
Batch effects in single-cell RNA sequencing data are corrected 
by matching mutual nearest neighbours

Laleh Haghverdi1,2, Aaron T. L. Lun3, Michael D. Morgan4, and John C. Marioni1,3,4

1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), 

Cambridge, United Kingdom

2Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany

3Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom

4Wellcome Trust Sanger Institute, Cambridge, United Kingdom

Abstract

Large-scale single-cell RNA sequencing (scRNA-seq) datasets that are produced in different 
laboratories and at different times contain batch effects that could compromise integration and 
interpretation of these data. Existing scRNA-seq analysis methods incorrectly assume that the 
composition of cell populations is either known, or the same, across batches. We present a strategy 
for batch correction that is based on the detection of mutual nearest neighbours (MNN) in the 
high-dimensional expression space. Our approach does not rely on pre-defined or equal population 
compositions across batches, and only requires that a subset of the population be shared between 
batches. We demonstrate the superiority of our approach over existing methods using both 
simulated and real scRNA-seq data sets. Using multiple droplet-based scRNA-seq data sets, we 
demonstrate that our MNN batch-effect correction method scales to large numbers of cells.
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Introduction

The decreasing cost of single-cell RNA sequencing experiments [1] [2] [3] [4] has 
encouraged the establishment of large-scale projects such as the Human Cell Atlas, which 
profile the transcriptomes of thousands to millions of cells. For such large studies, logistical 
constraints inevitably dictate that data are generated separately i.e., at different times and 
with different operators. Data may also be generated in multiple laboratories using different 
cell dissociation and handling protocols, library preparation technologies and/or sequencing 
platforms. All of these factors result in batch effects [5] [6], where the expression of genes in 
one batch differs systematically from those in another batch. Such differences can mask 
underlying biology or introduce spurious structure in the data, and must be corrected prior to 
further analysis to avoid misleading conclusions.

Most existing methods for batch correction are based on linear regression. The limma 
package provides the removeBatchEffect function [7], which fits a linear model containing a 
blocking term for the batch structure to the expression values for each gene. Subsequently, 
the coefficient for each blocking term is set to zero and the expression values are computed 
from the remaining terms and residuals, yielding a new expression matrix without batch 
effects. The ComBat method [8] uses a similar strategy but performs an additional step 
involving empirical Bayes shrinkage of the blocking coefficient estimates. This stabilizes the 
estimates in the presence of limited replicates by sharing information across genes. Other 
methods such as RUVseq [9] and svaseq [10] are also frequently used for batch correction, 
but focus primarily on identifying unknown factors of variation, e.g., due to unrecorded 
experimental differences in cell processing. Once these factors are identified, their effects 
can be regressed out as described previously.

Existing batch correction methods were specifically designed for bulk RNA-seq. Thus, their 
applications to scRNA-seq data assume that the composition of the cell population within 
each batch is identical. Any systematic differences in the mean gene expression between 
batches are attributed to technical differences that can be regressed out. However, in 
practice, population composition is usually not identical across batches in scRNA-seq 
studies. Even assuming that the same cell types are present in each batch, the abundance of 
each cell type in the data set can change depending upon subtle differences in cell culture or 
tissue extraction, dissociation and sorting, etc. Consequently, the estimated coefficients for 
the batch blocking factors are not purely technical, but contain a non-zero biological 
component due to differences in composition. Batch correction based on these coefficients 
will thus yield inaccurate representations of the cellular expression proles, potentially 
yielding worse results than if no correction was performed.

An alternative approach for data merging and comparison in the presence of batch effects 
uses a set of landmarks from a reference data set to project new data onto the reference [11] 
[12]. The rationale here is that a given cell type in the reference batch is most similar to cells 
of its own type in the new batch. Such projection strategies can be applied using several 
dimensionality reduction methods such as principal components analysis (PCA), diffusion 
maps or by force-based methods such as t-distributed stochastic nearest-neighbour 
embedding (t-SNE). This strategy depends on the selection of landmark points in high 
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dimensional space picked from the reference data set, which cover all cell types that might 
appear in the later batches. However, if the new batches include cell types that fall outside 
the transcriptional space explored in the reference batch, these cell types will not be 
projected to an appropriate position in the space defined by the landmarks (Supplementary 
Note 1).

