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Abstract
Genomic data integration is a key goal to be achieved towards large-scale genomic data analysis.This process is very

challenging due to the diverse sources of information resulting from genomics experiments. In this work, we

review methods designed to combine genomic data recorded from microarray gene expression (MAGE) experi-

ments. It has been acknowledged that the main source of variation between different MAGE datasets is due to the

Corresponding author. Cosmin Lazar, Como, Vrije Universiteit Brussel, Pleinlaanz, 1050 Brussels, Belgium. E-mail: vlazar@vub.ac.be.
*These authors contribute equally.

CosminLazar is currently working with CoMo Lab at Vrije Universiteit Brussel (VUB) as a postdoctoral researcher. He received his

PhD in Informatics, Automatics and Signal Processing from the University of Reims Champagne Ardenne, France (2008). His research

interests include data mining, supervised/unsupervised learning, feature selection/extraction, blind source separation and their appli-

cation in the analysis of microarray gene expression data, multi/hyperspectral images and time series.

Stijn Meganck got his PhD at the Vrije Universiteit Brussels (VUB), Belgium, in 2008. Since then he has been working as a

postdoctoral researcher at two research groups at the VUB: AI and ETRO. His main research interests are Bioinformatics,

Probabilistic Graphical Models and Causality.

JonatanTaminau After obtaining his advanced master in Bioinformatics, Jonatan Taminau is currently finishing his PhD at the Vrije

Universiteit Brussel on the topic of large-scale analysis of microarray data.

David Steenhoff obtained his master degree in Sciences of Industrial Engineering in Electronics and ICT. This was facilitated by the

Erasmushogeschool Brussel, Vrije Universiteit Brussel and the Hanoi University of Technology. His research interests are machine

learning and data mining applied in microarray gene expression analysis and hyperspectral imaging.
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so-called ‘batch effects’. The methods reviewed here perform data integration by removing (or more precisely at-

tempting to remove) the unwanted variation associated with batch effects. They are presented in a unified frame-

work together with a wide range of evaluation tools, which are mandatory in assessing the efficiency and the

quality of the data integration process.We provide a systematic description of the MAGE data integration method-

ology together with some basic recommendation to help the users in choosing the appropriate tools to integrate

MAGE data for large-scale analysis; and also how to evaluate them from different perspectives in order to quan-

tify their efficiency. All genomic data used in this study for illustration purposes were retrieved from InSilicoDB

http://insilico.ulb.ac.be.

Keywords: Microarray gene expression data; batch effect removal; large-scale genomic data analysis; combining microarray

datasets; microarray gene expression data merging; data integration

INTRODUCTION
The integrative analysis of multiple microarray gene

expression (MAGE) datasets has been acknowledged

to be a crucial approach for extracting the maximum

relevant biological information from genomic data-

sets [1]. Its importance resides mainly in the poten-

tially huge biological insights that could be

discovered by analysing at the same time large num-

bers of genomic datasets available through public

repositories such as Gene Expression Omnibus [2],

ArrayExpress [3] or InSilicoDB (http://insilico.ulb

.ac.be/) [4]. Classical analytical tools show their

limits in making useful discoveries that can be gen-

eralized especially because robust statistical inference

can only be achieved by analysing a high enough

number of samples sharing the same characteristics.

A clear application, where this limitation has been

pointed out, is the prediction of disease outcome

where thousands of samples are needed to generate

robust gene/protein signatures [5, 6]. Another im-

portant beneficial aspect which naturally derives

from developing and using integrative analysis tools

is related to the cost of MAGE experiments.

Recycling and reusing public available data would

also considerably reduce the overall costs of

experiments.

Roughly speaking, integrative analysis can be per-

formed according to two different strategies:

‘meta-analysis’ and ‘integrative analysis via data mer-

ging or pooling’ [7]. The first approach consists in

analysing each dataset independently and finally the

results are combined in a so-called ‘meta-analysis’. It

is assumed that if a result is found as being significant

for a big number of individual studies, it will be

significant for the particular problem the studies

have been designed for. Moreover, if a finding is

not significant in some studies, it could still be sig-

nificant after meta-analysis if it appears as being sig-

nificant in a big enough number of other individual

studies, as the evidence will cumulate for this par-

ticular finding. Several large-scale meta-analysis of

MAGE datasets have already been performed based

on the above mentioned assumption and reported in

the literature [1, 8, 9]. However, the reader has to be

aware that when datasets containing few samples are

studied, it is hard to derive rigorous inference upon

the results issued from their analysis. A direct conse-

quence of combining the results issued from the ana-

lysis of datasets containing few samples is the fact that

the statistical hypothesis tests used to make decisions

using MAGE data are prone to high false-negative

rates.

The second approach for integrative analysis dif-

fers from the meta-analysis by the fact that in a first

instance the samples from the different datasets are

combined or merged in a bigger dataset, the subse-

quent analysis being performed on the new inte-

grated dataset. Its main advantage over the

meta-analysis approach consists in the higher statis-

tical relevance of the results obtained by analysing

datasets of hundreds or thousands of samples which

naturally leads to more robust inference. This has

been the main motivation for the development

of a wide range of methods for integrating (or com-

bining, or merging) MAGE data originating from

different studies over the past years [10–14].

Nevertheless, combining or merging data from dif-

ferent MAGE experiments for integrative analysis

suffers from the so-called ‘batch effects’ and it still

is a challenging and difficult problem to be solved in

computational biology. It is the very scope of this

article and we will discuss it in detail in the upcom-

ing sections.

The problem of combining (or merging) datasets

from different MAGE experiments is a difficult task

due to three generic sources of unwanted variation:

‘noise’ or ‘expression heterogeneity’, ‘batch effects’

and ‘other sources of bias’. We will make the
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distinction between these terms in the next Section.

The batch effect is one of the main sources of un-

wanted variation which hinders the combination of

different datasets, and it originates from the limita-

tion in the number of samples that can be processed

at one time in MAGE experiments [15]. As a con-

sequence, batch effects are ‘almost inevitable’, but

there are only few researchers who address this prob-

lem in their analysis flow (see [16] for some conclud-

ing figures on the number of articles published from

1 January 2010 to 1 July 2010, which addressed this

problem). Large-scale analysis of genomic data based

on data integration (or merging) has already been

performed; in [17] the authors constructed a global

gene expression map based on principal component

analysis (PCA), by integrating microarray data from

5372 human samples representing 369 different cell

and tissue types, disease states and cell lines.

However, the authors did not explicitly address the

batch effect problem, which turns to be a critical

obstacle for genomic data integration.

The problems raised by the batch specific un-

wanted variation as well as the potential sources lead-

ing to batch effects have already been revealed and

widely discussed in a number of publications

[18–25]; we will only summarize them briefly in

the next Section.

We stress on the fact that without efficient meth-

ods to reliably combine the MAGE datasets from

different experiments, the analysis can only be per-

formed ‘per dataset’ using meta-analysis tools which

is supposed to derive reliable inference from the data.

Only biological findings that are found as being stat-

istical significant in a high enough number of indi-

vidual studies can be used for generalization.

Performed in this way, the overall statistical analysis

will suffer from the insufficient number of samples

(due to different practical limitations in the design of

the experiments) processed in each individual experi-

ment, which leads to high false-negative rates.

Robust statistical parameters that could lead to

robust inference can only be estimated from a large

population of samples. In this context, combining

datasets from different sources by efficiently remov-

ing the unwanted variation (e.g. the batch effect),

will result in larger datasets which will provide

more statistical power for the subsequent analysis

by a more robust estimation of the different statistical

parameters required. Nevertheless, the reader should

also be aware that combining datasets using

inefficient methods could also result in misleading

findings [12, 26].

