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Abstract Batch reinforcement learning is a subfield of dynamic programming-based

reinforcement learning. Originally defined as the task of learning the best possible

policy from a fixed set of a priori-known transition samples, the (batch) algorithms

developed in this field can be easily adapted to the classical online case, where the

agent interacts with the environment while learning. Due to the efficient use of col-

lected data and the stability of the learning process, this research area has attracted

a lot of attention recently. In this chapter, we introduce the basic principles and the

theory behind batch reinforcement learning, describe the most important algorithms,

exemplarily discuss ongoing research within this field, and briefly survey real-world

applications of batch reinforcement learning.

1 Introduction

Batch reinforcement learning is a subfield of dynamic programming (DP) based re-

inforcement learning (RL) that has vastly grown in importance during the last years.

Historically, the term ‘batch RL’ is used to describe a reinforcement learning setting,

where the complete amount of learning experience—usually a set of transitions sam-

pled from the system—is fixed and given a priori (Ernst et al, 2005a). The task of

the learning system then is to derive a solution—usually an optimal policy—out of

this given batch of samples.

In the following, we will relax this assumption of an a priori fixed set of training

experience. The crucial benefit of batch algorithms lies in the way they handle a

batch of transitions and get the best out of it, rather than in the fact that this set is

fixed. From this perspective, batch RL algorithms are characterized by two basic

constituents: all observed transitions are stored and updates occur synchronously on
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the whole batch of transitions (‘fitting’). In particular, this allows for the definition

of ‘growing batch’ methods, that are allowed to extend the set of sample experience

in order to incrementally improve their solution. From the interaction perspective,

the growing batch approach minimizes the difference between batch methods and

pure online learning methods.

The benefits that come with the batch idea—namely, stability and data-efficiency

of the learning process—account for the large interest in batch algorithms. Whereas

basic algorithms like Q-learning usually need many interactions until convergence

to good policies, thus often rendering a direct application to real applications impos-

sible, methods including ideas from batch reinforcement learning usually converge

in a fraction of the time. A number of successful examples of applying ideas orig-

inating from batch RL to learning in the interaction with real-world systems have

recently been published (see sections 6.2 and 6.5).

In this chapter, we will first define the batch reinforcement learning problem and

its variants, which form the problem space treated by batch RL methods. We will

then give a brief historical recap of the development of the central ideas that, in

retrospect, built the foundation of all modern batch RL algorithms. On the basis of

the problem definition and the introduced ideas, we will present the most impor-

tant algorithms in batch RL. We will discuss their theoretical properties as well as

some variations that have a high relevance for practical applications. This includes a

treatment of Neural Fitted Q Iteration (NFQ) and some of its applications, as it has

proven a powerful tool for learning on real systems. With the application of batch

methods to both visual learning of control policies and solving distributed schedul-

ing problems, we will briefly discuss on-going research.

2 The Batch Reinforcement Learning Problem

Batch reinforcement learning was historically defined as the class of algorithms de-

veloped for solving a particular learning problem—namely, the batch reinforcement

learning problem.

2.1 The Batch Learning Problem

As in the general reinforcement learning problem defined by Sutton and Barto

(1998), the task in the batch learning problem is to find a policy that maximizes

the sum of expected rewards in the familiar agent-environment loop. However, dif-

fering from the general case, in the batch learning problem the agent itself is not

allowed to interact with the system during learning. Instead of observing a state s,

trying an action a and adapting its policy according to the subsequent following state
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s′ and reward r, the learner only receives a set F = {(st ,at ,rt+1,st+1)|t = 1, . . . , p}
of p transitions (s,a,r,s′) sampled from the environment1.

1. Exploration 2. Learning 3. Application
transitions
(s,a,r,s')

policy

batch learning task

Fig. 1 The three distinct phases of the batch reinforcement learning process: 1: Collecting tran-

sitions with an arbitrary sampling strategy. 2: Application of (batch) reinforcement learning algo-

rithms in order to learn the best possible policy from the set of transitions. 3: Application of the

learned policy. Exploration is not part of the batch learning task. During the application phase, that

isn’t part of the learning task either, policies stay fixed and are not improved further.

In the most general case of this batch reinforcement learning problem the learner

cannot make any assumptions on the sampling procedure of the transitions. They

may be sampled by an arbitrary—even purely random—policy; they are not nec-

essarily sampled uniformly from the sate-action space S×A; they need not even

be sampled along connected trajectories. Using only this information, the learner

has to come up with a policy that will then be used by the agent to interact with

the environment. During this application phase the policy is fixed and not further

improved as new observations come in. Since the learner itself is not allowed to

interact with the environment, and the given set of transitions is usually finite, the

learner cannot be expected to always come up with an optimal policy. The objec-

tive has therefore been changed from learning an optimal policy—as in the general

reinforcement learning case—to deriving the best possible policy from the given

data.

The distinct separation of the whole procedure into three phases—exploring the

environment and collecting state transitions and rewards, learning a policy, and ap-

plication of the learned policy—their sequential nature, and the data passed at the

interfaces is further clarified in figure 1. Obviously, treatment of the exploration–

exploitation dilemma is not subject to algorithms solving such a pure batch learning

problem, as the exploration is not part of the learning task at all.

1 The methods presented in this chapter all assume a markovian state representation and the tran-

sitions F to be sampled from a discrete-time Markov decision process (MDP, see chapter ??). For

a treatment of only partially observable decision processes see chapter ??.
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2.2 The Growing Batch Learning Problem

Although this batch reinforcement learning problem historically has been the start

of the development of batch reinforcement learning algorithms, modern batch RL

algorithms are seldom used in this ‘pure’ batch learning problem. In practice, ex-

ploration has an important impact on the quality of the policies that can be learned.

Obviously, the distribution of transitions in the provided batch must resemble the

‘true’ transition probabilities of the system in order to allow the derivation of good

policies. The easiest way to achieve this is to sample the training examples from the

system itself, by simply interacting with it. But when sampling from the real system,

another aspect becomes important: the covering of the state space by the transitions

used for learning. If ‘important’ regions—e.g. states close to the goal state—are not

covered by any samples, then it is obviously not possible to learn a good policy from

the data, since important information is missing. This is a real problem because in

practice, a completely ‘uninformed’ policy—e.g. a purely random policy—is often

not able to achieve an adequate covering of the state space—especially in the case

of attractive starting states and hard to reach desirable states. It is often necessary to

already have a rough idea of a good policy in order to be able to explore interesting

regions that are not in the direct vicinity of the starting states.

1. Exploration 2. Learning 3. Application
transitions
(s,a,r,s')

policy

growing batch learning task

exploration policy

Fig. 2 The growing batch reinforcement learning process has the same three phases as the ‘pure’

batch learning process depicted in figure 1. But differing from the pure batch process, the growing

batch learning process alternates for several times between the exploration and the learning phase,

thus incrementally ‘growing’ the batch of stored transitions using intermediate policies.

