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We describe and evaluate two algorithms for Neyman-Pearson (NP) classification problem which

has been recently shown to be of a particular importance for bipartite ranking problems. NP

classification is a nonconvex problem involving a constraint on false negatives rate. We investigated
batch algorithm based on DC programming and stochastic gradient method well suited for large

scale datasets. Empirical evidences illustrate the potential of the proposed methods.
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1. INTRODUCTION

Consider a binary classification problem with patterns x ∈ X and classes y = ±1
obeying an unknown probability distribution dP (x, y). The probabilities of non
detection Pnd and of false alarm Pfa measure the two kinds of errors made by a
discriminant function f :

Pnd(f)=P
(
f(x) ≤ 0 | y=1

)
, Pfa(f)=P

(
f(x) ≥ 0 | y=−1

)
The statistical decision theory recognizes the need to associate different costs to
these two types of errors. This leads us to searching a classifier f that minimizes
the Asymmetric Cost (AC) formulation :

min
f

C+ Pnd(f) + C−Pfa(f) . (1)

Although C+ and C− have a meaningful interpretation, it is often very difficult
to specify these costs in real situations such as medical diagnosis or fraud detec-
tion. There are also cases where such costs have no meaningful interpretation, for
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instance, as discussed in section 4, when one uses a classification framework to
approach a false discovery problem.

In contrast, the Neyman-Pearson (NP) formulation,

min
f

Pnd(f) subject to Pfa(f) ≤ ρ (2)

requires only the specification of the maximal false alarm rate ρ and can be mean-
ingfully applied to false discovery problems.

It is well known that the optimal decision function for both problems are obtained
by thresholding the optimal ranking function

r∗(x) = P
(
y = +1 |x

)
, (3)

that is

f∗AC = r∗(x)− C−/(C+ + C−) ,

f∗NP = r∗(x)−min{r such that Pfa(r∗− r) ≤ ρ} .

Although this result suggests equivalent capabilities, it misses several important
points. Firstly, when using a finite training set D = {(x1, y1) . . . (xn, yn)} we must
work with the empirical counterparts of Pnd and Pfa :

P̃nd(f)=
1

n+

∑
i∈D+

If(xi)≤0 , P̃fa(f)=
1

n−

∑
i∈D−

If(xi)≥0

where D+ and D− represent respectively the set of positives and negatives with
cardinality n+ and n−. We must also choose the decision function f within a
restricted class H that is unlikely to contain the optimal decision function. This
approach is supported by standard results in statistical learning theory [e.g. Vapnik
1998] and their extension to the Neyman-Pearson formulation [Scott and Nowak
2005].

Secondly, the empirical counterparts of problems (1) and (2) involve the 0–1
loss function Iy f(x)≤0 that is neither continuous nor convex. Replacing this 0–
1 loss with the SVM Hinge loss has been studied for both the Asymmetric Cost
[Bach et al. 2006] and Neyman-Pearson [Davenport et al. 2010] formulations. This
substitution introduces additional complexities. In particular, in order to hit the
specified goals on Pnd and Pfa, one must use asymmetric costs that are different
from C+ and C−. Both works eventually rely on hyperparameter searches in the
asymmetric cost space.

An alternative approach consists in first learning a scoring function that orders
input patterns like the optimal ranking function (3). Both problems (1) and (2)
are then reduced to the determination of a suitable threshold [e.g. Cortes and
Mohri 2004]. However it is quite difficult to ensure that the ranking function is
most accurate in the threshold area. Theoretical investigations of this problem
conclude that Neyman-Pearson classification remains an important primitive for
such focussed ranking algorithms [Clémençon and Vayatis 2007; 2009].

This contribution proposes two practical and efficient algorithms for NP classifi-
cation using nonconvex but continuous and mostly differentiable loss functions. In
particular, these algorithms are shown to work using asymmetric costs that main-
tain a clear relation with the specified goals. The first algorithm leverages modern
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Fig. 1. Approximations of 0-1 loss. `atan(z) = 1/2+arctan(−βz)/π and `erf(z) = 1/2+erf(−βz)/2.

Definitions of the other cost functions are detailed in the text.

nonconvex optimization techniques [Tao and An 1998]. The second algorithm is a
stochastic gradient algorithm suitable for very large datasets. Various experimental
results illustrate their properties.

2. EMPIRICAL RISK NP FORMULATION

Our approach consists in replacing the 0–1 loss in P̃nd and P̃fa by a continuous
nonconvex approximation such as the sigmoid loss

`(z) =
1

1 + eηz
(4)

or the ramp loss

`(z) = max

{
0,

1

2η
(η − z)

}
−max

{
0, − 1

2η
(η + z)

}
. (5)

The positive parameter η determines how close the nonconvex costs are to the 0–1
loss and those approximations tend toward the 0–1 loss as η tends to 0. Figure 1
illustrates such approximations. The selection of an optimization algorithm usually
dictates the choice of an approximation. The differentiable sigmoid loss lends itself
to gradient descent, whereas the ramp loss is attractive with dual optimization
algorithms.

Following common practice, we also add a regularization term Ω(f) to control
the capacity of our classifiers. We therefore seek the solution of

min
f∈H

Ω(f) + C P̂nd(f) subject to P̂fa(f) ≤ ρ (6)

where C ∈ R+ is the regularization parameter and

P̂nd(f)=
1

n+

∑
i∈D+

`
(
yif(xi)

)
, P̂fa(f)=

1

n−

∑
i∈D−

`
(
yif(xi)

)
.

For instance, in the case of a Neyman-Pearson SVM (NP-SVM), the discriminant
functions is f(x) = f0(x) + b with f0 taken from a RKHS induced by a kernel
k
(
x,x′

)
, and the regularizer is Ω(f) = ‖f0‖2H.

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · Gasso et al.

