(Si) < J(Sb))
Accept the new solutions,
Increase Pi and reduce Ri using equation (32) and (33).

R R P Pi
t

i
t

i
t

i
+ + −( )= = −( )1 1 0 1β σ, e t (32)

Where, β and σ are constants. For any 0 < β < 1 and σ > 0, we have

R P P as ti
t

i
t

i→ = → ∞0 0, , (33)

For simplicity, β = σ can be used, and for this work, β = σ = 0.9
is considered.

End if
Rank the bats and find the current best (Sb)
End while
Loop end
Step 5: Display the optimum solutions.

Bat algorithm has many advantages, and one of the key advan-
tages is that it can provide very quick convergence at a very initial
stage by switching from exploration to exploitation. This makes it
an efficient algorithm for applications such as classifications and
others when a quick solution is needed. There are many reasons for
the success of bat-based algorithms. By analyzing the key features
and updating equations, we can summarize the following three key
points/features:

• Frequency tuning: Bat algorithm uses echolocation and frequen-
cy tuning to solve problems. Though echolocation is not directly
used to mimic the true function in reality, frequency variations
are used. This capability can provide some functionality that may
be similar to the key feature used in particle swarm optimiza-
tion and harmony search. Therefore, bat algorithm possesses the
advantages of other swarm-intelligence-based algorithms.

Fig. 16. Rate of change of error membership function of fuzzy PD controller after optimization using PSO, Cuckoo search and bat algorithm.
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• Automatic zooming: Bat algorithm has a distinct advantage over
other metaheuristic algorithms. That is, Bat algorithm has a ca-
pability of automatically zooming into a region where promising
solutions have been found. This zooming is accompanied by the
automatic switch from explorative moves to local intensive ex-
ploitation. As a result, bat algorithm has a quick convergence rate,
at least at early stages of the iterations, compared with other
algorithms.

• Parameter control: Manymetaheuristic algorithms used fixed pa-
rameters by using some, pre-tuned algorithm-dependent
parameters. In contrast, bat algorithm uses parameter control,
which can vary the values of parameters (P and R) as the itera-
tions proceed. This provides a way to automatically switch from
exploration to exploitation when the optimal solution is ap-
proaching. This gives another advantage of bat algorithm over
other metaheuristic algorithms.

Likely many metaheuristic algorithms, bat algorithm has the ad-
vantage of simplicity and flexibility. Bat algorithm is easy to
implement, and such a simple algorithm can be very flexible to solve
a wide range of problems as we have seen in the above review. In
addition, preliminary theoretical analysis by Huang suggested that
Bat algorithm has guaranteed global convergence properties under
the right condition, and bat algorithm can also solve large-scale prob-
lems effectively [27,28].

6. Simulation results and discussions

In this section, the superiority of particle swarm, cuckoo search,
and bat algorithms optimized fuzzy PD controller over particle
swarm, cuckoo search, and bat algorithms optimized fuzzy PID con-
troller is proved through simulation for the speed control of BLDC
motor. The parameters of the considered algorithms are given in
Table 2. PSO, Cuckoo and bat algorithm progressively minimize the
objective functions (18) to (22) over the iterations while finding
optimal set of parameters for the fuzzy PD and fuzzy PID control-
ler. The program stops if the value of the objective function does
not change appreciably over consecutive iterations (i.e. the change
is less than the pre-specified tolerance level) or the maximum
number of iterations is exceeded. The maximum number of itera-
tions is kept as 10 and the tolerance level is kept at 10−6. With a
population of P = 10 individuals for G = 10 generations, the fitness
function in Equation (18) to (22) are evaluated 100 times. Indeed,
this number (E = P x G) represents the act of evaluating points inside
the search space. The optimization procedure is performed using
Matlab-R2010a, M-file underWindows 7 on a PC Pentium dual core
processor CPU, and 2.1 GHz speed system. Totally, 50 trials have been
performed, in order to be definite that convergence has taken place
and 5000 function has been evaluated for 50 trails.

Fig. 13(a) shows the optimization of the fuzzy PD, fuzzy PID con-
troller using PSO, Cuckoo search and Bat algorithm.

Fig. 17. Output surface of the fuzzy PD controller after optimization using PSO, Cuckoo search and bat algorithm.
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Fig. 18. Convergence graph for tuning parameter of the fuzzy PID controller.

