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Abstract

Background: Correcting a heterogeneous dataset that presents artefacts from several confounders is often an

essential bioinformatics task. Attempting to remove these batch effects will result in some biologically meaningful

signals being lost. Thus, a central challenge is assessing if the removal of unwanted technical variation harms the

biological signal that is of interest to the researcher.

Results: We describe a novel framework, B-CeF, to evaluate the effectiveness of batch correction methods and their

tendency toward over or under correction. The approach is based on comparing co-expression of adjusted gene-gene

pairs to a-priori knowledge of highly confident gene-gene associations based on thousands of unrelated experiments

derived from an external reference. Our framework includes three steps: (1) data adjustment with the desired methods

(2) calculating gene-gene co-expression measurements for adjusted datasets (3) evaluating the performance of the co-

expression measurements against a gold standard. Using the framework, we evaluated five batch correction methods

applied to RNA-seq data of six representative tissue datasets derived from the GTEx project.

Conclusions: Our framework enables the evaluation of batch correction methods to better preserve the original

biological signal. We show that using a multiple linear regression model to correct for known confounders

outperforms factor analysis-based methods that estimate hidden confounders. The code is publicly available

as an R package.
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Background

Although ultrahigh-throughput sequencing technologies

for gene expression profiling that measure the expres-

sion levels of thousands of genes in a single experiment

present a promising technique to discover novel bio-

medical phenomena, they may suffer from artifacts that

can delay the discovery. The adjustment of heteroge-

neous gene expression data that present noise generated

by a single or multiple confounding factors needs to be

taken into account. Attempting to remove batch effects

may result in over fitting, which results in the loss of

some of the biologically meaningful components of the

measurement (i.e., signal). Thus, evaluating the results of

the adjustment methods is as pivotal as the batch effect

removal process itself [1]. The lack of such evaluation

tools may even result in an elevated distortion of the

data following adjustment, introducing serious errors in

the results of any downstream analysis performed. For

example, a loss of an expected biological signal of

healthy and diseases colorectal/breast cancer patients

was detected following batch correction with PCA

(principle component analysis) based method [2] and

the work in [3] evaluated the extent to which various

batch correction algorithms remove true biological het-

erogeneity using replicate samples. A pivotal challenge

thus arises of how to determine whether an adjustment

assists or damages the biological (i.e., non-technical)

signal in the data.

Batch correction approaches can be roughly divided

into three categories: (1) those aimed at removing

known covariates, e.g., ComBat [4], which applies an
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empirical Bayes approach, (2) those aimed at removing

unknown covariates, e.g., inferring hidden covariates

using principal components [5] or factor analysis [6],

and (3) those aimed at removing both known and un-

known covariates. Several powerful approaches aimed at

correcting hidden batch effects prior to differential ex-

pression analysis were suggested [7–11]. The Surrogate

Variable Analysis (SVA) method [8] and its SVAseq [9]

extension for RNA-seq data, used SVD (singular value

decomposition) to define hidden confounders on the sig-

nal removed residual matrix. The method uses permuta-

tion tests to choose the significant singular vectors, finds

a subset of genes that account for them and finally cre-

ates a surrogate vector for each gene subset. Focusing

on detecting biological heterogeneity, the pSVA

approach [3] reverses the common application of SVA

to estimate biological heterogeneity as those features

measured from genes not associated with an a-priori

known technical covariates in the model matrix. The

SVAPLSseq [10] method estimates hidden confounders

using partial least square regression model of the ori-

ginal expression matrix on the primary signal removed

expression matrix or using a set of control features. The

RUV-2 method [11] suggested adjusting for batch effects

using the variation between conditions of a-priori nega-

tive control genes known not to be altered and related

to the biological factor of interest (i.e., not differentially

expressed). Using factor analysis, the negative control

genes were incorporated into a linear regression model

to adjust for unwanted variation in a dataset resulting

from batch effects. These methods are dedicated to a

downstream differential expression analysis that takes

into account the differential biological variation between

the contrasted groups supervising their computation.