The nonconvex optimization problem (6) comes with the usual caveats and ben-
efits. We can only obtain a local minimum of (6). On the other hand, we can
obtain a local minimum that is better than the solution of any convex relaxation
of (6), simply by initializing the nonconvex search using the solution of the convex
relaxation.

2.1 Previous work

The NP classification problem has been extensively studied. Past methods can be
roughly divided in two categories: generative and discriminative.

One of the earliest attempts [Streit 1990] uses multi-layered neural network to
estimate class-conditional distributions as mixture of Gaussians. The discriminant
function is then inferred with a likelihood ratio test. In the same vein, recent
methods [Kim et al. 2006] assume the class-conditional distributions are Gaussian
with means µ± and covariances Σ±, and consider a linear classifier f(x) = 〈w,x〉+
b. This amounts to solving (2) with the following definitions

P̂nd = Φ

− b+ w>µ̂+√
w>Σ̂+w

 , P̂fa = Φ

 b+ w>µ̂−√
w>Σ̂−w

 ,

where Φ is the cumulative distribution function of standard normal distribution and
µ̂± and Σ̂± are empirical estimations. Since the Gaussian assumption proves too
restrictive, some authors [Huang et al. 2006; Kim et al. 2006] replace the cumulative
Φ by a Chebyshev bound Ψ(u) = [u]2+/(1 + [u]2+), [u]+ = max(0, u). The scheme
is extended to nonlinear discrimination using the kernel trick. A third flavor of
generative approach addresses the estimation of class-condition distributions by
Parzen window [Bounsiar et al. 2008]. These generative methods share the same
drawbacks: (1) the final classifiers are derived from estimated distributions whose
accuracy is questionable when the datasets are small, and (2) the kernel version of
these models lacks sparsity because all the examples are involved in the model.

On the discriminative side, the Asymmetric Cost SVM [Bach et al. 2006; Dav-
enport et al. 2010]. introduces costs C+ and C− in the SVM formulation. As
mentioned before, even if the true asymmetric costs were known, the benefits of the
convex loss, such as the guaranteed convergence to global optimum, are balanced
by the necessity of searching for different asymmetric costs to achieve the desired
NP constraint [Bach et al. 2006]. SVMPerf [Joachims 2005] optimizes in polyno-
mial time a convex upper bound of any performance measures computable from
the confusion table. Since P̃fa and P̃nd can be computed from the confusion table,
SVMPerf can address the Neyman-Pearson problem. Computing times grow very
quickly with the number of examples n, typically with degree four for linear models,
worse for nonlinear models. Finally, most similar to our approach, [Mozer et al.
2002] also consider sigmoid approximation of 0-1 loss. Compared to this work, our
contributions are three-fold: we extend the nonconvex NP idea to SVM in order
to benefit from off-the-shelf SVM solvers, we propose a stochastic approach to deal
with large scale datasets, and we extend the potential of our approaches to related
problems such as q-value optimization (section 4).
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Algorithm 1 Uzawa Algorithm

Set initial value for λ ≥ 0. Pick small gain ν > 0.
repeat
f ← argminf∈H L(f, λ)
λ← max { 0, λ+ ν ∇λL(f, λ) }

until convergence

3. SOLVING NON-CONVEX NP PROBLEMS

The algorithms discussed in this paper find a local minimum of (6) by searching a
local saddle point (f, λ) ∈ H × R+ of the related Lagrangian

L(f, λ) = Ω(f) + C P̂nd(f) + λ (P̂fa(f)− ρ) . (7)

The appendix summarizes several results that apply to nonconvex optimization.
Local saddle points of the Lagrangian (7) are always feasible local minima of (6).
Conversely, assuming differentiability, the local minima of (6) are always critical
points of the Lagrangian.

3.1 Uzawa algorithm

The Uzawa algorithm [Arrow et al. 1958] is a simple iterative procedure for finding
a saddle point of the Lagrangian (7). Each iteration of the algorithm first computes
a minimum f∗λ of the Lagrangian for the current value of λ, and then performs a

small gradient ascent step in λ (algorithm 1) with ∇λL=P̂fa−ρ. The convergence
of the Uzawa algorithm is not obvious because the function λ 7→ L(f∗λ , λ) can
easily contain discontinuities. However a simple argument (see theorem 3 in the

appendix) shows that P̂fa(f∗λ) is a nonincreasing function of λ. Therefore the sign

of the gradient ∇λL= P̂fa−ρ correctly indicates whether λ is above or below its
target value. In general we prefer using a multiplicative update λ←λ(1+ν ∇λL)
because it keeps the λ positive. This makes very little difference in practice: the
key is to adjust λ in very small increments, for instance using a very small gain ν.

The two algorithms discussed in this paper are essentially derived from the Uzawa
algorithm. They differ in the minimization step. The first algorithm uses the
DC1 approach [Tao and An 1998] and is suitable for kernel machines. The second
algorithm relies on a stochastic gradient approach [Tsypkin 1971; Andrieu et al.
2007] suitable for processing large datasets.

3.2 Batch learning of NP-SVM

The most difficult step in the Uzawa algorithm is minimization of L over f for λ
fixed. In the case of the SVM classifier, the Lagrangian (7) reads

L =
1

2
‖f‖2H + C+

∑
i∈D+

`(yif(xi)) + C−
∑
i∈D−

`(yif(xi))− λρ

1The acronym DC stands for “Difference of Convex functions”.
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where C+ = C/n+, C− = λ/n− and `(z) stands for the ramp loss (5). This amounts
to solving a nonconvex asymmetric cost SVM [Collobert et al. 2006b]. Since the
analytical expression of the ramp loss (5) is a difference `1(z)− `2(z) of two convex
functions, the full Lagrangian can also be expressed as the difference of two convex
functions amenable to DC programming [Tao and An 1998]. Consider the non-
convex optimization problem minθ J1(θ)− J2(θ) where both J1 and J2 are convex
functions. Each DC iteration solves the convex problem obtained by linearizing J2,
that is,

θt+1 = arg min
θ
{ J1(θ)− 〈∇θJ2(θt), θ〉 } , (8)

where ∇θJ2(θt) denotes a subgradient of J2. One can easily see that the cost J1−J2
decreases after each iteration by summing the following two inequalities resulting
from (8) and from the convexity of J2.