This is the main reason why a third variant of the reinforcement learning problem

became a popular practice, somehow positioned in between the pure online prob-

lem and the pure batch problem. Since the main idea of this third type of learning

problem is to alternate between phases of exploration, where a set of training ex-

amples is grown by interacting with the system, and phases of learning, where the

whole batch of observations is used (see fig. 2), we will refer to it as the ‘growing

batch’ learning problem. In the literature, this growing batch approach can be found

in several different guises; the number of alternations between episodes of explo-

ration and episodes of learning can be in the whole range of being as close to the

pure batch approach as using only two iterations (Riedmiller et al, 2008) to recal-
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culating the policy after every few interactions—e.g. after finishing one episode in

a shortest-path problem (Kalyanakrishnan and Stone, 2007; Lange and Riedmiller,

2010a). In practice, the growing batch approach is the modeling of choice when

applying batch reinforcement learning algorithms to real systems. Since from the

interaction perspective the growing batch approach is very similar to the ‘pure’ on-

line approach—the agent improves its policy while interacting with the system—the

interaction perspective, with the distinction between ‘online’ and ‘offline’, isn’t that

useful anymore for identifying batch RL algorithms. When talking about ‘batch’ RL

algorithms now, it’s more important to look at the algorithms and search for typical

properties of the specific update rules.

3 Foundations of Batch RL Algorithms

Model-free online learning methods like Q-learning are appealing from a conceptual

point of view and have been very successful when applied to problems with small,

discrete state spaces. But when it comes to applying them to more realistic systems

with larger and, possibly, continuous state spaces, these algorithms come up against

limiting factors. In this respect, there can be identified three independent problems:

1. the ‘exploration overhead’, causing slow learning in practice

2. inefficiencies due to the stochastic approximation

3. stability issues when using function approximation

A common factor in modern batch RL algorithms is that these algorithms typically

address all three issues and come up with specific solutions to each of them. In the

following, we will discuss these problems in more detail and present the proposed

solutions (in historical order) that now form the defining ideas behind modern batch

reinforcement learning.

The Idea of ‘Experience Replay’ for Addressing the Exploration Overhead

In order to explain the problem referred to as ‘exploration overhead’, let us for a

moment consider the common Q-update rule for model-free online learning with

learning rate α and discount factor γ as given by

Q′(s,a)← Q(s,a)+α

[

r+ γ max
a′∈A

Q(s′,a′)−Q(s,a)

]

(1)

(see chapter ??). In pure online Q-learning the agent alternates between learning

and exploring with practically every single time step: in state s the agent selects and

executes an action a, and then, when observing the subsequent state s′ and reward

r, it immediately updates the value function (and thus the corresponding greedy

policy; see chapter ??) according to (1), afterwards forgetting the ‘experienced’

state transition tuple (s,a,r,s′). It then returns to exploring with the updated policy
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Q′(s,a). Although this approach is guaranteed to converge in the limit, there is a

severe performance problem with these ‘local’ updates along actually experienced

transitions. When, for example, updating the Q-value of state-action pair (st ,at) in

time step t this may influence the values (st−1,a) for all a ∈ A of a preceding state

st−1. However, this change will not back-propagate immediately to all the involved

preceding states, as the states preceding st are only updated the next time they are

visited. And states preceding those preceding states st−1 need yet another trial af-

terwards to be adapted to the new value of st−1. The performance problem with

this is that these interactions are not actually needed to collect more information

from the system in the first place, but mainly are needed to spread already available

information through the whole state space in reverse order along trajectories. In

practice, many interactions in Q-learning are of this ‘spreading’ type of interaction.

This problem becomes even more pronounced when considering that those updates

in model-free Q-learning are ‘physical’—in the sense of needing real interaction

with the system—and can seldomly be sampled in ordered sweeps across the whole

state space or, at least, according to a uniform distribution.

In order to overcome this performance issue, Lin (1992) introduced the idea of

‘experience replay’. Although the intention was to solve the ‘exploration overhead’

problem in online learning, in retrospect, we might identify it as basic—but never-

theless first—technique used for addressing the growing batch problem. The idea

behind experience replay is to speed up convergence not only by using observed

state transitions (the experience) once, but replaying them repeatedly to the agent as

if they were new observations collected while interacting with the system. In fact,

one can store a few to as many as all transitions observed up until that point and

use them to update the Q-function for every single stored transition according to (1)

after every interaction with the system. It is exaclty the information in the stored

transitions that is missing in basic online Q-learning to be able to back-propagate

information from updated states to preceding states without further interaction. The

transitions collected when using experience replay resemble the connection between

individual states and make more efficient use of this information, by spreading it

along these connections, and, ideally, speeding up convergence.

The Idea of ‘Fitting’ to Address Stability Issues

In online RL it is common to use ‘asynchronous’ updates in the sense that the value

function after each observation is immediately updated locally for that particular

state, leaving all other states untouched. In the discrete case, this means updating

one single Q-value for a state-action pair (s,a) in Q-learning—thereby immediately

‘over-writing’ the value of the starting state of the transition. Subsequent updates

would use this updated value for their own update. This idea was also used with

function approximation, first performing a DP update like, for example,

q̄s,a = r+ γ max
a′∈A

f (s′,a′) , (2)
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recalculating the approximated value q̄s,a of the present state action pair (s,a) by,

e.g., adding immediate reward and approximated value of the subsequent state, and

then immediately ‘storing’ the new value in the function approximator in the sense

of moving the value of the approximation slightly towards the value of the new

estimate q̄s,a for the state-action pair (s,a):

f ′(s,a)← (1−α) f (s,a)+α q̄s,a . (3)

Please note that (2) and (3) are just re-arranged forms of equation (1), using an

arbitrary function approximation scheme for calculating an approximation f ′ of the

‘true’ Q-value function Q′.

Baird (1995), Gordon (1996) and others have shown examples where particular

combinations of Q-learning and similar updates with function approximators be-

have instably or even lead to sure divergence. Stable behavior can be proven only

for particular instances of combinations of approximation schemes and update rules,

or under particular circumstances and assumptions on the system and reward struc-

ture (Schoknecht and Merke, 2003). In practice it required extensive experience on

behalf of the engineer, in order to get a particular learning algorithm to work on

a system. The observed stability issues are related to the interdependency of errors

made in function approximation and deviations of the estimated value function from

the optimal value function. Whereas the DP update (2) tries to gradually decrease the

difference between Q(s,a) and the optimal Q-function Q∗(s,a), storing the updated

value in the function approximator in step (3) might (re-)introduce an even larger

error. Moreover, this approximation error influences all subsequent DP updates and

may work against the contraction or even prevent it. The problem becomes even

worse when global function approximators—like, for example, multi-layer percep-

trons (Rumelhart et al, 1986; Werbos, 1974)—are used; improving a single Q-value

of a state-action pair might impair all other approximations throughout the entire

state space.

In this situation Gordon (1995a) came up with the compelling idea of slightly

modifying the update scheme in order to separate the dynamic programming step

from the function approximation step. The idea is to first apply a DP update to all

members of a set of so-called ‘supports’ (points distributed throughout the state

space) calculate new ‘target values’ for all supports (like in (2)), and then use super-

vised learning to train (‘fit’) a function approximator on all these new target values,

thereby replacing the local updates of (3) (Gordon, 1995a). In this sense, the esti-

mated Q-function is updated ‘synchronously’, with updates occuring at all supports

at the same time. Although Gordon introduced this fitting idea within the setting of

model-based value iteration, it became the foundation, and perhaps even the starting

point, of all modern batch algorithms.