This makes it less than intuitive to be utilized for the

unsupervised batch correction computation required for

a downstream co-expression analysis.

Recently, several combined methods were developed

to account for data overcorrection. They were mostly

based on assessing data variation or reducing it using

factor or principle component analysis combined with

prior knowledge (e.g., known batches). For example, the

Harman method [12] refined principal component

analyses using known batch effects to adjust for data

variation related to known batches. They generated

principal components on per-batch-summation of the

original data. A p-value for the significance of the

batch-related first principal component variation is then

used for the data adjustment. The HCP (Hidden

Covariates with Prior) method [13] also refined principal

components-based analyses using known batches. To

asses their method, they evaluated the accuracy of the

constructed co-expression network (gene-gene pairs

from the batch-corrected expression datasets) to predict

functional networks based on gene ontology (GO)

categories. Inferred hidden confounder factors, PEER

factors [6], were used to adjust for batch effects for the

GTEx human tissues-dataset [14–16]. With the aim of

generating co-expression networks, [14] followed the

methodology suggested in [13] to preserve the desired

biological signal and used GO categories to quantify the

reasonable numbers of principal components to be

adjusted in each tissue with respect to the optimal GO

enrichment. The work at [17] used a-priori knowledge

on the true noise to evaluate adjustment methods. They

used control data of technical replicates (comparing

their correlation before and after batch adjustments) and

principal component analysis on simulated data.

Here we present B-CeF (Batch Correction Evaluation

Framework), a novel framework for assessment of batch

correction approaches on actual data considering the

genuine biological signal left. Focusing on the desired

downstream co-expression analysis following the batch

correction, we suggest computing a metric that com-

pares the biological signal left in the adjusted datasets,

represented by gene-gene co-expression, to an a-priori

external knowledgebase, a gold standard, of a genuine

biological signal. The gold standard, derived from the

GIANT database [18], is represented by a set of actual

high confident gene-gene associations based on

co-expression and protein-interaction networks derived

from thousands of experiments. We use the B-CeF

methodology to evaluate five batch correction method-

ologies applied to six representative tissues from the

GTEx dataset [15, 16].

Results

The B-CeF assessment framework uses a-priori gene-gene

true and false associations to evaluate the effectiveness of

batch correction methods to preserve meaningful bio-

logical signals (see Fig. 1 for schematic overview). A true

gene-gene association is defined as two genes that are

verified to be co-associated across multiple biological con-

ditions (i.e., based on co-expression and biological interac-

tions, see Methods), and false association is defined as two

genes that are thought to not be associated. An adjust-

ment method is considered as being effective if the num-

ber of true positive or true negative pairs in the adjusted

dataset increases with respect to raw unadjusted data.

Specifically, the steps of our methodology include: (1)

construct the a-priori gold standard of high probability

true and false gene-gene pairs (co-associations); (2)

construct for the adjusted dataset a corresponding set of

gene-gene pairs and their correlation coefficients and

p-values estimation, and finally (3) evaluate the perform-

ance of each adjustment method using these p-values as

scores against the gold standard pairs for generating ROC

curves and AUC (see Methods). We demonstrate the
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B-CeF methodology by contrasting five batch correction

methods and raw data.

GTEx was shown (see Fig. 2, [16]) to be a highly

heterogeneous dataset affected by several batch effects,

e.g., ischemic time, experimental batch and death type.

Figure 2 shows a plot of the first and second principle

component values for the Adipose Subcutaneous data-

set, colored by discretized ischemic time. Ischemic time

is the time in minutes that elapsed between death time

and samples extraction. It can be seen that ischemic

time affects the variability of the gene expression values

of the samples. Figure 3 exemplifies the co-expression of

three true co-expressed gene-gene pairs derived from

the insulin-signaling pathway, INSR with IRS2, TIMP1

and PTPN11. The corresponding confidence values (the

probability for the association) derived from the GIANT

project [18] for these true associations are IRS2-INSR

confidence = 0.50, INSR-TIMP1 confidence = 0.69,

INSR-PTPN11 confidence = 0.69.