J1(θt+1)− 〈∇θJ2(θt), θt+1〉 ≤ J1(θt)− 〈∇θJ2(θt), θt〉
−J2(θt+1) ≤ −J2(θt)− 〈∇θJ2(θt), θt+1 − θt〉

Following [Collobert et al. 2006b], we write L(f, λ) = J1(f)− J2(f) with

J1(f) =
1

2
‖f‖2H +

∑
i

Cyi `1(yif(xi)) ,

J2(f) =
∑
i

Cyi `2(yif(xi)) ,

where notation Cyi denotes either C+ or C−. Observe that J1(f) is the primal
objective function of a standard convex SVM. Each DC iteration then reduces to
solving the following convex problem

ft+1 = argmin
f

{
J1(f) +

1

2η

∑
i

Cyiβif(xi)

}
(9)

where βi = I
(
yift(xi) < −η

)
indicates whether `2(yift(xi)) has a nonzero gra-

dient. Standard SVM techniques can be used to obtain the dual formulation of
this problem. This dual formulation turns out to be similar to that of a standard
SVM problem with shifted box constraints [Collobert et al. 2006a, appendix]. This
derivation leads to algorithm 2. To summarize, applying the Uzawa algorithm (al-
gorithm 1) to the NP-SVM results in repeatedly solving a nonconvex asymmetric
cost SVM via algorithm 2 and updating λ by gradient ascent.

This slow procedure requires solving many times a nonconvex SVM problem.
Much faster convergence is observed by moving the gradient ascent step inside
the DC iterations, leading to the Annealed NonConvex NP-SVM algorithm (algo-
rithm 3). This algorithm departs from the Uzawa template because the Lagrange
coefficient λ is updated after each iteration of the DC algorithm (9) instead of
performing it in an additional loop surrounding the optimization of the nonconvex
asymmetric cost SVM. Although we have no formal convergence guarantee for this
algorithm, empirical evidence shows that it works as reliably and much faster than
the plain Uzawa algorithm (see section 5.2.)

We pick an initial value for λ such that C/n+ = λ/n− in order to balance
the initial regularization parameters for positives and negatives. Since the DC
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Algorithm 2 Asymmetric Nonconvex SVM with DC

Set β ← 0.
repeat

• Compute α← argmax
α

− 1

2
α>K̃α + ηα>1

where K̃ij = yiyjk
(
xi,xj

)
, subject

to

 y>α = 0
−βiC+ ≤ 2ηαi ≤ (1− βi)C+ ∀i ∈ D+

−βiC− ≤ 2ηαi ≤ (1− βi)C− ∀i ∈ D−
.

• Form f(x) =
∑n
i=1 αik

(
x,xi

)
+ b with b such that yif(xi) = 1 for all i such

that the inequality constraints above were not reached.

• Compute βi ←
{

1 if yif(xi) < −η
0 otherwise

until convergence of β.

Algorithm 3 Annealed Nonconvex NP-SVM

Set β ← 0 and λ← Cn−/n+
repeat

• Set C+ = C/n+ and C− = λ/n−.

• Compute α← argmax
α

− 1

2
α>K̃α + ηα>1

where K̃ij = yiyjk
(
xi,xj

)
, subject

to

 y>α = 0
−βiC+ ≤ 2ηαi ≤ (1− βi)C+ ∀i ∈ D+

−βiC− ≤ 2ηαi ≤ (1− βi)C− ∀i ∈ D−
.

• Form f(x) =
∑n
i=1 αik

(
x,xi

)
+ b with b such that yif(xi) = 1 for all i such

that the inequality constraints above were not reached.

• Compute βi ←
{

1 if yif(xi) < −η
0 otherwise

• Update λ← λ(1 + ν(P̂fa − ρ))

until convergence.

iterations start with β = 0, the first iteration solves the classical asymmetric cost
SVM problem whose solution is progressively improved by taking the nonconvexity
into account and updating λ in order to achieve the target Pfa. The algorithm is
stopped when the NP constraint is satisfied with a predefined precision ε.

3.3 Stochastic learning for the NP problem

The computational cost of the batch learning algorithm discussed above increases
quickly when the dataset size becomes large. Faster algorithms are therefore desir-
able.
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Algorithm 4 Stochastic NP algorithm

Initialize λ, w, b.
repeat

Pick a random training example (xt, yt)
Update w and b in the following ways

w ← (1− γtλc)w − γtat∇w`(ytf(xt)) (11a)

b ← b− γtat∇b`(ytf(xt)) (11b)
If yt = −1, set

λ← λ (1 + νt (`(−f(xt))− ρ)) (12)
until convergence

Let vector w and the scalar bias b be the parameters of the discriminant function,
λc = 1/C, and reformulate problem (6) as

min
f

λc
2
‖w‖2 + P̂nd(f) subject to P̂fa(f) ≤ ρ .

Expanding P̂nd and P̂fa leads to the Lagrangian

L(f, λ) =
1

n

n∑
i=1

(
λc
2
‖w‖2 + ai `(yif(xi))− λρ

)
with the coefficients

ai =

{
n/n+ ∀i ∈ D+

λn/n− ∀i ∈ D−
(10)

Algorithm 4 is a stochastic variant of the Uzawa algorithm. Each iteration per-
forms a stochastic gradient descent step for (w, b) and a stochastic ascent step for
the Lagrange coefficient λ. Since the false alarm rate depends only on the negative
examples, the update of λ only happens when sampling a negative example.