Here, we propose a new method for removal of discrepancies between biologically related 
batches based on the presence of mutual nearest neighbours (MNNs) between batches, 
which are considered to define the most similar cells of the same type across batches. The 
difference in expression values between cells in a MNN pair provides an estimate of the 
batch effect, which is made more precise by averaging across many such pairs. A correction 
vector is obtained from the estimated batch effect and applied to the expression values to 
perform batch correction. Our approach automatically identifies overlaps in population 
composition between batches and uses only the overlapping subsets for correction, thus 
avoiding the assumption of equal composition required by other methods. We demonstrate 
that our approach outperforms existing methods on a range of simulated and real scRNA-seq 
data sets involving different biological systems and technologies.

Results

Matching mutual nearest neighbours for batch correction

Our approach identifies cells between different experimental batches or replicates that have 
mutually similar expression profiles. We infer that any differences between these cells in the 
high-dimensional gene expression space are driven by batch effects (i.e., technical 
differences induced by the operator or other experimental artefacts) and do not represent the 
underlying biology of interest. We note that our definition of a batch effect may also 
incorporate some signal driven by biological features that are not of interest (e.g., 
differences between samples due to genotype). Upon correction, multiple batches can be 
“joined up" into a single data set (Figure 1a).

The first step of our method involves global scaling of the data using a cosine normalization. 
More precisely, if Yx is the expression vector for cell x, we define the cosine normalization 
as:

Yx

Yx

Yx

(1)

Subsequently, we compute the Euclidean distance between the cosine-normalized expression 
profiles of pairs of cells. Calculating Euclidean distances on this normalised data is 
equivalent to the use of cosine distances on the original expression values (Supplementary 
Note 2). Cosine distances have been widely used for measuring cell similarities based on 
their expression profiles [11] [13] [14] [15] and are appealing as they are scale-independent 
[15], which makes them robust to technical differences in sequencing depth and capture 
efficiency between batches.
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The next step involves identification of mutual nearest neighbours. Consider a scRNA-seq 
experiment consisting of two batches 1 and 2. For each cell i1 in batch 1, we find the k cells 
in batch 2 with the smallest distances to i1, i.e., its k nearest neighbours in batch 2. We do 
the same for each cell in batch 2 to find its k nearest neighbours in batch 1. If a pair of cells 
from each batch are contained in each other's set of nearest neighbours, those cells are 
considered to be mutual nearest neighbours (Figure 1b). We interpret these pairs as 
containing cells that belong to the same cell type or state, despite being generated in 
different batches. This means that any systematic differences in expression level between 
cells in MNN pairs should represent the batch effect.

Our use of MNN pairs involves three assumptions: (i) there is at least one cell population 
that is present in both batches, (ii) the batch effect is almost orthogonal to the biological 
subspace, and (iii) batch effect variation is much smaller than the biological effect variation 
between different cell types (see Supplementary Note 3 for a more detailed discussion of 
these assumptions). The biological subspace refers to a set of basis vectors, each of length 
equal to the number of genes, which represent biological processes. For example, some of 
these vectors may represent the cell cycle; some vectors may define expression profiles 
specific to each cell type; while other vectors may represent differentiation or activation 
states. The true expression profile of each cell can be expressed as a linear sum of these 
vectors. Meanwhile, the batch effect is represented by a vector of length equal to the number 
of genes, which is added to the expression profile for each cell in the same batch. Under our 
assumptions, it is straightforward to show that cells from the same population in different 
batches will form MNN pairs (Supplementary Note 4). This can be more intuitively 
understood by realizing that cells from the same population in different batches form parallel 
hyperplanes with respect to each other (Figure 1b). We also note that the orthogonality 
assumption is weak for a random one-dimensional batch effect vector in high-dimensional 
data, especially given that local biological subspaces usually have much lower intrinsic 
dimensionality than the total number of genes in the data set.

For each MNN pair, a pair-specific batch correction vector is computed as the vector 
difference between the expression profiles of the paired cells. While a set of biologically 
relevant genes (e.g. highly variable genes) can facilitate identification of MNNs, the 
calculation of batch vectors does not need to be performed in the same space. Therefore, we 
can calculate the batch vectors for a different set of inquiry genes (Supplementary Note 5). 
A cell-specific batch correction vector is then calculated as a weighted average of these pair-
specific vectors, computed using a Gaussian kernel. This approach stabilizes the correction 
for each cell and ensures that it changes smoothly between adjacent cells in the high-
dimensional expression space. This Gaussian smoothing of batch vectors enables a locally 
linear batch correction, i.e., each MNN pair batch vector will contribute to the batch effect 
for cells in the neighbourhood of the corresponding pair within each batch. Such locally 
linear correction of batch effects results in an overall correction that can tolerate non-
constant batch effects (Supplementary Figure 1). We emphasize that this correction is 
performed for all cells, regardless of whether or not they participate in a MNN pair. This 
means that correction can be performed on all cells in each batch, even if they do not have a 
corresponding cell type in the other batches.
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MNN correction outperforms existing methods on simulated data

