
Original Article

The International Journal of High

Performance Computing Applications

2015, Vol. 29(2) 193–208

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/1094342014567546

hpc.sagepub.com

Batched matrix computations on
hardware accelerators based on GPUs

Azzam Haidar1, Tingxing Dong1, Piotr Luszczek1,

Stanimire Tomov1 and Jack Dongarra1,2,3

Abstract

Scientific applications require solvers that work on many small size problems that are independent from each other. At

the same time, the high-end hardware evolves rapidly and becomes ever more throughput-oriented and thus there is an

increasing need for an effective approach to develop energy-efficient, high-performance codes for these small matrix prob-
lems that we call batched factorizations. The many applications that need this functionality could especially benefit from the

use of GPUs, which currently are four to five times more energy efficient than multicore CPUs on important scientific

workloads. This paper, consequently, describes the development of the most common, one-sided factorizations,
Cholesky, LU, and QR, for a set of small dense matrices. The algorithms we present together with their implementations

are, by design, inherently parallel. In particular, our approach is based on representing the process as a sequence of

batched BLAS routines that are executed entirely on a GPU. Importantly, this is unlike the LAPACK and the hybrid
MAGMA factorization algorithms that work under drastically different assumptions of hardware design and efficiency of

execution of the various computational kernels involved in the implementation. Thus, our approach is more efficient than

what works for a combination of multicore CPUs and GPUs for the problems sizes of interest of the application use
cases. The paradigm where upon a single chip (a GPU or a CPU) factorizes a single problem at a time is not at all efficient

in our applications’ context. We illustrate all of these claims through a detailed performance analysis. With the help of

profiling and tracing tools, we guide our development of batched factorizations to achieve up to two-fold speedup and
three-fold better energy efficiency as compared against our highly optimized batched CPU implementations based on

MKL library. The tested system featured two sockets of Intel Sandy Bridge CPUs and we compared with a batched LU

factorizations featured in the CUBLAS library for GPUs, we achieve as high as 2.53 speedup on the NVIDIA K40 GPU.

Keywords

Batched factorization, numerical linear algebra, hardware accelerators, numerical software libraries, one-sided factoriza-

tion algorithms

1 Introduction

An improved data reuse is what drives the design of

algorithms to work well on small problems, which, in

the end, delivers higher performance. When working

on small problems it is possible to improve the reuse as

the input data gets loaded into the fast memory, it can

be used presumably many times until the completion of

the task. Many numerical libraries as well as applica-

tions already use this functionality but it needs to be

further developed. For example, the tile algorithms

from the area of dense linear algebra (Agullo et al.,

2009), various register and cache blocking techniques

for sparse computations (Im et al., 2004), sparse direct

multifrontal solvers (Yeralan et al., 2013), high-order

finite element methods (FEM) (Dong et al., 2014), and

numerous applications including astrophysics (Messer

et al., 2012), hydrodynamics (Dong et al., 2014), image

processing (Molero et al., 2013), signal processing

(Anderson et al., 2012), are examples of this trend.

The lack of linear algebra software for small prob-

lems is especially noticeable for GPUs. The develop-

ment for CPUs, as pointed out in Sections 2 and 4.1,

1University of Tennessee, Knoxville, TN, USA
2Oak Ridge National Laboratory, Oak Ridge, TN, USA
3University of Manchester, Manchester, UK

Corresponding author:

Piotr Luszczek, University of Tennessee, 1122 Volunteer Boulevard, Suite

203, Knoxville, TN 37996-3450, USA.

Email: luszczek@eecs.utk.edu

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


can be done easily using existing software infrastruc-

ture. On the other hand, GPUs, due to their

throughput-oriented design, are efficient for large data

parallel computations, and therefore have often been

used in combination with CPUs, where the CPU han-

dles the small and difficult to parallelize tasks. The

need to overcome the challenges of solving small prob-

lems on GPUs is also related to the GPU’s energy effi-

ciency often four to five times better than that for

multicore CPUs. To take advantage of it, codes ported

to GPUs must exhibit high efficiency. This is one of the

main goals of this work: to develop GPU algorithms

and their implementations on small problems in order

to outperform multicore CPUs in raw performance and

energy efficiency. In particular, we target the main one-

sided factorizations, LU, QR, and Cholesky, for a set

of small dense matrices of the same size.

Figure 1 gives a schematic view of the batched prob-

lem considered. Basic block algorithms, such as those in

LAPACK (Anderson et al., 1999), factorize at step i a

block of columns, denoted by panel Pi, followed by the

application of the transformations accumulated in the

panel factorization to the trailing sub-matrix Ai.

Interleaved with the algorithmic work are questions

on what programming and execution model is best for

small problems, how to offload work to the GPUs, and

what should be the interaction with the CPUs if any.

The offload-based execution model and the accompa-

nying terms host and device have been established by

the directive-based programming standards: OpenACC

(OpenACC Corporation, 2011) and OpenMP 4

(OpenMP Architecture Review Board, 2013). While

these specifications are host-centric, in the context of

dense linear algebra computations, we recognize three

distinctly different modes of operation: hybrid, native,

and batched execution. The first employs both the host

CPU and the device accelerator, be it a GPU or an

Intel coprocessor, that cooperatively execute a particu-

lar algorithm. The second offloads the execution com-

pletely to the accelerator. The third is the focus of this

article and involves execution of a multitude of small

problems on the accelerator while the host CPU only

sends the input data and receives the computed result

in a pipeline fashion to alleviate the overheads of the

dearth of PCIe bandwidth and comparatively long

latency of the transfers.

2 Related work

Small problems can be solved efficiently on a single

CPU core, e.g. using vendor supplied libraries such as

MKL (Intel Corporation, 2014a) or ACML (AMD

Corporation, 2014), because the CPU’s memory hierar-

chy would back a ‘‘natural’’ data reuse (small enough

problems can fit into small fast memory). In addition

to memory reuse, to further speedup the computation,

vectorization to use single input multiple data (SIMD)

processor supplementary instructions can be added

either explicitly as in the Intel Small Matrix Library

(Intel Corporation, 1999), or implicitly through the

vectorization in BLAS. Batched factorizations then can

be efficiently computed for multicore CPUs by having

a single core factorize a single problem at a time (see

Section 4.1). However, as we show, the energy con-

sumption is higher than the GPU-based factorizations.

For GPU architectures, prior work has been concen-

trated on achieving high-performance for large prob-

lems through hybrid algorithms (Tomov et al., 2014).

Motivation came from the fact that the GPU’s com-

pute power cannot be used on panel factorizations as

efficiently as on trailing matrix updates (Volkov and

Demmel, 2008). As a result, various hybrid algorithms

were developed where panels are factorized on the

CPU while the GPU is used for trailing matrix updates

(mostly GEMMs) (Agullo et al., 2010; Dongarra et al.,

2014). For large enough problems the panel factoriza-

tions and associated with it CPU–GPU data transfers

can be overlapped with GPU work. For small problems

however, this is not possible, and our experience has

shown that hybrid algorithms would not be as efficient

as they are for large problems.

Indeed, targeting very small problems (of size up to

128), Oreste et al. (2013a,b) obtained good results for

batched LU developed entirely for GPU execution,

where a single CUDA thread, or a single thread block,

was used to solve one system at a time. Similar tech-

niques, including the use of single CUDA thread warp

for single factorization, were investigated by

Wainwright (2013) for LU with full pivoting on

matrices of size up to 32. Although the problems con-

sidered were often small enough to fit in the GPU’s

shared memory, e.g. 48 kB on a K40 GPU, and thus to

benefit from data reuse (n2 data for 2

3
n
3 flops for LU),

the results showed that the performance in these

Figure 1. Schematic view of a batched one-sided factorization problem for a set of k dense matrices. An approach based on

batched BLAS factorizes the matrices simultaneously.