The convergence analysis of this stochastic descent/ascent procedure establishes
how closely the updates (11-12) follow the trajectory described by the corresponding
ordinary differential equation. Almost sure convergence to a local saddle point is
guaranteed under mild conditions [Tsypkin 1971; Andrieu et al. 2007]. Such direct
results are in fact stronger than those available for the generic Uzawa approach.

Linear NP-SVM. Following [Bottou 2007], when training a linear SVM (that is
f(x) = 〈w,x〉 + b), we choose a learning rate γt = γ0(1 + λc t)

−1 with an initial
learning rate γ0 chosen to ensure that the initial updates of w are compatible with
its expected size. Choosing γ0 = 0.1 works well when ‖xi‖ ≈ 1.

Empirical evidence, on the other hand, suggests that ν should be smaller than
γt in order to ensure that λ remain consistent. Otherwise the algorithm strongly
enforces the false alarm rate constraint at the expense of the non detection rate.
In our experimentations we always choose ν proportional to 1/n−.

Using the ramp loss makes the Lagrangian nondifferentiable when ytf(xt) = ±η.
In such cases, we simply consider that the gradient is zero and skip the stochastic
update. On the other hand, using the sigmoid loss simply avoids the problem. Both
approaches work well in practice.
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Nonlinear extensions. Algorithm 4 extends naturally to nonlinear discriminant
functions such as multilayer neural network. Gradients are easily computed using
the standard back-propagation algorithm. The learning rate γt must then be chosen
using a trial and error approach.

Extending algorithm 4 to kernel representations is more complicated. The pa-
rameter w can be expressed with a kernel expansion w =

∑n
i=1 αiφ(x) where φ(x)

is the mapping function associated with the kernel. Since f(x) = 〈w, φ(x)〉+ b we
can plug the expression of the gradient ∇w`(ytf(xt)) = −ytφ(xt)`

′(ytf(xt)) into
(11a), leading to the update

αi = (1− γtλc)αi +

{
γtyt`

′(ytf(xt)) if t = i
0 otherwise

However the noise introduced by the stochastic procedure compromises the sparsity
of α. The computation of the gradient then requires numerous kernel evaluations
in order to compute f(xt). Although kernel values can be cached, these problems
reduce the appeal of the stochastic approach. We plan to investigate this issues
more closely in a forthcoming work.

Imbalanced Dataset. When the dataset is highly imbalanced, for instance, when
there are many negatives and just a few positives, considerable speedups are achieved
by picking random training examples from each class with equal probability. Since
this procedure oversamples the examples from the minority class, we must adjust
the coefficients ai in algorithm 4 in proportion. The coefficients then become

ai =

{
1 ∀i ∈ D+

λ ∀i ∈ D−
.

4. Q-VALUE OPTIMIZATION

So far we have considered problems in fully supervised setting, with positive and
negative labels assigned with equal confidence. The situation explored in this sec-
tion is slightly different in the sense that we assume the labels of the negative
class are confidently assigned and the goal of the classifier is to assign a confidence
measure to labels of the first class.

Such problems are often encountered in large-scale biological screening, where
multiple independent events are tested against a null hypothesis to discriminate real
biological effects from noisy data. In microarray experiments, the expression level
of genes is tested against the background signal [Storey and Tibshirani 2003]. In
mass spectrometry protein screening, potentially positive matches between spectra
and peptide sequences are tested for correctness against peptide-spectrum matches
that are known to be negative because they were generated randomly [Elias and
Gygi 2007].

Given a scoring function for these events, a widely used approach, both in mi-
croarray and proteomic applications, is to assign to each event a statistical con-
fidence measure, the q-value, defined as the proportion of higher scoring events
that turn out to be known negatives. Events below a certain user-specified q-value
threshold are considered statistically significant and are selected for further bio-
logical identification. In practical terms, a q-value threshold can be interpreted as
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the proportion of significant events that will turn out to be false leads [Storey and
Tibshirani 2003].

When such problems are addressed in classification framework, the goal is to
discriminate the significant events from the nonsignificant ones. In this setup, the
labels of the negatives are confidently assigned, while the labels of the positives are
to be verified. In order to hit the user specified q-value threshold q, the classifier
must satisfy the constraint

q(1−Pnd) = Pfa.

Earlier works simply train a classifier using the available labels, without taking into
account the uncertain nature of the positive labels. Then, they use the ordering
induced by the classifier to assign q-values, and, finally, select a subset of examples
with q-values below a desired threshold [Käll et al. 2007]. This approach is equiva-
lent to constructing an ROC curve of the classifier and taking a single point on the
ROC curve.

Alternatively, Spivak et al. [2009] propose an algorithm that directly optimizes
the classifier for a single specified q-value threshold or a set of such thresholds.
Their approach is equivalent to optimizing the ROC curve in the vicinity of the
point corresponding to the q-value threshold q. A precise formulation of this ob-
jective leads to a formulation that is strikingly similar to NP classification. Indeed,
maximizing true positives rate while keeping the user-specified q-value amounts to
solving

min
f∈H

Ω(f) + C P̂nd subject to P̂fa ≤ q(1− P̂nd).

The machinery of the section 3 is easily adaptable with the new Lagrangian

L(f, λ) = Ω(f) + (C + λq)P̂nd + λ(P̂fa − q) . (13)

This Lagrangian is obviously related to (7) and therefore is amenable to similar
algorithms. Adapting the stochastic algorithm requires some ingenuity because the
λ update depends on both the positive and negative examples. We have modified
algorithm 4 to pick at each iteration both a random positive example x+

t and
a random negative example x−t . We update the model parameters w using the
gradient of the Lagrangian (13) restricted to these two randomly picked examples.
Finally we update the Lagrange parameter λ with

λ← λ
(
1 + νt

(
`(−f(x−t ))− q

[
1− `(f(+x+

t ))
] ) )

.