We generated simulated data for a simple scenario with two batches of cells, each consisting 
of varying proportions of three cell types (Online Methods). We applied each batch 
correction method – our MNN-based correction method, limma and ComBat – to the 
simulated data, and evaluated the results by inspection of t-SNE plots [16] (Online 
Methods). Proper removal of the batch effect should result in the formation of three clusters, 
one for each cell type, where each cluster contains a mixture of cells from both batches. 
However, we only observed this ideal result after MNN correction (Figure 2). Expression 
data that were uncorrected or corrected with the other methods exhibited at least one cluster 
containing cells from only a single batch, indicating that the batch effect was not fully 
removed. This is fully attributable to the differences in population composition, as discussed 
earlier. Repeating the simulation with identical proportions of all cell types in each batch 
yielded equivalent performance for all methods (Supplementary Figure 2).

MNN correction outperforms existing methods on haematopoietic data

To demonstrate the applicability of our method on real data, we considered two 
haematopietic data sets generated in different laboratories using two different scRNA-seq 
protocols. In the first data set [12], the authors used the SMART-seq2 protocol [17] to profile 
single cells from haematopoietic stem and progenitor cell (HSPC) populations in 12-week-
old female mice. Using marker expression profiles from fluorescence-activated cell sorting 
(FACS), known cell type labels were retrospectively assigned to cells (Online Methods). 
This included multipotent progenitors (MPP), lymphoid-primed multipotent progenitors 
(LMPP), haematopoietic stem and progenitor cells (HSP), haematopoietic stem cells (HSC), 
common myeloid progenitors (CMP), granulocyte-monocyte progenitors (GMP), and 
megakaryocyte-erythrocyte progenitors (MEP). In the second data set [18], the authors used 
the MARS-seq protocol to assess single-cell heterogeneity in myeloid progenitors for 6- to 
8-week-old female mice. Again, indexed FACS was used to assign a cell type label (MEP, 
GMP or CMP) to each cell.

To assess performance, we performed t-SNE dimensionality reduction on the expression 
data of the highly variable genes, before and after correction using each of the three methods 
(MNN, limma and ComBat) (Figure 3, a-d and Online Methods). Only MNN correction was 
able to correctly merge the cell types that were shared between batches, i.e., CMPs, MEPs 
and GMPs, while preserving the underlying differentiation hierarchy [12] [18] (Figure 3e). 
In contrast, the shared cell types still clustered by batch after correction with limma or 
ComBat, indicating that the batch effect had not been completely removed (see 
Supplementary Figure 3 for colouring by batch). This is attributable to the differences in cell 
type composition between batches, consistent with the simulation results. To ensure that 
these results were not due to an idiosyncrasy of the t-SNE method, we repeated our analysis 
with an alternative dimensionality reduction approach (PCA) using only the common cell 
types between the two batches (Figure 3 f-i). MNN correction was still the most effective at 
removing the batch effect compared to the other methods.

As a justification for the orthogonality of batch effect to the biological hyperplane, we 
present a histogram of the angle between the batch vectors calculated by MNN and the first 
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two singular value decomposition (SVD) components of the reference batch used in MNN 
(i.e., the SMART-seq2 data set). Most angles are close to 90°, supporting the near-
orthogonality assumption (Supplementary Figure 3 e). A diffusion map [19] of the MNN 
corrected data (Supplementary Figure 3 f-h) shows the same differentiation hierarchy of cell 
types as observed in Figure 3e. Repeating the same analysis on a subset of randomly 
sampled genes (1500 out of the total of 3904 highly variable genes), yielded similar results, 
thus demonstrating the robustness of our analysis with respect to the input gene set 
(Supplementary Figure 4).

MNN correction outperforms existing methods on a pancreas data set

We further tested the ability of our method to combine more complex data sets generated 
using a variety of different methods. Here, we focused on the pancreas as it is a highly 
heterogeneous tissue with several well-defined cell types. We combined scRNA-seq data on 
human pancreas cells from four different publicly available data sets [20] [21] [22] [23], 
generated with two different scRNA-seq protocols (SMART-seq2 and CELseq/CEL-seq2). 
Cell type labels were taken from the provided metadata, or derived by following the 
methodology described in the original publication (see Online Methods for further details of 
data preprocessing).