Table 4

Optimal value of tuning parameter of the Fuzzy PID controller with PSO, Cuckoo search and Bat algorithm.

RMSE (J1)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 88.2954 144.5239 12.9768 75.1248 78.2863 13.6159 0.1084 0.1391 0.1159 0.0108 384.4700

Cuckoo 90.3794 125.3976 101.0240 13.9376 126.4255 51.8392 0.1109 0.1570 0.1270 0.0146 516.1440

Bat 28.9570 18.5499 30.9032 22.0622 28.4416 6.4933 0.1082 0.1240 0.1097 0.0048 257.8630

IAE (J2)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 57.0861 150.0000 68.6791 25.0706 58.6882 130.6920 0.0082 0.0120 0.0091 0.0014 373.5650

Cuckoo 33.3408 135.1884 51.7629 122.8613 92.1014 137.6761 0.0086 0.0146 0.0093 0.0018 603.7420

Bat 6.3802 16.1419 92.5163 140.9666 53.2443 61.6647 0.0082 0.0134 0.0087 0.0016 342.8120

ITAE (J3)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 66.9731 37.7918 85.3110 33.2685 116.7263 102.1748 0.0005 0.0014 0.0008 0.0003 407.5620

Cuckoo 31.2468 71.9042 65.6869 63.1240 67.8707 78.4008 0.0005 0.0013 0.0007 0.0003 521.6800

Bat 75.6367 97.0607 46.2350 20.8988 71.3923 54.4366 0.0004 0.0007 0.0005 0.0001 289.6610

ISE (J4)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 100.834 65.0621 4.8456 141.1888 150.0000 150.0000 0.0031 0.0093 0.0046 0.0023 393.6480

Cuckoo 39.0057 147.9450 16.2927 56.4042 56.0387 205.6135 0.0031 0.0092 0.0045 0.0021 558.8910

Bat 111.072 69.2280 95.1338 4.5961 112.9094 106.1842 0.0029 0.0042 0.0030 0.0004 262.9670

RMSE + IAE + ITAE + ISE (J5)

Algorithm Ke Kce Ku H X V Best Worst Mean Standard deviation Average computation time (sec)

PSO 13.1549 118.2739 150.0000 47.2018 118.4169 27.6085 0.1193 0.1498 0.1241 0.0095 419.4700

Cuckoo 80.3004 88.3897 24.7887 144.4952 128.5186 46.6502 0.1329 0.1498 0.1394 0.0061 518.0000

Bat 66.2040 143.4404 18.6981 70.6740 128.5554 6.6109 0.1103 0.1437 0.1133 0.0101 290.3320
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Fig. 19. Error membership function of fuzzy PID controller after optimization using PSO, Cuckoo search and bat algorithm.

Fig. 20. Rate of change of error membership function of fuzzy PID controller after optimization using PSO, Cuckoo search and bat algorithm.
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Fig. 13(b) shows the initial guess for the error and rate of change
error membership functions and output surface of the fuzzy PD and
fuzzy PID controller. Initial values for input and output scaling factor
of the fuzzy PD and fuzzy PID controller are Ke = 150, Kce = 150 and
Ku = 150. Initial values of antecedent and consequent part of the fuzzy
PD and fuzzy PID controller are X = V = H = 150.

Fig. 14 shows the convergence graph of above stated algo-
rithms for tuning of fuzzy PD controller. The tuning parameter of
the fuzzy PD controller with considered algorithms are shown in
Table 3. The objective function value for final best population is best
only for bat algorithm over PSO and Cuckoo search, and also, the
average computation time taken by the bat algorithm is less than
PSO and Cuckoo search. From the convergence graph and Table 3,
bat algorithm has superior objective function value and less average
computation time than other two algorithms.

Fig. 15 shows the after optimization of the error membership
function of the fuzzy PD controller using PSO, Cuckoo search and
bat algorithm with five objective functions. Fig. 16 shows the after
optimization of the rate of change of membership function for the
fuzzy PD controller using PSO, Cuckoo search and bat algorithmwith
five objective functions. Fig. 17 shows the after optimization of the
output surface of the fuzzy PD controller with five objective
functions.