The biological roles of these genes are as follows. INSR

[19] is a receptor tyrosine kinase, which activates the

insulin-signaling pathway when bound to insulin or

other ligands. INSR stimulation leads to the phosphoryl-

ation of several intracellular substrates, including insulin

receptor substrates (such as IRS2). The IRS2 gene en-

codes the insulin receptor substrate 2, which is a cyto-

plasmic signaling molecule that mediates between

diverse receptor tyrosine kinases (e.g., INSR) and down-

stream effectors. Each of these phosphorylated insulin

receptor substrates serve as docking proteins for other

Fig. 1 Schematic view of the framework

Fig. 2 Variability related to ischemic time in the GTEx Adipose Subcutaneous dataset. Samples are shown in the PC space of the first two

principal components. It can be seen that ischemic time affects the variability of the samples

Somekh et al. BMC Bioinformatics          (2019) 20:268 Page 3 of 10



signaling proteins, including the SHP2 (PTPN11) mol-

ecule [19]. The TIMP1 (TIMP Metallopeptidase Inhibi-

tor 1) gene participates in the inhibition of the insulin

signaling mechanism and its product levels were shown

to increase as a result of hyperinsulinemia [20].

Figure 3 presents the co-expressions plots, correlation

coefficients and p-values after adjustment with LR and

PCA (see Methods). The PCA correction (principal

component based correction) eliminates the expected

biological signal between these biologically-related genes

when compared to the LR correction (linear regression

based correction of known confounders). The figure

demonstrates that the correlation coefficients of INSR

with the described three genes are significantly reduced

following the PCA-based adjustment compared to the

LR-based adjustment. For example, Fig. 3c, d show that

the LR adjustment results in a significant correlation

coefficient (r = 0.534, p-value < 0.001) for the pair = (INSR,

PTPN11) as opposed to the PCA-based adjustment (r~ = 0,

p-value > 0.1).

Fig. 3 Examples of Spearman correlation coefficients of three true gene-gene associations. These are calculated following LR-based adjustment

(using the linear regression model for known confounders) and principal components-based adjustment of the GTEx Adipose Subcutaneous

dataset. The example genes are derived from the insulin signaling mechanism. a, b Example of co-expression plot of LR and PCA-based

adjustment for INSR-IRS2 association. c, d Example of co-expression plot of LR and PCA-based adjustment for INSR-PTPN11 association.

e, f Example of co-expression plot of LR and PCA-based adjustment for INSR-TIMP1 association. The y-axis presents the INSR (insulin receptor)

expression for each sample (depicted by circles) and the x-axis the expression values of the relevant gene. Spearman correlation coefficients and

p-values are presented at the top of each plot. It can be seen that removing most of the variability using principal components-based adjustment

(PCA) can result in eliminating a desired biological signal, e.g., PTPN11 has a significant correlation coefficient to INSR (r = 0.534, p-value < 0.001)

following the LR adjustment and non-significant (r = ~ 0, p-value = 0.405) following the PCA adjustment
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In the first step of our methodology we generated a

high confidence gold standard of gene-gene

co-associations for representing an actual biological

signal. We then derived the strongest/weakest true and

false gene-gene pairs (see Methods). In addition, we

adjusted six tissue-specific datasets with five batch

correction methods each. In the second step of the

methodology we generated the co-expression networks,

i.e., a gene-gene co-expression score based on correl-

ation coefficients p-values (see Methods), per each ad-

justed dataset and tissue. Figure 4 shows the density

plots of correlation coefficient values of the a-priori true

and false gene-gene pairs following adjustments with five

methods for the Adipose Subcutaneous GTEx dataset. A

tendency toward zero mean of correlation coefficients in

both true and false gene-gene pairs can be seen for data

adjusted with hidden confounders that removes most of

the data variability, such as using PEER or principle

components (PCA). The methods that consider known

confounders better preserve the expected correlations

for true gene-gene signals. The same trend is exemplified

for other tissues (see Additional file 1: Figure S5).