We applied MNN, limma and ComBat to the combined data set and examined the corrected 
data. All three batch correction methods improve the grouping of cells by their cell type 
labels (Online Methods, Supplementary Figure 5a-d). This is not surprising, as the 
discrepancy between cell type composition in the four batches is modest (Supplementary 
Table 1). However, even a small difference in composition is sufficient to cause ductal and 
acinar cells to be incorrectly separated following correction with limma or ComBat. By 
comparison, both cell types are coherently grouped across batches following MNN 
correction, consistent with the simulation results. To determine the effect of correction on 
the quality of cell type-based clustering, we assessed cluster separation by computing the 
average Silhouette widths for each cell type (Supplementary Figure 5, Online Methods). The 
average Silhouette coefficient after MNN correction is significantly larger than those in the 
uncorrected, limma and ComBat-corrected data (p < 0:05, two-sided Welch's t-test). Thus, 
MNN correction is able to reduce the between-batch variance within each cell type while 
preserving differences between cell types. We also computed the entropy of mixing (Online 
Methods) to quantify the extent of intermingling of cells from different batches. Batch 
corrected data using MNN show higher entropy of mixing compared to the uncorrected data 
and corrected data using limma or ComBat (Supplementary Figure 5). The improvement in 
the mixing of batches is observed in the reduced dimension space by either t-SNE or PCA 
(Supplementary Figure 5e-l). We again illustrate our assumption that batch effects are 
adequately removed when they lie orthogonally to the biological subspace (Supplementary 
Figure 5m-o). The observed structure in the pancreas data is robust to the size of the input 
gene set, demonstrated by random subsampling of the total highly variable gene set 
(Supplementary Figure 6).
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MNN correction improves differential expression analyses

Once batch correction is performed, the corrected expression values can be used in routine 
downstream analyses such as clustering and differential gene expression identification. To 
demonstrate, we used the MNN-corrected expression matrix to simultaneously cluster cells 
from all four pancreas data sets. Our new cluster labels were in agreement with the previous 
cell type assignments based on the individual batches, with an adjusted Rand index of 0.94 
(a Rand index of 0 is equivalent to a random assignment, whilst a Rand index of 1 denotes a 
perfect match between previous and new assignments). Importantly, we obtained clusters for 
all batches in a single clustering step. This ensures that the cluster labels are directly 
comparable between cells in different batches. In contrast, if clustering were performed 
separately in each batch, there is no guarantee that a (weakly-separated) cluster detected in 
one batch has a direct counterpart in another batch.

We used our new clusters to perform a differential expression (DE) analysis between the δ-
islet cluster and the γ-islet cluster. Using cells from all batches, we detected 76 differentially 
expressed genes at a false discovery rate (FDR) of 5% (Figure 4c). This set included the 
marker genes for the cells included in the analysis (PPY, SST), genes involved in pancreatic 
islet cell development (PAX6) and genes recently implicated in δ-islet function and type 2 
diabetes development (CD9, HADH) [22]. For comparison, we repeated the DE analysis 
using only cells from each batch in which both cell types were present [21] [22] [20]. This 
yielded only 12, 59 and 88 genes respectively, at a FDR of 5%, which encompass 
14.5-57.9% of those detected using all cells (Figure 4d). Merging data sets is beneficial as it 
increases the number of cells without extra experimental work; improves statistical power 
for downstream analyses such as differential gene expression; and in doing so, provides 
additional biological insights. To this end, our MNN approach is critical as it ensures that 
merging is performed in a coherent manner.

MNN correction is applicable to droplet RNA-seq technology

The advent of droplet-based cell capture, lysis, RNA reverse transcription and subsequent 
expression profiling by sequencing has allowed single cell expression experiments to be 
scaled up to tens and hundreds of thousands of cells [2] [3] [24]. These technologies are 
ideal for testing the scalability and applicability of our correction method to large scRNA-
seq data sets. We specifically applied our MNN approach to two large data sets of droplet-
based scRNA-seq derived from the commercial 10X Genomics Chromium platform [24]. 
We selected data sets in which there were a mixture of cell identities and complexities; 
namely 68,000 peripheral blood mononuclear cells (PBMCs) and 4,000 T cells, derived 
from different donors. PBMCs contain a milieu of peripheral adaptive and innate immune 
white blood cells as they circulate through the human vasculature, while peripheral T cells 
contain a mixture of naïve and antigen-exposed lymphocytes involved in active immune 
surveillance.