8 Sascha Lange, Thomas Gabel, and Martin Riedmiller

Replacing Inefficient Stochastic Approximation

Gordon discussed the possibility of transfering the ‘fitting’ idea to model-free—

sample-based—approaches like, e.g., Q-learning, but did not find a solution and

identified several convergence issues when estimating the values at the supports

from samples in their surrounding. Ormoneit and Sen finally came up with the so-

lution of how to adapt and apply his idea to the sample-based case. In their work,

Ormoneit and Sen (2002) propose not to use arbitrarily selected supports in the

state space to approximate value functions, but rather to use the sampled transitions

directly to approximate the value function—either at the starting or at the ending

states of the transitions—with the help of a kernel-based approximator. Their idea is

to calculate an estimate of the value of each explored state-action pair under the ac-

tually observed transition (reward plus expected value of subsequent state), and then

estimate the values of the subsequent states by averaging over the values of nearby

transitions. Technically, the trick is to replace the exact DP-operator that was intro-

duced by Gordon with a non-exact random operator (see section 4.1 for a formal

definition). This random operator does not use the exact models in the DP-step.

Instead, it only estimates the exact DP-operation by using a random sampling of

transitions drawn from the unknown transition models. Lagoudakis and Parr (2001,

2003) came up with a similar idea independently.

As a side effect, calculating the costs of particular transitions and estimating

the values of states (and actions) by averaging over the stored samples solved an-

other performance problem connected to the stochastic approximation in regular

Q-learning. Whereas in model-based value iteration the value of a state according

to the current values of its possible subsequent states can be updated in a single step

using the transition model, in Q-learning—due to the replacement of the model by

stochastic approximation—such an update requires many visits to the state in ques-

tion. Moreover, since we are using one learning rate for the entire state space, this

learning rate cannot be adjusted in a way that is optimal for all states depending

on the number of visits. In practice, this makes reaching the optimal convergence

rate impossible. The algorithm of Ormoneit and Sen does not rely on stochastic ap-

proximation, but rather implicitly estimates the transition model by averaging over

the observed transitions that—if collected in interaction with the system—actually

form a random sampling from the true distributions.

4 Batch RL Algorithms

In their work, Ormoneit and Sen proposed a ‘unified’ kernel-based algorithm that

could actually be seen as a general framework upon which several later algo-

rithms are based. Their ‘kernel-based approximate dynamic programming’ (KADP)

brought together the ideas of experience replay (storing and re-using experience),

fitting (separation of DP-operator and approximation), and kernel-based self-approxi-

mation (sample-based).
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4.1 Kernel-Based Approximate Dynamic Programming

Ormoneit’s kernel-based approximate dynamic programming solves an approxi-

mated version of the ‘exact’ Bellman-equation

V = HV

that is expressed in

V̂ = ĤV̂ .

It not only uses an approximation V̂ of the ‘true’ state-value function V —as Gor-

don’s fitted value iteration did—but also uses an approximate version Ĥ of the exact

DP-operator H itself.

The KADP algorithm for solving this equation works as follows: starting from

an arbitrary initial approximation V̂ 0 of the state-value function, each iteration i of

the KADP-algorithm consists of solving the equation

V̂ i+1 = HmaxĤa
d pV̂ i

for a given set

F = {(st ,at ,rt+1,st+1)|t = 1, . . . , p}

of p transitions (s,a,r,s′). In this equation, the approximate DP-operator

Ĥ = HmaxĤa
d p

has been split into an exact part Hmax maximizing over actions and an approximate

random operator Ĥa
d p approximating the ‘true’ (model-based) DP-step for individual

actions from the observed transitions. The first half of this equation is calculated

according to the sample-based DP update

Q̂i+1
a (σ) := Ĥa

d pV̂ i(σ) = ∑
(s,a,r,s′)∈Fa

k(s,σ)
[

r+ γV̂ i(s′)
]

. (4)

Using a weighting-kernel k( · ,σ), this equation calculates a weighted average of the

well-known Q-updates

r+ γV̂ i(s′) = r+ γ max
a′∈A

Q̂i(s′,a′) ,

(please note the similarity to equation (2)) along all transitions (s,a,r,s′) ∈ Fa,

where Fa ⊂F is the subset of F that contains only the transitions (s,a,r,s′) ∈F

that used the particular action a. The weighting kernel is chosen in such a way that

more distant samples have a smaller influence on the resulting sum than closer (=

more similar) samples.

The second half of the equation applies the maximizing-operator Hmax to the

approximated Q-functions Q̂i+1
a :
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V̂ i+1(s) = HmaxQ̂i+1
a (s) = max

a∈A
Q̂i+1

a (s) . (5)

Please note that this algorithm uses an individual approximation Q̂i+1
a : S 7→ R for

each action a ∈ A in order to approximate the Q-function Qi+1
a : S×A 7→ R. Fur-

thermore, a little bit counter-intuitively, in a practical implementation, this last

equation is actually evaluated and stored for all ending states s′ of all transitions

(s,a,r,s′) ∈F—not the starting states s. This decision to store the ending states is

explained by noting that in the right-hand side of equation (4) we only query the

present estimate of the value function at the ending states of the transitions—never

its starting states (see Ormoneit and Sen (2002), section 4). This becomes clearer in

figure 3.

st+2

Q̂(σ, a)?

st

action a

action b

st+1

stores state-values of ending states:

V̂ (s�) = max
a∈A

Q̂a(s
�)

Ĥa
dpV̂ (σ) =

�

(s,a,r,s�)∈Fa

k(s,σ)[r + γV̂ (s′)]

V̂ = HmaxQ̂a

Fig. 3 Visualization of the kernel-based approximation in KADP. For computing the Q-value

Q̂(σ ,a) = Ĥa
d p(σ)V̂ (σ) of (σ ,a) at an arbitrary state σ ∈ S, KADP uses the starting states s of

nearby transitions (s,a,r,s′) only for calculating the weighting factors k(s,σ), however, depends

on the state values V̂ (s′) of ending states s′ (in the depicted example s = st and s′ = st+1).

Iterating over equations (4) and (5), calculating a sequence of approximations V̂ i+1

with i = 0,1,2, . . ., the algorithm will ultimately converge to a unique solution V̂

when explicitly storing the values V̂ i(s′) of V̂ i at the end-points s′ of the transitions

(s,a,r,s′) and using weighting-kernels that adhere to the ‘averager’ restriction from

Gordon (1995a). For meeting this restriction the weights need to, A), add up to one

∑
(s,a,r,s′)∈Fa

k(s,σ) = 1 ∀σ ∈ S

and, B), to be non-negative

k(s,σ)≥ 0 ∀σ ∈ S ∀(s,a,r,s′) ∈Fa .