194 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


approaches, up to about 20 Gflop/s in double preci-

sion, did not exceed the maximum performance due to

memory bound limitations (e.g. 46 Gflop/s on a

K40 GPU for DGEMV’s 2n2 flops on n2 data; see also

the performance analysis in Section 5.2).

Here we developed an approach based on batched

BLAS plus some batched-specific algorithmic improve-

ments that exceeds in performance the memory bound

limitations mentioned above. A batched LU based on

batched BLAS has been also developed recently and

released through CUBLAS (NVIDIA Corporation, b),

but has lower performance compared with our

approach when the algorithmic improvements are

added.

3 Algorithmic background

In this section, we present a brief overview of the linear

algebra aspects for development of either Cholesky,

Gauss, or the Householder QR factorizations based on

block outer-product updates of the trailing matrix.

Conceptually, one-sided factorization maps a matrix A

into a product of matrices X and Y:

F :
A11 A12

A21 A22

� �

7!
X11 X12

X21 X22

� �

3
Y11 Y12

Y21 Y22

� �

Algorithmically, this corresponds to a sequence of

in-place transformations of A, whose storage is over-

written with the entries of matrices X and Y (Pij indi-

cates currently factorized panels):

A
(0)
11

A
(0)
12

A
(0)
13

A
(0)
21

A
(0)
22

A
(0)
23

A
(0)
31

A
(0)
32

A
(0)
33

2

6

4

3

7

5
!

P11 A
(0)
12

A
(0)
13

P21 A
(0)
22

A
(0)
23

P31 A
(0)
32

A
(0)
33

2

6

4

3

7

5
!

!

XY11 Y12 Y13

X21 A
(1)
22

A
(1)
23

X31 A
(1)
32

A
(1)
33

2

4

3

5!

XY11 Y12 Y13

X21 P22 A
(1)
23

X31 P32 A
(1)
33

2

4

3

5!

!
XY11 Y12 Y13

X21 XY22 Y23

X31 X32 A
(2)
33

2

4

3

5!
XY11 Y12 Y13

X21 X22 Y23

X31 X32 P33

2

4

3

5!

!
XY11 Y12 Y13

X21 XY22 Y23

X31 X32 XY33

2

4

3

5! XY½ �

where XYij is a compact representation of both Xij and

Yij in the space originally occupied by Aij.

There are two distinct phases in each step of the

transformation from [A] to [XY]: panel factorization (P)

and trailing matrix update A(i)!A(i+1).

Implementation of these two phases leads to a straight-

forward iterative scheme shown in Algorithm 1.

Algorithm 1 is called block algorithm since every

panel P is of size nb which allows the trailing matrix

update to use the Level 3 BLAS routines. Note that if

nb = 1 the algorithm falls back to the standard

algorithm introduced by LINPACK in the 1980s. The

factorization of each panel is accomplished by a non-

blocked routine. Table 1 shows the BLAS and the

LAPACK routines that should be substituted for the

generic routines named in the algorithm.

Most of the current libraries focus on large matrices

by using hybrid (CPU–GPU) algorithms (Innovative

Computing Laboratory at the University of Tennessee,

2014). Because the panel factorization is considered a

latency-bound workload, which faces a number of inef-

ficiencies on throughput-oriented GPUs, it was pre-

ferred to perform its factorization on the CPU. Due to

their high performance rate exhibited on the update

operation, and the fact that the update requires the

majority of floating-point operations, the GPU has to

perform the trailing matrix update. Note that a data

transfer of the panel to and from the CPU is required

at each step of the loop. The classical implementation

as described in Algorithm 1 lacks efficiency because

either the CPU or the GPU is working at a time. The

MAGMA library modified further the algorithm to

overcome this issue and to achieve closer to optimal

performance. In fact, the ratio of the computational

capability between the CPU and the GPU is orders of

magnitude, and thus the common technique to alleviate

this imbalance and keep the GPU loaded is to use

lookahead.

Algorithm 2 shows a very simple case of lookahead

of depth 1. The update operation is split into an update

of the next panel, and an update of the rest of the trail-

ing matrix. The splitting is done to overlap the commu-

nication and the factorization of the panel with the

update operation. This technique let us hide the mem-

ory bound operation of the panel factorization and also

keep the GPU loaded by the trailing matrix update.

In the batched implementation, however, we cannot

afford such a memory transfer at any step, since the

Table 1. Panel factorization and trailing matrix update routines.

Cholesky Householder Gauss

PanelFactorize xPOTF2 xGEQF2 xGETF2

xTRSM

TrailingMatrix

Update

xSYRK2

xGEMM

xLARFB xLASWP

xTRSM

xGEMM

Algorithm 1. Two-phase implementation of a one-sided
factorization.

for Pi 2 {P1, P2,., Pn} do
PanelFactorize(Pi)
TrailingMatrixUpdate(A(i))

Haidar et al. 195

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


trailing matrix is small and the amount of computation

is not sufficient to overlap it in time with the panel fac-

torization. Many small data transfers will take away

any performance advantage enjoyed by the GPU. In

the next section, we describe our proposed implementa-

tion and optimization for the batched algorithm.

4 Batched one-sided factorizations

The purpose of batched routines is to solve a set of

independent problems in parallel. When the matrices

are large enough to fully load the device with work,

there is no need for batched routines: the set of inde-

pendent problems can be solved in serial as a sequence

of problems. Moreover, it is preferred to solve it in

serial, and not in batched fashion, to better enforce

locality of data and increase the cache reuse. However,

when matrices are small (for example, matrices of size

less than or equal to 512), the amount of work needed

to perform the factorization cannot saturate the device,

either CPU or GPU, and thus there is a need for

batched routines.

4.1 Batched factorizations for multicore CPUs

In broad terms, there are two main ways to approach

batched factorization on multicore CPU. The first is to

parallelize each small factorization across all of the

cores and the second one is to execute each factoriza-

tion sequentially on a single core with all of the cores

working independently on their own input data. With

these two extremes clearly delineated, it is easy to see

the third possibility: the in-between solution where each

matrix is partitioned among a handful of cores and

multiple matrices are worked on at a time as the total

number of available cores permits.

The tall-and-skinny matrix factorization scenarios

were studied before (Dongarra et al., 2011, 2012;

Luszczek and Dongarra, 2012) which has some relation

to batched factorization on multicore CPUs. The prob-

lem can either be of reduced size and be fully cache-

contained even for level 1 cache in which case the algo-

rithm becomes compute-bound because the cache can

fully satisfy the issue rate of the floating-point units.

For our target matrix sizes, the cache containment con-

dition does not hold and, consequently, the most effi-

cient scheme is to employ fixed matrix partitioning

schemes with communication based on cache coher-

ency protocols to achieve nearly linear speedup over

purely sequential implementation (Dongarra et al.,

2011, 2012; Luszczek and Dongarra, 2012). To the best

of the authors’ knowledge, this work constitutes nearly

optimal implementation scenario that by far exceeds

the state-of-the-art vendor and open-source implemen-

tations currently available. Unfortunately, the band-

width still remains the ultimate barrier: the achieved

performance could be a multiple times better than the

next best solution but it is still a fraction of the peak

performance of the processor.