5. EXPERIMENTS

This section reports experimental results obtained with the various algorithms dis-
cussed in this paper. Subsection 5.1 presents the various datasets used in our
experiments. Subsections 5.2 and 5.3 present exploratory results characterizing
the performance of the Annealed NonConvex NP-SVM algorithm. Subsections 5.4
and 5.5 present Neyman-Pearson classification results obtained using Gaussian Ker-
nel SVMs on small-scale and medium-scale datasets and Linear SVMs on medium-
scale and large-scale datasets. Finally, subsection 5.6 reports on a real life q-value

ACM Journal Name, Vol. V, No. N, Month 20YY.
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optimization problem using both a Gaussian Kernel SVM and a nonlinear multi-
layer network as classifiers (subsection 5.6.)

5.1 Datasets

Table I summarizes the main characteristics of our datasets.
Some exploratory results reported in sections 5.2 were obtained using synthetic

data inspired from [Bach et al. 2006]. The dataset consists of 2500 two-dimensional
points. An equal number of of positives and negatives points are drawn from two
gaussian distributions shown in figure 2.

Table I. Dataset summary

Dataset Sections Features n+ n−
Synthetic 5.2 2 1250 1250
Breast 5.4 30 357 212
Pima 5.4 8 500 268
Spambase 5.2,5.3,5.4,5.5 57 2788 1813
Pageblocks 5.4, 5.5 10 4913 560
GammaTelescope 5.4, 5.5 10 12332 6688
Covertype 5.5 54 211840 20510
RCV1-V2 5.5 47152 684494 119920
Proteomics 5.6 17 69705 69705

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 2. Synthetic data for section 5.2.

The Neyman-Pearson classification experiments were carried out using two small
scale datatsets (Breast and Pima), three medium scale datasets (Spambase,
Pageblocks, and GammaTelescope) and two large scale datasets (Covertype
and RCV1-V2). The first six datasets are well known classification datasets avail-
able from the UCI machine learning repository2. The small-scale and medium scale
datasets originally specify two classes. We always use the majority class as positive
examples and the minority class as negative examples. For the datasets Breast
and Pima we set aside one quarter of the examples as a testing set and we use 4-fold
cross-validation on the remaining examples for model selection. For the datasets

2http://archive.ics.uci.edu/ml/
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Spambase, Pageblocks, GammaTelescope, and Covertype, we set aside one
quarter of the examples as a testing set and one quarter of the examples as a val-
idation set for model selection. The remaining half of the examples is used as the
training set. In the case of the Covertype dataset, a binary classification problem
was formed by picking species Spruce-Fir and Krummholz as positive and negative
classes respectively. Finally, the dataset RCV1-V2 is available from the RCV1-V2
website3. In order to make the problem large scale, we use the official testing set
(781,265 documents) as the training set and the official training set (23,149 doc-
uments) as the testing set. The RCV1-V2 TF/IDF features were recomputed to
account for this new split. The documents associated with the category ECAT
are used as negative examples. All the remaining documents are used as positive
examples.

The q-value optimization experiments were carried out using a proteomics dataset
consisting of 139410 samples with positive and negative samples equally repre-
sented [Spivak et al. 2009].

5.2 Speedups achieved by the Annealed NonConvex NP-SVM algorithm

This section compares the performance of the Annealed NonConvex NP-SVM (al-
gorithm 3) with the performance of a more direct implementation of the Uzawa
algorithm consisting of using algorithm 2 as the minimization step of the Uzawa
algorithm 1.

Our first experiments trains a Gaussian Kernel SVM on the Synthetic dataset.
We formed a set of 20 pairs (C+, σ) ∈ [10−2, 10−2]×[10−2, 10−2] where σ is the band-
width of the kernel and C+ the cost assigned to positive samples. Both algorithms
were tested with these hyperparameters for values of ρ in {0.01, 0.05, 0.1, 0.2}. The
algorithms were implemented in C++ using a SMO optimizer [Platt 1999] and a
kernel cache. The cache vastly speeds up the algorithms because kernel matrix
coefficients computed during the earlier iterations can be used during the later
iterations.

Table II reports results averaged on all values of the hyperparameters (C+, σ).
The Annealed NonConvex NP-SVM algorithm considerably accelerates the con-
vergence. The table also shows the Pfa and Pnd differences evaluated by directly
sampling test examples from the Gaussian distributions. These differences are
statistically insignificant according to a Wilcoxson signed rank test with p-value
threshold 10−3.

Table III reports the speedup factors achieved by repeating this experiment on
the medium size dataset Spambase. We do not report on the final Pfa and Pnd

because the differences were similarly insignificant.
Both tables reveal that the Annealed NonConvex N-SVM speedup is higher for

small values ρ. This probably happens because such values of ρ lead to extreme
ratios between the quantities C+ and C− = λ/n− and penalize the computing times
of the Asymmetric NonConvex SVM solver called during the minimization step of
the Uzawa algorithm.

3http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
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Table II. Comparison of the Annealed NonConvex NP-SVM solver (algorithm 3) with the pure

Uzawa approach (algorithms 1 and 2) on the Synthetic dataset. The second column reports the
speedup factor. The remaining columns report the differences in final Pfa and Pnd test errors.

These differences are not statistically different.

ρ Speedup factor PannealedDC
fa −PfullUzawa

fa PannealedDC
nd −PfullUzawa

nd

0.01 3.96± 2.74 (20± 71)× 10−5 (−3.6± 31.5)× 10−4

0.05 3.86± 3.30 (37± 88)× 10−5 (−7.3± 18.2)× 10−4

0.1 2.32± 1.51 (24± 90)× 10−5 (−7.4± 24.7)× 10−4

0.2 2.71± 1.78 (36± 72)× 10−5 (−6.5± 14.8)× 10−4

Table III. Comparison of the Annealed NonConvex NP-SVM solver (algorithm 3) with the pure

Uzawa approach (algorithms 1 and 2) on the Spambase dataset.