Figure 5 exemplifies the third step of our framework

that includes the performance evaluation of five adjust-

ment methods and raw data demonstrated for six

tissues. Figure 5 a, b demonstrates the performance

evaluation plot and AUC values after adjusting the

“Adipose subcutaneous” and “Skin - Not Sun Exposed

(Suprapubic)” tissue datasets with five batch correction

methods and the raw unadjusted data. See Additional

file 1: Figure S6 for performance evaluation plots of

Whole-blood, Thyroid, Muscle Skeletal and Nerve Tibial

tissue datasets. Figure 5c summarizes the AUC results of

these six adjusted datasets for six different tissues. As

expected, the more delicate “PCA_opt” adjustment (see

Methods), which includes optimal principal components

to be used as suggested by the method in [14], outper-

forms the “PCA_all” adjustment in most exemplified

tissues. It can be seen that using the linear regression

model and ComBat, which adjust for known con-

founders, outperform other methods, the PCA-based

and factor analysis-based using PEER hidden covariates.

Discussion

We present B-CeF, a new methodology for estimating

the effectiveness and quality of gene expression data

adjustment methods to preserve the genuine biological

signal in actual data. The novelty of our approach is in

using an a-priori high confident gene-gene

co-association score based on real observations to

evaluate adjustment methods. The a-priori knowledge of

gene-gene associations is derived from the GIANT

project [18] and calculated using thousands of gene

expression and protein interaction experiments. As

Fig. 4 Density plots of Spearman’s correlation coefficients (rs) of gene-gene pairs following adjustment with five methods. (a) Density plot for rs
of false gene-gene pairs. (b) Density plot for rs of true gene-gene pairs. We used 1796 true and 1179 false edges following adjustment with five

methods and raw data for the GTEx Adipose Subcutaneous dataset. Data adjustment with hidden confounders, i.e., PEER and PCA-based

covariates (colored in green and blue respectively) demonstrates a tendency toward zero mean of the correlation coefficients in the false and in

the true gene-gene pairs
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opposed to other approaches [13, 14] that assumed the

existence of a co-expression network between the genes

within a GO (Gene Ontology) category, our approach

uses actual networks observed experimentally to be

co-expressed and co-associated based on thousands of

experiments. We complement the methodology with an

R software package that can be easily downloaded and

executed.

Choosing the adjustment approach for a highly hetero-

geneous dataset, such as GTEx, may be counterintuitive.

Commonly, hidden confounders were inferred and used

(e.g., [14] for co-expression analysis, [16] for eQTL

analysis) to adjust the GTEx dataset, in order to cope

with data heterogeneity. We show here, using our new

framework, that linear regression-based methods and

ComBat [4], adjusting for known confounders, outper-

form the methods adjusting for hidden confounders that

remove some of the desired biological signal along with

removing the data variability. Supporting our results,

Mostafavi et al. [13] used GO (Gene Ontology) categor-

ies to show that unguided removal of top principal

components significantly reduces the accuracy of

co-expression networks compared to the raw RPKM

data. Following this trend, the work in [14] optimized

the number of principal components used (utilizing GO

categories) to adjust the GTEx data for generating

co-expression networks.

An important aspect of the approach is to correctly

select the a-priori knowledge that is used. Choosing

gene-gene co-association scores especially suited to the

study at hand may improve the effectiveness of the

approach. In our exemplified GTEx datasets, most of the

gene expression profiles belong to healthy yet

post-mortem donors, while the GIANT co-association

scores are based on various types of phenotypes, e.g.,

diseased and healthy individuals. A future enhancement

may be to generate dedicated gold standards, e.g.,

tissue-specific post-mortem healthy individuals that

match the exact data set at hand. To overcome this

limitation, we limited our analysis to the most confident

gene-gene associations from GIANT [18] (we used the

weakest and strongest edges derived from the

Fig. 5 Performance evaluation of five adjustment methods and the raw data applied to six representative tissues. ROC curves and their corresponding

AUC values are presented. ROC curves [30] are graphical representations of both specificity and sensitivity that take into account both the gene-gene

co-expression of the adjusted dataset against the gold standard, a-priori knowledge of true and false gene-gene associations derived from the GIANT

project [18]. (a) Performance evaluation for the Adipose Subcutaneous tissue dataset. Performance was evaluated using 2975 gold standard edges

(1796 and 1179 true and false edges respectively) for this tissue. (b) Performance evaluation for the Skin - Not Sun Exposed (Suprapubic) dataset.