For batched operations, the cache partitioning tech-

niques did not work well in our experience because of

the small size of matrices which is not the intended tar-

get for this kind of optimization. We tested various lev-

els of nested parallelism to exhaust all possibilities of

optimization available on CPUs. The two extremes

mentioned above get about 40 Gflop/s (one outer task

and all 16 cores working on a single problem at a time,

16-way parallelism for each matrix) and 100 Gflop/s

(16 outer tasks with only a single core per task, sequen-

tial execution each matrix), respectively. The scenarios

that between these extremes achieve somewhere in

between in terms of performance. For example, with 8

outer tasks with 2 cores per task we achieve about

50 Gflop/s. Given these results and to increase clarity

of the presentation, we only report the extreme setups

in the results shown below.

4.2 Batched factorizations for GPUs

One approach to the batched factorizations problem

for GPUs is to consider that the matrices are small

enough and to therefore factor them using the non-

blocked algorithm. The implementation in this case is

simple but the performance obtained turns out to be

unacceptably low. Thus the implementation of the

batched factorization must also be blocked, and thus

follow the same iterative scheme (panel factorization

and trailing matrix update) shown in Algorithm 1. Note

that the trailing matrix update consists of Level 3

BLAS operations (Xsyrk for Cholesky, Xgemm for LU

and Xlarfb for QR) which are compute intensive and

thus can perform very well on the GPU. Thus, the most

difficult phase of the algorithm is the panel

factorization.

A recommended way of writing efficient GPU ker-

nels is to use the GPU’s shared memory: load it with

data and reuse that data in computations as much as

possible. The idea behind this is to do the maximum

Algorithm 2. Lookahead of depth 1 for the two-phase factorization.

for Pi 2 {P1, P2,., Pn} do
CPU: PanelFactorize(Pi)
GPU: TrailingMatrixUpdate of only next panel of (A(i) which is P2)
CPU and GPU work in parallel: CPU go to the next loop while GPU continue the update

GPU: continue the TrailingMatrixUpdate of the remaining (A(i21)) using the previous panel (Pi21)

196 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


amount of computation before writing the result back

to the main memory. However, the implementation of

such technique may be complicated for the small prob-

lems considered as it depends on the hardware, the pre-

cision, and the algorithm. Moreover, our experience

showed that this procedure provides very good perfor-

mance for simple GPU kernels but is not that appeal-

ing for batched algorithm for two main reasons. First,

the current size of the shared memory is 48 kB per

streaming multiprocessor (SMX) for the newest Nvidia

K40 (Kepler) GPUs, which is a low limit for the

amount of the batched problems data that can fit at

once. Second, completely saturating the shared mem-

ory per SMX can decrease the performance of memory

bound routines, since only one thread-block will be

mapped to that SMX at a time. Indeed, due to a lim-

ited parallelism in the factorization of a small panel,

the number of threads used in the thread block will be

limited, resulting in low occupancy, and subsequently

poor core utilization. In our study and analysis we

found that redesigning the algorithm to use small

amount of shared memory per kernel (less than 10 kB)

not only provides an acceptable data reuse but also

allows many thread-blocks to be executed by the same

SMX in parallel, and thus taking a better advantage of

its resources. As a results the performance obtained is

more than 33 better than the one where the entire

shared memory is used. Since the CUDA warp consists

of 32 threads, it is recommended to develop CUDA

kernels that use multiple of 32 threads per thread-

block. For our batched algorithm, we discovered

empirically that the best value for nb is 32.

In the following we describe our batched routines

based on batched BLAS: the way they are implemen-

ted, and all of the relevant optimizations that have been

incorporated in order to achieve performance. All rou-

tines are batched and denoted by the corresponding

LAPACK routine names. We have implemented them

in the four standard floating-point precisions: single

real, double real, single complex, and double complex.

For convenience, we use the double precision routine

name throughout the paper.

4.2.1 Methodology based on batched BLAS. In a batched

problem solution methodology that is based on batched

BLAS, there are many small dense matrices that must

be factorized simultaneously (as illustrated in Figure 1).

This means that all the matrices will be processed simul-

taneously by the same kernel. Yet, each matrix problem

is still solved independently, identified by a unique

batch ID. We follow this model in our batched imple-

mentations and developed the following set of new

batched CUDA kernels.

� Cholesky panel: Provides the batched equivalent of

LAPACK’s dpotf2 routine. At step j of a panel of

size (m, nb), the column vector A(j : m, j) must be

computed. This requires a dot-product using row

A(j, 1 : j) to update element A(j, j), followed by a

dgemv A(j+1, 1) A(j, 1 : j) = A(j+1 : m, j), and

finally a dscal on column A(j+1 : m, j). This rou-

tine involves two Level 1 BLAS calls (dot and scal),

as well as a Level 2 BLAS dgemv. Since there are nb

steps, these routines are called nb times, and thus

one can expect that the performance depends on the

performances of Level 2 and Level 1 BLAS opera-

tions. Hence, it is a slow, memory bound algorithm.

We used shared memory to load both row A(j, 1 : j)

and column A(j+1 : m, j) to reuse them, and wrote

a customized batched dgemv kernel to read and

write these vectors from/into the shared memory.
� LU panel: This provides the batched equivalent of

LAPACK’s dgetf2 routine to factorize panels of

size m3 nb at each step of the batched LU factoriza-

tions. It consists of three Level 1 BLAS calls (idamax,

dswap and dscal) and one Level 2 BLAS call (dger).

The dgetf2 procedure proceeds as follows: find the

maximum element of the ith column, then swap the ith

row with the row owning the maximum, and scale the

ith column. To achieve higher performance and mini-

mize the effect on the Level 1 BLAS operation, we

implemented a tree reduction to find the maximum

where all the threads contribute to find the max. Since

it is the same column that is used to find the max then

scaled, we load it to the shared memory. This is the

only data that we can reuse within one step.
� QR panel: This provides the batched equivalent of

LAPACK’s dgeqr2 routine to perform the

Householder panel factorizations. It consists of nb

steps where each step calls a sequence of the dlarfg

and the dlarf routines. At every step (to compute

one column), the dlarfg involves a norm computa-

tion followed by a dscal that uses the results of the

norm computation in addition to some underflow/

overflow checking. The norm computation is a sum

reduce and thus a synchronization step. To acceler-

ate it, we implemented a two-layer tree reduction

where for sizes larger than 32, all 32 threads of a

warp progress to do a tree reduction similar to the

MPI_REDUCE operation, and the latest 32 ele-

ment are reduced by only one thread. Another opti-

mization is to allow more than one thread-block to

execute the dlarfg kernel which means the kernel

needs to be split over two: one for norm and one

for scaling in order to guarantee the synchroniza-

tion. Custom batched implementations of both

dlarfg and the dlarf have been developed.
� Trailing matrix updates: The trailing matrix updates

are mainly Level 3 BLAS operations. However, for

small matrices it might be difficult to extract per-

formance from very small Level 3 BLAS kernels.

The dgemm is the best Level 3 BLAS kernel: it is

Haidar et al. 197

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


GPU friendly, highly optimized, and achieves the

highest performance among BLAS. For that, high

performance can be achieved if we redesign our

update kernels to be represented by dgemms. For

Cholesky, the update consists of the dsyrk routine.