A naive merging of these two data sets without accounting for batch effects illustrates the 
separation of the T cells from their counterparts in the PBMC data (Figure 5a,b). 
Combination of these two data sets using MNNs demonstrates that the separate peripheral T 
cells map to the T cell subsets within the PBMC mixture (Figure 5c,d). Importantly, other 

Haghverdi et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2018 September 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



peripheral lymphocyte relationships are not distorted by the correction applied, despite the 
absence of MNNs in the T cell data set (Figure 5c). Specifically, we note that 4446/4459 
(99.7%) of individual T cells map onto their appropriate counterparts in the PBMC data set 
(Figure 5). The remaining 13/4459 (0.3%) map primarily to a small cluster of unknown 
ontogeny and to the edges of a large cluster of monocytes. Conversely, 14 non-T cells (0.3%; 
specifically monocytes) mapped to T cell clusters inappropriately.

As the size of single cell expression data sets increases, there will be a growing need for 
computational methods that can scale up to meet these requirements. To demonstrate the 
scalability of our method, we sampled different proportions of cells from the 68K PBMC 
data set, and corrected the batch effect between each subsample and the 4K T cell data. 
Within the range of 7,000 to 70,000 cells we see an approximately linear time increase 
(Figure 5e). This demonstrates that our method is applicable to both the nature of droplet 
technology-derived single cell expression data, and the scale of current and future data sets.

Discussion

Proper removal of batch effects is critical for valid data analysis and interpretation of the 
results. This is especially pertinent as the scale and scope of scRNA-seq experiments 
increase, exceeding the capacity of data generation within a single batch. To answer the 
relevant biological questions, merging data from different batches - generated by different 
protocols, operators and/or platforms - is required. However, for biological systems that are 
highly heterogeneous, it is likely that the composition of cell types and states will change 
across batches, due to stochastic and uncontrollable biological variability.

Existing batch correction methods do not account for differences in cell composition 
between batches and fail to fully remove the batch effect in such cases. This can lead to 
misleading conclusions whereby batch-specific clusters are incorrectly interpreted as distinct 
cell types. We demonstrate that our MNN method is able to successfully remove the batch 
effect in the presence of differences in composition, using both simulated data and real 
scRNA-seq data sets as well as demonstrating its scalability.

One prerequisite for our MNN method is that each batch contains at least one shared cell 
population with another batch. This is necessary for the correct identification of MNN pairs 
between batches. Batches without any shared structure are inherently difficult to correct, as 
the batch effects are completely confounded with biological differences. Such cases provide 
a motivation for using “cell controls”, i.e., an easily reproducible cell population of known 
composition (from a cell line for example) that is spiked into each sample for the purpose of 
removing batch effects across samples.

A notable feature of our MNN correction method is that it adjusts for local variations in the 
batch effects by using a Gaussian kernel. This means that our method can accommodate 
differences in the size or direction of the batch effect between different cell subpopulations 
in the high-dimensional space. Such differences are not easily handled by methods based on 
linear models (as this would require explicit modelling of pre-defined groupings of cells, 
which would defeat the purpose of using scRNA-seq to study population heterogeneity in 
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the first place). This also has some implications for the use of cell controls. Our results for 
the pancreas data set suggest that considering cell-type specific batch effects (the default 
setting of MNN) rather than a globally constant batch effect for all cells, improves batch 
removal results (Supplementary Figure 7). An important consequence is that a single cell 
control population might not suffice for accurate estimation of local batch effects. Rather, it 
may be necessary to use an appropriately mixed population of cells to properly account for 
local variation.

We have demonstrated in simulations and real data sets that MNN successfully combines 
cells with the same cell type label, by bringing cells from different batches onto a common 
coordinate system which is defined by the first (reference) batch, such that all batches can be 
analysed together. Therefore, MNN eliminates discrepancies between related batches 
without an analysis or interpretation of the origins and causes of batch effects (between each 
pair of batches). The study of technical and biological origins of these discrepancies may 
also be interesting. For instance, where one batch contains cells from a gene knock-out 
experiment and the other batch contains cells from a wild-type organism. In such cases we 
could potentially examine the correction vectors (provided as an output of the MNN 
algorithm) to understand the differences between batches.