Performance was evaluated using 2986 gold standard edges (1820 true and 1166 false edges). (c) Plot summarizing the AUC values for six tissue

datasets (x-axis) and five adjustment methods and raw data (see Methods section). It can be seen that LR (linear regression-based adjustment for

known confounders) and ComBat [4] outperforms the other adjustment methods
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tissue-naïve network, trained on all tissue types and con-

ditions). These true and false gene-gene associations are

verified to be co-associated across multiple biological

conditions, which presents a strong basis for our frame-

work. We note that the low confidence interactions

(false gene-gene associations) may still have evidence in

some specific tissue or condition, which may affect the

performance scores and our results.

Nevertheless, publically available databases of highly

confident co-expression networks based on thousands of

experiments is in a grow. For example, the tissue-naïve

and tissue-specific networks of the GIANT project [18],

Gene Network [21] and the species-specific GeneFriends

[22] currently include co-expression maps for human

and mouse. These high confident network databases can

serve as a basis for generating co-expression networks

gold standards to be used by our framework.

The simplicity of B-CeF makes it flexible and an excel-

lent tool for additional purposes. For example, it suits

any gene expression experimental platform and can be

used to infer the optimal number of principal compo-

nents for adjusting the data with minimal effect on the

expected biological signal.

Conclusions
We show that using inferred hidden confounders that

remove data variability overcorrects the data and results

in a loss of essential biological signals. Our developed

framework provides for evaluating the efficiency of batch

correction methods in preserving original biological sig-

nals and can be used with any type of gene expression

profile generated for any experimental platform.

Methods
A-priori co-expression network

The GIANT project [18] generated genome-wide

functional interaction networks for 144 human tissues

and cell types developed using a data-driven Bayesian

methodology that integrates thousands of experiments

(> 14,000 distinct publications) to yield a confidence

score for each gene-gene interaction. The experiments

were derived from GEO (Gene Expression Omnibus

[23]) human datasets and biological interaction data-

bases such as BioGRID [24]. We downloaded the

tissue-naïve network gold standard (“all_tissue” full net-

work from http://giant.princeton.edu/download/), which

trained a classifier based on genome-wide functional in-

teractions. The confidence score of a gene-gene associ-

ation represents the probability for two genes to be

associated over the multiple tissues/cell-types included

in the project. We derived the first 100,000 gene-gene

associations and their confidence scores from this net-

work. We then extracted the highest/lowest confidence

gene-gene pairs to represent true/false pairs. We define

true edges as those having confidence > 0.5 and were

assigned with the value 1, and false edges with confi-

dence < 0.025 and were assigned with the value 0. We

calibrated the confidence cutoffs (confidence scores are

in the [0,1] interval) to balance between the number of

the true and false associations. The calibration included

initiating the low cutoff for a confidence of a false

gene-gene association to 0.01 and the high cutoff for the

confidence of a true gene-gene association to 0.7, and

then increasing/decreasing the confidence cutoffs by

0.005/0.05 respectively until the number of true and

false associations were approximately balanced. The final

set of true and false associations includes 3490 associa-

tions (1935 true associations and 1555 false associations)

used as the gold standard for the performance calcula-

tions. The number of actual gold standard associations

used per tissue was slightly lower since we removed as-

sociations between tissue-specific low expressed genes.

Finally, we used the following number of edges: (1)

Adipose Subcutaneous - 1796 true and 1179 false edges,

(2) Skin - Not Sun Exposed (Suprapubic) - 1796 true

and 1179 false edges, (3) Muscle – Skeletal - 1736 true

and 1062 false edges, (4) Nerve - Tibial - 1789 true and

1120 false edges, (5) Thyroid - 1809 true and 1176 false

edges and (6) Whole Blood - 1770 true and 1063 false

edges.