It performs a rank-nb update on either the lower or

the upper portion of A22. Since CUBLAS does not

provide a batched implementation of this routine,

we implemented our own. It is based on a sequence

of customized dgemms in order to extract the best

possible performance. The trailing matrix update

for the Gaussian elimination (LU) is composed of

three routines: the dlaswp that swaps the rows

on the left and the right of the panel in consider-

ation, followed by the dtrsm to update

A12  L
�1
11
A12, and finally a dgemm for the update

A22  A22 � A21L
�1
11
A12. The swap (or pivoting) is

required to improve the numerical stability of the

Gaussian elimination. However, pivoting can be a

performance killer for matrices stored in column

major format because rows in that case are not

stored continuously in memory, and thus cannot be

read coalescently. Indeed, a factorization stored in

column-major format can be 23 slower (depend-

ing on hardware and problem sizes) than imple-

mentations that transpose the matrix in order to

internally use a row-major storage format (Volkov

and Demmel, 2008). Nevertheless, experiments

showed that this conversion is too expensive in the

case of batched problems. Moreover, the swapping

operations are serial, that is row by row. This limits

the parallelism. To minimize this penalty, we pro-

pose a new implementation that emphasizes a par-

allel swap and allows coalescent read/write. We

also developed a batched dtrsm. It loads the small

nb3 nb L11 block into shared memory, inverts it

with the dtrtri routine, and then the A12 update is

accomplished by a dgemm. In general, computing

the inverse of a matrix may suffer from numerical

stability, but since A11 results from the numerically

stable LU with partial pivoting and its size is just

nb3 nb, or in our case 323 32, we do not have this

problem (Croz et al., 1992). For the Householder

QR decomposition the update operation is referred

by the dlarfb routine. We implemented a batched

dlarfb that is composed of three calls to the batched

dgemm:

A22  (I � VT
H
V

H )A22 [ (I � A21T
H
A
H

21
)A22.

4.3 Techniques for high-performance batched

factorizations

4.3.1 Parallel swapping. Profiling the batched LU reveals

that more than 60% of the time is spent in the swap-

ping routine. Figure 2 shows the execution trace of the

batched LU for 2,000 matrices of size 512. We can

observe on the top trace that the classical dlaswp ker-

nel is the most time consuming part of the algorithm.

The swapping consists of nb successive interchanges of

two rows of the matrices. The main reason that this

kernel is the most time consuming is because the nb

row interchanges are performed in a sequential order,

and that the data of a row is not coalescent, thus the

thread warps do not read/write it in parallel. It is clear

that the main bottleneck here is the memory access.

Indeed, slow memory accesses compared to high com-

pute capabilities have been a persistent problem for

both CPUs and GPUs. CPUs for example alleviate the

effect of the long-latency operations and bandwidth

limitations by using hierarchical caches. Accelerators

on the other hand, in addition to hierarchical mem-

ories, use thread-level parallelism (TLP) where threads

are grouped into warps and multiple warps assigned

for execution on the same SMX unit. The idea is that

when a warp issues an access to the device memory, it

stalls until the memory returns a value, while the

swap kernel 60%

gemm kernel 15%

gemm kernel 30%

swap kernel 10%

classical swap: 

parallel swap: 

Figure 2. Execution trace of the batched LU factorization using either classical swap (top) or our new parallel swap (bottom).

198 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


accelerator’s scheduler switches to another warp. In

this way, even if some warps stall, others can execute,

keeping functional units busy while resolving data

dependencies, branch penalties, and long-latency mem-

ory requests. In order to overcome the bottleneck of

swapping, we propose to modify the kernel to apply all

nb row swaps in parallel. This modification will also

allow the coalescent write back of the top nb rows of

the matrix. Note that the first nb rows are those used

by the dtrsm kernel that is applied right after the

dlaswp, so one optimization is to use shared memory

to load a chunk of the nb rows, and apply the dlaswp

followed by the dtrsm at the same time. We changed

the algorithm to generate two pivot vectors, where the

first vector gives the final destination (e.g. row indices)

of the top nb rows of the panel, and the second gives

the row indices of the nb rows to swap and bring into

the top nb rows of the panel. Figure 2 depicts the exe-

cution trace (bottom) when using our parallel dlaswp

kernel. The experiment shows that this reduces the time

spent in the kernel from 60% to around 10% of the

total elapsed time. Note that the colors between the top

and the bottom traces do not match each other; this is

because the Nvidia profiler puts always the most expen-

sive kernel in green. As a result, the performance gain

obtained is about 1.83 as shown by the purple curve

of Figure 3. We report each of the proposed optimiza-

tion for the LU factorization in Figure 3 but we would

like to mention that the percentage of improvement

obtained for the Cholesky and QR factorization is simi-

lar and to simplify we reported the LU factorization

only. Note that starting from this version we were able

to be faster than the CUBLAS implementation of the

batched LU factorization.

4.3.2 Recursive nested blocking. The panel factorizations

described in Section 4.2.1 factorize the nb columns one

after another, similarly to the LAPACK algorithm. At

each of the nb steps, either a rank-one update is

required to update the vectors to the right of the factor-

ized column i (this operation is done by the dger kernel

for LU and the dlarf kernel for QR), or a left looking

update of column i by the columns on its left, before

factorizing it (this operation is done by dgemv for

the Cholesky factorization). Since we cannot load the

entire panel into the shared memory of the GPU, the

columns to the right (in the case of LU and QR) or to

the left (in the case of Cholesky) are loaded back and

forth from the main memory at every step. Thus, one

can expect that this is the most time-consuming part of

the panel factorization. A detailed analysis using the

profiler reveals that the dger kernel requires more than

80% and around 40% of the panel time and of the

total LU factorization time, respectively. Similarly for

the QR decomposition, the dlarf kernel used inside the

panel computation need 65% and 33% of the panel

and the total QR factorization time, respectively.

Likewise, the dgemv kernel used within the Cholesky

panel computation needs around 91% and 30% of the

panel and the total Cholesky factorization time, respec-

tively. This inefficient behavior of these routines is also

due to the memory access. For that, to overcome this

bottleneck, we propose to improve the efficiency of the

panel and to reduce the memory access by using a

recursive level of blocking technique as depicted in

Figure 4. In principle, the panel can be blocked recur-

sively until a single element. Yet, in practice, 2–3

blocked levels are sufficient to achieve high perfor-

mance. The above routines must be optimized for each

Figure 3. Performance in Gflops/s of the different versions of our batched LU factorizations compared to the CUBLAS

implementation for different matrix sizes where m = n.

Haidar et al. 199

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


blocked level, which complicates the implementation.

More than 30% boost in performance is obtained by

this optimization, as demonstrated in Figure 3 for the

LU factorization. The same trend has been observed

for both the Cholesky and the QR factorization.

4.3.3 Trading extra computation for higher performance. The

challenge discussed here is the following: for batched

problems there is a need to minimize the use of low-

performance kernels on the GPU even if they are Level

3 BLAS. For the Cholesky factorization this concerns

the dsyrk routine that is used to update the trailing

matrix. The performance of dsyrk is important to the

overall performance, since it takes a big part of the run-

time. We implemented the batched dsyrk routine as a

sequence of dgemm routines, each of size M = m,

N = K = nb. In order to exclusively utilize the dgemm

kernel, our implementation writes both the lower and

the upper portion of the nb3 nb diagonal blocks of the

trailing matrix. This results in nb3 extra operations for

the diagonal block. However, since nb is small (e.g.

nb = 32) these extra operations can be considered free.

