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Bat origin of human coronaviruses
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Abstract

Bats have been recognized as the natural reservoirs of a large variety of viruses. Special attention has been paid to
bat coronaviruses as the two emerging coronaviruses which have caused unexpected human disease outbreaks in
the 21st century, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory
Syndrome Coronavirus (MERS-CoV), are suggested to be originated from bats. Various species of horseshoe bats in
China have been found to harbor genetically diverse SARS-like coronaviruses. Some strains are highly similar to
SARS-CoV even in the spike protein and are able to use the same receptor as SARS-CoV for cell entry. On the other
hand, diverse coronaviruses phylogenetically related to MERS-CoV have been discovered worldwide in a wide range
of bat species, some of which can be classified to the same coronavirus species as MERS-CoV. Coronaviruses
genetically related to human coronavirus 229E and NL63 have been detected in bats as well. Moreover,
intermediate hosts are believed to play an important role in the transmission and emergence of these
coronaviruses from bats to humans. Understanding the bat origin of human coronaviruses is helpful for the
prediction and prevention of another pandemic emergence in the future.
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Background
Bats, with extensive geographical distribution and
capability of flight, constitute the second largest group
of mammalian species and have been documented as
natural hosts of a large number of diverse viruses such
as lyssaviruses, paramyxoviruses and filoviruses [1, 2]. In
the past decade, numerous novel coronaviruses have been
discovered in a wide variety of bat species throughout
Asia, Europe, Africa and America [3]. Within the corona-
virus genera Alphacoronavirus and Betacoronavirus,
which mainly infect mammals, 7 out of the 15 currently
assigned viral species have only been found in bats [4]. It
is proposed that bats are major hosts for alphacorona-
viruses and betacoronaviruses and play an important role
as the gene source in the evolution of these two corona-
virus genera [5]. Among the coronaviruses harbored by
bats, some have drawn particular research interests, as
they have been found to be associated with two high pro-
file human disease outbreaks, Severe Acute Respiratory

Syndrome (SARS) and Middle East Respiratory Syndrome
(MERS).
In this review, we focus on the emerging coronaviruses

putatively linked to a zoonotic origin from bats, repre-
sented by SARS coronavirus (SARS-CoV) and MERS cor-
onavirus (MERS-CoV). We present an overview of
current evidence for bat origin of these two viruses and
also discuss how the spillover events of coronavirus from
animals to humans may have happened. Considering that
bats have been known to harbor more coronaviruses than
any other species, it is likely that SARS-CoV and MERS-
CoV won’t be the only bat coronaviruses to jump among
species and cause human infections. Bat coronaviruses
should be seriously regarded in light of their potential
risks to public health.

Emergence of SARS and MERS
SARS first emerged in late 2002 in Guangdong Province,
southern China, as a novel clinical severe disease
(termed “atypical pneumonia”) marked by fever, head-
ache and subsequent onset of respiratory symptoms
including cough, dyspnea and pneumonia. Being highly
transmissible among humans, SARS rapidly spread to
Hong Kong and other provinces across China and then
to other 28 countries [6, 7]. By July 2003, it had caused
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8096 confirmed cases of infection in 29 countries, 774
(9.6 %) of which were fatal (http://www.who.int/csr/sars/
country/table2004_04_21/en/). The second outbreak in
2004 only caused 4 infections with no mortality nor
further transmission [8].
The MERS epidemic emerged in the Kingdom of Saudi

Arabia (KSA) since June 2012, with a similar clinical
syndrome to SARS but seemingly less transmissible. In
addition to respiratory illness, renal failure was identified
in some severe cases [9–11]. Unlike SARS which had
numerous super-spreader events, most MERS cases were
independent clusters and limited to countries in the
Middle East, particularly in KSA. Limited MERS cases
have been reported in African and European countries
and the United States of America, but exclusively in
individuals travelling back from the Middle East. Some
patients were reported to have a history of contact with
camels while many other cases lacked this epidemiological
link [9–11]. The MERS pandemic in the Republic of Korea
in 2015 was caused by a single person who returned from
travel in the Middle East. This made the Republic of Korea
to be home to the second largest MERS epidemic with a
total of 185 confirmed cases and 36 deaths [11, 12]. By 18
August 2015 a total of 1413 laboratory-confirmed cases of
MERS have been reported worldwide with a median age
of 50 years, including 502 related deaths. The mortality of
MERS (approximately 35 %) is much higher than that of
SARS (around 10 %).