The literature dedicated to this topic is constantly

increasing, but the different methods are not always

described or validated in a uniform manner. As a

consequence, the reader has often difficulties in

understanding or in identifying the differences and

similarities between various methods, and so the

choice of the most appropriate method is not

straightforward. A comparative study between these

methods is out of the scope of this article, but several

studies exclusively dedicated to this purpose already

exist in the literature [16, 26, 27]. Moreover, each

new proposed method is systematically compared

with a number of existing ones [10, 28]. Our aim

in this survey is to provide a complete picture of

batch effect removal methods for integrative analysis

of MAGE data together with the available evaluation

tools in a unified and complete framework in order

to reveal their similarities, their strong points and

their weaknesses.

The roadmap of this article is as follows: in the

next section we reveal the main characteristics of the

so-called batch effect by reviewing several proposed

definitions found in the literature; we also provide a

list of the main sources of variations susceptible to

introduce batch effects. Section ‘Integrating micro-

arrays by removing batch effects’ is a review of exist-

ing methods proposed for batch effect removal. In

section ‘On the evaluation of batch removal meth-

ods’, we review and describe several validation tools

used in comparative studies to evaluate the perform-

ances of different methods: visualization tools and

quantitative evaluation measures. In section ‘Final

comments and recommendation’, we aim to

resume the information synthesized in the previous

two sections and also to provide some basic recom-

mendations for users, while section ‘Conclusion’ is

dedicated to authors’ concluding remarks.

THE BATCH EFFECT: SOME
DEFINITIONSAND POTENTIAL
SOURCES
Providing a complete and unambiguous definition of

the so-called batch effect is a challenging task, espe-

cially because its origins and the way it manifests in

the data are not completely known or not recorded.

This is the reason why here we enumerate several

definitions as found in the literature. According to
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these definitions, the batch effect is defined as one of

the following:

Definition 1:

the uncontrollable errors unrelated to the biological

variation [28].

Definition 2:

the cumulative errors introduced by time and

place-dependent experimental variations [16].

Definition 3:

sub-groups of measurements that have qualitatively

different behaviour across conditions and are unre-

lated to the biological or scientific variables in a study

[12].

Definition 4:

systematic differences between the measurements of

different batches of experiments [26].

Definition 5:

systematic technical differences when samples are

processed and measured in different batches [29].

We identify two complementary characteristics of

the batch effects: first which makes the distinction

between the batch effects and the biological infor-

mation (Definitions 1 and 3) and second which gen-

erically reveals the sources of batch effects

(Definitions 2, 4 and 5). We provide a more general

definition of the batch effects by combining the two

main ideas that derive from the definitions men-

tioned above, as follows:

Definition 6:

the batch effect represents the systematic technical

differences when samples are processed and measured

in different batches and which are unrelated to any

biological variation recorded during the MAGE

experiment.

Here, the term batch denotes a collection of

microarrays (or samples) processed at the same site

over a short period of time using the same platform

and under approximatively identical conditions, as

mentioned in [16].

Noise, batch effect and bias
It is important here to bring into the light the dis-

tinction between these terms that are sometimes not

properly used and which could cause confusion for

the inexperienced reader. We will synthetically

resume the main differences as described in [29].

The term ‘noise or expression heterogeneity’ denotes

the effect of ‘technical components which are not

part of the system under investigation but which, if

they enter the system, lead to variability in the ex-

perimental outcomes’. The main difference between

‘noise’ and ‘batch effect’ is the systematic nature

of the latest, as shown in Definition 5. The term

‘bias’ has a wider meaning which includes not only

technical but also other confounding factors (con-

founding factors – also known as distorting factors –

represent variables or factors that distort the observed

association between the biological variation of

interest and the conducted study.) It is defined as

‘unintentional, systematic association of some char-

acteristic with a group in a way that distorts a com-

parison with another group’. For more in-depth

readings on this matter, we invite the reader to con-

sult [29].

Potential sources
The batch effect originates from various sources.

Basically, at each step of a MAGE experiment, a

number of potential sources are susceptible to gen-

erate batch effects. There are several works in

which the authors focused their efforts in identifying

and explaining the potential sources of batch ef-

fects [25, 26, 30]. A systematic and very compre-

hensive description of the origins and the meaning

of the various batch effects can be found in [25].

Here we will only list the potential sources of

batch effects and the stage where they appear

during the MAGE experiments. As a general ac-

cepted rule, MAGE experiments can be summarized

in five stages: growing the organism, tissue sampling,

RNA processing, hybridization and data extraction,

and different sources of batch effects can affect the

outcome of the MAGE experiments as shown in

Figure 1.

For more details and complete explanations on the

above mentioned sources of batch effects, we invite

the reader to consult [25], where this subject has

been addressed in detail. Besides the sources pre-

sented in Figure 1, the following are also mentioned

in the literature: the different sites or laboratories

where the MAGE experiment has been performed

[26] or the blemishes due to dust, glass flaws, uneven

distribution of fluids or surface coatings [30].
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INTEGRATINGMICROARRAYS BY
REMOVING BATCH EFFECTS
The problem of integrating MAGE data from differ-

ent experiments consists in combining a number

(two or more) of different gene expression datasets

in a single dataset which can be used as such for

downstream analysis (differential expression analysis,

disease prediction or disease discovery). Within this

section, we review the methodology for integrating

MAGE datasets by removing batch effects.

We start by introducing the notations that will be

used in the remainder of this article. All gene expres-

sion values from all samples belonging to the same

batch X (Y), as defined above, can be represented by

a matrix Xm�n (Ym
0�n0) where each column represents

a sample and each row represents a gene, and xij (yij)

represents the expression value of gene i in sample j

of batch X (Y). We assume that the gene expression

data have been log-transformed and preprocessed

(using either MAS5 [31], RMA [32], fRMA [33]

for Affymetrix platforms or the preprocessing tools

provided by ‘lumi’ Bioconductor package for

Illumina platforms [34]) for background correction,

normalization and summarization. We stress on the

fact that, even though initially designed to remove

any technical source of variation from the data, the

normalization step performed by either of the pre-

processing methods mentioned earlier (excluding

fRMA) are ineffective in removing the batch effects,

especially when combining data from different plat-

forms[12, 35]. The reason why is because the nor-

malization steps take into account only few sources

of batch effects unlike the more specialized methods

for batch effect removal. When these sources of vari-

ation become important, the normalization steps

used by the different preprocessing tools show their

limitations. In Table 1, we give an overview of the

notation used throughout this article.

General assumptions
In general, it is assumed that the batch effect comes

in either (or both) multiplicative or additive form. In

the log transformed data, these effects are both rep-

resented as (an) additive term(s). All batch effect re-

moval methods assume that measured expression

values of gene i in sample j of batch X can be ex-

pressed in a general form as follows:

xij ¼ x0ij þ bXij þ eXij ð1Þ

with x0ij the actual gene expression, bXij the batch

effect term and eXij represents noise. The term x0ij is

the value of interest as this represents the abundance

of mRNA of that gene in a particular sample.

Different batch effect identification and removal

methods refine this general description by splitting

bXij in different terms, or by adding terms that are

Figure 1: A visualization of batch effect sources at each stage of a MAGE experiment; the grey boxes represent

the potential sources of batch effects affecting the different steps of a MAGE experiment, illustrated by the white

boxes.
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specific for known covariates (a covariate is a variable

that is possibly predictive of the outcome under

study, such as the condition of the experiments or

biological information such as male/female.). Within

this general description, the term bXij can indicate the

batch effect related to any of the sources mentioned

in ‘The batch effect’ Section.

When combining the expression values from mul-

tiple studies, it is assumed that all studies have the

same distribution of samples for each biological vari-

able of interest. Therefore, it is impossible to remove

batch effects between two studies for which one

study only contains control samples and another

only diseased samples, when the disease is a biolo-

gical variable of interest, unless other prior informa-

tion is recorded. Moreover, it is impossible to

combine datasets from studies containing samples

from different organisms.