In practice, the extra operation allows us to use dgemm

and thus achieve higher performance than the one that

touches the lower/upper portion of the nb3 nb diagonal

blocks. Tests show that our implementation of dsyrk is

twice faster than the dgemm kernel for the same matrix

size. This shows that our dsyrk is very well optimized in

order to reach the performance of dgemm (which is

twice slower as it computes twice more flops).

We applied the same technique in the dlarfb routine

used by the QR decomposition. The QR trailing matrix

update uses the dlarfb routine to perform

A22 =(I � VT
H
V

H )A22 =(I � A21T
H
A
H

21
)A22. The upper

triangle of V is zero with ones on the diagonal. In the

classical dlarfb what is available is A21 that stores V in

its lower triangular part and R (part of the upper A) in

its upper triangular part. Therefore, the above is

computed using dtrmm for the upper part of A21 and

dgemm for the lower part. Also, the T matrix is an

upper triangular and therefore the classical dlarfb

implementation uses dtrmm to perform the multiplica-

tion with T. Thus, if one can guarantee that the lower

portion of T is filled with zeroes and the upper portion

of V is filled zeros and ones on the diagonal, the dtrmm

can be replaced by dgemm. Thus, we implemented a

batched dlarfb that uses three dgemm kernels by initia-

lizing the lower portion of T with zeros, and filling up

the upper portion of V with zeroes and ones on the

diagonal. Note that this brings 3nb3 extra operations,

but again, the overall time spent in the new dlarfb

update using the extra computation is around 10% less

than the one using the dtrmm.

Similarly to dsyrk and dlarfb, we implemented the

batched dtrsm (that solves AX = B) by inverting the

small nb3 nb block A and using dgemm to get the final

results X = A21B.

4.3.4 Block recursive dlarft algorithm. The dlarft is used to

compute the upper triangular matrix T that is needed

by the QR factorization in order to update either

the trailing matrix or the right-hand side of the recur-

sive portion of the QR panel. The classical LAPACK

computes T column by column in a loop over the nb

columns as described in Algorithm 3. Such implemen-

tation takes up to 50% of the total QR factorization

time. This is due to the fact that the kernels needed,

dgemv and dtrmv, require implementations where

threads go through the matrix in different directions

(horizontal versus vertical, respectively). An analysis of

the mathematical formula of computing T allowed us

to redesign the algorithm to use Level 3 BLAS and to

increase the data reuse by putting the column of T in

shared memory. One can observe that the loop can be

split into two loops: one for dgemv and one for dtrmv.

The dgemv loop that computes each column of T̂ can

be replaced by one dgemm to compute all of the col-

umns of T̂ if the triangular upper portion of A is zero

and the diagonal is made of ones. For our implementa-

tion that is already needed for the trailing matrix

update in order to use dgemm in the dlarfb, and thus

can be exploited here as well. For the dtrmv phase, we

load the T matrix into shared memory as this allows all

threads to read/write from/into shared memory during

the nb steps of the loop. The redesign of this routine is

Figure 4. Recursive nested blocking.

Algorithm 3. Classical implementation of the dlarft routine.

for j 2 {1, 2,., nb} do
dgemv to compute T̂1:j�1, j = AHj:m, 1:j�13Aj:m, j

dtrmv to compute T1:j�1, j = T1:j�1, 1:j�13T̂1:j�1, j
T(j, j) = tau(j)

200 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


depicted in Algorithm 4. Since we developed recursive

blocking algorithm, we have to compute the T matrix

for every level of the recursion. Nevertheless, the analy-

sis of Algorithm 4 let us conclude that the portion of

the Ts computed in the lower recursion level are the

same as the diagonal blocks of the T of the upper level

(yellow diagonal blocks in Figure 6), and thus we can

avoid their (re-)computation. For that we modified

Algorithm 4 in order to compute either the whole T or

the upper rectangular portion that is missed (red/yellow

portions in Figure 6).

4.4 Streamed dgemm

As our main goal is to achieve higher performance, we

performed deep analysis of every kernel of the algo-

rithm. We discovered that 70% of the time is spent in

the batched dgemm kernel after the previously

described optimizations were applied. An evaluation of

the performance of the dgemm kernel using either

batched or streamed dgemm is illustrated in Figure 7.

The curves let us conclude that the streamed dgemm is

performing better than the batched one for some cases,

e.g., for k = 32 when the matrix size is of order

m . 200 and n . 200. We note that the performance

of the batched dgemm is stable and does not depend

on k, in the sense that the difference in performance

between k = 32 and k = 128 is minor. However, it is

bound by 300 Gflop/s. For that we propose to use the

streamed dgemm whenever is faster, and to roll back

to the batched one otherwise. Figure 8 shows the trace

of the batched LU factorization of 2,000 matrices of

size 512 using either the batched dgemm (top trace) or

the combined streamed/batched dgemm (bottom

trace). We can see that the use of the streamed dgemm

(when the size allows it) can speed up the factorization

by about 20%.

5 Performance results

5.1 Hardware description and setup

We conducted our experiments on Intel multicore sys-

tem with two 8-cores socket Intel Xeon E5-2670 (Sandy

Bridge) processors, each running at 2.6 GHz. Each

socket had 20 MB of shared L3 cache, and each core

had a private 256 kB L2 and 64 kB L1 cache. The sys-

tem is equipped with 52 GB of memory and the theore-

tical peak in double precision is 20.8 Gflop/s per core,

i.e. 332.8 Glop/s in total for the two sockets. It is also

panel: classical getf2 38%

panel: blocked getf2 8%

classical dgetf2: 

nested blocking of dgetf2: 

Figure 5. Execution trace of the batched LU factorization using either classical getf2 (top) or our recursive getf2 (bottom).

Figure 6. The shape of the matrix T for different level of the

recursion during the QR decomposition.

Algorithm 4. Block recursive dlarft routine.

dgemm to compute T̂1:nb, 1:nb = AH1:m, 1:nb3A1:m, 1:nb
load T̂1:nb, 1:nb to the shared memory. for j 2 {1, 2,., nb} do

dtrmv to compute T1:j�1, j = T1:j�1, 1:j�13T̂1:j�1, j
T(j, j) = tau(j)

write back T to the main memory.

Haidar et al. 201

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


equipped with a NVIDIA K40c cards with 11.6 GB of

GDDR memory per card running at 825 MHz. The

theoretical peak in double precision is 1,689.6 Gflop/s.

The cards are connected to the host via two PCIe I/O

hubs with 6 GB/s bandwidth.

A number of software packages were used for the

experiments. On the CPU side, we used the MKL

(Math Kernel Library) (Intel Corporation, 2014a) with

the icc compiler (version 2013.sp1.2.144) and on the

GPU accelerator we used CUDA version 6.0.37.

Related to power, we note that in this particular

setup the CPU and the GPU have about the same theo-

retical power draw. In particular, the Thermal Design

Power (TDP) of the Intel Sandy Bridge is 115 W per

socket, or 230 W in total, while the TDP of the K40c

GPU is 235 W. Therefore, we roughly expect that a

GPU would have a power consumption advantage if it

outperforms (in terms of time to solution) the 16 Sandy

Bridge cores. Note that based on the theoretical peaks

the GPU’s advantage should be about a factor of 4–5.

This is observed in practice as well, especially for regu-

lar workloads on large data-parallel problems that can

be efficiently implemented for GPUs.