ρ 0.01 0.05 0.1 0.2

Speedup factor 6.45± 7.81 4.31± 5.12 3.96± 4.81 3.19± 3.58

5.3 Initialization of the Annealed NonConvex NP-SVM algorithm

This section investigates the influence of the initialization on the solution computed
by the Annealed NonConvex NP-SVM solver (algorithm 3). For the sake of sim-
plicity, we only consider a linear SVM trained on the Spambase dataset. Besides
the initialization β = 0, which corresponds to training a plain SVM during the
first iteration, we run the algorithm using 24 randomly generated initial vectors β
and measure the error probabilities P̃nd and P̃fa achieved at convergence on the
training set. The experiment was repeated for different values of C.

Figure 3 reports the results. Unsurprisingly, since the NP problem is intrinsically
nonconvex, the initializations impact the solutions. The simplest initialization β =
0 does not always lead to the best solution. However all the results are empirically
very close to those achieved by using β = 0.

5.4 Neyman-Pearson classification using Gaussian Kernel SVMs

This section compares Gaussian Kernel SVMs trained on the small-scale and medium-
scale datasets using the Annealed NonConvex NP-SVM algorithm (NP-SVM, al-
gorithm 3), the convex cost-sensitive SVM (AC-SVM) [Davenport et al. 2010], and
the generative approach (GEN) [Huang et al. 2006]. We only report the best GEN
results achieved using Chebychev bound Ψ(u) to model probabilities of error (see
section 2.1). We do not report results using the Stochastic NP optimizer (algo-
rithm 4) because it is not suited to kernel machines. We do not report results
obtained with SVMPerf [Joachims 2005] because, running the algorithm for plain
kernel machines is “painfully slow”, according to the SVMPerf web site.

The hyperparameters of the different methods were determined by cross-validation.
Different algorithms have different model selection requirements: GEN only requires
choosing a kernel bandwidth σ, whereas NP-SVM requires finding a pair (C, σ), and
AC-SVM requires finding the best triplet (C+, C−, σ). The best classifier for each
method was selected using the validation criterion [Davenport et al. 2010]:

Jval = Pnd + max(0,Pfa − ρ)/ρ .
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Fig. 3. Influence of the initialization on the Annealed NonConvex NP-SVM solver. The red star

represents the initialization β = 0. The yellow squares correspond to 24 random initializations.

This criterion has the property to enforce strongly the false alarm rate constraint
for small values of ρ. All reported results were of course measured on the testing set
after completing all the model selection procedure using a validation set or using
4-fold cross-validation, as explained in subsection 5.1. Following [Davenport et al.
2010], for each parameter, 10 logarithmically spaced values in the range

[
10−2, 102

]
were explored. This means that 103 triplets (C+, C−, σ) were tested for AC-SVM
while only 100 pairs (C, σ) and 10 parameters σ were respectively tested for NP-
SVM and GEN.

We used a C++ implementation of the SVM solvers with Torch4 bindings, and
a Matlab implementation of the generative approach5.

Figure 4 reports the final classification errors Pnd and Pfa, and the corresponding
computation time achieved for several values of ρ.

As expected, NP-SVM tightly satisfies the false alarm constraint. NP-SVM
achieves Pnd misclassification rates similar or slightly better than AC-SVM on the
Spambase, Breast, and Pima datasets. AC-SVM seems to perform better on
PageBlocks. The reason could be related to the small number of negative sam-
ples available for the latter dataset. Indeed, according to the experimental protocol
and Table I, when running NP-SVM for ρ = 0.01, one seeks a classifier with solely
two misclassified negatives. NP-SVM strives to fullfill the constraint and overfits.
On the other hand, on GammaTelescope, the number of examples is significantly
higher, and NP-SVM reaches a better Pnd than the competing techniques.

Except for Spambase and Breast, GEN was not able to attain Pnd results com-
petitive with NP-SVM or AC-SVM. GEN achieves a better Pnd on PageBlock at
the price of violating the Pfa constraint. Despite its Matlab implementation, GEN

4See http://torch5.sourceforge.net/
5See http://appsrv.cse.cuhk.edu.hk/~miplab/mempm_toolbox/index.htm
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Fig. 4. Performance comparison for a Gaussian Kernel SVMs on different datasets
(row-wise plots). Left: Pfa. Middle: Pnd. Right: total training time, including
model selection. Results are averaged over 10 runs for GammaTelescope and 25 runs
for the other datasets. In the left column, the cyan dash-dotted line represents the
curve Pfa = ρ.
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appears to be the fastest method on the small size datasets. However, GEN slows
down as soon as the size of the data grows, because its lack of sparsity results in
expensive manipulations of the full kernel matrix. NP-SVM is very competitive
with AC-SVM in terms of computation time, and even runs twice faster on Spam-
base6. The computational load of NP-SVM is high for small ρs and decreases when
ρ increases. This phenomenon could be explained as follows: for small ρs, NP-SVM
sets λ at high values during training, leading to highly skewed asymmetry. The
SVM solver is then driven into extreme situations and runs slowly.

5.5 Neyman-Pearson classification using Linear SVMs

This section compares Linear SVMs trained on the medium-scale and large-scale
datasets using the batch Annealed NonConvex NP-SVM solver (BNP-SVM, algo-
rithm 3), the online Stochastic NP optimizer (ONP-SVM, algorithm 4), the convex
cost-sensitive SVM (AC-SVM) [Davenport et al. 2010], the generative approach
(GEN) [Huang et al. 2006], and the SVMPerf algorithm (SVMPerf) [Joachims
2005].

In the case of ONP-SVM, the hyperparameter selection searches the regulariza-
tion parameter λc in the set {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. The learn-
ing rate γ was sougth as τ/n− with τ ∈ {0.1, 1, 5, 10, 50, 100}. The algorithm was
run for 100 epochs on the medium-scale datasets and 50 epochs on the large-scale
datasets.