SARS-CoV and MERS-CoV represent two different species
in the genus Betacoronavirus
Genomic structure and taxonomic classification
SARS-CoV and MERS-CoV share similar genome
organization with other coronaviruses, but display unique
genomic structures and evolutionary lineages. The cor-
onavirus genome possesses 6-to-7 major open reading
frames (ORFs) in the characteristic gene order in the 5’ to
3’ direction: ORF1a and 1b which comprise two-thirds of
the genome and encode the nonstructural polyproteins,
and four ORFs downstream that encode structural pro-
teins: spike protein (S), envelope protein (E), membrane
protein (M) and nucleocapsid protein (N). Some corona-
viruses have a hemagglutinin-esterase (HE) gene between
ORF1b and S. Besides the coronavirus-conserved genes,
the SARS-CoV genome contains a number of specific
accessory genes including ORF3a, 3b, ORF6, ORF7a, 7b,
ORF8a, 8b and 9b [13–15]. Comparably, MERS-CoV en-
codes five unique accessory genes, designated ORF3,
ORF4a, ORF4b, ORF5 and ORF8b. None of these genes
have been shown to be related to other known corona-
virus genes at the time of discovery [16, 17]. MERS-CoV
was found to have 75 and 77 % amino acid (aa) se-
quence identity in 7 conserved replicase genes with two
previously identified bat coronaviruses: BtCoV-HKU4

and BtCoV-HKU5. Based on the classification criteria of
the the International Committee on Taxonomy of
Viruses (ICTV), SARS-CoV and MERS-CoV represent
two novel distinct coronavirus species in the genus
Betacoronavirus (Fig. 1a and Table 1) [10, 18, 19]. Mem-
bers of betacoronaviruses are separated into four line-
ages, A, B, C and D. SARS-CoV and MERS-CoV are
clustered in lineage B and C, respectively [18].

Receptor usage
The S protein of coronaviruses is a surface-located
trimeric glycoprotein consisting of two subunits: the
N-terminal S1 subunit and the C-terminal S2 subunit.
The S1 subunit specializes in recognizing and binding
to the host cell receptor while the S2 region is re-
sponsible for membrane fusion. Compared with the
S2, the S1 subunit shows much higher variability [20].
Owing to its function of receptor binding, the variation in
S protein defines in large part the tissue tropism and host
range of different coronaviruses [21].
Angiotensin-converting enzyme 2 (ACE2) was identi-

fied to be the functional receptor of SARS-CoV [22–24].
A 193 aa fragment (aa 318–510) of SARS-CoV S protein
was demonstrated to bind ACE2 more efficiently than
the full S1 domain and was defined as the receptor-
binding domain (RBD) of SARS-CoV [25]. A loop sub-
domain (aa 424–494) that directly contacts with ACE2
was further identified as the receptor-binding motif
(RBM) by crystal structure analysis [26]. In the RBM,
several aa residues were found to be critical for receptor
binding and changes in these key residues resulted in
different binding efficiency among different SARS-CoV
isolates [26–28].
Dipeptidyl peptidase 4 (DPP4, also known as CD26)

was identified as a functional receptor for MERS-CoV
[29] and it is relatively conserved among mammalian
species. Published results indicated that MERS-CoV can
infect and replicate in most cell lines derived from
human, non-human primate, bat, swine, goat, horse,
rabbit, civet, and camel, but not from mice, hamster,
dog, ferret, and cat [29–36]. DPP4 from camel, goat,
cow, and sheep can be also recognized by MERS-CoV
and can support MERS-CoV replication [30, 35]. Re-
solved crystal structures demonstrate that DPP4-
recognizing RBD is localized to the S1 C-terminal por-
tion of S protein of MERS-CoV [37–39]. The RBD of
MERS-CoV consists of ~240 residues, spanning aa
367–606, which fold into a structure consisting of two
subdomains, the core subdomain and the external sub-
domain. The core subdomain of MERS-CoV RBD is
structurally similar to that of the SARS-CoV RBD, but
the external subdomain (also named as RBM) is differ-
ent to that of the SARS-CoV [37–39].