Fig. 18 shows the convergence graph for the tuning parameters
of the fuzzy PID controller. Optimization results for the fuzzy PID
controller are shown in Table 4. The objective function value is

only best for the bat algorithm over PSO and cuckoo search. And
also the average computation time is less for bat algorithm than
PSO and cuckoo search. Again, bat algorithm has outperformed
the other two algorithms since minimum objective function value
and less computation time is obtained than other two algorithms.
Fig. 19 shows the after optimization of the error membership
function of the fuzzy PID controller using PSO, Cuckoo search and
bat algorithm with five objective functions. Fig. 20 shows the
after optimization of the rate of change of membership function
for the fuzzy PID controller using PSO, Cuckoo search and bat
algorithm with five objective functions. Fig. 21 shows the after
optimization of the output surface of the fuzzy PID controller
with five objective functions.

When compared with the objective values and average compu-
tation times in Tables 3 and 4, bat algorithm optimized fuzzy PD
controller has minimum objective function value and less compu-
tation time than the others. In order to validate effectiveness of the
bat algorithm tuned fuzzy PD controller, it is compared with bat,
PSO, and cuckoo search algorithm tuned fuzzy PID controller. The
BLDCmotor is operated for different operating conditions with above
controller. Also, the time domain specification such as overshoot,
undershoot, recovery time, and steady state error, settling time and
performance indices such RMSE, IAE, ITAE, ISE are compared with
for the above considered controllers.

Three operating conditions are considered for proving the ef-
fectiveness of the controller.

Fig. 21. Output surface of the fuzzy PID controller after optimization using PSO, Cuckoo search and bat algorithm.
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Condition 1 The reference speed is set to 200 rad/s with no load
conditions. The time domain specification and performance indices
for the speed response under fuzzy PD and fuzzy PID controllers
are provided in Table 5. From these results, optimization with ob-
jective function J5 (PSO, Cuckoo, and Bat algorithm) produces better
results than other objective function (J1, J2, J3 and J4). The simu-
lation result for the condition 1 with objective function J5 is shown
in the Fig. 22. From these results, bat optimized fuzzy PD; fuzzy PID
controller (objective function J5) has better time domain specifi-
cation and performance indices than other algorithms. Therefore,
these two are compared. Bat algorithm optimized fuzzy PD con-
troller (objective function J5) shows better performance than bat
optimized fuzzy PID controller (objective function J5). Because steady
state error of speed of the motor has 0.0472 for bat optimized
fuzzy PD controller (objective function J5) but 0.0535 for bat op-
timized fuzzy PID controller(objective function J5), total indices is
0.2825 for bat optimized fuzzy PD controller(objective function J5)
but 0.2840 for bat optimized fuzzy PID controller(objective func-
tion J5). From the results, it is clear that bat optimized fuzzy PD
controller (objective function J5) has superior performance in all
aspects.

Condition 2 In order to validate the effectiveness of the controller
for realistic working conditions, load disturbance is introduced and
performance is checked. The reference speed is set to 200 rad/s, and
load is varied from no load to full load condition at 0.2s. The time
domain specification and performance indices for the speed re-
sponse are presented in Table 6. From these results, optimization
with objective function J5 (PSO, Cuckoo, and Bat algorithm) pro-

duces better results than other objective function (J1, J2, J3 and J4).
The simulation result for the conditions 2 with objective function
J5 is shown in the Fig. 23. From the results, it is ascertained that
bat optimized fuzzy PD controller (objective function J5) has clear
edge over other algorithms. Bat algorithm optimized fuzzy PD con-
troller (objective function J5) shows better performance in overshoot
(0.2458), undershoot (0.3992), recovery time (0.3992 s), steady state
error (0.0345 rad/s), and it has high quality of performance indices
compared to other considered controllers.

Condition 3 In order to ascertain the efficiency of the controller for
realistic working conditions, change in set speed condition is in-
troduced and performance is checked. Initially the reference speed
set as 200 rad/s at no load condition. At 0.2 s, the reference speed
is changed to 100 rad/s. For this set speed change condition, the time
domain specifications such as undershoot, recovery time and steady
state error and performance indices are presented in Table 7.
From these results, optimization with objective function J5 (PSO,
Cuckoo, and Bat algorithm) produces better results than other ob-
jective function (J1, J2, J3 and J4). The simulation results are shown
in Fig. 24.

