
Batched QR and SVD Algorithms on GPUs with
Applications in Hierarchical Matrix Compression

Item Type Article

Authors Boukaram, Wagih Halim; Turkiyyah, George; Ltaief, Hatem;
Keyes, David E.

Citation Halim Boukaram W, Turkiyyah G, Ltaief H, Keyes DE (2017)
Batched QR and SVD Algorithms on GPUs with Applications in
Hierarchical Matrix Compression. Parallel Computing. Available:
http://dx.doi.org/10.1016/j.parco.2017.09.001.

Eprint version Post-print

DOI 10.1016/j.parco.2017.09.001

Publisher Elsevier BV

Journal Parallel Computing

Rights NOTICE: this is the author’s version of a work that was accepted
for publication in Parallel Computing. Changes resulting from
the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may
not be reflected in this document. Changes may have been made
to this work since it was submitted for publication. A definitive
version was subsequently published in Parallel Computing, [, ,
(2017-09-14)] DOI: 10.1016/j.parco.2017.09.001 . © 2017. This
manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Download date 26/08/2022 05:44:12

http://dx.doi.org/10.1016/j.parco.2017.09.001

Link to Item http://hdl.handle.net/10754/625473

http://hdl.handle.net/10754/625473

Accepted Manuscript

Batched QR and SVD Algorithms on GPUs with Applications in
Hierarchical Matrix Compression

Wajih Halim Boukaram, George Turkiyyah, Hatem Ltaief,
David E. Keyes

PII: S0167-8191(17)30146-1
DOI: 10.1016/j.parco.2017.09.001
Reference: PARCO 2408

To appear in: Parallel Computing

Received date: 14 December 2016
Revised date: 5 September 2017
Accepted date: 13 September 2017

Please cite this article as: Wajih Halim Boukaram, George Turkiyyah, Hatem Ltaief, David E. Keyes,
Batched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression,
Parallel Computing (2017), doi: 10.1016/j.parco.2017.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.parco.2017.09.001
http://dx.doi.org/10.1016/j.parco.2017.09.001

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 1

Highlights

• High performance GPU hosted batched QR decomposition kernels are developed and outperform
current implementations for small and rectangular matrices.

• Various GPU hosted batched singular value decomposition kernels are developed and used as building
blocks of a batched randomized SVD kernel for numerically low rank matrix blocks.

• Batched QR, SVD, and GEMM kernels are used to compress hierarchical matrices entirely on the
GPU.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Journal of Parallel Computing 00 (2017) 1–19

ParCo
Special
Edition

Batched QR and SVD Algorithms on GPUs
with Applications in Hierarchical Matrix Compression

Wajih Halim Boukarama,∗, George Turkiyyahb, Hatem Ltaiefa, David E. Keyesa

aExtreme Computing Research Center (ECRC), King Abdullah University of Science and Technology (KAUST), Thuwal
23955, Saudi Arabia.

bDepartment of Computer Science, American University of Beirut (AUB), Beirut, Lebanon.

Abstract

We present high performance implementations of the QR and the singular value decomposition of a batch of small
matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi
algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using
randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the
matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine
is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic
efficiently on GPUs.

c© 2016 Published by Elsevier Ltd.

Keywords: GPU, QR, SVD, batched operations, hierarchical, compression

1. Introduction

The singular value decomposition (SVD) is a factorization of a general m× n matrix A of the form

A = UΣV ∗.

U is an m ×m orthonormal matrix whose columns Ui are called the left singular vectors. Σ is an m × n
diagonal matrix whose diagonal entries σi are called the singular values and are sorted in decreasing order.
V is an n× n orthonormal matrix whose columns Vi are called the right singular vectors. When m > n, we
can compute a reduced form A = Û Σ̂V ∗ where Û is an m × n matrix and Σ̂ is an n × n diagonal matrix.
One can easily obtain the full form from the reduced one by extending Û with (m− n) orthogonal vectors
and Σ̂ with an (m− n) zero block row. Without any loss of generality, we will focus on the reduced SVD of
real matrices in our discussions.