Assume two MAGE datasets Xm�n andYm
0�n0 con-

taining data with the same distribution relative to the

biological variable of interest, then following

Equation (1) their expression values can be described

as:

xij ¼ x0ij þ bXij þ eXij ; ð2Þ

yij ¼ y0ij þ bYij þ eYij : ð3Þ

In order to combine the samples from both Xm�n

and Ym
0�n0 in such a way they can be used together

for downstream analysis, the influence of the batch

specific terms bXij and bYij needs to be removed. This

can be done by either attempting to remove the

study specific batch effect bXij and bYij from the cor-

responding batches or by adjusting xij and yij in such

a way that the two datasets become comparable.

Methods
There are two main approaches for removing the

batch effects: location-scale (LS) methods and

matrix-factorization (MF) methods (Figure 2). LS

methods assume a model for the location (mean)

and/or scale (variance) of the data within the batches

and proceeds to adjust the batches in order to agree

with these models. MF techniques assume that the

variation in the data corresponding to batch effects is

independent on the variation corresponding to the

biological variable of interest and it can be captured

in a small set of factors which can be estimated

through some matrix factorization methods. The

strategy adopted by these methods is to identify

and remove the influence of these factors. A smaller

group of valuable methods for batch effect removal is

based on data discretization. According to these

methods, the values for each gene are mapped on a

certain level of expression, for instance the so-called

barcodes assign 1 for expressed and 0 for unexpressed

genes. In the following section, we describe the

batch effect removal methods from Figure 2,

individually.

Location-scale methods

The main idea behind LS methods is to transform the

data from each batch to have similar (equal) mean

and/or variance for each gene. It is assumed that

these transformations, while trivially making data

more comparable, do not remove any biological

signal of interest.

Batch mean-centering. Assuming the prevalence of

multiplicative systematic batch effects, batch

mean-centering (BMC) was introduced in [13].

This simple method transforms the data by

Table 1: Overview of unified annotations used in the remainder of the manuscript

Annotation Explanation

Xm�n,Ym
0�n0 MAGE dataset (batch) withm (m0) genes and n (n0) samples

X̂m�n, Y“ m
0�n0 MAGE dataset (batch) withm (m0) genes and n (n0) samples after batch effect removal

xij, yij Expression of gene i in sample j in corresponding batch

x̂ij, y“ ij Expression of gene i in sample j in corresponding batch after batch effect removal

xi, yi Mean expression of gene i in corresponding batch

sxi , syi Standard deviation of gene i in corresponding batch

xrij, y
r
ij Expression of gene i in j’-th reference sample in corresponding batch

bXij , b
Y
ij Bias for gene i in sample j of corresponding batch

eXij , e
Y
ij Noise in gene i of sample j of corresponding batch

gXi , g
Y
i Additive gene i specific bias for corresponding batch

dXi , d
Y
i Multiplicative gene i specific bias for corresponding batch
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subtracting the mean of each gene over all samples

(per batch) from its observed expression value, such

that the mean for each gene becomes zero. BMC

assumes that in the general expression in Equation

(1), bXij represents the multiplicative gene-specific

batch effect.

x̂ij ¼ xij � xi; ð4Þ

ŷij ¼ yij � yi: ð5Þ

Gene standardization. Gene-wise standardization [36]

transforms all genes to have 0 mean and standard

deviation (SD) 1 by subtracting the mean and divid-

ing by the SD of each gene over all samples within a

batch. A Z-score standardization is used for this pur-

pose. Similar to BMC, it is assumed that in the gen-

eral expression in Equation (1), the bXij represents the

multiplicative gene-specific batch effect. The pure

(batch effect free) gene expression values are ob-

tained as follows:

x̂ij ¼
xij � xi

sxi

; ð6Þ

ŷij ¼
yij � yi
syi

: ð7Þ

Ratio-based methods. Ratio-based methods [26] scale

the expression value of each gene in each sample

based on a (set of) reference sample(s) in each

batch. If there is more than one reference sample,

the arithmetic or geometric mean value of the ex-

pression values in the reference samples can be used

(it is also possible to use a universal set of reference

samples [37].). We denote by xril (y
r
il) the value of the

ith gene in the lth reference sample in batch X (Y). It

is assumed that the genes in the reference samples are

subjected to the same batch effect as in the rest of

the samples and therefore the term bXij in Equation

(1) will be removed by subtracting the mean of

each gene of the reference samples of the corres-

ponding batch. Assuming k (k0) reference samples

in batch X (Y), the following two methods are

proposed:

Arithmetic mean ratio-based method (Ratio-A):

x̂ij ¼ xij �
1

k

X

k

l¼1

xril; ð8Þ

ŷij ¼ yij �
1

k0

X

k0

l¼1

yril: ð9Þ

Geometric mean ratio-based method (Ratio-G):

x̂ij ¼ xij � k

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

k

l¼1

xril;

v

u

u

t ð10Þ

ŷij ¼ yij � k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Y

k0

l¼1

yril:

v

u

u

t ð11Þ

The geometric mean has the benefit that it is less

sensitive to outliers. Instead of using the mean, the

median could also be used.

Scaling relative to reference dataset. In [38], the authors

propose to change the distribution of a gene based

on the distribution of that same gene in a reference

dataset. Samples are grouped by their biological vari-

able of interest. Assume without loss of generality

that Xm�n is the data to be adjusted and Ym
0�n0 the

reference data. Furthermore, assuming that the sam-

ples of each dataset are divided into k categories such

that xcij is the expression value of gene i in the jth

Figure 2: A basic taxonomy of batch effect removal methods.
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sample belonging to category c in batch X, the batch

effect adjusted data are derived as follows:

x̂cij ¼ xcij
syci

sxci

� xci
syci

sxci

� yci

 !

ð12Þ

ŷcij ¼ ycij; ð13Þ

with c representing the category, while xci (y
c
i) and

sxci
(syci

) are the means and the SDs of gene i in all X

(Y) samples belonging to category c, respectively.

Empirical Bayes method. Empirical Bayes (EB) [14]

(also known as Extended Johnson-Li-Rabinovich

or COMBAT) is a method using estimations for

the LS parameters (mean and variance) for each

gene. The parameters are estimated by pooling in-

formation from multiple genes with similar expres-

sion characteristics in each batch. There exist both a

parametric and non-parametric approach; we give a

concise explanation, and details can be found in the

original publication.

It is assumed that measured gene expression values

of gene i in sample j in each batch can be expressed

as a specialization of Equation (1) as:

xij ¼ ai þ Cbi þ gXi þ dXi e
X
ij ; ð14Þ

where ai is the gene expression not related to any

known covariates, C is a design matrix for sample

conditions (known covariates), bi is the vector of

regression coefficients corresponding to C, gXi and

dXi are the additive and multiplicative batch effects

for gene i, respectively, and eXij are noise terms. eXij
are assumed to follow a normal distribution with

mean zero and variance s2
i . The first step in EB is

to standardize the data using estimates ~ai, ~bi,
~dXi and

~s2
i for the corresponding variables. The standardized

gene expression zij is assumed to be normally distrib-

uted according to NðgXi ; ðd
X
i Þ

2
Þ and is given by

zij ¼
xij � ~ai � C ~bi

~sX
i

: ð15Þ

The batch effect adjusted data are given by

x̂ij ¼
~si

d̂X�
i

ðzij � ĝX�
i Þ þ ~ai þ C ~bi; ð16Þ

ŷij ¼
~si

d̂X�
i

ðz0ij � ĝX�
i Þ þ ~ai þ C ~bi; ð17Þ

where ĝX�
i and d̂X�

i are estimates of batch effect par-

ameters in Equation (14) estimated using parametric

or non-parametric empirical priors. In case of para-

metric priors, it is assumed that gXi � NðgX; ðtXÞ2Þ

and ðdXi Þ
2 � InverseGammaðlX; yXÞ, where gX,

(tX)2, lX and yX are estimated empirically.

Equivalent properties hold for the terms of y“ ij.