The decision to store and iterate over state-values instead of state-action values re-

sults in the necessity of applying another DP-step in order to derive a greedy policy

from the result of the KADP algorithm:
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π i+1(σ) = argmax
a∈A

Ĥa
d pV̂ i(σ)

= argmax
a∈A

∑
(s,a,r,s′)∈Fa

k(s,σ)
[

r+ γV̂ i(s′)
]

.

This might appear to be a small problem from an efficiency point of view, as you

have more complex computations as in Q-learning and need to remember all tran-

sitions in the application phase, but it is not a theoretical problem. Applying the

DP-operator to the fixed point of V̂ = ĤV̂ does not change anything but results in

the same unique fixed point.

4.2 Fitted Q Iteration

Perhaps the most popular algorithm in batch RL is Damien Ernst’s ‘Fitted Q Iter-

ation’ (FQI, Ernst et al (2005a)). It can be seen as the ‘Q-Learning of batch RL’,

as it is actually a straight-forward transfer of the basic Q-learning update-rule to

the batch case. Given a fixed set F = {(st ,at ,rt+1,st+1)|t = 1, . . . , p} of p tran-

sitions (s,a,r,s′) and an initial Q-value q̄0 (Ernst et al (2005a) used q̄0 = 0) the

algorithm starts by initializing an initial approximation Q̂0 of the Q-function Q0

with Q̂0(s,a) = q̄0 for all (s,a) ∈ S×A. It then iterates over the following two steps:

1. Start with an empty set Pi+1 of patterns (s,a; q̄i+1
s,a ). Then, for each transition

(s,a,r,s′) ∈F calculate a new target Q-value q̄i+1
s,a according to

q̄i+1
s,a = r+ γ max

a′∈A
Q̂i(s′,a′) (6)

(similar to the update in equation (2)) and add a corresponding pattern (s,a; q̄i+1
s,a )

to the pattern set; thus:

Pi+1← Pi+1∪{(s,a; q̄i+1
s,a )} .

2. Use supervised learning to train a function approximator on the pattern set Pi+1.

The resulting function Q̂i+1 then is an approximation of the Q-function Qi+1 after

i+1 steps of dynamic programming.

Originally, Ernst proposed randomized trees for approximating the value function.

After fixing their structure, these trees can also be represented as kernel-based aver-

agers, thereby reducing step 2 to

Q̂i+1
a (σ) = ∑

(s,a;q̄i+1
s,a )∈Pi+1

a

k(s,σ)q̄i+1
s,a , (7)

with the weights k(·,σ) determined by the structure of the tree. This variant of FQI

constructs an individual approximation Q̂i+1
a for each discrete action a ∈ A which,

together, form the approximation Q̂i+1(s,a) = Q̂i+1
a (s) (Ernst et al, 2005a, section
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3.4). Besides this variant of FQI, Ernst also proposed a variant with continuous

actions. We may refer the interested reader to Ernst et al (2005a) for a detailed

description of this.

From a theoretical stand-point, Fitted Q Iteration is nevertheless based on Or-

moneit and Sen’s theoretical framework. The similarity between Fitted Q Iteration

and KADP becomes obvious when rearranging equations (6) and (7):

Q̂i+1(σ ,a) = Q̂i+1
a (σ) = ∑

(s,a;q̄)∈Pi+1
a

k(s,σ)q̄i+1
s,a (8)

= ∑
(s,a,r,s′)∈Fa

k(s,σ)

[

r+ γ max
a′∈A

Q̂i
a′(s
′)

]

. (9)

Equation (8) is the original averaging step from equation (7) in FQI for discrete

actions. By inserting FQI’s DP-step (6) immediately follows (9). This result (9) is

practically identical to the update used in KADP, as can be seen by inserting (5) into

(4):

Q̂i+1
a (σ) = ∑

(s,a,r,s′)∈Fa

k(s,σ)
[

r+ γV̂ i(s′)
]

= ∑
(s,a,r,s′)∈Fa

k(s,σ)

[

r+ γ max
a′∈A

Q̂i
a′(s
′)

]

.

Besides the optional treatment of continuous actions, another difference between

FQI and KADP is in the splitting of operators and choice of explicitly repre-

sented values. Where KADP explicitly represents and uses state-values in the

DP-step (4), FQI explicitly represents the Q-function and calculates state-values

V̂ i(s) = maxa∈AQ̂i(s,a) on the fly by maximizing over actions in its DP-step (6).

Although ‘lazy-learning’ with kernel-based averaging—as proposed as the standard

in KADP—is also allowed in FQI, Ernst assumes the usage of a trained averager

or other parametric function approximator for explicitly storing the Q-function. The

‘structure’ of this approximator is neither necessarily related to the starting points

nor ending points of transitions. And, since FQI represents the Q-function explicitly,

deriving a greedy policy in FQI is rather simple:

π i(s) = argmax
a∈A

Q̂i(s,a)

where Q̂i is realized explicitly, either by a single function approximator (continuous

actions) or by a set of function approximators Q̂i
a for the actions a ∈ A.

These subtle differences in otherwise equivalent algorithms make FQI both, more

intuitive and more similar to the online approach of Q-learning. This may account

for this algorithm’s greater popularity.
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4.3 Least-Squares Policy Iteration

Least-squares policy iteration (LSPI, Lagoudakis and Parr (2003)) is another early

example of a batch mode reinforcement learning algorithm. In contrast to the other

algorithms reviewed in this section, LSPI explicitly embeds the task of solving

control problems into the framework of policy iteration (Sutton and Barto, 1998),

thus alternating between policy evaluation and policy improvement steps. How-

ever, LSPI never stores a policy explicitly. Instead, it works solely on the basis of

a state-action value function Q from which a greedy policy is to be derived via

π(s) = argmaxa∈A Q(s,a). For the purpose of representing state-action value func-

tions, LSPI employs a parametric linear approximation architecture with a fixed set

of k pre-defined basis functions φi : S×A and a weight vector w = (w1, . . . ,wk)
T .

Therefore, any approximated state-action value function Q̂ within the scope of LSPI

takes the form

Q̂(s,a, ;w) =
k

∑
j=1

φ j(s,a)w j = ΦwT .

Its policy evaluation step employs a least-squares temporal difference learning al-

gorithm for the state-action value function (LSQ, Lagoudakis and Parr (2001), later

called LSTDQ, Lagoudakis and Parr (2003)). This algorithm takes as input the cur-

rent policy πm—as pointed out above, represented by a set of weights that deter-

mine a value function Q̂ from which πm is to be derived greedily—as well as a finite

set F of transitions (s,a,r,s′). From these inputs, LSTDQ derives analytically the

state-action value function Q̂πm for the given policy under the state distribution de-

termined by the transition set. Clearly, the derived value function returned Q̂πm by

LSTDQ is, again, fully described by a weight vector wπm given the above-mentioned

linear architecture used.