Hu et al. Virology Journal  (2015) 12:221 Page 2 of 10

http://www.who.int/csr/sars/country/table2004_04_21/en/
http://www.who.int/csr/sars/country/table2004_04_21/en/


Fig. 1 (See legend on next page.)
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Bat origin of SARS-CoV
Civets are intermediate and trasnmission host of SARS-CoV
Epidemiological survey showed that early cases of SARS
in 2002–2003 and all 4 cases in 2003–2004 had a history
of animal contact through animal trade in wet markets or
in restaurants where live animals were kept in Guangdong
Province. Molecular detection and virus isolation studies
suggested that the pandemic-causing SARS-CoV origi-
nated from traded civets in wet markets. This was indir-
ectly confirmed by the massive culling of market civets,
which was believed to play a major role in efficiently con-
taining the SARS pandemics and no further SARS case
was reported after 2004 [40–42].

However, subsequent extensive epidemiology studies
did not find SARS-CoV in farmed or wild-caught civets,
indicating that other animal(s) was involved in SARS-
CoV transmission in the animal market or other trading
activities and civets are unlikely the natural reservoir of
SARS-CoV [43–45].

Discovery of diverse SARS-like coronaviruses in bats
Several years before the outbreak of SARS, two other
zoonotic viruses, Nipah virus and Hendra virus, emerged
in Asia and Australia and they were both known to be
originated from bats [46, 47]. These led scientists to
consider bats in the search of reservoirs of SARS-CoV.

(See figure on previous page.)
Fig. 1 Phylogenetic analysis of bat coronaviruses with other coronaviruses. The phylogenetic tree was constructed based on 816-nt partial RdRp
sequences (a) and full-length spike protein sequences (b). Available sequences were retrieved from GenBank and aligned using ClustalW. The
alignment was used to construct tree by MEGA (Version 5.1) with the neighbor-joining statistical method. Bootstrap values were calculated from
1000 replicates (values ≥50 are shown). Bat coronaviruses are drawn in bold and named following bat species, plus BtCoV, strain name, and
GenBank accession number

Table 1 Comparison of bat coronaviruses with SARS-CoV or MERS-CoV in conserved replicase domains and structural proteins

CoV strain Bat species Country % amino acid sequence identitya with SARS-CoV or MERS-CoV

ADRP 3CLpro RdRp Hel ExoN NendoU OMT Concatenated
domains@

S E M N

HKU3 Rhinolophus sinicus China 92.0 99.3 98.6 99.2 98.1 98.0 98.3 96.0 79.7 100 98.6 96.7

Rp3 Rhinolophus sinicus China 95.4 99.7 99.5 99.7 99.2 97.4 98.3 97.7 80.3 100 97.3 98.1

Rm1 Rhinolophus macrotis China 91.0 99.3 99.3 99.3 97.9 97.1 98.0 95.6 80.6 98.7 97.3 97.6

Rf1 Rhinolophus
ferrumequinum

China 92.3 99.7 98.6 99.5 97.9 97.7 96.3 96.0 78.4 96.1 97.7 95.5

Rs672 Rhinolophus sinicus China 97.0 99.3 99.8 99.3 99.1 98.6 99.0 98.4 80.2 100 98.6 98.6

Rs3367 Rhinolophus sinicus China 97.0 100 99.6 99.8 99.2 98.3 98.0 98.4 92.3 100 98.2 100

RsSHC014 Rhinolophus sinicus China 96.9 99.7 99.6 99.8 99.2 98.8 97.7 98.4 90.0 98.7 98.2 99.5

WIV1 Rhinolophus sinicus China 97.0 99.7 99.5 99.8 99.2 98.8 98.0 98.4 92.2 100 98.2 99.8

Cp/Yunnan 2011 Chaerephon plicata China 97.6 100 99.1 98.5 98.1 98.6 97.3 98.2 81.1 100 99.1 98.1

Rp/Shaanxi 2011 Rhinolophus pusillus China 93.5 100 99.2 99.7 98.9 97.7 99.0 96.9 81.1 97.4 96.8 98.1

YNLF_31C Rhinolophus
ferrumequinum

China 97.2 99.7 99.6 99.7 99.4 98.3 97.7 98.4 79.2 100 98.6 98.3

BM48-31 Rhinolophus blasii Bulgaria 76.8 94.4 98.0 98.1 95.6 91.9 91.6 88.3 75.9 92.1 91.4 88.5