In the case of AC-SVM, 15×15 values of (C+, C−) were searched in the hyperbox
[0.001, 1000]2 for Pageblocks and [0.01, 100]2 for the other datasets. The search
for BNP-SVM only explores 25 values of C for Pageblocks and 15 values of C for
the other datasets. The generative approach GEN is parameter free.

The SVMPerf results were obtained by adapting the SVMPerf program7 to solve
the Neyman-Pearson problem by exploiting its Precision/Recall@k mode. In this
mode, SVMPerf computes a classifier yielding exactly k positive instances on the
training set. Therefore the algorithm requires the specification of C and k. The
hyperparameter C was searched as for the other SVM algorithm. Meanwhile, we
explore ten values of k linearly spaced in the interval (1/n+, 1) and select value that
most closely achieved the target Pfa on the validation set. However the reported
SVMPerf training times exclude the time required to search parameter k. We
simply report the running time associated with the final value of k because it
would theoretically have been possible, but far from easy, to modify the intricate
SVMPerf loops to do this automatically.

Experiments on the large scale datasets Covertype and RCV1-V2 were car-
ried out using a number of speed optimizations. The SVM solver for AC-SVM
was replaced by LIBLINEAR which is one of the most efficient solvers for linear
SVM [Hsieh et al. 2008]. For the ONP-SVM experiments on RCV1-V2, we modi-
fied the stochastic gradient code of [Bottou 2007] because it handles sparse vectors
more efficiently than our baseline code.

6During experiments carried out on other UCI small-scale datasets (Liver and Ionosphere), AC-
SVM runs up to 1.5 times faster than NP-SVM. However, the computation time in question is

about 25 seconds.
7http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html
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Figure 5 reports the results obtained on all datasets but RCV1-V2. For read-
ability, the SVMPerf results on Covertype are shown separately in figure 6. The
RCV1-V2 results are shown separately in table IV.
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Fig. 5. Performance comparison for a Linear SVMs on different datasets (row-wise
plots). Left: Pfa. Middle: Pnd. Right: training time, including model selection.
The Spambase and Pageblocks results are averaged over 25 runs. The other
results are averaged on 10 runs. In the left column, the cyan dash-dotted line
represents the curve Pfa = ρ.

Several conclusions could be drawn: GEN is fast but performs poorly in terms
of Pnd. The Stochastic NP Optimizer has a constant numerical cost regardless
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Fig. 6. Performance comparison for Linear SVMs on the Covertype dataset, This
plot shows the SVMPerf results that were not shown in figure 5 for the sake of
readability.

Table IV. Performance comparison for a Linear SVM on the RCV1-V2 dataset. Top row: ρ = 0.1%

(left) and ρ = 0.5% (right). Bottom Row: ρ = 5% (left) and ρ = 10% (right).

ONP-SVM AC-SVM

Pfa 0.029% 0%
Pnd 76.8% 93.26%

ONP-SVM AC-SVM

Pfa 0.31% 0.145%
Pnd 60% 59.35%

ONP-SVM AC-SVM

Pfa 4.69% 5.01%
Pnd 11.84% 9.53%

ONP-SVM AC-SVM

Pfa 10% 8.3%
Pnd 4.63% 7.9%

of ρ. It is really fast, especially for Gammatelescope where the computation gains
compared to BNP-SVM and AC-SVM are respectively around 12 and 20. Moreover,
the performances of ONP-SVM in terms of Pfa and Pnd are similar to those of
batch methods. Interestingly, Pnd for ONP-SVM on Pageblocks is slightly better
than its counterpart for the other algorithms, suggesting that ONP-SVM overcomes
the lack of robustness of BNP-SVM in this regime. For GammaTelescope, our
proposed approaches clearly outperform AC-SVM and GEN. The performances for
AC-SVM could be improved using a finer grid search for C+ and C− or using a
regularization path procedure [Yu et al. 2009]. However, this would increase the
computing times. In particular the regularization path approach, in worst case
scenario, has to visit an exponential number of kinks [Gärtner et al. 2009].

SVMPerf matches the speed and the accuracy of ONP-SVM on the Spambase
and Pageblocks datasets. It remains competitive in speed on the GammaTele-
scope dataset, but shows poor accuracies for small values of ρ. Enlarging the search
interval for C or sampling k more finely did not provide any improvement. A possi-
ble explanation may lie with the fact that SVMPerf optimizes a convex upper bound
of the target criterion, instead of the intrinsically nonconvex Neyman-Pearson ob-
jective. The scalability issues of SVMPerf become apparent on the Covertype
dataset (figure 6). Although the performances of SVMPerf could be improved by
exploring more hyper-parameters, its very long training time discourages such a
search.

The RCV1-V2 results shown in table IV again comfirm the good performance
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Table V. Performance comparisons for q-value optimization measured as the number of true pos-

itives correctly identified on the testing set.

q qRanker qSVMOpt qNNOpt

0.0025 4449 4947 5005
0.01 5462 5666 5707
0.1 7473 7954 7491

of the Stochastic NP Optimizer (ONP-SVM). Each run of ONP-SVM takes 30.44
seconds on average, whereas each call to the LIBLINEAR solver in AC-SVM takes
79.50 sec. As we tested 100 pairs of parameters (C+, C−) for AC-SVM and only 36
pairs (γ, ν) for ONP-SVM, the computing time gain is highly appreciable.