Generally, the searched for value function is a fixed point of the Ĥπ operator

(Ĥπ Q)(s,a) = r(s,π(s))+ γ ∑
s′∈S

p(s,π(s),s′)max
b∈A

Q(s,b), (10)

i.e. Ĥπm Qπ = Qπm . Thus, a good approximation Q̂πm should comply to ĤπmQ̂πm ≈
Q̂πm = Φ(wπm)T . Practically speaking, LSTDQ aims at finding a vector wπ such

that the approximation of the result of applying the Ĥπm operator to Q̂πm is as near

as possible to the true result (in an L2 norm minimizing manner). For this, LSTDQ

employs an orthogonal projection and sets

Q̂πm = (Φ(ΦT Φ)−1ΦT )ĤQ̂πm . (11)

With the compactly written version of equation (10), ĤπmQπm = R + γPΠπmQπm ,

equation (11) can be rearranged to

wπm = (ΦT (Φ− γPΠπmΦ))−1ΦT
R
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where Ππm is a stochastic matrix of size |S|× |S||A| describing policy πm:

Ππm(s,(s
′,a′)) = πm(s

′,a′).

Importantly, in this equation LSTDQ approximates the model of the system on the

basis of the given sample set F , i.e., P is a stochastic matrix of size |S||A|× |S| that

contains transition probabilities, as observed within the transition set according to

P((s,a),s′) = ∑
(s,a,·,s′)∈F

1/ ∑
(s,a,·,·)∈F

1≈ Pr(s,a,s′)

and R is a vector of size |S||A| that summarizes the rewards contained in F .

After having determined the state-action value function Q̂πm for the current policy

πm, a greedy (improved) policy πm+1 can be derived as usual by letting

πm+1(s) = argmax
a∈A

Q̂π
m(s,a) = argmax

a∈A
φ(s,a)(wπm)T .

Since LSPI never stores policies explicitly, but rather implicitly by the set of ba-

sis functions and corresponding weights—and thus, in fact, by a state-action value

function—the policy improvement step of LSPI merely consists of overwriting the

old weight vector w with the current weight vector found by a call to LSTDQ.

Valuable insight can be obtained by comparing a single iteration of the Fitted

Q Iteration algorithm with a single iteration (one policy evaluation and improve-

ment step) of LSPI. The main difference between LSPI and value function-centered

FQI algorithms is that, in a single iteration, LSPI determines an approximation of

the state-action value function Qπm for the current policy and batch of experience.

LSPI can do this analytically—i.e., without iterating the Ĥπm operator—because of

the properties of its linear function approximation architecture. By contrast, FQI

algorithms rely on a set of target values for the supervised fitting of a function ap-

proximator that are based on a single dynamic programming update step—i.e., on a

single application of the Ĥ operator. Consequently, if we interpret Fitted Q Iteration

algorithms from a policy iteration perspective, then this class of algorithms imple-

ments a batch variant of optimistic policy iteration, whereas LSPI realizes standard

(non-optimistic) policy iteration.

4.4 Identifying Batch Algorithms

Whereas the algorithms described here could be seen as the foundation of mod-

ern batch reinforcement learning, several other algorithms have been referred to as

‘batch’ or ‘semi-batch’ algorithms in the past. Furthermore, the borders between

‘online’, ‘offline’, ‘semi-batch’, and ‘batch’ can not be drawn distinctly; there are

at least two different perspectives to look at the problem. Figure 4 proposes an or-

dering of online, semi-batch, growing batch, and batch reinforcement learning al-

gorithms. On one side of the tree we have pure online algorithms like classic Q-
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Fig. 4 Classification of batch vs. non-batch algorithms. With the interaction perspective and the

data-usage perspective there are at least two different perspectives with which to define the category

borders.

learning. On the opposite side of the tree we have pure batch algorithms that work

completely ‘offline’ on a fixed set of transitions. In-between these extremal posi-

tions are a number of other algorithms that, depending on the perspective, could

be classified as either online or (semi-)batch algorithms. For example, the growing

batch approach could be classified as an online method—it interacts with the sys-

tem like an online method and incrementally improves its policy as new experience

becomes available—as well as, from a data usage perspective, being seen as a batch-

algorithm, since it stores all experience and uses ‘batch methods’ to learn from these

observations. Although FQI—like KADP and LSPI—has been proposed by Ernst

as a pure batch algorithm working on a fixed set of samples, it can easily be adapted

to the growing batch setting, as, for example, shown by Kalyanakrishnan and Stone

(2007). This holds true for every ‘pure’ batch approach. On the other hand, NFQ

(see section 6.1), which has been introduced in a growing-batch setting, can also

be adapted to the pure batch setting in a straight-forward manner. Another class is

formed by the ‘semi-batch’ algorithms that were introduced in the 90’s (Singh et al,

1995) primarily for formal reasons. These algorithms make an aggregate update for

several transitions—so it is not pure online learning with immediate updates. But

what they do not do, however, is store and reuse the experience after making this

update—so its not a full batch approach either.
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5 Theory of Batch RL

The compelling feature of the batch RL approach is that it grants stable behavior

for Q-learning-like update rules and a whole class of function approximators (av-

eragers) in a broad number of systems, independent of a particular modeling or

specific reward function. There are two aspects to discuss: a) stability, in the sense

of guaranteed convergence to a solution and b) quality, in the sense of the distance

of this solution to the true optimal value function.

Gordon (1995a,b) introduced the important notion of the ‘averager’ and proved

convergence of his model-based fitted value iteration for this class of function ap-

proximation schemes by first showing their non-expansive properties (in maximum

norm) and then relying on the classical contraction argument (Bertsekas and Tsit-

siklis, 1996) for MDPs with discounted rewards. For non-discounted problems he

identified a more restrictive class of compatible function approximators and proved

convergence for the ‘self-weighted’ averagers (Gordon, 1995b, section 4). Ormoneit

and Sen extended these proofs to the model-free case; their kernel-based approxi-

mators are equivalent to the ‘averagers’ introduced by Gordon (Ormoneit and Sen,

2002). Approximated values must be a weighted average of the samples, where

all weights are positive and add up to one (see section 4.1). These requirements

grant the non-expansive property in maximum norm. Ormoneit and Sen showed

that their random dynamic programming operator using kernel-based approximation

contracts the approximated function in maximum norm for any given set of samples

and, thus, converges to a unique fixed point in the space of possible approximated

functions. The proof has been carried out explicitly for MDPs with discounted re-

wards (Ormoneit and Sen, 2002) and average-cost problems (Ormoneit and Glynn,

2001, 2002).

Another important aspect is the quality of the solution found by the algorithms.

Gordon gave an absolute upper bound on the distance of the fixed point of his fit-

ted value iteration to the optimal value function (Gordon, 1995b). This bound de-

pends mainly on the expressiveness of the function approximator and its ‘compat-

ibility’ with the optimal value function to approximate. Apart from the function

approximator, in model-free batch reinforcement learning the random sampling of

the transitions obviously is another aspect that influences the quality of the solution.