HKU4-1 Tylonycteris pachypus China 55.5 81 89.8 92.1 85.4 76 82.8 78.4 67 56.1 79 65.8

HKU5-1 Pipistrellus abramus China 56.4 82.6 91.8 93.8 91.7 79.7 85.7 80.1 64 53.6 79 61.4

NeoCoV Neoromica capensis South
Africa

86.7 96.7 98 98.4 98.2 94.1 96.3 95 64 87.7 94.2 91

SC2013 Vespertilio superans China 53.5 79 88.5 93.4 85.6 76.6 88.1 85.7 69 84.5 84.7 74.4
aCalculated with MEGA5.1 using a pairwise deletion option; Bat SL-CoVs are listed in the upper part of the table while camel MERS-CoV and bat CoVs related to
MERS-CoV in the lower part
@Seven domains were series connected and calculated with MEGA5.1 using a pairwise deletion option
ADRP, ADP-ribose 1-phosphatase; 3CLpro, coronavirus NSP5 protease; RdRp RNA-dependent RNA polymerase; Hel, helicase; ExoN, exoribonuclease; NendoU,
endoribonuclease; OMT, 2’-O-methyltransferase
GenBank accession numbers: Tor2, NC_004718; HKU3, DQ022305; Rp3, DQ071615; Rm1, DQ412043; Rf1, DQ412042; Rs672, FJ588686; Rs3367, KC881006;
RsSHC014, KC881005; WIV1, KF367457; Cp/Yunnan2011, JX993988; Rp/Shaanxi2011, JX993987; YNLF_31C, KP886808; EMC/2012, JX869059; HKU5-1, NC_009020;
HKU4-1, NC_009019; BetaCoV/SC2013, KJ473821; NeoCoV, KC869678
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In 2005, a breakthrough was made as two independent
research groups reported, almost simultaneously, the
discovery of novel coronaviruses related to SARS-CoV
in horseshoe bats (in the genus Rhinolophus) in China,
which were termed SARS-like coronavirus (SL-CoV)
[48, 49]. These bat SL-CoVs from both mainland China
and Hong Kong manifested genome sequence identity of
88–90 % among themselves and 87–92 % identity to
human or civet SARS-CoV isolates. The unique set of
ORFs exclusively found in SARS-CoV was also present
in bat SL-CoVs, demonstrating the close phylogenetic
relationship between SARS-CoV and SL-CoV. The dis-
covery of bat SL-CoV boosted researchers’ interest in
coronavirus surveillance studies in bats. In following
years, SL-CoV RNA was detected in Rhinolophus species
of a wider geographic range in China. The provinces or
regions where SL-CoV-positive bats were captured in-
cluded Hong Kong, Guangxi, Hubei, Shandong, Guizhou,
Shaanxi and Yunnan [50–53]. 7 conserved replicase do-
mains in orf1ab of these SL-CoVs found in China were
compared with those of SARS-CoV (Table 1). They all
shared higher than 95 % aa sequence identity with SARS-
CoV in the concatenated domains and therefore can be
considered to belong to SARS-CoV species [54].
SL-CoVs were also discovered in rhinolophids from

Slovenia, Bulgaria and Italy in Europe [55–57]. These
European SL-CoVs exhibited significant genetic vari-
ation from Chinese isolates. The strain BM48-31 from
Rhinolophus blasii in Bulgaria was highly divergent from
Chinese isolates, displaying major sequence differences
in several genes including ORF3b and ORF6 and lacking
the coding region of ORF8 in its genome [55]. In Africa,
novel betacoronaviruses related to SARS-CoV have
been detected in Hipposideros and Chaerophon species
from Ghana, Kenya and Nigeria. However, compared
with Asian and European SL-CoVs, these viruses of
non-rhinolophid origin were phylogenetically distant
to SARS-CoV. The Western African isolates even
formed a potential new lineage of Betacoronavirus in
the phylogenetic tree (Fig. 1a) [58–60].