The SVD of a matrix is a crucial component in many applications in signal processing and statistics as
well as matrix compression, where truncating the (n−k) singular values that are smaller than some threshold

∗Corresponding author
Email addresses: wajihhalim.boukaram@kaust.edu.sa (Wajih Halim Boukaram), gt02@aub.edu.lb (George Turkiyyah),

hatem.ltaief@kaust.edu.sa (Hatem Ltaief), david.keyes@kaust.edu.sa (David E. Keyes)

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 3

Algorithm 1 Householder QR

1: procedure QR(A,Q,R)
2: [Q,R] = [I, A]
3: for i = 1→ A.n do
4: v = house(R(i))
5: R = (I − 2vvT)R
6: Q = Q(I − 2vvT)

gives us a rank-k approximation Ã of the matrix A. This matrix is the unique minimizer of the function
fk(B) = ||A − B||F . In the context of hierarchical matrix operations, effective compression relies on the
ability to perform the computation of large batches of independent SVDs of small matrices of low numerical
rank. Randomized methods [1] are well suited for computing a truncated SVD of these types of matrices and
are built on three computational kernels: the QR factorization, matrix-matrix multiplications, and SVDs of
smaller k× k matrices. Motivated by this task, we discuss the implementation of high performance batched
QR and SVD kernels on the GPU, focusing on the more challenging SVD tasks.

The remainder of this paper is organized as follows. Section 2 presents different algorithms used to
compute the QR factorization and the SVD as well as some considerations when optimizing for GPUs.
Section 3 discusses the batched QR factorization and compares its performance with existing libraries.
Sections 4, 5 and 6 discuss the various implementations of the SVD based on the level of the memory
hierarchy in which the matrices can reside. Specifically, Section 4 describes the implementation for very
small matrix sizes that can fit in registers, Section 5 describes the implementation for matrices that can
reside in shared memory, and Section 6 describes the block Jacobi implementation for larger matrix sizes
that must reside in global memory. Section 7 details the implementation of the batched randomized SVD
routine. We then discuss some details of the application to hierarchical matrix compression in Section 8.
We conclude and discuss future work in Section 9.

2. Background

In this section we give a review of the most common algorithms used to compute the QR factorization
and the SVD of a matrix and discuss some considerations when optimizing on the GPU.

2.1. QR Factorization

The QR factorization decomposes an m× n matrix A into the product of an orthogonal m×m matrix
Q and an upper triangular m× n matrix R [2]. We can also compute a reduced form of the decomposition
where Q is an m× n matrix and R is n× n upper triangular. The most common QR algorithm is based on
transforming A into an upper triangular matrix using a series of orthogonal transformations generated using
Householder reflectors. Other algorithms such as the Gram-Schmidt or Modified Gram-Schmidt can produce
the QR factorization by orthogonalizing a column with all previous columns; however, these methods are
less stable than the Householder orthogonalization and the orthogonality of the resulting Q factor suffers
with the condition number of the matrix. Another method is based on Givens rotations, where entries in the
subdiagonal part of the matrix are zeroed out to form the triangular factor and the rotations are accumulated
to form the orthogonal factor. This method is very stable and has more parallelism than the Householder
method; however it is more expensive, doing about 50% more work, and it is more challenging to extract
the parallelism efficiently on the GPU. For our implementation, we rely on the Householder method due to
its numerical stability and simplicity. The method is described in pseudo-code in Algorithm 1.

2.2. SVD Algorithms

Most implementations of the SVD are based on the two-phase approach popularized by Trefethen et
al. [3], where the matrix A first undergoes bidiagonalization of the form A = QUBQ

T
V where QU and QV are

orthonormal matrices and B is a bidiagonal matrix. The matrix B is then diagonalized using some variant
3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 4

of the QR algorithm, the divide and conquer method, or a combination of both to produce a decomposition
B = UBΣV T

B . The complete SVD is then determined as A = (QUUB)Σ(QV VB)T during the backward
transformation. These methods require significant algorithmic and programming effort to become robust
and efficient while still suffering from a loss of relative accuracy [4].