5.6 Illustration of q-value optimization on proteomics dataset

This subsection experimentally evaluates the q-value algorithms described in sec-
tion 4 using the proteomics dataset described in [Spivak et al. 2009]. Following [Spi-
vak et al. 2009], the performances was measured in terms of number of true positives
correctly ranked over false positives. Table V summarizes the outcome of training
a Gaussian Kernel SVM using of batch annealed nonconvex approach (qSVMOpt),
and training a neural network using a stochastic gradient approach (qNNOpt). The
neural network replicates the structure of the state-of-the-art model (qRanker) [Spi-
vak et al. 2009] with a single hidden layer with 5 units. We use a sigmoid loss for
qNNOpt and a ramp loss for qSVMOpt. Clearly our methods achieve the best
generalization results, mainly for small q values which are of great importance in
practice. The performance gain is greater than 10%. Let also mention that for qSV-
MOpt the computation time to solve for only one pair (C, σ) is about 41h while
the neural network takes only 1h for 100 epochs. This illustrates the efficiency of
the stochastic algorithm.

6. CONCLUSION

We have proposed a batch approach suited for kernel machines and online learn-
ing strategy for large datasets to tackle non-convex Neyman-Pearson classification
problem. Experimental evaluations clearly illustrate the improvments achieved
when dealing with non-convex NP problem. The stochastic gradient method was
shown to be fast and interestingly efficient in generalisation. The approach was
extended succesfully to solve q-value optimization problem in mass spectrometry
protein screening applications. Interesting perspectives concern the extension of the
online approach to kernel case or application of our NP solver to address bipartite
ranking problem [Clémençon and Vayatis 2007].
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Clémençon, S. and Vayatis, N. 2007. Ranking the best instances. Journal of Machine Learning
Research 8, 2671–2699.
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A. NONCONVEX CONSTRAINED OPTIMIZATION

This appendix summarizes known results about the constrained optimization of
nonconvex functions. We consider the problem

min
x∈Rn

f(x) subject to gi(x) ≤ 0, ∀i = 1 . . .m (14)

and its Lagrangian L(x, λ) = f(x) +
∑m
i=1 λigi(x) . We say that (x, λ) ∈ Rn × Rm+

is a local saddle point when there exists an open set x ∈ V(x) ⊂ Rn such that

(i) ∀µ ∈ Rm+ , L(x, µ) ≤ L(x, λ) ,
(ii) ∀y ∈ V(x), L(x, λ) ≤ L(y, λ) .

(15)

The sufficiency result needs no additional assumption:

Theorem 1. If (x, λ) is a local saddle point (15) then x is a feasible local min-
imum of (14).

Proof. From inequality (i) in (15),
∑

(µi − λi)gi(x) ≤ 0. We see that x is
feasible, that is, gi(x) ≤ 0, by letting each µi go to +∞. Therefore

∑
λigi(x) ≤ 0.

On the other hand, setting µ = 0 gives
∑
λigi(x) ≥ 0. Therefore

∑
λigi(x) = 0.

Combining with inequality (ii), for all y ∈ V(x) such that gi(y) ≤ 0 for i = 1 . . .m,
we have g(x) = L(x, λ) ≤ L(y, λ) ≤ g(y) . Therefore x is a local minimum of
problem (14).

Necessity results are more complicated because they involve delicate aspects of
the Karush-Kuhn-Tucker (KKT) theory. But it is important to note that convexity
is not required to establish that the KKT conditions are necessary:

Theorem 2 [Ciarlet 1989]. Let x be a local minimum of problem (14) and
let I = { i; gi(x) = 0 }. If the function f is differentiable in x, the functions gi
are differentiable in x for all i ∈ I, the functions gi are continuous in x for all
i /∈ I, and the constraints are KKT-qualified in x, then there exist λ ∈ Rm+ such
that λi gi(x) = 0 and ∇xL(x, λ) = 0.

The Neyman-Pearson problem involves a single inequality constraint that is trivially
KKT-qualified via the linear independence constraint qualification criterion. On the
other hand, this theorem does not apply when we use the ramp loss because the
minimum is likely to be achieved on a non differentiable point. But even in that
case, theorem 1 ensures that any saddle point discovered by our algorithms is a
feasible local minimum.
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We now consider problem 14 with a single inequality constraint,

min
x∈Rn

f(x) subject to g(x) ≤ 0 ,

and its Lagrangian L(x, λ) = f(x) + λg(x). Let x∗λ and x∗λ′ be local minima of the
Lagrangian for the fixed values λ and λ′. We can assume that our local minima
satisfy the following inequalities

L(x∗λ, λ) ≤ L(x∗λ′ , λ) and L(x∗λ, λ
′) ≥ L(x∗λ′ , λ

′) . (16)

Assume for instance that the first inequality above is not satisfied. This would
mean that x∗λ′ is a better local minimum of L(·, λ) than x∗λ. We could simply pick
the best minimum instead of the inferior one.

Theorem 3. Consider a family of local minima {x∗λ : λ ∈ Λ ⊂ R∗+ } satisfying
the inequalities (16) for any pair of Lagrange coefficients λ, λ′ ∈ Λ. Then f(x∗λ)
and g(x∗λ) are respectively nondecreasing and nonincreasing functions of λ.

Proof. The inequalities (16) can be rewritten as:

λ′(g(x∗λ′)− g(x∗λ)) ≤ f(x∗λ)− f(x∗λ′) ≤ λ(g(x∗λ′)− g(x∗λ)) .

If λ′ > λ > 0, we must have g(x∗λ′) − g(x∗λ) ≤ 0 to ensure that the lower bound is
smaller than the upper bound. Therefore g(x∗λ′) ≤ g(x∗λ) and f(x∗λ′) ≥ f(x∗λ).

Therefore, under the assumption (16), the Uzawa algorithm (algorithm 1) amounts

to searching the correct Lagrange coefficient in the nonincreasing sequence P̂fa(f∗λ).

The sign of the derivative ∇λL(f∗λ , λ) = P̂fa(f∗λ) − ρ truthfully indicates whether
λ is above or below the correct value. Furthermore observe that assumption (16)
can be realized by initializing each minimization with the local optimum obtained
for the previous value of the Lagrange coefficient λ.
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