5.2 Performance analysis

The performance of the non-blocked versions can be

bounded by the performance of the rank-one update.

Its flops/bytes ratio for double precision numbers is
3n

16+ 16n
(for m = n). Therefore, a top performance for

n = 500 and read/write achievable bandwidth of

160 Gflop/s would be 1603 33 500

16+ 163 500
= 29:9Gflop=s.

This shows for example that our non-blocking LU from

Figure 3 achieves this theoretically best performance.

This is the limit for the other non-blocking one-sided

factorizations as well.

Similar analysis for a best expected performance can

be done for the block algorithms as well. Their upper

Figure 7. Performance comparison between the streamed and the batched dgemm kernel for different value of K and different

matrix sizes where m = n.

stream
ed

 d
g
em

m

batched dgemm

stream
ed

 d
g
em

m
g

batched dgemm

Figure 8. Execution trace of the batched LU factorization using either batched dgemm (top) or streamed/batched dgemm

(bottom).

202 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


performances are bounded in general by the rank-nb

performance, e.g. illustrated in Figure 7 for nb = 32

and 64. Although we do not reach the asymptotic per-

formance of 400 GFlop/s at n = 500, as we show, our

performances grow steadily with n, indicating that the

O(n2) flops in addition to the rank-nb are slow and n

needs to grow in order for their influence on the perfor-

mance to become less significant compared with the

rank-nb’s O(n3) flops.

5.3 Comparison with CUBLAS on a K40c

Getting high performance across accelerators remains a

challenging problem that we address with the algorith-

mic and programming techniques described in this

paper. The efficient strategies used exploit parallelism

and increase the use of Level 3 BLAS operations across

the GPU. We highlighted this through a set of experi-

ments that we performed on our system. We compare

our batched implementations with the CUBLAS

(NVIDIA Corporation, b) library whenever possible

(CUBLAS features only a dgetrfBatched routine). Our

experiments were performed on batches of 2,000

matrices of different sizes going from 323 32 to

5123 512.

Figure 9 shows the performance of the LU factoriza-

tion. The dgetrfBatched version, marked as

‘‘CUBLAS’’, reaches a performance of around

70 Gflop/s for matrices size of 5123 512. We first com-

pare to a naı̈ve implementation that is based on the

assumption that matrices of size (\ 512) are very small

for block algorithms, and therefore uses the non-

blocked version. For example, for the case of LU this is

the dgetf2 routine. The routine is very slow and the

performance obtained reaches less than 30 Gflop/s, as

shown in Figure 3. Note that although low, this is also

the optimal performance achievable by this type of

algorithms, as explained in Section 5.2.

Our second comparison is to the classic LU factori-

zation, i.e. the one that follows LAPACK’s two-phase

implementation described in Algorithm 1. This algo-

rithm achieves 63 Gflop/s as shown in Figure 3.

To reach beyond 100 Gflop/s, we used the technique

that optimizes pivoting with parallel swap. Next step in

performance improvement was the use of two-level

blocking of the panel, which enables performance levels

that go slightly above 130 Gflop/s. The final two

improvements are streamed/batched gemm, which

moves the performance beyond 160 Gflop/s, and

finally, the two-levels blocking update, (also what we

called recursive blocking) completes the set of optimiza-

tions and takes the performance beyond 180 Gflop/s.

Thus our batched LU achieves up to 2.53 speedup

compared to its counterpart from the CUBLAS library.

5.4 Comparison to multicore CPU solutions

Here we compare our batched LU to the two CPU

implementations proposed in Section 4.1. The simple

CPU implementation is to go in a loop style to

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

matrix size

G
F

lo
p

s
/s

batched dgetrf 2000

GPU: Magma

GPU: CUBLAS

CPU v2: 16 parallel facto using sequential MKL

CPU v1: each matrix uses MKL multithread_16

Figure 9. Performance in Gflops/s of our different version of the batched LU factorization compared to the CUBLAS

implementation for different matrix sizes where m = n.

Haidar et al. 203

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


factorize matrix after matrix, where each factorization

is using the multi-thread version of the MKL library.

This implementation is limited in terms of performance

and does not achieve more than 50 Gflop/s. The main

reason for this low performance is the fact that the

matrix is small: it does not exhibit parallelism and so

the multithreaded code is not able to feed with work all

16 threads used. For that we proposed another version

of the CPU implementation. Since the matrices are

small (\ 512) and at least 16 of them fit in the L3 cache

level, one of the best technique is to use each thread to

factorize independently a matrix. This way 16 factori-

zations are conducted independently in parallel. We

think that this implementation is one of the best opti-

mized implementations for the CPU. This latter imple-

mentation is twice as fast as the simple implementation.

It reaches around 100 Gflop/s in factorizing 2,000

matrices of size 5123 512. Experiments show that our

GPU batched LU factorization is able to achieve a

speedup of a factor of 1.8 versus the best CPU imple-

mentation using 16 Sandy Bridge cores, and a factor of

4 versus the simple one.

The performances obtained for the Cholesky and

QR factorizations are similar to the results for LU. A

comparison against the two CPU implementations for

Cholesky and QR are given in Figures 10 and 11,

respectively.

Similarly to the LU, our first GPU implementation

of the batched Cholesky factorization follows the classi-

cal LAPACK implementation. Compared with the

non-blocking algorithm this version increases the use of

shared memory and attains at n = 500 an upper bound

of 60 Gflop/s. The different optimization techniques

from Section 4.3 drive the performance of the Cholesky

factorization up to 200 Gflop/s. The two CPU imple-

mentations behave similarly to those for LU. The sim-

ple CPU implementation achieves around 60 Gflop/s

while the optimized one reaches 100 Gflop/s. This

yields a speedup of 23 against the best CPU imple-

mentation using 16 Sandy Bridge cores.

The progress of our batched QR implementation

over the different optimizations shows the same beha-

vior. The classical block implementation does not attain

more than 50 Gflop/s. The recursive blocking improves

performance up to 105 Gflop/s, and the optimized com-

putation of T draws it up to 127. The other optimiza-

tions (replacing dtrmm by dgemm in both dlarft and

dlarfb), combined with the streamed/batched dgemm

bring the GPU implementation to around 167 Gflop/s.

The simple CPU implementation of the QR decomposi-

tion does not attain more than 50 Gflop/s while the

optimized one gets 100 Gflop/s. Despite the CPU’s

hierarchical memory advantage, our GPU batched

implementation is about a factor of 1.7 faster.

5.5 Energy efficiency

For our energy efficiency measurements we use power

and energy estimators built into the modern hardware

platforms. In particular, on the tested CPU, Intel Xeon

E5-2690, we use RAPL (Runtime Average Power

Limiting) hardware counters (Intel Corporation, 2014b;

Rotem et al., 2012). By the vendor’s own admission, the

reported power/energy numbers are based on a model

which is tuned to match well the actual measurements

for various workloads. Given this caveat, we can report

that the idle power of the tested Sandy Bridge CPU,

running at fixed frequency of 2600 MHz, consumes

Figure 10. Performance in Gflops/s of the GPU vs. the CPU versions of our batched Cholesky factorizations for different matrix

sizes where m = n.

204 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


about 20 W of power per socket. Batched operations

raise the consumption to above 125–140 W per socket

and the large dense matrix operations, that reach the

highest fraction of the peak performance, raise the

power draw to about 160 W per socket.