Most related ancestor of SARS-CoV in bats
Although the aforementioned bat SL-CoVs showed high
sequence identity to SARS-CoV, two deletions were
present in the RBM of their S proteins [48, 49]. The dif-
ferences in RBM substantially changed the receptor
usage. In a study using an HIV-based pseudovirus
system and cell lines expressing human, civet, and horse-
shoe bat ACE2 molecules, the bat SL-CoV Rp3 S protein
demonstrated its inability to use ACE2 as cell receptor
[61]. However, the chimeric Rp3 S protein carrying the
RBD of SARS-CoV S protein was conferred the capabil-
ity of cell entry via human ACE2 [61]. These results sug-
gested that bat SL-CoVs such as Rp3 were unlikely to

cause human infection. Therefore, they may not be con-
sidered as the direct progenitor of SARS-CoV. Besides,
the theory of bat origin of SARS-CoV lacked a powerful
support due to the failure of direct isolation of SL-CoV
from bats, despite numerous trials by our group as well
as many others around the world.
During our longitudinal surveillance at a Rhinolophus

sinicus colony in Yunnan Province over the years, a
major breakthrough came in 2013 when diverse SL-
CoVs were discovered in the single colony [53]. In this
colony, there were at least 7 different strains related to
SARS-CoV, HKU3, Rs672 or Rf1, based on analysis of
the region corresponding to SARS-CoV RBD. Intri-
guingly, unlike all previously described SL-CoVs, two
strains, designated Rs3367 and RsSHC014, did not con-
tain the deletions in this region. Rs3367 showed a par-
ticularly high sequence identity to SARS-CoV in RBD
and was identical to SARS-CoV in several key amino
acid residues known to be important for receptor bind-
ing [53]. Whole genome sequencing revealed that
Rs3367 and RsSHC014 shared more than 95 % genome
sequence identity with human and civet SARS-CoV,
which was remarkably higher than that of any other bat
SL-CoV (76 to 92 %). Regarding individual genes, the
amino acid sequence identity between Rs3367 or
RsSHC014 and SARS-CoV was higher than 96 % in
ORF1a, 1b, 3a, 3b, E, M and N genes [53]. Most import-
antly, a live SL-CoV was isolated for the first time from
bat fecal samples [53]. This virus, termed WIV1, had al-
most identical sequence (99.9 %) to Rs3367 and was
demonstrated to use ACE2 molecules from humans,
civets and Chinese horseshoe bats for cell entry. It also
displayed infectivity in cell lines from a broad range of
species including human, pig, and bat. Furthermore, the
close relatedness between WIV1 and SARS-CoV was
confirmed by neutralization effect of convalescent SARS
patient sera on WIV1 [53]. The isolation of a bat SL-
CoV genetically closely resembling SARS-CoV and
having a functional S protein capable of using the same
ACE2 receptor as SARS-CoV provided robust and con-
clusive evidence for the bat origin of SARS-CoV.

Possible origin of SARS-CoV from recombination of different
SL-CoVs
Despite the fact that Rs3367 or WIV1 is unprecedently
close to SARS-CoV in terms of RBD region and genome
identity, still there are gaps between them and the im-
mediate ancestor of SARS-CoV. ORF8 is a highly vari-
able gene and remarkable differences can be observed
among SARS-CoVs and SL-CoVs of different host ori-
gins. Isolates from civets and from early phase of the
2002/2003 pandemic contained a single long ORF8,
while in the human SARS-CoV isolates from the middle
and late phase of the pandemic the ORF8 was disrupted
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into two ORFs, ORF8a and ORF8b, as a result of the ac-
quisition of a 29-nt deletion after interspecies transmis-
sion to humans [8, 40, 62]. The SL-CoVs from
Rhinolophus sinicus, including Rs3367, however, had a
single ORF8 with only 32–33 % amino acid identities to
that of civet SARS-CoV. In contrast, the ORF8 of two
novel SL-CoV strains recently reported in Yunnan from
another rhinolophid species, Rhinolophus ferrumequinum,
exhibited exceptionally high (81.3 %) amino acid identity
to civet SARS-CoV SZ3 [63]. This is consistent with isolate
Rf1, a SL-CoV reported earlier from R. ferrumequinum in
Hubei Province, of which the ORF8 shared 80.4 % amino
acid identity to SZ3 [48]. Potential recombination sites
were identified around the ORF8 region between SL-
CoVs from R.sinicus and R.ferrumequinum and it has
been suggested that the ancestor of civet SARS-CoV
probably acquired ORF8 from R.ferrumequinum SL-
CoVs by recombination [63].