Cross-platform normalization (XPN). The basic idea

behind the cross-platform normalization [10] ap-

proach is to identify homogeneous blocks (clusters)

of gene and samples in both studies that have similar

expression characteristics. In XPN, a gene measure-

ment within one such block can be considered as a

scaled and shifted block mean, where both scaling

and shifting are dependent on the gene i and sample

j. For a MAGE dataset, gene i and sample j, the

recorded gene expression is expressed as a specializa-

tion of Equation (1) by

xij ¼ AX
a�ðiÞ;b�ðjÞb

X
i þ cXi þ sX

i e
X
ij ; ð18Þ

where AX
a�ðiÞ;b�ðjÞ

is a block mean and bXi and cXi rep-

resent gene and platform specific sensitivity and offset

parameters, respectively. The functions a
*

() and b
*

()

map a specific gene measurement in a sample to their

corresponding multi-platform cluster. The noise

variables eXij are assumed to be independent and nor-

mally distributed. Using maximum likelihood meth-

ods estimates for the parameters in Equation (18)

( ~AX
ij ;

~bXi ; ~c
X
i and ~sX

i ) are obtained for each batch.

Common model parameters (Âij; b̂i; ĉi and ŝi) were

calculated as weighted averages of these

batch-specific estimates. Subsequently, the batch

effect adjusted data are given by

x̂ij ¼ Âa�ðiÞ;b�ðjÞb̂i þ ĉi þ ŝi

xij � ~AX
a�ðiÞ;b�ðjÞ

~bXxi � ~cXi

~sX
i

 !

;

ð19Þ

ŷij ¼ Âa�ðiÞ;b�ðjÞb̂i þ ĉi þ ŝi

yij � ~AY
a�ðiÞ;b�ðjÞ

~bYxi � ~cYi

~sY
i

 !

:

ð20Þ

Distance-weighted discrimination. Distance-weighted

discrimination (DWD) [11], an adaptation of

Support Vector Machines (SVM) [39], can be used

for batch effect removal as follows. As a starting

point, samples from a single batch are regarded as

belonging to a specific class and DWD is used as a

classification algorithm by finding the optimal hyper-

plane w�xþ b¼ 0 separating samples from the dif-

ferent classes (batches), with w the normal vector of
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the hyperplane. Next, the samples in each batch are

projected in the direction of the normal vector to

this hyperplane by calculating the mean distance

from all samples in each batch to the hyperplane

(dX and dY ) and then subtracting the normal vector

to this plane multiplied by the corresponding mean

distance.

x̂ij ¼ xij � dXwi; ð21Þ

ŷij ¼ yij � dYwi: ð22Þ

Matrix factorization-based methods

The idea behind these methods resides in the obser-

vation that ‘the most important source of differen-

tially expression is nearly always across batches rather

than across biological groups’ [12]. As a consequence,

the most important source of variation also is ‘nearly

always’ associated with batches. Based on this fact,

these methods rely on the following strategy:

(i) Perform matrix factorization of the input data

matrix (which is in general obtained by

sample-wise concatenating of the datasets to

be combined); the matrix factorization is usually

performed using either singular value decom-

position (SVD) [40] or PCA [41], such that

the first factor has the highest possible variance

(which is associated with batch effects).

(ii) Remove the factors associate with batch effects

and reconstruct back the batch effect adjusted

dataset.

In the discussion below, we assume that we wish

to combine data from two batches Xm�n andYm0�n0

and denote by Cm0 0�n0 0 ¼ [Xm0 0�n Ym
0 0�n0] the

sample-wise concatenation over common genes of

the studies, with m00 the number common genes be-

tween X and Y and n00 ¼ nþ n0.

The last two methods discussed in this section do

not straightforward return an adjusted data matrix,

but do identify factors associated with batch effects

by using matrix factorization techniques. These

methods can be used for batch effect removal in

two ways: (i) combining them with another batch

effect removal method, for instance, COMBAT

including the identified batch effects as covariate

and (ii) reconstructing the data after removing factors

identified as being associated with batch effects.

Similar to SVD-based batch effect removal, both

these approaches assume that the input data are

obtained as a sample-wise concatenation of the dif-

ferent MAGE datasets.

Singular value decomposition-based batch effect

removal. Singular value decomposition [40] can be

used to adjust for batch effects by factorizing the

input gene expression data matrix and then recon-

structing it while filtering out those factors that are

associated with the batch effect. In a first instance,

the matrix Cm0 0�n0 0 (sample-wise concatenation over

common genes) is factorized using SVD as follows:

Cm00�n00 ¼ Um00�n00�n00�n00ðVn00�n00ÞT; ð23Þ

where Cm0 0�n0 0 ¼ [Xm0 0�nYm
0 0�n0], m00 is the number of

common genes between X and Y, n00¼ nþ n0 is the

total number of samples in X and Y, while the col-

umns of Um0 0�n0 0 and the rows of (Vn0 0�n0 0)T form

orthonormal basis for the samples (eigensamples)/

genes (eigengenes), respectively. The matrix �
n0 0�n0 0

is a diagonal matrix containing the singular values

ðs1 � . . . � sn00 � 0Þ. The reconstruction of the

data, with the batch effect removed, can be done

by removing those components in the corresponding

matrices that are believed to map to the batch effect:

Ĉm00�n00 ¼ Um00�l�l�lðVn00�lÞT; ð24Þ

with l� n00 and Um0 0�l, �l�l and (Vn0 0�l)T representing

the same matrices with the rows (columns) corres-

ponding to the components mapping to the batch

effect removed. As an alternative matrix factorization

method, PCA [41] can be also used.

Surrogate variable analysis. In [42], the assumption

made is that it is possible to identify the signal in

Cm0 0�n0 0 due to the biological variance of interest

and obtain the residuals Rm0 0�n0 0 after the removal

of this signal. These residuals are assumed to contain

the unwanted variation caused by batch effects. In

order to remove this unwanted variation, a matrix

factorization method (e.g. singular value decomposi-

tion (SVD)) is then applied on the residuals. The

main variation in the residuals is used as factors to

be adjusted for in downstream analysis. This is done

by estimating surrogate variables representing the un-

known confounding effects by iteratively weighting

a subset of the factors identified in the decomposition.

For details, the reader is referred to [42].

Remove unwanted variation, 2-step (RUV-2). In [28], a

similar method for batch effect removal is proposed

which makes use of a set of control genes to identify
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the factors associated with the batch effect. It is

assumed that the control genes are a priori known

to be uncorrelated with the biological factor of inter-

est. They suggested two default sets of genes as con-

trol genes: spike-in controls and housekeeping genes.

Assume that there are p control genes, then RUV-2

proposes to apply a matrix factorization such as SVD

on these genes to identify the components corres-

ponding to the batch effects. So instead of perform-

ing SVD on Cm0 0�n0 0, it is done on a submatrix Cp�n00

c

where the subscript c indicates that only the p control

genes are considered as input in this step. Similarly,

Up�l
c and Up�n

c are the submatrices concerning the

control genes of the corresponding matrices in

Equation (23).

Based on visual inspection or some variation cri-

teria, the first l components Up�l
c of the eigensamples

Up�n
c are deemed relevant and are then added as

covariates to any type of downstream analysis.

When this information is passed on to COMBAT,

this can be used to adjust the data for batch effects;

another option is to reconstruct the data using the

obtained decomposition by removing the first l

components.

Discretization methods

Discretization methods aim to transform the expres-

sion data into consistently defined categories based

on their level of expression. This way merging can

be done trivially by concatenating the discretized

matrices. A loss of information when discretizing is

inevitable, but it has been shown that these methods

can sometimes even lead to similar or improved ac-

curacy depending on the type of downstream ana-

lysis [43].