Therefore, for KADP, there is no absolute upper bound limiting the distance of the

approximate solution given a particular function approximator. Ormoneit and Sen

instead proved the stochastic consistency of their algorithm—actually, this could

be seen as an even stronger statement. Continuously increasing the size of samples

in the limit guarantees stochastic convergence to the optimal value function under

certain assumptions (Ormoneit and Sen, 2002). These assumptions (Ormoneit and

Sen, 2002, appendix A)—besides other constraints on the sampling of transitions—

include smoothness constraints on the reward function (needs to be a Lipschitz con-

tinuous function of s, a and s′) and the kernel. A particular kernel used throughout

their experiments (Ormoneit and Glynn, 2001) that fulfills these constraints is de-

rived from the ‘mother kernel’
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with φ+ being a univariate Gaussian function. The parameter b controls the ‘band-

width’ of the kernel—that is its region of influence, or, simply, its ‘resolution’. Re-

lying on such a kernel, the main idea of their consistency proof is to first define an

‘admissible’ reduction rate for the parameter b in dependence of the growing num-

ber of samples and then prove the stochastic convergence of the series of approx-

imations V̂ k under this reduction rate to the optimal value function. Reducing the

bandwidth parameter b can be interpreted as increasing the resolution of the approx-

imator. When reducing b, the expected deviation of the implicitly-estimated transi-

tion model from the true transition probabilities—in the limit—vanishes to zero as

more and more samples become available. It is important to note that increasing

the resolution of the approximator is only guaranteed to improve the approximation

for smooth reward functions and will not necessarily help in approximating step

functions, for example—thus, the Lipschitz constraint on the reward function.

Besides these results, which are limited to the usage of averagers within the batch

RL algorithms, there are promising new theoretical analysis of Antos, Munos, and

Szepesvari, that presently do not cover more general function approximators, but,

however, may lead to helpful results for non-averagers in the future (Antos et al,

2008).

6 Batch RL in Practice

In this section, we will present several applications of batch reinforcement learning

methods to real-world problems.

6.1 Neural Fitted Q Iteration (NFQ)

The ability to approximate functions with high accuracy and to generalize well from

few training examples makes neural networks—in particular, multi-layer percep-

trons (Rumelhart et al, 1986; Werbos, 1974)—an attractive candidate to represent

value functions. However, in the classical online reinforcement learning setting, the

current update often has unforeseeable influence on the efforts taken so far. In con-

trast, batch RL changes the situation dramatically: by updating the value function

simultaneously at all transitions seen so far, the effect of destroying previous efforts

can be overcome. This was the driving idea behind the proposal of Neural Fitted Q

Iteration (NFQ, Riedmiller (2005)). As a second important consequence, the simul-

taneous update at all training instances makes the application of batch supervised

learning algorithms possible. In particular, within the NFQ framework, the adaptive
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supervised learning algorithm Rprop (Riedmiller and Braun, 1993) is used as the

core of the fitting step.

NFQ main() {

input: a set F of transition samples (s,a,r,s′) (same, as used throughout the text)

output: approximation Q̂N of the Q-value function

i=0

init MLP()→ Q̂0;

DO {
generate pattern set P = {(inputt ; targett), t = 1, . . . ,#D} where:

inputt = s,a,

targett = r+ γ maxa′∈A Q̂i(s′,a′)
add artificial patterns(P)

normalize target values(P)

scale pattern values(P)

Rprop training(P)→ Q̂i+1

i← i+1

} WHILE (i < N)

Fig. 5 Main loop of NFQ.

The implementation of the batch RL framework using neural networks is fairly

straight-forward, as the algorithm in figure 5 shows. However, there are some addi-

tional tricks and techniques that help to overcome some of the problems that occur

when approximating (Q-)value functions by multi-layer perceptrons:

• scaling input and target values is crucial for success and should always be done

when using neural networks. A sensible scaling can be easily realized, since all

training patterns are known at the beginning of training.

• adding artificial training patterns (also called ‘hint-to-goal’-heuristic in Ried-

miller (2005)). Since the neural network generalizes from collected experiences,

it can be observed that the network output tends to increase to its maximum value

if no or too few goal-state experiences with zero path costs are included in the

pattern set. A simple method to overcome this problem is to build additional arti-

ficial (i.e. not observed) patterns within the goal region with target value zero that

literally ‘clamp’ the neural network output in that region to 0. For many problems

this method is highly effective and can be easily applied. When the target region

is known, which is typically the case, no extra knowledge is used in applying this

method.

• the ‘Qmin-heuristic’: normalizing’ the ‘Q’ target values (Hafner and Riedmiller,

2011). A second method used to curtail the effect of increasing output values

is to carry out a normalization step by subtracting the lowest target value from

all target values. This results in a pattern set that has a target value of 0 for at

least one training pattern. This method has the advantage in that no additional

knowledge about states in the target regions need be known in advance.
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Fig. 6 Brainstormers MidSize league robot. The difficulty of dribbling lies in the fact, that by the

rules at most one third of the ball might be covered by the robot. Not loosing the ball while turning

therefore requires a sophisticated control of the robot motion.

• using a smooth immediate cost-function (Hafner and Riedmiller, 2011). Since

multi-layer perceptrons basically realize a smooth mapping from inputs to out-

puts, it is reasonable to also use a smooth immediate cost function. As an ex-

ample, consider the immediate cost function that gives constant positive costs

outside the target region and 0 costs inside the target region. This leads to a min-

imum time control behavior, which is favorable in many applications. However,

accordingly, the path costs have rather crispy jumps, which are kind of difficult

to represent by a neural network. Replacing this immediate cost function with a

smoothed version, the main characteristic of the policy induced by the crisp im-

mediate cost function is widely preserved while the value function approximation

is much smoother. For more details, see Hafner and Riedmiller (2011).

6.2 NFQ in Control Applications

Applying reinforcement learning to the control of technical processes is particu-

larly appealing, since it promises to autonomously learn optimal or near optimal

controllers even in the presence of noise or nonlinearities without knowing process

behavior in advance. The introduction of batch RL has contributed to a major break-

through in this domain, since, due to its data efficiency, it is now possible to learn

complex control behavior from scratch by directly interacting with the real system.

Some recent examples of NFQ in real-world applications are learning to swing-up

and balance a real cart-pole system, time optimal position control of pneumatic de-

vices, and learning to accurately steer a real car within less than half an hour of

driving (Riedmiller et al, 2007).

The following briefly describes the learning of a neural dribble controller for a

RoboCup MidSize League robot (for more details, see also Riedmiller et al (2009)).

The autonomous robot (figure 6) uses a camera as its main sensor and is fitted with

an omnidirectional drive. The control interval is 33 ms. Each motor command con-
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sists of three values denoting v
target
y (target forward speed relative to the coordinate

system of the robot), v
target
x (target lateral speed) and v

target
θ (target rotation speed).

Dribbling means being able to keep the ball in front of the robot while turning to

a given target. Because the rules of the MidSize league forbid simply grabbing the

ball and only allow one-third of the ball to be covered by a dribbling device, this

is quite a challenging task: the dribbling behavior must carefully control the robot,

such that the ball does not get away from the robot when it changes direction.