Batch correction plays a critical role in the interpretation of data from scRNA-seq studies. 
This includes both small studies, where logistical constraints preclude the generation of data 
in a single batch; as well as those involving international consortia such as the Human Cell 
Atlas, where scRNA-seq data is generated on a variety of related tissues at different times 
and by multiple laboratories. Our MNN method provides a superior alternative to existing 
methods for batch correction in the presence of compositional differences between batches. 
We anticipate that it will improve the rigour of scRNA-seq data analysis and, thus, the 
quality of the biological conclusions.

Online Methods

Generation and analysis of simulated data

We considered a three-component Gaussian mixture model in two dimensions (to represent 
the low dimensional biological subspace), where each mixture component represents a 
different simulated cell type. Two data sets with N = 1000 cells were drawn with different 
mixing coefficients (0.2, 0.3 and 0.5 for the first batch and 0.05, 0.65 and 0.3 for the second 
batch) for the three cell types. We then projected both data sets to G = 100 dimensions using 
the same random Gaussian matrix, thus simulating high-dimensional gene expression. Batch 
effects were incorporated by generating a Gaussian random vector for each data set and 
adding it to the expression profiles for all cells in that data set.

Processing and analysis of the haemaopoetic data sets

Gene expression counts generated by Nestorowa et al. [12] on the SMART-seq2 platform 
(1920 cells in total) were downloaded from the NCBI Gene Expression Omnibus (GEO) 
using the accession number GSE81682. Expression counts generated by Paul et al. [18] on 
the MARS-seq platform (10368 cells in total) were obtained from NCBI GEO using the 
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accession GSE72857. Then, using FACS sorting, the authors identified 2729 myeloid 
progenitor cells (CMP, GMP, and MEP) as Lin− (lineage negative) c-Kit+ Sca1− and gated 
the cells further by the levels of the FcgR and CD34 markers; these cells were used for the 
analysis in this manuscript. For batch correction, we identified a set of 3937 common highly 
variable genes between the two data sets, by applying the method described by Brennecke et 
al. [25] to each data set. For both data sets, we performed library size normalization before 
log-transforming the normalized expression values. A priori cell labels were assigned to 
each cell based on the original publications.

Processing and analysis of the pancreas data sets

Raw data were obtained from NCBI GEO using the accession numbers GSE81076 [20] 
(CEL-seq), GSE85241 [21](CEL-seq2) and GSE86473 [22] (SMART-seq2); or from 
ArrayExpress, using the accession E-MTAB-5061 [23] (SMART-seq2). Count matrices were 
used as provided by GEO or ArrayExpress, if available. For GSE86473, reads were aligned 
to the hg38 build of the human genome using STAR version 2.4.2a [26] with default 
parameters, and assigned to Ensembl build 86 protein-coding genes using featureCounts 
version 1.4.6 [27].

Quality control was performed on each data set independently to remove poor quality cells 
(>20% of total counts from spike-in transcripts, <100,000 reads, >40% total counts from 
ribosomal RNA genes). Sparse cells and genes (90% zero values) were also removed, 
leaving a total of 7236 cells available across all 4 data sets. Normalization of cell-specific 
biases was performed for each data set using the deconvolution method of Lun et al. [28]. 
Counts were divided by size factors to obtain normalised expression values that were log-
transformed after adding a pseudo-count of 1. Highly variable genes were identified in each 
data set using the method of Brennecke at al. [25]. We took the union of highly variable 
genes that are commonly expressed across all four data sets, resulting in 2507 genes that 
were used for the MNN batch correction.

Cell type labels for each data set were assigned based on the provided metadata (GSE86473, 
EMTAB-5061) or, if the labels were not provided, were inferred from the data using the 
method employed in the original publication (GSE81076, GSE85241).

To demonstrate the utility of our batch correction method in downstream analyses, we 
applied dimensionality reduction (t-SNE) to the MNN-corrected expression matrix from the 
pooled pancreas data sets. We constructed a shared-nearest-neighbour (SNN) graph [29] 
using the combined cells and the union of the highly variable genes that were commonly 
expressed across all data set. To identify communities of cells we applied the “Walktrap” 
algorithm to the SNN graph [30], with 5 steps. This identified a total of 11 clusters. To 
assign specific cell type labels to these clusters, we examined the expression of the marker 
genes that were used for cell type assignment in the original publications. Specifically, GCG 
was used to mark α-islets, INS for β-islets, SST for δ-islets, PPY for γ-islets, PRSS1 for 
acinar cells, KRT19 for ductal cells, and COL1A1 for mesenchyme cells. Cells in the cluster 
with the highest expression of each marker gene were assigned to the corresponding cell 
type. All remaining cells were allocated into an additional “Unassigned/Unknown” cluster.
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The differential expression analysis was performed using methods from the limma package 
[7]. For the analysis on all cells, we parameterized the design matrix such that each batch-
cluster combination formed a separate group in a one-way layout using the labels derived 
from the batch-corrected data (see above). We used this design to fit a linear model to the 
normalized uncorrected log-expression values for each gene, and performed empirical Bayes 
shrinkage to stabilize the sample variances. A moderated t-test was applied to compare the 
δ- and γ-islet clusters across all batches. Specifically, we tested whether the average 
expression of each cluster across all batches was equal between the two cell types. 
Differentially expressed genes were defined as those detected at an FDR of 5%. For 
comparison, we repeated this analysis for each batch using only cells from batches where 
both cell types were present. Here, we used a design matrix with a one-way layout 
constructed from the original cell type assignments. δ- and γ-islet cell types were directly 
compared within this batch.