GTEx data set

We applied our approach to six representative tissue ex-

pression profiles derived from the Genotype Tissue Ex-

pression Project (GTEx) [15, 16]. GTEx is a large-scale

heterogeneous human tissues dataset of RNA-seq data,

e.g., it contains 298 adipose subcutaneous samples and

196 skin (not sun exposed from the suprapubic) samples.

We downloaded the gene expression tissue-specific

datasets [25] (version V6) from the GTEx portal. The

downloaded data included pre-processed RPKM values,

along with a phenotype matrix and per-tissue PEER in-

ferred covariates files (e.g., Adipose_Subcutaneous_Ana-

lysis.v6p.covariates.txt file). The pre-process of these

datasets included [16] (1) filtering for average gene ex-

pression > 0.1 RPKM and RIN (RNA Integrity Number)

values greater than 6, (2) quantile normalization within

each tissue and (3) mapping each gene set of expression

values to a standard normal distribution. The per-tissue

15 PEER factors were generated [16] using the top

10,000 expressed genes per tissue and normalized with

the same procedure as described for the expression

matrices.

Data correction

We evaluated five methods that correct for known and

hidden confounders.
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The following correction methods were tested

1. LR (Linear Regression): the multiple linear

regression model was used to fit for gender

(GENDER), ischemic time (SMTSISCH

representing the interval in minutes between time

of donor death and sample collection), age (AGE),

experimental batch (SMGEBTCH) and death type

(DTHHRDY) for the gene expression data. We

derived the relevant phenotype vectors from the

downloaded phenotype table.

2. PEER: We used 15 inferred PEER factors

(see GTEx dataset description above) and gender

to adjust for the data. PEER factors are hidden

covariates inferred using a factor analysis-based

approach [6].

3. PCA: the principal components that accounted

for most of the variability in the data set (9, 10,

10, 9, 10, 10 first principal components for

adipose subcutaneous, skin, nerve, muscle whole

blood and thyroid respectively, see Additional

file 1: Figure S1) and gender were used to

adjust the data.

4. PCA_opt: same as PCA but adjusted for optimal

number of principle components as reported by

[14] (5, 5, 4, 4, 7 principal components for adipose

subcutaneous, skin, nerve, muscle and whole blood

respectively).

5. ComBat: We executed ComBat [4] using the ‘sva’ R

package [7] to adjust for death type, experimental

batch, ischemic time, age and gender. Due to the

discrete nature of ComBat, the continuous

ischemic time values were discretized into five

bins, labels 1 to 5, by partitioning them into 300

min intervals. Age includes the 20–80 year range

and is partitioned into 10 year intervals

(embedded in the GTEx dataset). We removed

genes with zero variance per each batch group

and type. We removed batches with one sample

within a batch. Since ComBat [4] is not designed

to correct for multiple batch effects

simultaneously, we adjusted each batch

iteratively, accounting for the yet unadjusted

batches in each iteration.

We tested a sixth method that uses singular value

decomposition and a permutation test for choosing the

number of singular vectors to be included in the

adjustment. It showed similar trend as the PCA-based

adjustment (see Additional file 1: Figure S7 in the

supplemental file for results and method explanation).

For batch correction methods 1–4 above (i.e., except

for ComBat, which generates the adjusted dataset), we

used the multiple linear regression model to extract the

gene expression residual of gene i in sample j computed

as follows:

Residual
j
i ¼ Exp

j
i−

X

N

n¼1

Coef i;nConfounder
j
n

Expi
j is the expression level of gene i in sample j,

Confoundern
j is the n-th confounder (can represent a

principal component, PEER factor or known covariates)

in sample j, N is the number of confounders considered,

Coefi,n is the regression coefficient of gene i on con-

founder n. The residuals from the regression calculation

were treated as the expression level of each gene. We

used the R ‘stats’ package to generate the computations.

Gene-gene association measure

We measured gene-gene pair co-associations using the

Spearman correlation coefficient or Spearman’s rho [26].