Similar to the previous two conditions, for this condition 3 also,
bat algorithm optimized fuzzy PD controller (objective function J5)
has shown superior performance than the other controllers, and it
is evident from the test results of time domain specifications and
performance indices considered. The parameters value obtained are
very much enhanced than the other controllers. All the values are
in favor of bat optimized fuzzy PD controller (objective function J5).

Table 5

Performance parameters for condition 1.

PSO

Objective function Controller Time domain specifications Performance indices Total indices

Rise time Overshoot Settling time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.0119 4.0271 0.0331 0.0585 0.1837 0.0092 0.0001 0.0047 4.3284
Fuzzy PID 0.0123 2.1769 0.0286 0.0564 0.1837 0.0086 0.0001 0.0045 2.4712

J2 Fuzzy PD 0.0118 4.4244 0.0362 0.0656 0.2017 0.0080 0.0001 0.0037 4.7516
Fuzzy PID 0.0118 4.4244 0.0351 0.0615 0.1964 0.0081 0.0001 0.0037 4.7410

J3 Fuzzy PD 0.0118 4.4244 0.0352 0.0668 0.2039 0.0080 0.0001 0.0037 4.7538
Fuzzy PID 0.0118 4.4244 0.0351 0.0630 0.1984 0.0081 0.0001 0.0037 4.7445

J4 Fuzzy PD 0.0135 0.0000 0.0308 0.0589 0.1876 0.0071 0.0001 0.0032 0.3014
Fuzzy PID 0.0135 0.0000 0.0329 0.0617 0.1875 0.0074 0.0001 0.0032 0.3064

J5 Fuzzy PD 0.0135 0.0000 0.0310 0.0590 0.1976 0.0086 0.0001 0.0032 0.313
Fuzzy PID 0.0123 0.0000 0.0295 0.0557 0.1935 0.0097 0.0001 0.0045 0.3053

Cuckoo search

Objective function Controller Time domain specifications Performance indices Total Indices

Rise time Overshoot Settling time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.0135 0.0000 0.0297 0.0570 0.1977 0.0069 0.0001 0.0047 0.3097
Fuzzy PID 0.0123 2.4594 0.0295 0.0578 0.1852 0.0087 0.0001 0.0045 2.7576

J2 Fuzzy PD 0.0118 4.4244 0.0344 0.0601 0.1938 0.0081 0.0001 0.0037 4.7364
Fuzzy PID 0.0118 4.4244 0.0352 0.0635 0.2004 0.0081 0.0001 0.0037 4.7471

J3 Fuzzy PD 0.0118 4.4244 0.0352 0.0629 0.1997 0.0080 0.0001 0.0037 4.7458
Fuzzy PID 0.0118 4.4244 0.0352 0.0660 0.2035 0.0080 0.0001 0.0037 4.7527

J4 Fuzzy PD 0.0135 0.0000 0.0480 0.0626 0.1880 0.0075 0.0001 0.0032 0.3230
Fuzzy PID 0.0135 0.0000 0.0308 0.0583 0.1974 0.0097 0.0001 0.0043 0.3143

J5 Fuzzy PD 0.0126 0.0000 0.0219 0.0565 0.1951 0.0086 0.0001 0.0035 0.2984
Fuzzy PID 0.0118 0.0000 0.0263 0.0514 0.1924 0.0091 0.0001 0.0047 0.3059

Bat algorithm

Objective function Controller Time domain specifications Performance indices Total Indices

Rise time Overshoot Settling time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.0135 0.0000 0.0310 0.0604 0.1878 0.0072 0.0001 0.0032 0.3034
Fuzzy PID 0.0126 1.1161 0.0219 0.0566 0.1806 0.0086 0.0001 0.0044 1.4011

J2 Fuzzy PD 0.0118 4.4244 0.0352 0.0634 0.1993 0.0081 0.0001 0.0037 4.7460
Fuzzy PID 0.0118 4.4244 0.0351 0.0638 0.1992 0.0081 0.0001 0.0037 4.7462

J3 Fuzzy PD 0.0118 4.4244 0.0344 0.0609 0.1947 0.0081 0.0001 0.0037 4.7381
Fuzzy PID 0.0123 2.4594 0.0295 0.0569 0.1843 0.0087 0.0001 0.0045 2.7558

J4 Fuzzy PD 0.0142 1.6364 0.0298 0.0615 0.1907 0.0078 0.0001 0.0042 1.9447
Fuzzy PID 0.0144 0.0000 0.0487 0.0601 0.1852 0.0071 0.0001 0.0031 0.3187

J5 Fuzzy PD 0.0138 0.0000 0.0304 0.0472 0.1810 0.0067 0.0001 0.0032 0.2825
Fuzzy PID 0.0137 0.0000 0.0205 0.0535 0.1863 0.0067 0.0001 0.0032 0.2840
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Fig. 22. Simulation result for the condition 1.