For the GPU measurements we use NVIDIA’s

NVML (NVIDIA Management Library) library

(NVIDIA Corporation, a). NVML provides a C-based

programmatic interface for monitoring and managing

various states within NVIDIA Tesla GPUs. On Fermi

and Kepler GPUs (such as the K40c used) the readings

are reported to be accurate to within 65% of current

power draw. The idle state of the K40c GPU consumes

about 20 W. Batched factorizations raise the consump-

tion to about 150–180 W, while large dense matrix

operations raise the power draw to about 200 W.

We depict in Figure 12 the comparison of the power

consumption required by the three implementations of

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

times (ms)

P
o

w
e

r 
(W

a
tt

s
)

dgeqrf 4000 batched matrices

CPU v1: each matrix uses MKL multithread_16

CPU v2: 16 parallel facto using sequential MKL

GPU MagmaCPU: 1587 joules

CPU: 3505 joules

GPU: 643 joules

Figure 12. Comparison of the power consumption for the QR decomposition of 4,000 matrices of size 512 3 512.

Figure 11. Performance in Gflops/s of the GPU versus the CPU versions of our batched QR decomposition for different matrix

sizes where m = n.

Haidar et al. 205

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


the batched QR decomposition: the best GPU and the

two CPU implementations. The problem solved here is

about 4,000 matrices of size 5123 512 each. The green

curve shows the power required by the simple CPU

implementation. In this case the batched QR proceeds

as a loop over the 4,000 matrices where each matrix is

factorized using the multithreaded dgeqrf routine form

the Intel MKL library on the 16 Sandy Bridge cores.

The blue curve shows the power required by the opti-

mized CPU implementation. Here, the code proceeds

by sweep of 16 parallel factorizations each using the

sequential dgeqrf routine form the Intel MKL library.

The red curve shows the power consumption of our

GPU implementation of the batched QR decomposi-

tion. One can observe that the GPU implementation is

attractive because it is around 23 faster than the opti-

mized CPU implementation and, moreover, because it

consumes a factor of 3 less energy.

According to the experiments we conduct to measure

the power we found that the GPU implementations of

all of the batched one-sided factorizations reach around

a factor of 2 speedup over their best CPU counterpart

and are a factor of 3 less expensive in terms of energy.

6 Conclusions and future directions

Designing algorithms to work on small problems is a

concept that can deliver higher performance through

an improved data reuse. Many applications have relied

on this design concept to get higher hardware effi-

ciency, and users have requested it as a supported func-

tionality in linear algebra libraries. In addition to

having the potential to improve the overall perfor-

mance of applications with computational patterns

ranging from dense to sparse linear algebra, developing

these algorithms for the new low-powered and power-

efficient architectures can bring significant savings in

energy consumption. We demonstrated how to accom-

plish this in the case of batched dense solvers for GPU

architectures.

We showed that efficient batched dense solvers can

be implemented relatively easily for multicore CPUs,

relying on existing high-performance libraries such as

MKL for building blocks. For GPUs, on the other

hand, the development is not straightforward. Our lit-

erature review pointed out that the pre-existing solu-

tions were either just memory-bound, or even if highly

optimized, did not exceed in performance the corre-

sponding CPU versions (if they are highly optimized

such as those developed in this work and use a number

of cores scaled to ensure the same CPUs power draw as

a GPU). We demonstrated that GPUs, with proper

algorithmic enhancements and with the batched BLAS

approach used, can have an advantage over CPUs on

this workload. In particular, the algorithmic work on

blocking, variations of blocking like in the recursive

nested blocking, adding extra flops to improve paralle-

lism and regularity of the computation, streaming, and

other batched/algorithm-specific improvements as in

the LU’s parallel swapping, contributed most in

enabling the GPUs to outperform the CPUs on a

workload that was previously favored for execution on

multicore CPU architectures due to their larger cache

sizes and well-developed memory hierarchy.

To illustrate the improvements, we compared the

results obtained on current high-end GPUs and CPUs.

In particular, we considered a single NVIDIA K40c

GPU versus two Intel Sandy Bridge CPUs (16 cores in

total) as this configuration has the same accumulative

power draw on the two systems. While the power draw

is the same (around 240 W), the GPU has about a fac-

tor of 4 higher theoretical performance peak, and there-

fore is expected to have around a factor of 3–4

advantage in both performance and energy efficiency.

Indeed, improvements like these have been observed on

large classical numerical algorithms in both dense and

sparse linear algebra, where efficient GPU implementa-

tions are possible. In this paper, we demonstrated that

one can take advantage of the GPUs for small batched

linear solvers as well. In particular, we achieved around

a factor of 2 speedup compared with our optimized

CPU implementations and a factor of 3 better energy

efficiency.

As the development of efficient small problem sol-

vers becomes more intricate on new architectures, we

envision that users will further demand their availabil-

ity in high-performance numerical libraries, and that

batched solvers will actually become a standard feature

in those libraries for new architectures. Our plans are

to release and maintain this new functionality through

the MAGMA libraries for NVIDIA GPU accelerators,

Intel Xeon Phi coprocessors, and OpenCL with optimi-

zations for AMD GPUs.

The batched algorithms and techniques can be used

and extended to develop totally GPU implementations

for standalone linear algebra problems. These would be

useful, for example, to replace the hybrid CPU–GPU

algorithms in cases where energy consumption, instead

of higher-performance through use of all available

hardware resources, is the top priority. Moreover,

totally GPU implementations can have a performance

advantage as well, when the host CPU becomes slower

compared with the accelerator in future systems. For

example, in mobile devices featuring ARM processors

enhanced with GPUs, such as the Jetson TK1, we have

already observed that the totally GPU implementations

have a significant advantage in both energy consump-

tion and performance. This has motivated another

future work direction: the development and release of a

MAGMA Embedded library that would incorporate

entirely GPU/coprocessor implementations for standa-

lone, as well as batched, dense linear algebra problems.

206 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Funding

The results were obtained in part with the financial support

of the Russian Scientific Fund (agreement number N14-11-

00190). This material is based upon work supported by the

National Science Foundation (grant number ACI-1339822),

the Department of Energy, and NVIDIA.

References

Agullo E, Augonnet C, Dongarra J, et al. (2010) Faster,

cheaper, better – a hybridization methodology to develop

linear algebra software for GPUs. In: Mei W and Hwu W

(eds) GPU Computing Gems, volume 2. San Mateo, CA:

Morgan Kaufmann.

Agullo E, Demmel J, Dongarra J, et al. (2009) Numerical lin-

ear algebra on emerging architectures: The PLASMA and

MAGMA projects. Journal of Physics: Conference Series

180(1): 012037.

AMD Corporation (2014) ACML - AMD Core Math

Library. Available at: http://developer.amd.com/tools-

and-sdks/cpu-development/amd-core-math-library-acml.

Anderson E, Bai Z, Bischof C, et al. (1999) LAPACK User’s

Guide, 3rd edn. Philadelphia, PA: Society for Industrial

and Applied Mathematics.

Anderson M, Sheffield D and Keutzer K (2012) A predictive

model for solving small linear algebra problems in gpu reg-

isters. In: IEEE 26th International Parallel Distributed Pro-

cessing Symposium (IPDPS).

Croz D, Dongarra JJ and Higham NJ (1992) Stability of

methods for matrix inversion. IMA Journal of Numerical

Analysis 12: 1–19.

Dong T, Dobrev V, Kolev T, Rieben R, Tomov S and Don-

garra J (2014) A step towards energy efficient computing:

Redesigning a hydrodynamic application on CPU–GPU.