The learning problem is modelled as a stochastic shortest path problem with both

a terminal goal state and terminal failure states. Intermediate steps are punished by

constant costs of 0.01.2 NFQ is used as the core learning algorithm. The computa-

tion of the target value for the batch training set thus becomes:

q̄i+1
s,a :=







1.0 , if s′ ∈ S−

0.01 , if s′ ∈ S+

0.01+mina′inA Q̂i(s′,a′) , else

(12)

where S− denotes the states at which the ball is lost, and S+ denotes the states at

which the robot has the ball and heads towards the target. State information contains

speed of the robot in relative x and y direction, rotation speed, x and y ball position

relative to the robot and, finally, the heading direction relative to the given target

direction. A failure state s ∈ S− is encountered, if the ball’s relative x coordinate

is larger than 50 mm or less than -50 mm, or if the relative y coordinate exceeds

100 mm. A success state is reached whenever the absolute difference between the

heading angle and the target angle is less than 5 degrees.

The robot is controlled by a three-dimensional action vector denoting target

translational and rotational speeds. A total of 5 different action triples are used, U =
{(2.0,0.0,2.0),(2.5,0.0,1.5),(2.5,1.5,1.5),(3.0,1.0,1.0), (3.0,−1.0,1.0)}, where

each triple denotes (vtarget
x ,vtarget

y ,vtarget
θ ).

Input to the Neural Fitted Q Iteration method is a set of transition tuples of the

form (state, action, cost, successor state) where the cost has either been ‘observed’

(external source) or is calculated ‘on-the-fly’ with the help of a known cost function

c : S× A× S 7→ R (internal source). A common procedure used to sample these

transitions is to alternate between training the Q-function and then sampling new

transitions episode-wise by greedily exploiting the current Q-function. However,

on the real robot this means that between each data collection phase one has to wait

until the new Q-function has been trained. This can be aggravating, since putting the

ball back on the play-field requires human interaction. Therefore, a batch-sampling

method is used, which collects data over multiple trials without relearning.

The value function is represented by a multi-layer perceptron with 9 input units

(6 state variables and 3 action variables), 2 hidden layers of 20 neurons each and

1 output neuron. After each batch of 12 trials, 10 NFQ iterations are performed.

Learning the target values can be done within 300 epochs of supervised batch learn-

ing, using the Rprop learning method with standard parameters. After the learning

2 Please note: costs = negative rewards. In this technical setting it’s more natural to minimize costs,

what, in principle, is equivalent to maximizing (negative) rewards.
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is finished, the new controller can be used to control the robot during a subsequent

data collection phase. In our experiments, after 11 batches (= 132 trials), a very

good controller was learned. The complete learning procedure took about one and a

half hours, including the time used for offline updating of the neural approximation

of the Q-function. Including preparation phases, the actual interaction time with the

real robot was about 30 minutes.

The neural dribbling skill performed significantly better than the previously used

hand-coded and hand-tuned dribbling routine, particularly in terms of space and

time needed to turn to the desired target direction (see figure 7). The neural dribbling

skill has been successfully used in the Brainstormers competition team since 2007.

Using it, the Brainstormers won the RoboCup world championship 2007 in Atlanta,

USA and third place at the world championship in 2008 in Suzhou, China.
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Fig. 7 Comparison of hand-coded (red) and neural dribbling behavior (blue) when requested to

make a U-turn. The data was collected on the real robot. When the robot gets the ball, it typically

has an initial speed of about 1.5 to 2 m/s in forward direction. The position of the robots are

displayed every 120 ms. The U-turn performed by the neural dribbling controller is much sharper

and faster.

6.3 Batch RL for Learning in Multi-Agent Systems

While the previous two sections have pointed to the advantages of combining the

data-efficiency of batch-mode RL with neural network-based function approxima-

tion schemes, this section elaborates on the benefits of batch methods for cooper-

ative multi-agent reinforcement learning. Assuming independently learning agents,

it is obvious that those transitions experienced by one agent are strongly affected by

the decisions concurrently made by other agents. This dependency of single transi-

tions on external factors, i.e. on other agents’ policies, gives rise to another argu-

ment for batch training: While a single transition tuple contains probably too little
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information for performing a reliable update, a rather comprehensive batch of ex-

perience may contain sufficient information to apply value function-based RL in a

multi-agent context.

The framework of decentralized Markov decision processes (DEC-(PO)MDP,

see chapter ?? or Bernstein et al (2002)) is frequently used to address environments

populated with independent agents that have access to local state information only

and thus do not know about the full, global state. The agents are independent of

one another both in terms of acting as well as learning. Finding optimal solutions to

these types of problems is, generally, intractable, which is why a meaningful goal

is to find approximate joint policies for the ensemble of agents using model-free

reinforcement learning. To this end, a local state-action value function Qk : Sk×Ak

is defined for each agent k that it successively computes, improves, and then uses to

choose its local actions.

In a straightforward approach, a batch RL algorithm (in the following, the focus

is put on the use of NFQ) might be run independently by each of the learning agents,

thus disregarding the possible existence of other agents and making no attempts to

enforce coordination across them. This approach can be interpreted as an ‘averaging

projection’ with Q-values of state-action pairs collected from both, cooperating and

non-cooperating agents. As a consequence, the agents’ local Qk functions underesti-

mate the optimal joint Q-function. The following briefly describes a batch RL-based

approach to sidestep that problem and points to a practical application where the re-

sulting multi-agent learning procedure has been employed successfully (for more

details, see also Gabel and Riedmiller (2008b)).

For a better estimation of the Qk values, the inter-agent coordination mechanism

introduced in Lauer and Riedmiller (2000) can be used and integrated within the

framework of Fitted Q Iteration. The basic idea here is that each agent always opti-

mistically assumes that all other agents behave optimally (though they often will not,

e.g. due to exploration). Updates to the value function and policy learned are only

performed when an agent is certain that a superior joint action has been executed.

The performance of that coordination scheme quickly degrades in the presence of

noise, which is why determinism in the DEC-MDP’s state transitions must be as-

sumed during the phase of collecting transitions. However, this assumption can be

dropped when applying the policies learned.

For the multi-agent case, step 1 of FQI (cf. equation (6)) is modified: Each agent

k collects its own transition set Fk with local transitions (sk,ak,rk,s
′
k). It then creates

a reduced (so-called ‘optimistic’) training pattern set Ok such that |Ok| ≤ |Pk|. Given

a deterministic environment and the ability to reset the system to a specific initial

state during data collection, the probability that agent k enters some sk more than

once is greater than zero. Hence, if a certain action ak ∈ Ak has been taken multiple

times in sk, it may—because of differing local actions selected by other agents—

yield very different rewards and local successor states for k. Instead of considering

all tuples from Fk, only those that have resulted in maximal expected rewards are

used for creating Ok. This means that we assume that all other agents take their

best possible local action, which is—when combined with ak—most suitable for the

current global state. Accordingly, the optimistic target Q-values qi+1
sk,ak

for a given
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local state-action pair (sk,ak) of agent k is computed according to

qi+1
sk,ak

:= max
(s,a,r,s′)∈Fk,

s=sk,a=ak

(

r+ γ max
a′∈Ak

Q̂i
k(s
′,a′)

)

.

Consequently, Ok realizes a partitioning of Fk with respect to identical values of

sk and ak, and qi+1
sk,ak

is the maximal sum of the immediate rewards and discounted

expected rewards over all tuples (sk,ak, ·, ·) ∈Fk.