Animal origins of MERS-CoV
As with SARS-CoV, most early MERS cases had contact
history with animals, e.g., dromedary camels [64, 65].
MERS-CoV RNA was detected in camels from Saudi
Arabia, Qatar and Egypt and showed high similarities
(>99 %) to human MERS-CoV in genomic sequences
[66–71]. Serological evidence further confirmed a high
prevalence of MERS-CoV infections in camels in the
Middle East [72–77], Africa [78–80] and Europe (Spain)
[73]. The neutralization antibodies in camels could be
traced back to 1983 [73, 80]. These results strongly
suggested that MERS-CoV infection in humans were
transmitted through close contact with infected camels
[66, 76, 81–83].

Bat viruses related to MERS-CoV
Prior to the emergence of MERS-CoV, a group of bat
coronaviruses had been reported including Tylonycteris
bat coronavirus HKU4 (BtCoV-HKU4) in Tylonycteris
bats and Pipistrellus bat coronavirus HKU5 (BtCoV-
HKU5) in Pipistrellus bats in China [50, 84, 85], E.isa/
M/Spain/2007 in Eptesicus isabellinus bats in Spain [86]
and N.noc/VM366/2008/NLD in Pipistrellus pipistrellus
bats in the Netherlands [87]. Based on genomic se-
quence analysis, these bat coronaviruses were grouped
into lineage C of the genus Betacoronavirus. After the
outbreak of MERS, MERS-CoV related coronaviruses
were found in more bat species and countries [88–96].
Among these viruses, full-length or near full-length ge-
nomes of BtCoV-HKU4, BtCoV-HKU5, SC2013 and
NeoCoV have been characterized. By genomic analysis
of lineage C betacoronaviruses, MERS-CoV derived from
camels show high similarities to human MERS-CoV with
>99.5 % nt identities, confirming that the human and
camel isolates belong to the same coronavirus species.

Bat HKU4, HKU5, NeoCoV and SC2013, shared 69.8,
70, 85.6 and 75.6 % nt identities with MERS-CoV at gen-
omic level, respectively. Seven conserved replicase do-
mains in orf1ab of MERS-CoV related viruses were
compared with MERS-CoV (Table 1). The concatenated
translated domains of NeoCoV shared 95 % aa sequence
identity with MERS-CoV and it could be classified as the
same MERS-CoV species [54]. Other bat coronaviruses,
HKU4, HKU5 and SC2013, could be considered as dif-
ferent coronavirus species. The most recent ancestor ana-
lysis speculated that MERS-CoV may have jumped from
bats to camels approximately 20 years ago in Africa, with
camels then being imported into the Arabian Peninsula
[92], while HKU5 and MERS-CoV may have diverged
from their common ancestor about 400 to 500 years
ago [85].
Although NeoCoV is closer to MERS-CoV than other

bat coronaviruses at genomic level, the phylogenetic
analysis of the spike protein showed that HKU4 is the
most closely related to MERS-CoV among all currently
known bat coronaviruses, sharing 67 % sequence identity
(Fig. 1b). This is correlated with the capability of HKU4
of using DPP4 as its functional receptor. However,
HKU4 preferred bat DPP4 over human DPP4, whereas
MERS-CoV showed the opposite trend [97]. It was sug-
gested that MERS-CoV ancestors had been circulating in
bats for very long time. MERS-CoV has evolved to adapt
to use human receptor and the DPP4-recognizing bat
coronaviruses like HKU4 may follow up, thereby posing
a serious risk to human health [97, 98].