Spearman correlation is a nonparametric rank-based

correlation calculation method that provides a robust

measure of a nonlinear monotonic relationship between

two continuous or discrete ordinal variables not enfor-

cing a bivariate normal distribution on the variables.

The method uses linear relations between the ranks of

the values of the two variables and is generally more ro-

bust to outliers. Spearman correlation uses the same for-

mula as the Pearson correlation [26] except that the

values of the variables are replaced with their ranks. In

case of tied (equal) values, they are assigned a rank that

is the average of their positions in the ascending order

of the values. Mathematically, for a sample size n, the

raw values xi, yi are converted to their corresponding

ranks xi
rank, yi

rank and the Spearman correlation coeffi-

cient rs is computed as follows:

rs ¼
cov xranki ; yranki

� �

σxrank
i

σyrank
i

covðxranki ; yranki Þ is the covariance of the rank variables

and σxrank
i

; σyrank
i

are the standard deviations of the rank

variables xi
rank, yi

rank respectively. If all n ranks are dis-

tinct integers (i.e., not tied), the Spearman correlation

coefficient can be computed using the formula:

rs ¼ 1−
6
Pn

i¼1 d2
i

� �

n n2−1ð Þ

Where n is the number of observations and di =

xi
rank- yi

rank is the delta between the two ranks of

each observation. rs is a measure between − 1 and 1

(representing perfect negative/positive correlation

respectively). The Spearman’s rho calculation is
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specifically appropriate for identifying gene expres-

sion values that are co-elevated and co-decreased in

a monotonic manner, and in a comparative study it

was found to perform better for constructing a gene

co-expression network [27]. We computed the

p-values of the correlation using the student’s t

distribution approximation [28], where t has a stu-

dent t-distribution with n-2 degrees of freedom. We

used the cor.test R function from the stats package

for the calculations.

Effectiveness evaluation of adjustment methods

For each gold standard true and false gene-gene pair, we

generated the corresponding Spearman correlation coef-

ficients and p-values for the “raw” unadjusted dataset

and the five adjusted datasets (the raw dataset adjusted

with five methods). We excluded pairs where at least

one of the genes was absent from the tissue-specific

GTEx datasets (e.g., filtered since low expression). We

scored each pair using the following metric: –log10(ad-

justed p-values(rs(g1, g2)), where g1 and g2 represent the

expression of each two genes consisted in a gene-gene

pair derived from the gold standard and rs their

Spearman correlation coefficient estimate. The p-values

were adjusted for multiple comparisons using BH

(Benjamini-Hochberg correction) [29].

We chose ROC curves [30] and AUC measures [31] to

assess the performance in our framework. The receiver

operator characteristic (ROC) curve [30] is a commonly

used standard measure to evaluate classification per-

formance. ROC curves [30] evaluate the performance of

each method by plotting the true positive rate (i.e., sensi-

tivity) against the false positive rate (i.e., 1-specificity) at

various threshold settings. The actual test statistic is the

area under the curve (AUC), and the dataset with the

optimal combination of sensitivity and specificity will

have the largest area of AUC [31]. There are other mea-

sures of classification accuracy, e.g., Brier score [32] or

precision-recall curves [33]. Precision-Recall (PR) curves

may give a more informative picture of an algorithm’s

performance when dealing with highly skewed datasets

[33]. Hanczar et al. [34] compared performance mea-

surements on simulations at various sample sizes up to

1000 observations and detected AUC inaccuracies in im-

balanced samples and smaller samples. Taking these into

account, AUC measurement is optimal for large-scale

sample size and balanced sample distribution. We bal-

anced our class distribution (the true and false edges)

and our sample size to includes > 3000 samples, which

makes ROC curves analysis highly suitable for assessing

the effectiveness of each adjustment method in our

framework.

We generated ROC-AUC for GTEx RPKM raw data

and the five adjustments. The method that performs

better (higher AUC) than others is suggested to be more

effective. The evaluation of overall performance was exe-

cuted using the R ‘pROC’ package.

Additional file

Additional file 1: Analysis of explained variability and performance

evaluation of adjustment methods in several tissues. (DOCX 1334 kb)
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