Application of batch correction to droplet-based data

Single-cell gene expression measurements derived from the droplet-based platform by 10X 
Genomics using their Chromium v2 chemistry were downloaded from the company website 
(https://support.10xgenomics.com/single-cell-gene-expression/datasets). Expression data 
from 4459 human T cells (t_4k) and 68,580 peripheral blood mononuclear cells (PBMCs; 
pbmc68k) from two separate donors were normalised separately using size factors estimated 
by the deconvolution method as previously described [28]. Highly variable genes were 
defined within each data set as previously described [25] (PBMC - 1409 genes, T cells - 
1219). To define communities of transcriptionally similar cells, we constructed a SNN 
graph, and assigned cells to specific communities using the Walktrap algorithm. The identity 
of each community was assigned by visualisation of canonical marker gene expression to 
major leukocyte lineages (CD3, CD20, CD14, CD16, CD1C, CD56). Droplet data sets were 
combined using our MNN approach on the intersection of the two highly variable gene sets 
(270 genes). Low-dimensional representations of individual and combined data sets was 
performed using t-SNE.

MNN correction scalability

Scalability testing of our MNN correction method was performed by random sampling of 
cells between 10 and 100% of the total number of PBMCs, i.e., where 100% = 68,000 cells. 
We combined each subset with the set of 4459 T cells, and recorded the CPU time in the R 
environment (R Core Team 2017) using the system.time function. For each combination of 
data, the R environment garbage collector was invoked prior to recording the function call 
system time.

t-SNE plots

We generated the t-SNE plots using the Rtsne package with identical parameter settings for 
the uncorrected and batch corrected data using MNN, limma and ComBat. In all plots, we 
have used the distance matrix as the input for the Rtsne function (i.e., Rtsne parameter 
is.distance=TRUE). For the haematopoietic data where continuity of data structure is 
expected, we accounted for this by choosing a large perplexity parameter (i.e., 90). For all 
other data sets where existence of separate clusters in the data is expected, we have used the 
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default perplexity parameter (i.e., 30), and again have used identical parameter settings 
across all batch correction methods.

Silhouette coefficient

To assess the separation of the cell types for the pancreas data, we computed the silhouette 
coefficient using the kBET package in R [31]. Here, each unique cell type label defines a 
cluster of cells. Let a(i) be the average distance of cell i to all other cells within the same 
cluster as i, and b(i) be the average distance of cell i to all cells assigned to the neighbouring 
cluster, i.e., the cluster with the lowest average distance to the cluster of i. The Silhouette 
coefficient for cell i is defined as:

s(i) =

1 −
a(i)
b(i)

i f a(i) < b(i)

0 i f a(i) = b(i)

b(i)
a(i)

− 1 i f a(i) > b(i)

(2)

A larger s(i) implies that the cluster assignment for cell i is appropriate, i.e., it is close to 
other cells in the same cluster yet distant from cells in other clusters. As dimensionality 
reduction by t-SNE facilitates more reasonable clustering results compared to clustering in 
the high dimensions, we calculated the silhouette coefficients using distance matrices 
computed from the t-SNE coordinates of each cell in the batch-corrected and the uncorrected 
data.

Entropy of batch mixing

Entropy of mixing [32] for c different batches is defined as:

E = ∑
i = 1

c

xi log(xi) (3)

where xi is the proportion of cells from batch i in a given region, such that ∑i = 1
c

x
i

= 1 . We 

assessed the total entropy of batch mixing on the first two PCs of the batch-corrected and the 
uncorrected pancreas data sets, using regional mixing entropies according to Equation 3 at 
the location of 100 randomly chosen cells from all batches. The regional proportion of cells 
from each batch was defined from the set of 100 nearest neighbours for each randomly 
chosen cell. The total mixing entropy was then calculated as the sum of the regional 
entropies. We repeated this for 100 iterations with different randomly chosen cells to 
generate boxplots of the total entropy (Supplementary Figures 5q and 6q).