In: IEEE 28th International Parallel Distributed Processing

Symposium (IPDPS).

Dongarra J, Faverge M, Ltaief H and Luszczek P (2011)

Exploiting fine-grain parallelism in recursive LU factoriza-

tion. In: ParCo 2011 – International Conference on Parallel

Computing, Ghent, Belgium.

Dongarra J, Faverge M, Ltaief H and Luszczek P (2012)

Exploiting fine-grain parallelism in recursive LU factoriza-

tion. Advances in Parallel Computing 22: 429–436.

Dongarra J, Haidar A, Kurzak J, Luszczek P, Tomov S and

YarKhan A (2014) Model-driven one-sided factorizations

on multicore accelerated systems. International Journal on

Supercomputing Frontiers and Innovations 1(1): 140105.

Im EJ, Yelick K and Vuduc R (2004) Sparsity: Optimization

framework for sparse matrix kernels. International Journal

of High Performance Computing Applications 18(1):

135–158. DOI:10.1177/1094342004041296.

Innovative Computing Laboratory at the University of Ten-

nessee (2014) Matrix algebra on GPU and multicore archi-

tectures (MAGMA). Available at: http://icl.cs.utk.edu/

magma/.

Intel Corporation (1999) Intel Pentium III Processor - Small

Matrix Library. Available at: http://www.intel.com/

design/pentiumiii/sml/.

Intel Corporation (2014a) Intel Math Kernel Library. Avail-

able at: http://software.intel.com/intel-mkl/.

Intel Corporation (2014b) Intel� 64 and IA-32 architectures

software developer’s manual. Available at: http://download.

intel.com/products/processor/manual/.

Luszczek P and Dongarra J (2012) Anatomy of a globally

recursive embedded LINPACK benchmark. In: Proceed-

ings of 2012 IEEE High Performance Extreme Computing

Conference (HPEC 2012), Westin Hotel, Waltham, MA.

Messer O, Harris J, Parete-Koon S and Chertkow M (2012)

Multicore and accelerator development for a leadership-

class stellar astrophysics code. In: Proceedings of ‘‘PARA

2012: State-of-the-Art in Scientific and Parallel

Computing’’.

Molero J, Garzón E, Garcı́a I, Quintana-Ortı́ E and Plaza A

(2013) Poster: A batched Cholesky solver for local RX

anomaly detection on GPUs. In: PUMPS. Available at:

http://www.umbc.edu/rssipl/people/aplaza/PosterPUMPS.pdf.

NVIDIA Corporation (2014a) Available at: https://develo-

per.nvidia.com/nvidia-management-library-nvml.

NVIDIA Corporation (2014b) CUBLAS. Available at: http://

docs.nvidia.com/cuda/cublas/.

OpenACC Corporation (2011) The OpenACCTM application

programming interface version 1.0.

OpenMP Architecture Review Board (2013) OpenMP appli-

cation program interface. Version 4.0.

Oreste V, Fatica M, Gawande NA and Tumeo A (2013a)

Power/performance trade-offs of small batched LU based

solvers on GPUs. In: 19th International Conference on Par-

allel Processing, Euro-Par 2013, Aachen, Germany (Lec-

ture Notes in Computer Science, Vol. 8097). New York:

Springer, pp. 813–825.

Oreste V, Gawande NA and Tumeo A (2013b) Accelerating

subsurface transport simulation on heterogeneous clusters.

In: IEEE International Conference on Cluster Computing

(CLUSTER 2013), Indianapolis, IN.

Rotem E, Naveh A, Rajwan D, Ananthakrishnan A and

Weissmann E (2012) Power-management architecture

of the intel microarchitecture code-named sandy

bridge. IEEE Micro 32(2): 20–27. DOI: 10.1109/MM.

2012.12.

Tomov S, Nath R and Dongarra J (2014) Dense linear algebra

solvers for multicore with GPU accelerators. In: Proceed-

ings of the IEEE IPDPS’10, Atlanta, GA.

Volkov V and Demmel JW (2008) LU, QR and Cholesky Fac-

torizations Using Vector Capabilities of GPUs. Technical

Report UCB/EECS-2008-49, University of California,

Berkeley, CA. Also available as LAPACK Working Note

202.

Wainwright I (2013) Optimized LU-decomposition with full

pivot for small batched matrices. In: GTC 2013, ID S3069.

Available at http://on-demand.gputechconf.com/gtc/2013/

presentations/S3069-LU-Decomposition-Small-Batched-

Matrices.pdf.

Yeralan SN, Davis TA and Ranka S (2013) Sparse Mulit-

frontal QR on the GPU. Technical report, University of

Florida. http://faculty.cse.tamu.edu/davis/publications_

files/qrgpu_paper.pdf.

Haidar et al. 207

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://www.intel.com/design/pentiumiii/sml/
http://icl.cs.utk.edu/magma/
http://download.intel.com/products/processor/manual/
http://on-demand.gputechconf.com/gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_paper.pdf
http://hpc.sagepub.com/


Author biographies

Azzam Haidar received a PhD in 2008 from

CERFACS, France. He is Research Scientist at the

Innovative Computing Laboratory (ICL) at the

University of Tennessee, Knoxville (UTK). His

research interests focus on the development and imple-

mentation of Parallel Linear Algebra routines for

Distributed Scalable Heterogeneous Architectures, for

large-scale dense and sparse problems, as well as

approaches that combine direct and iterative algo-

rithms to solve large linear systems as well as eigenva-

lue problems.

Tingxing Dong is a graduate student in computer sci-

ence at the Innovative Computing Laboratory (ICL) at

the University of Tennessee, Knoxville (UTK). He

received a master degree in computer science from the

Chinese Academy of Science in 2010. His research

interests include linear algebra problems and imple-

mentations on hybrid architectures and computational

fluid dynamics (CFD).

Piotr Luszczek is a Research Director at the University

of Tennessee where he works on benchmarking, perfor-

mance evaluation, and linear algebra software on

large-scale computers that include hardware accelera-

tors. His past activities include industry experience in

programming language design and numerous contribu-

tions to the high-performance scientific computing

(HPC) software. His publishing record spans numerical

algorithms, performance evaluation and benchmark-

ing, as well as parallel language design.

Stanimire Tomov received a PhD in Mathematics from

Texas A&M University in 2002. He is a Research

Director in ICL and Adjunct Assistant Professor in the

EECS at UTK. Tomov’s research interests are in paral-

lel algorithms, numerical analysis, and HPC.

Currently, his work is concentrated on the develop-

ment of numerical linear algebra software for emerging

architectures for HPC.

Jack Dongarra holds an appointment at the University

of Tennessee, Oak Ridge National Laboratory, and the

University of Manchester. He specializes in numerical

algorithms in linear algebra, parallel computing, use of

advanced-computer architectures, programming meth-

odology, and tools for parallel computers. He was

awarded the IEEE Sid Fernbach Award in 2004; in

2008 he was the recipient of the first IEEE Medal of

Excellence in Scalable Computing; in 2010 he was the

first recipient of the SIAM Special Interest Group on

Supercomputing’s award for Career Achievement; in

2011 he was the recipient of the IEEE IPDPS Charles

Babbage Award; and in 2013 he received the ACM/

IEEE Ken Kennedy Award. He is a Fellow of the

AAAS, ACM, IEEE, and SIAM and a member of the

National Academy of Engineering.

208 The International Journal of High Performance Computing Applications 29(2)

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/