Quantile discretization. In [44], they propose a dis-

cretization method based on equal frequency bin-

ning. The expression values of all arrays are

discretized into a fixed number of bins. Equal fre-

quency is imposed by using the quantiles as cut

points for the bins. The two central bins with the

median value as cut point are merged into one bin

yielding one central interval. Next, every expression

value is replaced by an integer value corresponding

to the bin it falls into; zero is assigned to central bin,

all other bins are numbered consecutively beginning

with the bins next to the central one, using positive

integers for bins containing values above the median

and negative integer values for the others.

fRMA barcode. Frozen robust multi-array analysis

(fRMA) is an algorithm introduced in [33]. fRMA

allows to preprocess individual microarray samples

and combine them consistently for analysis. This is

done by estimating a reference distribution, to be

used for quantile normalization of new individuals,

based on a training set of publicly available samples

from a diverse population. Estimates of probe-

specific effects and variances are also obtained on

the same sample set and all information is ‘frozen’.

For each new array to be preprocessed, background

correction is performed similar to the training set and

then it is quantile normalized based on the reference

distribution. During summarization, batch effects are

removed and variances of the gene expressions are

estimated by taking into account these probe-specific

effects. This way fRMA can be seen as a batch effect

removal technique; however, it needs to be noticed

that the necessary estimates are platform specific and

thus data originating from different microarray plat-

forms can only be consistently combined by using

an additional batch effect removal algorithm such as

EB [43].

Based on fRMA, a novel algorithm for generating

barcodes extending work proposed in [45, 46] was

introduced in [47]. Huge sets of samples were col-

lected and normalized using fRMA for several plat-

forms. The distribution of the (non-)expressed

observed intensities for each gene is estimated using

these normalized sets. Genes are deemed expressed

(and their value coded to 1) or unexpressed (and

their value coded to 0) according to the following

equation:

x̂ij ¼
1 if xij � mne þ C � sne

;

0 otherwise

�

ð25Þ

where xij is the normalized intensity of gene i in

sample j, C is a user-defined parameter, sne is the

standard deviation of the non-expressed distribution

and mne is the mean of the non-expressed distribu-

tion. The barcode representation of a sample is a

vector of ones and zeros denoting which genes are

estimated to be expressed (ones) and unexpressed

(zeros).

Other methods

For completeness, we only mention several other less

popular techniques that have been used for batch

effect removal. Quantile normalization (QN) is

more frequently used for normalization at the

probe level (see RMA preprocessing algorithm
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[32]), but it has been also used explicitly for batch

effect removal [48, 49]. Two ideas similar to QN are

median rank scores (MRS)[44] and gene quantiles

(GQ)[50]. MRS considers one batch reference and

all genes are ranked based on their median expres-

sion. Genes in each sample in the non-reference

batch are also ranked and their value replaced by

the corresponding ranked median from the refer-

ence. GQ is an extension of MRS that enforces an

extra transformation of gene expression values such

that the median values for each gene are equal in all

batches.

In ref. [51], Distribution Transformation

(DisTran) is proposed, where a reference sample is

constructed based on a combination of the mean

expression of samples having the same biological

value of interest; consequently, all samples are trans-

formed to have the same distribution as this con-

structed reference sample. Afterwards, the samples

having one specific value for the biological variable

of interest are used as reference samples as in the

ratio-based methods. Comparative studies [27]

show that methods presented in this section are less

efficient that the LS, matrix factorization-based or

discretization techniques.

Availability of methods
The different batch effect removal methods are

mostly implemented in R and they are available at

the locations shown in Table 2. We also developed a

specialized R/Bioconductor package for batch effect

removal called inSilicoMerging (http://www

.bioconductor.org/packages/release/bioc/html/

inSilicoMerging.html) which gathers several state of

the art methods for batch effect removal. Examples

of R code showing how to use the different methods

implemented in the InSilicoMerging R/

Bioconductor package can be found in the

Supplementary information and further usage details

can be found in the dedicated vignette.

ONTHE EVALUATIONOF BATCH
REMOVALMETHODS
Evaluating and validating the results of batch effect

removal methods is perhaps as important and difficult

as the batch effect removal process itself. Without

good and reliable evaluation tools, these methods

could result in an even increased distortion of the

data, introducing serious errors in the results of any

downstream analysis performed. As a general rule,

the removal of batch effect should be observed

and/or quantified before and after applying a par-

ticular method in order to evaluate whether that

particular method is effective or not. The difficulty

of the batch effect removal evaluation process is in

the little amount of information recorded during the

MAGE experiments that refer to the sources of the

batch effects. Most researchers only mention that as a

result of efficiently removing the batch effects, the

datasets to be integrated must be comparable. And

here, the researchers can use their freedom in choos-

ing the criteria to evaluate how two datasets are

comparable.

In this section, we describe the different tools used

for the evaluation of the batch effect removal meth-

ods as found after surveying the selected literature.

We divided the validation tools in two main groups,

Table 2: Availability of implementations: links to the corresponding R packages where available or to software

made available by the authors

Method Availability

BMC http://www.bioconductor.org/packages/release/bioc/html/inSilicoMerging.html

Gene Standardization http://www.bioconductor.org/packages/release/bioc/html/inSilicoMerging.html

Ratio based methods Only basic functionality required

Scaling relative to reference Only basic functionality required

Empirical Bayes http://www.bu.edu/jlab/wp-assets/ComBat/

http://www.bioconductor.org/packages/release/bioc/html/inSilicoMerging.html

XPN https://genome.unc.edu/xpn/

http://www.bioconductor.org/packages/release/bioc/html/inSilicoMerging.html

DWD http://cran.r-project.org/web/packages/DWD/

http://www.bioconductor.org/packages/release/bioc/html/inSilicoMerging.html

SVD-BR http://cran.r-project.org/web/packages/svd/

SVA http://www.bioconductor.org/packages/release/bioc/html/sva.html

RUV-2 Example code in ref. [28]
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visualization tools and quantitative measures. For

each group, we identified several methods as

shown in Figure 3, which will be further described

in this section.

Qualitative evaluation through
visualization techniques
The most common and straightforward way to evalu-

ate the effectiveness of batch effect removal methods

is by visualization means. The visualization tools pro-

vide only a crude approximation of the efficiency of

batch effect removal, but they can be used as a first and

rapid inspection of the results provided by a method.

However, for a more rigorous evaluation, quantita-

tive measures should also be computed to accurately

assess the quality of the batch effect removal process.

The visualization tools described below are

grouped in two main categories: gene-wise and

global visualization tools. Both categories serve to

visualize the batch effect between two MAGE data-

sets but in a different way. The gene-wise tools (e.g.

boxplots and density plots of gene expression data)

provide a local visualization of the batch effect at the

gene level. It is expected that the expression levels of

the same gene across two different studies have similar

distributions if no batch effect is present, under the

assumption that the two studies have the same distri-

bution of samples relative to the biological variable of

interest. This assumption is critical for the data inte-

gration process because the estimation of the different

statistical parameters of the gene expressions for each

dataset is highly dependent on the number of samples

from each category in the biological variable of inter-

est. If, for example, the biological variable of interest

is ‘disease’ and the available categories are ‘normal

tissue’ and ‘tumour’, the different datasets to be

merged should contain similar proportions of

‘normal tissue’ and ‘tumour’ samples. Otherwise the

different estimates of the statistical parameters will be

different even when there is no batch effect affecting

the data; since the estimated statistical parameters are

not comparable anymore, the overall analysis is prone

to misleading results. The global visualization tools

(e.g. dendrograms, plots of the principal components

or relative log expression plots) provide a ‘big picture’

of the presence of the batch effect at study/sample

level. According to these plots, it is expected that the

samples corresponding to the same category in the

biological variable of interest (e.g. all males or all fe-

males) will group together regardless of the MAGE

experiment they originate from, if no or little batch

effect is present, and if the assumption that the two

studies have the same distribution of samples relative

to the biological variable of interest holds. Even more

important, if the samples group by batch, that indi-

cates the presence of batch effects. Hence, the two

groups of visualization tools provide complementary

information about the batch effects and it is advisable

to be jointly used for evaluation. In the following

sections, we will discuss several visualization tools

and we will also illustrate how they can be used to

assess the quality of a batch effect removal method.