An alternative is the one-sided Jacobi method where all n(n − 1)/2 pairs of columns are repeatedly
orthogonalized in sweeps using plane rotations until all columns are mutually orthogonal. When the process
converges (i.e., all columns are mutually orthogonal up to machine precision), the left singular vectors are
the normalized columns of the modified matrix with the singular values as the norms of those columns.
The right singular vectors can be computed either by accumulating the rotations or by solving a system
of equations. Our application does not need the right vectors, so we omit the details of computing them.
Algorithm 2 describes the one-sided Jacobi method. Since each pair of columns can be orthogonalized
independently, the method is also easily parallelized. The simplicity and inherent parallelism of the method
make it an attractive first choice for an implementation on the GPU.

2.3. GPU Optimization Considerations

GPU kernels are launched by specifying a grid configuration which lets us organize threads into blocks
and blocks into a grid. Launching a GPU kernel causes a short stall (as much as 10 microseconds) as the
kernel is prepared for execution. This kernel launch overhead prevents kernels that complete their work
faster than the overhead from executing in parallel, essentially serializing them. To overcome this limitation
when processing small workloads, the work is batched into a single kernel call when possible [5, 6]. All
operations can then be executed in parallel without incurring the kernel launch overhead, with the grid
configuration used to determine thread work assignment.

A warp is a group of threads (32 threads in current generation GPUs, such as the NVIDIA P100)
within a block that executes a single instruction in lockstep, without requiring any explicit synchronization.
The occupancy of a kernel tells us the ratio of active warps to the maximum number of warps that a
multiprocessor can host. This metric is dependent on the amount of resources that a kernel uses, such as
register and shared memory usage and kernel launch configuration, as well as the compute capability of the
card (see [7] for more details). While not a requirement for good performance [8], it is generally a good idea
to aim for high occupancy.

Memory on the GPU is organized into a hierarchy of memory spaces as shown in Figure 1. At the
bottom, we have global memory which is accessible by all threads and is the most plentiful but the slowest
memory. The next space of interest is the shared memory which is accessible only by threads within the same
block and is configurable with the L1 cache to be at most 48KB per thread block on current generation
GPUs. Shared memory is very fast and acts as a programmer controllable cache. Finally, we have the
registers which are local to the threads. Registers are the fastest of all memory, but the total number of
registers usable by a thread without performance implications is limited. If a kernel needs more registers
than the limit, then registers are spilled to “local” memory, which is in the slow but cached global memory.
Making good use of the faster memories and avoiding excessive accesses to the slower ones is key to good
performance on the GPU. As such, it is common to use blocking techniques in many algorithms, where a
block of data is brought in from global memory and processed in one of the faster memories.

Algorithm 2 One-sided Jacobi SVD

1: while not converged do
2: for each pair of columns Aij = [Ai, Aj] do
3: G = AT

ijAij

4: R = rot(G)
5: Aij = AijR

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 5

Registers

Read-Only
Cache

L1 Cache
Shared
Memory

L2 Cache

Global
memory

On-chip

Off-chip

Figure 1: The memory hierarchy of a modern GPU.

2.4. Related Work

Batched GPU routines for LU, Cholesky and QR factorizations have been developed in [5, 6, 9] using a
block recursive approach which increases data reuse and leads to very good performance for relatively large
matrix sizes. GPU routines optimized for computing the QR decomposition of very tall and skinny matrices
are presented in [10] where they develop an efficient transpose matrix-vector computation that is employed
with some minor changes in this work. GPU-CPU hybrid algorithms for batched SVD using Jacobi and
bidiagonalization methods are introduced in [11] where pair generation for the Jacobi method and the solver
phase of the bidiagonalization are handled on the CPU. The work in [12] employs the power method to
construct a rank 1 approximation for 2D filters in convolutional neural networks. Routines to handle the
SVD of many matrices on GPUs is presented in [13] where each thread within a warp computes the SVD of
a single matrix.

3. Batched QR Decomposition

In this section, we discuss implementation details of our batched QR kernel and compare it with other
implementations from the MAGMA 2.2 [14] and CUBLAS 8 [15] libraries.