There are many applications that adhere to the problem class outlined, includ-

ing production planning and resource allocation problems (Gabel and Riedmiller,

2008c). One particular class of problems that can be cast as decentralized MDPs

is made up by job-shop scheduling problems (Brucker and Knust, 2005). Here, the

goal is to allocate a specified number of jobs (also called tasks) to a limited number

of resources (also called machines) in such a manner that some specific objective is

optimized. Taking a batch reinforcement learning approach for scheduling, a learn-

ing agent is attached to each of the resources, receives local information about the

set of jobs waiting for processing (features characterizing the jobs which are inputs

to the neural networks used for value function approximation), and must decide

which job to dispatch next. The agents interact repeatedly with the scheduling plant

and they collect their own batches of transitions, which are then used to derive an

improved dispatching policy by learning agent-specific state-action value functions

Q̂k using the NFQ adaptation outlined above. For well-established benchmark prob-

lems, the learned dispatching policies exhibit competitive performance, and, more-

over, exhibit good generalization capabilities, meaning that they can be immediately

applied to modified factory layouts (Gabel and Riedmiller, 2008a).

6.4 Deep Fitted Q Iteration

Present reinforcement learning algorithms, in general, are still limited to solving

tasks with state spaces of rather low dimensionality. For example, learning poli-

cies directly from high-dimensional visual input—e.g. raw images as captured by

a camera—is still far from being possible. Usually in such a task the engineer pro-

vides a method for extracting the relevant information from the high-dimensional

inputs and for encoding it in a low-dimensional feature space of a feasible size. The

learning algorithm is then applied to this manually constructed feature space.

Here, the introduction of batch reinforcement learning provides new opportuni-

ties for dealing directly with high-dimensional state spaces. Consider a set of tran-

sitions F = {(st ,at ,rt+1,st+1)|t = 1, . . . , p} where the states s are elements of a

high-dimensional state space s ∈ Rn. The idea is to use an appropriate unsupervised

learning method for learning a feature-extracting mapping from the data automati-

cally. Ideally, the learned mapping φ : Rn 7→ Rm with m≪ n should encode all the

‘relevant’ information contained in a state s in the resulting feature vectors z = φ(s).
The interesting thing now is, that by relying on the batch RL methods, we can com-
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bine learning of feature spaces together with learning a policy within a stable and

data-efficient algorithm. Within the growing batch approach, when starting a new

learning phase, we would first use the data F to learn a new feature extraction map-

ping φ : Rn 7→ Rm and then learn a policy in this feature space. This is done by first

mapping all samples from the state space to the feature space, constructing a pattern

set Fφ{(φ(s),a,r,φ(s
′))|(s,a,r,s′) ∈ F}in the feature space and then applying a

batch algorithm such as FQI. Since all experiences are stored in the growing batch

approach, it is possible to change the mapping after each episode of exploration and

improve it with the newly available data. A new approximation of the value function

can be calculated immediately from the mapped transitions. Actually, using the set

of transitions F it is possible to directly ‘translate’ an approximation Q̂φ that was

calculated for the feature extraction φ to a new feature extraction φ ′ without loosing

any information. We would simply apply one step of FQI with a slightly modified

calculation of the target values:

q̄φ ′(s),a = r+ γ max
a′∈A

Q̂
φ
a′
(φ(s′)) .

When calculating the new target value for q̄φ ′(s),a for the new feature vector φ ′(s)
of state s, this update uses the expected reward from the subsequent state s′ as given

by the old approximation Q̂φ using the feature vector φ(s′) in the old feature space.

These target values are then used to calculate a new approximation Q̂φ ′ for the new

feature space.
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Fig. 8 Schematic drawing of Deep Fitted Q Iteration. Raw visual inputs from the system are fed

into a deep auto-encoder neural network that learns to extract a low-dimensional encoding of the

relevant information in its bottle-neck layer. The resulting feature vectors are then used to learn

policies with the help of batch updates.
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We have already implemented this idea in a new algorithm named ‘Deep Fitted

Q Iteration’ (DFQ) (Lange and Riedmiller, 2010a,b). DFQ uses a deep auto-encoder

neural network (Hinton and Salakhutdinov, 2006) with up to millions of weights for

unsupervised learning of low-dimensional feature spaces from high dimensional vi-

sual inputs. Training of these neural networks is embedded in a growing batch rein-

forcement learning algorithm derived from Fitted Q Iteration, thus enabling learning

of feasible feature spaces and useful control policies at the same time (see figure 8).

By relying on kernel-based averagers for approximating the value function in the

automatically constructed feature spaces, DFQ inherits the stable learning behavior

from the batch methods. Extending the theoretical results of Ormoneit and Sen, the

inner loop of DFQ could be shown to converge to a unique solution for any given

set of samples of any MDP with discounted rewards (Lange, 2010).

The DFQ algorithm has been successfully applied to learning visual control poli-

cies in a grid-world benchmark problem—using synthesized (Lange and Riedmiller,

2010b) as well as screen-captured images (Lange and Riedmiller, 2010a)—and to

controlling a slot-car racer only on the basis of the raw image data captured by a

top-mounted camera (Lange, 2010).

6.5 Applications/ Further References

The following table provides a quick overview of recent applications of batch RL

methods.
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Domain Description Method Reference

Technical process control,

real world

Slot car racing NFQ Kietzmann and Ried-

miller (2009)

Technical process control,

real world

Dribbling soccer robot NFQ Riedmiller et al (2009)

Technical process control,

real world

Steering an autonomous car NFQ Riedmiller et al (2007)

Technical process control,

simulation

Nonlinear control bench-

marks

NFQ, NFQCA Hafner and Riedmiller

(2011)

Technical process control,

simulation

Pole swing up and balancing Batch RL,

Gaussian

Processes

Deisenroth et al (2009)

Technical process control,

simulation

Mobile wheeled pendulum NFQ, FQI (Ex-

tra Trees)

Bonarini et al (2008)

Technical process control,

simulation

Semi-active suspension con-

trol

Tree based

batch RL

Tognetti et al (2009)

Technical process control,

simulation

Control of a power system,

comparison to MPC

FQI (Extra

Trees)

Ernst et al (2005b),

Ernst et al (2009)

Portfolio management,

simulation

Managing financial transac-

tions

KADP Ormoneit and Glynn

(2001)

Benchmarking, simulation Mountain car, acrobot FQI, CMAC Timmer and Riedmiller

(2007)

Multi agent systems,

simulation

Decentralized scheduling

policies

NFQ Gabel and Riedmiller

(2008a)

Multi agent systems,

simulation

Keepaway soccer FQI (NN,

CMAC)

Kalyanakrishnan and

Stone (2007)

Medical applications Treatment of Epilepsy Tree based

batch RL

Guez et al (2008)

7 Summary

This chapter has reviewed both the historical roots and early algorithms as well as

contemporary approaches and applications of batch-mode reinforcement learning.

Research activity in this field has grown substantially in recent years, primarily due

to the central merits of the batch approach, namely, its efficient use of collected

data as well as the stability of the learning process caused by the separation of the

dynamic programming and value function approximation steps. Besides this, var-

ious practical implementations and applications for real-world learning tasks have

contributed to the increased interest in batch RL approaches.
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