A Life Sciences Reporting Summary is available.
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Refer to Web version on PubMed Central for supplementary material.
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Editor Summary

Differences in gene expression between individual cells of the same type are measured 
across batches and used to correct technical artefacts in single-cell RNA sequencing data
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Figure 1. 
Schematics of batch effect correction by MNN. (a) Batch 1 and batch 2 in high dimensions 
with an almost orthogonal batch effect difference between them. (b) The algorithm identifies 
matching cell types by finding mutual nearest neighbouring pairs of cells (grey box). (c) 
Batch correction vectors are calculated between the MNN pairs. (d) Batch 1 is regarded as 
the reference and batch 2 is integrated into it by subtraction of correction vectors. (e) The 
integrated data are considered as the reference and the procedure is repeated for integration 
of any new batch.

Haghverdi et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2018 September 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
t-SNE plots of simulated scRNA-seq data containing two batches of different cell types 
(with each batch containing n=1000 cells), (a) before and after correction with (b) our MNN 
method, (c) limma or (d) ComBat. In this simulation, each batch (closed circle or open 
triangle) contained different numbers of cells in each of three cell types (specified by 
colour).
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Figure 3. 
t-SNE plots of scRNA-seq count data for cells from the haematopoietic lineage, prepared in 
two batches using different technologies (SMART-seq2 with n=1920 cells, closed circle; 
MARS-seq, with n=2729 cells, open circle). Plots were generated (a) before and after batch 
correction using (b) our MNN method, (c) limma or (d) ComBat. Cells are coloured 
according to their annotated cell type. (e) The expected hierarchy of haematopoietic cell 
types. PCA plots of scRNA-seq count data for common cells types between the two batches 
of the haematopoietic lineage generated (SMART-seq2 with n=791 cells and MARS-seq, 
with n=2729 cells) (f) before and after batch correction using (g) our MNN method, (h) 
limma or (i) ComBat.
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Figure 4. 
Application of MNN batch correction to pancreas cells using four data sets (GSE81076 with 
n=1007, GSE86473 with n= 2331, GSE85241 with n=1595 and E-MTAB-5061 with n=2163 
cells) measured on two different platforms, CEL-seq(2) and SMART-seq2. t-SNE plots for 
(a) uncorrected (raw) data and (b) data corrected with our MNN method. The different 
batches are represented by four colours in the top panel of (a) and (b), whilst the different 
cell types are denoted in the bottom panels by distinct colours. (c) Combining data sets by 
using MNN correction increases the power to detect differentially expressed genes. Volcano 

Haghverdi et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2018 September 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



plots of differential expression testing in a single data set (GSE81076; δ-cells=54, γ-
cells=19, left panel) and using the new cell type labels after MNN correction (Combined; δ-
cells=428, γ-cells=425, right panel). The y-axis represents the -log10 Benjamini-Hochberg 
adjusted p-value (-log10 p-value > 100 are censored at 100 for comparable scales), and the x-
axis is the log2 fold change of expression in cells over cells. Individual gene symbols are 
labelled where |log2 fold change| > 3. More genes are consistently differentially expressed at 
a FDR 5% in the combined data sets. (d) Venn diagrams representing the intersection of 
differentially expressed genes using the cell type labels after batch correction (blue circle) 
and using the original cell type labels from each individual study (orange circle). Numbers 
in each segment are the total number of DE genes between δ and γ islet cells in each batch. 
Each Venn diagram corresponds to a batch in which both cell types are present.

Haghverdi et al. Page 20

Nat Biotechnol. Author manuscript; available in PMC 2018 September 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. 
MNN batch correction scales to tens of thousands of cells. t-SNE plots of scRNA-seq data of 
human peripheral blood mononuclear cells and T cells (n=73039 cells), prior to batch 
correction (a, c) and following MNN correction (b, d). Individual points are coloured by 
their original cell type labels (c, d) and by the study batch of origin (a, b). (e) CPU time 
increases linearly in the number of input cells to MNN correction. Points represent the 
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number of sub-sampled cells; the red dashed line represents the linear t between CPU time 
(minutes) and number of cells.
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