Table 6

Performance parameters for condition 2.

PSO

Objective function Controller Time domain specification Performance indices Total indices

Overshoot Recovery time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.7314 0.3997 0.0383 0.1276 0.0109 0.0005 0.0048 1.3131
Fuzzy PID 1.4342 0.3988 0.0329 0.1269 0.0098 0.0003 0.0046 2.0075

J2 Fuzzy PD 0.7136 0.3978 0.0353 0.1377 0.0093 0.0003 0.0038 1.2977
Fuzzy PID 1.0748 0.3998 0.0348 0.1359 0.0092 0.0003 0.0038 1.6587

J3 Fuzzy PD 2.3419 0.3977 0.0372 0.1402 0.0094 0.0003 0.0038 2.9305
Fuzzy PID 1.7930 0.3988 0.0360 0.1375 0.0093 0.0003 0.0038 2.3788

J4 Fuzzy PD 0.8293 0.3992 0.0400 0.1309 0.0090 0.0005 0.0033 1.4123
Fuzzy PID 0.8258 0.3997 0.0450 0.1318 0.0098 0.0006 0.0033 1.4160

J5 Fuzzy PD 0.7266 0.3992 0.0323 0.1230 0.0090 0.0003 0.0033 1.2937
Fuzzy PID 0.7266 0.3995 0.0329 0.1265 0.0099 0.0003 0.0033 1.2991

Cuckoo search

Objective function Controller Time domain specification Performance indices Total indices

Overshoot Recovery time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.7030 0.3996 0.0369 0.1304 0.0085 0.0004 0.0033 1.2821
Fuzzy PID 0.8227 0.3995 0.0339 0.1270 0.0101 0.0004 0.0046 1.3981

J2 Fuzzy PD 0.6234 0.3971 0.0348 0.1341 0.0093 0.0003 0.0038 1.2029
Fuzzy PID 2.6484 0.3995 0.0363 0.1395 0.0093 0.0003 0.0038 3.2371

J3 Fuzzy PD 3.1059 0.3964 0.0342 0.1367 0.0091 0.0003 0.0038 3.6864
Fuzzy PID 2.0813 0.3990 0.0373 0.1401 0.0094 0.0003 0.0038 2.6712

J4 Fuzzy PD 0.5360 0.3997 0.0469 0.1323 0.0100 0.0007 0.0034 1.1290
Fuzzy PID 1.2565 0.3986 0.0395 0.1309 0.0089 0.0005 0.0033 1.8381

J5 Fuzzy PD 0.4501 0.3942 0.0331 0.1259 0.0089 0.0003 0.0032 1.0157
Fuzzy PID 0.4763 0.3952 0.0339 0.1265 0.0089 0.0003 0.0033 1.0444

Bat algorithm

Objective function Controller Time domain specification Performance indices Total indices

Overshoot Recovery time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.4284 0.3992 0.0439 0.1318 0.0095 0.0006 0.0033 1.0168
Fuzzy PID 0.2491 0.3997 0.0372 0.1256 0.0103 0.0005 0.0045 0.8270

J2 Fuzzy PD 1.4090 0.3998 0.0356 0.1384 0.0093 0.0003 0.0038 1.9962
Fuzzy PID 0.9302 0.3980 0.0352 0.1366 0.0093 0.0003 0.0038 1.5133

J3 Fuzzy PD 0.6756 0.3980 0.0350 0.1344 0.0093 0.0003 0.0038 1.2564
Fuzzy PID 0.3392 0.3997 0.0345 0.1274 0.0101 0.0004 0.0046 0.9159

J4 Fuzzy PD 2.3568 0.3996 0.0373 0.1401 0.0090 0.0003 0.0043 2.9475
Fuzzy PID 0.6992 0.3998 0.0447 0.1309 0.0095 0.0006 0.0032 1.2878

J5 Fuzzy PD 0.2458 0.3992 0.0345 0.1308 0.0092 0.0003 0.0032 0.8230
Fuzzy PID 0.2459 0.3999 0.0361 0.1294 0.0094 0.0003 0.0032 0.8244
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Fig. 23. Simulation result for the condition 2.