Comparison of transmission of MERS-CoV and SARS-CoV
Both SARS-CoV and MERS-CoV are emerging zoonotic
pathogens that crossed the species barriers to infect
humans [10, 53, 99]. Evidence showed that SARS-CoV
and MERS-CoV originated from bats, the nature reser-
voirs, then transmitted to human via intermediate hosts
civets and camels, respectively [10, 40, 53, 81, 100].
Human SARS-CoV infection originated from the direct
contact between humans and civets in markets or res-
taurants. Closing wet markets and cleaning civet cut off
the spread chain of SARS-CoV and effectively ended the
SARS epidemic [40, 42, 101]. In contrast, MERS-CoV is
believed to have existed in camels for a very long time
and camels are widely distributed in Middle East and
African countries, serving as important transport vectors
and sources of meat and milk for the local population.
Therefore, it is difficult to adopt the same strategy of
SARS-CoV control in the prevention of future MERS-
CoV outbreaks. Until a comprehensive approach is
found, which most likely will involve the effective vac-
cination of camels against MERS-CoV among other
measures, it is envisaged that sporadic human infection
will persist for some time in the future [11, 70].
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Bat coronaviruses and human coronavirus 229E
(HCoV-229E) and NL63 (HCoV-NL63)
HCoV-229E was found in the 1960s and causes com-
paratively mild common colds worldwide [102]. A bat
coronavirus detected in Hipposideros caffer ruber in
Ghana termed Hipposideros/GhanaKwam/19/2008 was
genetically related to HCoV-229E. Its RdRp fragment
shared 92 % nucleotide sequence identity with HCoV-
229E and they were predicted to share a most recent
common ancestor (MRCA) only 200 years ago [58]. A
recent study characterized more 229E-related corona-
viruses discovered in hipposiderid bats from Ghana on
full genome level. These bat coronaviruses were more
diversified and formed a single viral species with HCoV-
229E. Interestingly, phylogenetic analysis revealed the
intermediate position of a 229E-related alpaca virus be-
tween bat and human viruses. These findings suggested
the ancestral origin of HCoV-229E in hipposiderid bats
and the role of camelids as potential intermediate hosts
was hypothesized [103].
HCoV-NL63 was first isolated from babies suffering

of pneumonia and bronchiolitis in 2004 [104]. To
date, HCoV-NL63 has been found worldwide with up
to 9.3 % detection rate in hospitalized respiratory
tract samples [105]. In 2010, a bat coronavirus termed
ARCoV.2 (Appalachian Ridge CoV) detected in North
American tricolored bat (Perimyotis subflavus) in the
US showed close relationship with HCoV-NL63. The
MRCA for HCoV-NL63 and ARCoV.2 was predicted
to have existed 563 to 822 years ago [106, 107]. Fur-
ther analysis indicated that HCoV-NL63 can replicate
in cell lines derived from the lungs of tricolored bats
[107]. These results suggest that prototypes of HCoV-
NL63 may also exist in bats and there may also be a
bat origin of this human coronavirus.

Conclusions
Although the study of bat-borne coronaviruses has only
started just about 10 years ago, the scientific community
has already learnt a great deal of useful lessons which
will be instrumental in mitigating, predicting, and pre-
venting future zoonotic coronavirus outbreaks. Some of
these lessons are summarized below.
Bats harbor coronaviruses with great genetic diversity.

It is believed that most, if not all, currently circulat-
ing alphacoronaviruses and betacoronaviruses in dif-
ferent mammals are evolutionally linked to ancestral
coronaviruses originated from bats. Different species
of rhinolophid bats in China carry genetically diverse
SARS-like coronaviruses, some of which are direct
ancestors of SARS-CoV and hence have the potential
to cause direct interspecies transmission to humans.
Meanwhile, different coronavirus species closely
related to MERS-CoV are circulating in bats. Bats are

likely natural reservoirs of MERS-CoV or an ancestral
MERS-like CoV. It is hypothesized that bat MERS-like
CoV jumped to camels or some other as yet unidentified
animal several decades ago. The virus evolved and adapted
with accumulating mutations in camels and then was
transmitted to humans very recently. It took almost a
decade from the first discovery of SL-CoV in bats to the
final isolation of the SARS-CoV ancestral virus from bats,
so continuing surveillance is vital to uncover the origin of
MERS-CoV and bats should certainly be a priority of
research. Besides, as the spike protein and host receptor
are key factors of cross-species transmission of corona-
viruses, characterization of the receptor and key binding
sites of the spike protein will be important in estimating
host tropism of bat coronaviruses and predicting spillover
risk.
With human activity increasingly overlapping the habi-

tats of bats, diseases outbreaks resulted from spillover of
bat coronaviruses will continue to occur in the future des-
pite the fact that direct transmission of bat coronaviruses
to humans appears to be rare. To better prepare ourselves
in predicting and preventing the next emergence of a cor-
onavirus disease, it is necessary to maintain our vigilance
in long-term coronavirus surveillance studies in bats as
well as in other wildlife and livestock. Combined with
other laboratory-based studies such as receptor specificity,
pathogenesis and animal infection, a focus on continued
surveillance will help us to improve risk assessment as
well as to reveal the potential intermediate hosts that may
play an important role in the interspecies transmission of
various known and as yet unknown bat coronaviruses.
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