To illustrate each visualization tool, we use two

MAGE lung cancer studies (GSE19804 and

GSE10072) which were retrieved through the

inSilicoDb R/Bioconductor package [4]. All

plots have been obtained using the

inSilicoMerging R/Bioconductor package

Figure 3: A taxonomy of validation tools to evaluate batch effect removal methods.
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(http://www.bioconductor.org/packages/release/

bioc/html/inSilicoMerging.html). The examples

have been performed using EB (COMBAT) as

method for batch effect removal and the code used

to generate each figure is available in the

Supplementary Information.

Boxplots of gene expression data

In statistics, boxplots are used to graphically summar-

ize the distribution of a population of samples

through five parameters: the extreme (minimum

and maximum) values as well as the lower, upper

and median quartile of the population. In the batch

effect removal context, the boxplots are used to

compare the gene-wise distribution of two different

datasets (originating from two different MAGE ex-

periments) as suggested in [12, 38]. A method is

considered as being efficient if the boxplots are

located around the same value. An illustration on

how boxplots are used to visually inspect batch

effect at gene level is provided in Figure 4, where

the boxplots of the same gene randomly chosen from

the two MAGE studies mentioned above are shown

before and after batch effect removal.

Density plot for the gene expression distribution

A different way to visualize the batch effect between

two different studies is to visually inspect the distri-

bution of expression values of genes. In [38], this is

performed by plotting the distribution of several

genes selected randomly from the available pool of

genes. The densities are estimated through the

Parzen–Rosenblat method [52]. A method is con-

sidered as being efficient if the two pdfs are fully

overlapped. An illustration on how gene-wise dens-

ity plots are used to visually inspect batch effect at

gene level is provided in Figure 5, where the prob-

ability density function (pdf) of the same gene ran-

domly chosen from the two MAGE studies

mentioned above are shown before and after batch

effect removal.

Dendrograms

In cluster analysis, a dendrogram is a tree represen-

tation of the clustering solution obtained through

hierarchical clustering. In MAGE analysis, dendro-

grams are commonly used to cluster either genes or

samples in homogeneous groups. In the context of

batch effect removal, the dendrodrams are used to

visualise how well the samples exhibiting the same

biological characteristics, originating from two differ-

ent studies, cluster together [12, 38]. A common

intuition is that samples exhibiting the same biolo-

gical characteristics should cluster together regardless

of the experiment they originate from. If this is not

true, it is very likely that there is a bias between the

two datasets. Another and probably more important

interpretation of dendrograms as validation tools for

batch effect removal is that if the samples cluster

by study, that indicates the batch effects presence.

Figure 4: Illustration of boxplots as validation tools for batch effect removal: (a) before and (b) after batch effect

removal (using EB method).
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This can be helpful in situations where the annota-

tions corresponding to the biological characteristics

of samples might not be available or might not have a

strong influence on gene expression. For visualiza-

tion reasons, in Figure 6 we only display the den-

drogram of 40 samples randomly selected from the

two above mentioned MAGE datasets. One can

easily notice that the samples cluster by study

before batch effect removal (suggesting the presence

of batch effect) which is not the case after applying a

batch effect removal method (suggesting an overlap-

ping of the two studies and hence the batch effect

removal).

Plots of principal components

PCA [41] makes use of a linear orthogonal trans-

formation to map a set of observations of possibly

correlated variables into a new set of observations

Figure 6: Illustration of using dendrograms as validation tools for batch effect removal: (a) before and (b) after

batch effect removal (using EB method). The samples denoted by the same number originate from the same MAGE

study.

Figure 5: Illustration of gene-wise density plots as validation tools for batch effect removal: (a) before and (b) after

batch effect removal (using EB method).
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of uncorrelated variables called ‘principal compo-

nents’. The transformation is defined such that the

first principal component captures as much as pos-

sible of the variance under the constraint that it is

orthogonal on the other principal components. The

rest of the principal components are ordered accord-

ing to the amount of variance captured.

According to [12], ‘in gene expression studies, the

greatest source of differentially expression is nearly

always across batches rather than across biological

groups’. This statement is based on the observations

made in a number of various studies, e.g. [46]. This is

the reason why the plots of the first two principal

components are commonly used to visualize the

batch effect between two studies [38]. According

to these plots, batch effects are present if the samples

originating from two different MAGE studies are

separated. A method is considered as being efficient

if it results in a consistent overlap between the sam-

ples in the two studies to be combined. An illustra-

tion on how plots of principal components are used

to visually inspect batch effect at sample/study level

is provided in Figure 7.

Relative log expression plots

The relative log expression (RLE) plots [53] were

initially proposed to measure the overall quality of

a dataset aiming to identify bad chips [28]. We will

briefly explain how the RLE plots are used to visu-

alize the removal of the unwanted variation intro-

duced by batch effects, based on the description in

[28]: let us consider a set of n samples, each with m

genes and denote with X the log-transformed gene

expression matrix of the n samples, where xij denotes

the log expression level of the ith gene on the jth

sample. For each gene, the median (over all samples)

log expression level is computed; consequently, for

each gene on each sample, the deviation from the

median log expression level is computed by: xij—

median (xi). Then, for each sample, a boxplot for

its m deviations can be displayed, as illustrated in

Figure 8. For visualization reasons, we only display

the RLE plots of 50 samples randomly selected from

the two above mentioned MAGE datasets. For an

efficient batch effect removal method, the individual

boxplots will be all distributed around 0.

Other visualization techniques

Only for completeness, we will report here two

other visualization techniques mentioned in [26],

which can be used by the users to visualize the

batch effects: correlation heat maps or variance com-

ponents pie charts.

Quantitative evaluation measures
Quantitative measures provide with a more accurate

evaluation of the batch effect removal and they are

very effective tools for comparing the results of dif-

ferent methods. Here we briefly describe the most

commonly used methods as found in the literature.

Excepting the overlap score and the mixture score

which provide the same conceptual information

Figure 7: Illustration of PCA plots as validation tools for batch effect removal. Plot of first two principal compo-

nents: (a) before batch effect removal and (b) after batch effect removal (using EB method).
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about the quality of the batch effect removal, all the

other methods bring complementary information to

assess the effectiveness of a method.

Measuring the overlap between samples from indepen-

dent studies

This validation strategy is proposed to measure the

expected overlap between two independent studies

before and after applying the batch effect removal

methods [10]. Considering the samples as points in

a n dimensional dataset, a method is considered as

being effective if it results in a substantial overlap

between the samples originating from the two inde-

pendent studies. The overlap is quantified as follows:

(i) Compute the distance between each sample in

the first study and its nearest neighbour in the

second study.

(ii) Repeat Step 1 by changing the roles of the

studies.

(iii) Average the results in Steps 1 and 2.

The overlap between datasets can be easily visualized

in the scatter plot of the first two principal compo-

nents. Obviously, the higher the overlap, the better

the data integration process.

Mixture score

A similar validation approach is proposed in [38, 54].

The ‘mixture score’ is proposed to evaluate the effi-

ciency of batch effect removal methods by using the

idea of k-nearest neighbours (kNNs). Assume that C

is the sample-wise concatenation over common

genes of two datasets X and Y. For each sample in

C belonging to X, a ratio is defined between how

many of its kNNs belong to X and Y, respectively.

The mixture score is defined as follows:

MS ¼

P

x2X #fy 2 Y : y 2 kNNðxÞ in Cg

k� jXj
: ð26Þ

The mixture score is bounded in (0, 1). If both stu-

dies have an almost equal amount of samples, values

close to extremities mean that the two studies are

well separated while values close to 0.5 suggest that

the studies are highly overlapped suggesting the re-

moval or the absence of batch effects. If there is an

unbalance in the number of samples then the mix-

ture score indicates removal of batch effects if it

mimics the ratio between the number of samples.