Table 7

Performance parameters for condition 3

PSO

Objective function Controller Time domain specification Performance indices Total indices

Overshoot Recovery time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.5384 0.3074 0.0640 0.1892 0.0178 0.0019 0.0097 1.1285
Fuzzy PID 0.1118 0.3737 0.0684 0.2016 0.0178 0.0020 0.0103 0.7857

J2 Fuzzy PD 0.0000 0.2965 0.0746 0.2117 0.0172 0.0020 0.0093 0.6113
Fuzzy PID 0.1786 0.3711 0.0707 0.2058 0.0166 0.0019 0.0088 0.8536

J3 Fuzzy PD 0.0000 0.2672 0.0782 0.2173 0.0175 0.0021 0.0096 0.5918
Fuzzy PID 0.1028 0.2994 0.0712 0.2057 0.0166 0.0019 0.0088 0.7063

J4 Fuzzy PD 0.7100 0.2624 0.0659 0.1971 0.0162 0.0020 0.0088 1.2625
Fuzzy PID 0.8691 0.2619 0.0661 0.1931 0.0167 0.0021 0.0086 1.4176

J5 Fuzzy PD 0.0000 0.2612 0.0640 0.1890 0.0161 0.0019 0.0088 0.5411
Fuzzy PID 0.0000 0.2992 0.0640 0.1891 0.0162 0.0019 0.0087 0.5792

Cuckoo search

Objective function Controller Time domain specification Performance indices Total indices

Overshoot Recovery time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.4859 0.2629 0.0664 0.1998 0.0157 0.0019 0.0086 1.0413
Fuzzy PID 0.5047 0.2634 0.0652 0.1936 0.0174 0.0019 0.0097 1.0557

J2 Fuzzy PD 0.0680 0.2895 0.0692 0.2040 0.0166 0.0019 0.0088 0.6580
Fuzzy PID 0.0000 0.3691 0.0738 0.2082 0.0166 0.0019 0.0087 0.6782

J3 Fuzzy PD 0.0000 0.3975 0.0792 0.2161 0.0171 0.0020 0.0092 0.7211
Fuzzy PID 0.0000 0.2993 0.0737 0.2097 0.0169 0.0019 0.0089 0.6105

J4 Fuzzy PD 1.0513 0.2624 0.0679 0.1956 0.0170 0.0021 0.0088 1.6051
Fuzzy PID 0.7338 0.2627 0.0663 0.1984 0.0163 0.0020 0.0089 1.2884

J5 Fuzzy PD 0.0000 0.2612 0.0636 0.1809 0.0156 0.0019 0.0086 0.5319
Fuzzy PID 0.0000 0.2988 0.0643 0.1892 0.0157 0.0019 0.0086 0.5786

Bat algorithm

Objective function Controller Time domain specification Performance indices Total indices

Overshoot Recovery time Steady state error RMSE IAE ITAE ISE

J1 Fuzzy PD 0.9233 0.2628 0.0680 0.1990 0.0167 0.0021 0.0090 1.4809
Fuzzy PID 0.7197 0.2627 0.0636 0.1913 0.0177 0.0020 0.0100 1.2670

J2 Fuzzy PD 0.0000 0.3964 0.0790 0.2103 0.0172 0.0020 0.0089 0.7138
Fuzzy PID 0.0853 0.3792 0.0733 0.2067 0.0167 0.0019 0.0087 0.7719

J3 Fuzzy PD 0.2271 0.3728 0.0691 0.2031 0.0167 0.0019 0.0089 0.8996
Fuzzy PID 0.4014 0.2625 0.0637 0.1913 0.0172 0.0019 0.0096 0.9476

J4 Fuzzy PD 0.0000 0.3728 0.0890 0.2172 0.0183 0.0024 0.0102 0.7099
Fuzzy PID 1.3469 0.2618 0.0675 0.1944 0.0166 0.0021 0.0087 1.8981

J5 Fuzzy PD 0.0000 0.2617 0.0628 0.1810 0.0156 0.0019 0.0085 0.5316
Fuzzy PID 0.0000 0.2631 0.0641 0.1928 0.0167 0.0019 0.0085 0.5472
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7. Experimental set up and results discussion

Since bat algorithm optimized fuzzy PD controller (objective func-
tion J5) is having clear edge over the other controllers considered,
an attempt is made to implement for BLDCmotor by using Spartan-
3E FPGA starter kit. The rotor position of the brushless dc motor is
measured by means of Hall sensor, and it is given as input to analog
to digital converter (ADC). Rotor position is then converted into actual
speed by derivative algorithm used in the FPGA kit. The set speed
is assigned to motor by toggle switches according to the require-
ment, and load requirement is assigned by eddy current loading
arrangement. The following Fig. 25 (a) shows the experimental set
up for Spartan-3E FPGA based fuzzy PD based Speed controller for
BLDC motor drive.

Once this is performed, the ADC data are sent in FPGA kit and
this develops an output value based on a fuzzy PD control algo-
rithm stored in FPGA kit. And the output of controller in turn varies
the duty cycle of a PWM signal to increase, decrease or maintain a
constant speedof themotor [29,30]. PowerModule consists of switch-
ing power converters which are used in brushless dc motor drives
to deliver the required energy to themotor. The energy that a switch-
ing power converter delivers to a brushless dc motor which is
controlled by Pulse Width Modulated (PWM) signal applied to the
gate of a power IGBT coming fromPWMmodule of FPGAkit. In order
to change the set speed of the drive, the toggle switch position is
properly changed, and for changing the loading conditions as per
the requirement, eddy current loading arrangement is suitably varied.

Fig. 25 (b) shows the voltage across the phases of the brushless
dc motor. Fig. 25 (c) shows the hall sensor output of the brushless
dc motor. From Fig. 23, it is clear that the simulated output and ex-
perimental output are identical. Fig. 26 (a) to (c) shows the
experimental results for three operating conditions of the brushless
dc motor. It is clear that the response is same as that of the simu-
lated output of the bat optimized fuzzy PD speed controller (objective

function J5) of the brushless dc motor. From the simulated and ex-
perimental testing, bat optimized fuzzy PD speed controller (objective
function J5) outperforms the other controller in all operating
conditions.

8. Conclusion

Bat algorithm optimized fuzzy proportional derivative based
speed controller for Brushless DC motor has been presented. The
overall control system has been created and simulated using
MATLAB/Simulink and Sim power system tools to confirm the va-
lidity and development of the proposed system. Effectiveness of the
proposed controller is analyzed and compared with PSO, Cuckoo
search algorithm optimized fuzzy PD, fuzzy PID controller and bat
algorithm optimized fuzzy PID controller. In order to test the ef-
fectiveness of the proposed controllers under realistic operating
environment, various operating conditions such as constant load,
varying load and varying set speed conditions are considered, and
the performances are observed. In order to make a reasonable com-
parison, several performance measures are used such as rise time,
settling time, recovery timemaximum overshoot, steady state error,
root mean square error, integral absolute error, integral of squared
error, and integral time multiplied absolute error. The results ob-
tained from the simulations clearly show the drastic improvements
on performance measures and proved that the disturbances are also
compensated much more effectively with the use of the proposed
controller. To validate the performance of the proposed controller
under real time operating conditions, the experimental realiza-
tion for the control of Brushless DC motor has been fabricated and
tested. From the results of the simulation and experimental set up,
it is made clear that the proposed controller is able to eliminate the
uncertainty problem occurring due to load variations and set speed
variations. Since the controller exhibits unmatched performance,
it is ideal for application in process industries.

Fig. 24. Simulation result for the condition 3.
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(a)

(b)

(c)

Fig. 25. (a). Experimental set up of FPGA based fuzzy PD speed controller for BLDC motor. (b) Experimental setup – Voltage across phases of motor, left side: simulated

output and right side: experimental output. (c) Experiential setup – Hall sensor output of the motor, left side: simulated output and right side: experimental output.
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(a)

(b)

(c)

Fig. 26. (a) Simulated and experimental speed response of the brushless dc motor with fuzzy PD controller for condition 1. (b) Simulated and experimental speed response

of the brushless dc motor with fuzzy PD controller for condition 2. (c) Simulated and experimental speed response of the brushless dc motor with fuzzy PD controller for

condition 3.
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