Comparing the distribution of genes’asymmetry across

studies

A simple and efficient way to quantify the results of

batch effect removal methods is to compare the dis-

tribution of samples’ asymmetry before and after

batch removal, as proposed in [10]. For a given

random variable, a raw approximation of its asym-

metry is given by the difference between its mean

and median values. However, the ‘skewness’ is an-

other efficient statistical measure that quantifies the

asymmetry of a distribution, and it can be used in-

stead. This index is computed as being the area

Figure 8: Illustration of using RLE plots as validation tools for batch effect removal: (a) before and (b) after batch

effect removal (using EB method).
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between the cumulative density functions (CDFs) of

samples’ asymmetry, estimated before and after batch

effect removal. The CDFs of samples’ asymmetry

have the same support which approximates the

range between the minimum and the maximum

values of samples’ asymmetry before and after batch

effect removal. This index can be defined as follows:

biasX;X̂ ¼
X

b

i¼a

ðCDFXðiÞ � CDFX̂ðiÞÞ; ð27Þ

where X and X̂ are gene expression data matrices of

samples originating from one or multiple experi-

ments before and after batch effect removal, CDFX
and CDFX̂ represent the CPF of samples’s asym-

metry before or after batch effect removal, while a

and b are the minimum, respectively, the maximum

values of samples’ asymmetry before and after batch

effect removal. A method is considered to be effi-

cient if, after batch effect removal, the two CDFs are

as similar as possible, and so the index should have a

value close to 0.

Principal variance component analysis

A different approach to evaluate the batch effect re-

moval methods is presented in [55, 56]. Principal

variance component analysis (PVCA) combines the

advantages of two well-known statistical methods for

data analysis: PCA [41] and variance component ana-

lysis (VCA) [57]. The authors describe it ‘as a screen-

ing tool to determine the sources of variability’ in a

dataset ‘and to quantify the magnitude of each source

of variability, including each batch effect’. The

method is summarized in four steps:

� Perform PCA on the gene expression dataset and

select the first principal components that retain

most of the variability of the data. Since the prin-

cipal components are all ordered in the decreasing

order of their eigenvalues, one will select the first

principal components that contain an amount of

variation higher than a predefined threshold (e.g.

60–90%)

� Fit a mixed model separately to each selected prin-

cipal component with all factors of interest as

random effects and any undesired factor as fixed

effect. In this step, one can use a mixed linear

model having the following generic form:

A ¼ Bbþ Zuþ e; ð28Þ

where A denotes a vector of observations, in this case

one selected principal component, B is the gene

expression data matrix of samples before or after

batch effect removal, b is the known fixed-effect

parameter vector (or the undesired factor), Z is the

design matrix of random effects (or the factors of

interest), u is the vector of unknown random effect

parameters and e is the unobserved vector of random

Gaussian errors. It is assumed that u and e are nor-

mally distributed. The goal in this step is to estimate

the variance of u and e (su, respectively, se) for all

selected principal components. We encourage the

reader to consult [56] for more information on the

estimation of su and se.

� For each principal component, average the esti-

mated variance components from the previous

step (su, respectively, se) with their corresponding

eigenvalues as weights.

� Standardize the weighted variance components es-

timates by dividing them by their sum; in this way,

the magnitude of each effect can be represented as

a proportion of the total variance.

In order to evaluate the efficiency of a batch effect

removal method, the estimation of variance compo-

nents should be performed before and after batch

effect removal. PVCA has been used as a validation

method for comparing six batch effect removal meth-

ods (which are also discussed in this article) in ref. [16].

More details about the PVCA can be found in [56].

Evaluation through differential expression analysis

Several studies [28, 42, 58] propose to evaluate the

effectiveness of the batch effect removal methods in

the context of the differentially expression (DE) ana-

lysis. It is generally assumed that DE analysis per-

formed on the adjusted dataset should result in a

more reproducible list of genes which are differen-

tially expressed. The authors in [28] propose a quality

metric to measure the effectiveness of a batch effect

removal method. The metric proposed is propor-

tional to the number of ‘positive control genes’

(genes that are known apriori to be truly differentially

expressed) found in the top k-ranked genes accord-

ing to a particular method for differentially expressed

genes (DEGs) discovery, see [59] for a recent survey

on this topic. A batch effect removal method should

be considered as being effective if the number of

positive control genes found in the adjusted dataset

increases with respect to those found in the original

studies. This evaluation approach would be preferred

when a high number of positive control genes are

available. In other cases where the positive controls
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are only a few, the authors suggest to examine the

P-values of both positive and negative control genes

(genes that are known a priori as being uncorrelated

with the biological variation of interest). In this case,

the rule proposed is that a batch effect removal

method is considered to be effective if the P-value

of the positive controls decreases (increasing their

statistical significance) while the P-value of the nega-

tive controls increases. If the P-value of the positive

controls and the P-value of the negative controls

decrease or increase in the same time, the method

should be considered ineffective. For more details

about this evaluation strategy, we invite the reader

to consult [28].

If the positive/negative control genes are un-

known, the authors in [60] propose an evaluation

strategy based on functional enrichment analysis

[61] which assesses whether specific cellular functions

are overrepresented within a set of significant genes.

In [13], the authors propose a different way to use

DE analysis to assess the efficiency of batch effect

removal methods, at gene/probe level. The idea is

to first identify lists of the most DE genes/probes in

the newly combined dataset and to compare those

lists with the most DE genes/probes from other

single or differently combined datasets. The effi-

ciency of a method is in this case proportional to

the number of overlapping probes in the compared

lists.

Uniform P-value distribution of null genes

A different way to evaluate batch effect removal

methods is to asses their effectiveness through signifi-

cance analysis, as suggested in [42]. The authors in

[42] provide a very comprehensive explanation of

this evaluation strategy. According to them, a signifi-

cance analysis is performed ‘correctly’ if the null dis-

tribution is calculated properly; this means that the

P-values corresponding to null genes or negative

control genes are uniformly distributed across (0,

1). Hence, a batch effect removal method will be

considered as being effective if the P-value distribu-

tion of null genes in the adjusted dataset will be

distributed as such. The presence of batch effect

will result in non-uniform P-value distributions of

the negative control genes since the batch effect

introduces strong dependencies between genes

[28]. More details about this evaluation strategy can

be found in [28, 42].

However, there are situations where this evalu-

ation method fails in identifying the batch effect in

studies affected by heterogeneity. In [42], the authors

reveal that for a particular study affected by batch

effect, the P-value distribution of negative control

genes was almost identical with the P-value distribu-

tion of negative control genes from a unaffected

study. This is why it is advisable to use this method

with precaution or jointly with another evaluation

strategy.

Remark. Both evaluation methods based on the DE

analysis and on the P-value distribution are subject-

ive to the choice of positive/negative control genes.

Evaluating the prediction performances with respect to

the biological annotation of interest

Another expected beneficial consequence of com-

bining two datasets through batch effect removal

methods is an increase of the prediction accuracy

on the test datasets [10]. Therefore, it is expected

that the error rates of various classifiers should sig-

nificantly decrease if the batch effect has been effect-

ively removed. In [10], the authors evaluated the

performance of different methods for batch effect

removal in terms of ‘classification accuracy’, where

after adjustment, the first dataset was used for training

and the second one for test. The classification has

been performed with respect to the biological vari-

ation of interest (ER status) mapped into a binary

variable.

As the prediction accuracy is dependent on the

class prevalence, it can sometimes provide some mis-

leading results. In order to overcome this insuffi-

ciency, the authors in [26] proposed to use instead

the Matthews correlation coefficient (MCC),

defined as follows:

MCC ¼
TP� TN� FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p

;

ð29Þ

where TP, FP denotes the true/false positives and

TN, FN denotes the true/false negatives.

Correlation coefficient

In the context of batch effect removal, the correl-

ation coefficient is used to observe and to quantify

how much the batch effect removal methods affect

the data [10, 38]. Note that this evaluation method

does not give any clues on how effective a method is,

but it is more a way to choose between two different

methods that perform similarly according to other

evaluation indices. According to [10], in such
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situations, the method that least affects the data

should be preferred. This index is computed as

being the average correlation coefficient between

genes before and after removing the batch effect.

Low values will indicate that the batch effect re-

moval distorted the initial data, and hence the

method will be considered as inefficient. For com-

pleteness we will mention another very similar val-

idation index for batch effect removal methods, ‘the

global integrative correlation’, see [10, 62].

FINALCOMMENTSAND
RECOMMENDATION
As many researchers already pointed out [12], inte-

grating data from different MAGE experiments is a

complicated procedure that requires careful examin-

ation of the data and also rigorous evaluation in order

to avoid negative effects that could be further intro-

duced by the different methods. As a good practice,

it is always advisable to start by visualizing and quan-

tifying the bias between the different datasets to be

combined. The choice of the appropriate method for

integrating MAGE datasets is conditioned by the

number of samples per dataset as well as by the dis-

tribution of samples in the datasets to be combined

relative to the biological variation of interest. Table 3

summarizes the batch effect removal methods pre-

sented in ‘Integrating microarrays by removing batch

effects’ Section according to six general features,

which condition or favour the applicability of each

method, as follows:

� Complexity: this is proportional to the number

of parameters of the method. As a natural choice,

simple methods like BMC and Gene

Standardization should be preferred to

more complicated ones if they provide similar

results.

� Minimum number of samples required: some

methods specify a limit number of samples per

study in order to be able to be performed correctly

[63]. In general, DWD and most factorization meth-

ods require more than 25 samples [14] in order to

work correctly. The XPN method even fails to run

with less than 30 samples per study (based on a

comparative study performed in-house – data not

provided.). EB is known to be fairly independent

on the sample size.

� Number of datasets: most methods are able to

combine several datasets at once but XPN and

DWD are limited to only two. If multiple datasets

need to be integrated, these methods have to be

called recursively by considering only two datasets

at each iteration which gets complicated when

combining a large number of datasets.

� Flexibility: we denote by ‘flexibility’, the ability

of each method in coping with a high number of

covariates (other than the biological variation of

interest and the batch information). Some meth-

ods like EB and RUV2 can deal with multiple

Table 3: Summary of batch effect removal methods

Method Complexity No. of

samples

No. of

studies

Flexibility Additional

info required

Computational

time

BMC Low > 25 > 2 Low No Low

Gene standardization Low > 25 > 2 Low No Low

Ratio based methods Low > 25 > 2 Low Yes Low

Scaling relative to reference Low > 25 > 2 Average No Low

Empirical Bayes High > 5 > 2 High No Low

XPN High > 30 2 Low No High

DWD Average > 25 2a Low No Average

SVD-BR Average > 25 > 2 Average No Average

SVA Average > 25 > 2 Average No Average

RUV-2 Average > 25 > 2 High Yes Average

Quantile discretization Low > 25 > 2 Low No Low

fRMA Barcode Low � 1 > 2 Low No Low

Note:The complexity is proportional to thenumberofparameters in the scoring function; theminimumnumber of samplesrequired isbasedon stat-

istical assumptions and in-house performed comparative study; for the number of studies we differentiate between the ability to combine 2 or

more studies at once; additional infomeans the requirement of known covariates; flexibility indicates the possibility to add background information

such as covariates; computational time is also based on in-house comparative study (data notprovided). aRecently an extension formultiple datasets

was suggested (kDWD), however internally this is an iterative pairwise combination
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covariates and are able to remove different sources

of bias at once. If such information is available,

these methods can provide a more refined

adjustment.

� Additional prior information required: in con-

trast to the flexibility, some methods can only be

applied if some prior information, other than the

batch information are available. RUV2, for ex-

ample, is based on the fact that it takes control

genes (genes which are unrelated to the biological

information of interest) as input, while

Ratio-based methods require reference

samples. It is not always trivial to obtain this

extra information and therefore this is a limitation

for these approaches.

� Computational time: a last feature to be con-

sidered when selecting an appropriate batch re-

moval method is the computational time that is

dependent on the number of samples and studies

that should be integrated. In a comparative study

(data not provided), we found out that XPN re-

quires the most computational time, followed by

DWD and the factorization methods. The other

methods performed relatively fast.

The choice of a method for microarray data inte-

gration is application dependent. As a general rule,

methods with a low complexity also requiring low

computational time should be preferred; however,

these methods do not always provide the best results.

Another important aspect that should be considered

in the choice of the most appropriate method is

related to the number of samples per dataset avail-

able. When data sets with few samples are available,

the choice of the appropriate method should be per-

formed according to the specifications in Table 3.

Most of the methods are not able to provide accurate

results if the number of samples per dataset is lower

than the thresholds specified in Table 3. It should

also be preferred to use methods with a high flexi-

bility and also methods allowing to incorporate add-

itional prior information (e.g. control genes) when

such information is available. The practitioner should

also be aware about the difficulties and dangers of

combining datasets from various MAGE experi-

ments, as revealed in [12]. First, the sources of vari-

ation from one experiment to another are not

completely known or they are not all recorded,

and this issue hinders the data integration process.

The only way to overcome this limitation is to

record all possible sources of batch effects during

the MAGE expression experiments. Second, the

sources of variation responsible for batch effects are

sometimes correlated with the biological variables of

interest; this means that by removing the batch ef-

fects most of the biological variation of interest will

also be removed.

CONCLUSION
Integrating data from different MAGE experiments is

without any doubt the solution towards reliable large

scale analysis of genomic data. It has the potential of

unlocking the current limitations related to the rela-

tively weak statistical and generalization power of the

results issued from analysing small datasets, which is

currently an unsurpassable obstacle in the design of

genomic experiments. Combining such datasets is a

complex and difficult problem due to its very diverse

origin, and so far, there is no general solution to

solve it. Moreover, the problem is hard to be com-

pletely solved due to the fact that, during experi-

ments, the potential sources of bias are not fully

reported and recorded, as stated in [12]. Many re-

searchers are aware of this problem, but unfortu-

nately it is not always adequately incorporated in

their preprocessing or analysis workflow. Here we

review a wide range of methods proposed to tackle

this problem by removing one of the main source of

variation between datasets from different MAGE ex-

periments: the so-called batch effects. Without a

solid validation framework, the use of any methods

proposed to solve the problem would be irrelevant.

This is the reason why we dedicated equal attention

to the different evaluation techniques of batch effect

removal methods. Nevertheless, we ended our

survey with a section where we provide the reader

with a generic comparison framework of the differ-

ent methods which reveals the conceptual differences

between the methods as well as their advantages and

weaknesses. In the end, we are joining and empha-

sizing the last concluding remark of Leek et al. [12]:

‘the need to incorporate adjustment for batch effects

as standard step in the analysis of high-throughput

data’.

Key points

� Integrating gene expression data fromdifferent experiments is a

tempting and also a difficult challenge for large-scale analysis of

genomics data.

� Data integration is hindered by batch effects and efficientmeth-

ods for batch effect removal are needed for integrative analysis
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of MAGE data. Current methods for batch effect removal pro-

posed to integrate MAGE data have been reviewed and grouped

in a taxonomy.

� Batch effect removal implies further transformations applied to

the gene expression data and they should be carefully applied

since they could further introduce or amplify undesired effects

in the data. In this context, the quality assessmentof the data in-

tegration process is crucial. Validation tools for assessing the

quality of MAGE data integration process have been objectively

discusses and grouped in a taxonomy.
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SUPPLEMENTARY INFORMATION
Here we provide some examples of R code showing

how the different methods implemented in the

inSilicoMerging package can be used in prac-

tice. Further information can be found in the asso-

ciated vignette (http://www.bioconductor.org/

packages/release/bioc/vignettes/inSilicoMerging/

inst/doc/inSilicoMerging.pdf).
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