3.1. Implementation

One benefit of the Householder algorithm is that the application of reflectors to the trailing matrix
(line 5 of the algorithm) can be blocked together and expressed as a matrix-matrix multiplication (Level 3
BLAS) instead of multiple matrix-vector multiplications (Level 2 BLAS). The increased arithmetic intensity
typically allows performance to improve when the trailing matrix is large. However, for small matrix blocks,
the overhead of generating the blocked reflectors from their vector form as well as the lower performance of the
matrix-matrix multiplication for small matrices hinder performance. We can obtain better performance by
applying multiple reflectors in their vector form and performing the transpose matrix-vector multiplication
efficiently within a thread block [10]. First, we perform the regular factorization on a column block P
(called a panel). The entire panel is stored in registers, with each thread storing one row of the panel,
and the transpose matrix-vector product is computed using a series of reductions using shared memory and
warp shuffles [16] which allow threads within a warp to read each other’s registers. Figure 2 shows the
data layout for a theoretical warp of size 8 with 4 columns in registers and a warp reduction using shuffles.
Once we factor the panel, we can apply the reflectors to the trailing sub-matrix in a separate kernel that
is optimized for performing the core matrix-vector product in the update. In this second kernel, we load
both the factored panel P and a panel Mi of the trailing sub-matrix M to registers and apply the reflectors
one at a time, updating the trailing panel in registers. Let us take an example of a 32 × 8 trailing panel
Mi. For each reflector, we compute the matrix-vector product MT

i v by flattening the 32× 8 product into a

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 6

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

Lane 8

Warp

Registers Shu�eXOR

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Lane 7

Lane 8

Figure 2: Left: matrix rows allocated to thread registers in a warp. Right: parallel warp reduction using shuffles within
registers.

R

V P M

R′

V ′ M ′

Figure 3: One step of the QR factorization where a panel P is factored to produce a triangular factor R and reflectors V , which
are used to update the trailing sub-matrix M .

reduction of a 256 vector in shared memory that has been padded to avoid bank conflicts. The reduction
can then be serialized until it reaches a size of 32, where a partial reduction to a vector of size 8 can take
place in 2 steps. This final vector is the product MT

i v which can then be quickly applied to the registers
storing Mi. This process is repeated for each trailing panel within the same kernel to maximize the use of
the reflectors which have been stored in registers. Figure 3 shows one step of a panel factorization and the
application of its reflectors to the trailing submatrix. Since threads are limited to 1024 per block on current
architectures, we use the approach developed in [17] to factorize larger matrices. We first factorize panels up
to the thread block limit in a single kernel call. The panels below the first are then factorized by first loading
the triangular factor into shared memory and then proceeding with the panel factorization as before, taking
the triangular portion into consideration when computing reflectors and updates. To keep occupancy up for
the small matrices on devices where the resident block limit could be reached before the thread limit, we
assign multiple operations to a single thread block. For a batch of N matrices of dimensions m× n, kernels
can be launched using N/b thread blocks of size m× b, where each thread block handles b operations.

3.2. Performance

Figures 4a and 4b show the performance of our batched QR for 1000 square and rectangular matrices with
a panel width of 16, tuned for the P100 GPU. We compare against the vendor implementation in CUBLAS
as well as the high performance library MAGMA. We can see that our proposed version performs well for
rectangular matrices with column size of 32 and starts losing ground against MAGMA for the larger square
matrix sizes where the blocked algorithm starts to show its performance benefits. A nested implementation

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 7

25 26 27 28 29

0

200

400

600

800

1,000

Matrix Size

G
fl

o
p

/s

Our QR DP Our QR SP

MAGMA QR DP MAGMA QR SP

CUBLAS QR DP CUBLAS QR SP

(a) Batched QR kernel performance for square ma-
trices.

25 26 27 28 29 210 211

0

100

200

300

400

Matrix Rows

G
fl

o
p

/
s

Our QR DP Our QR SP

CUBLAS QR DP CUBLAS QR SP

MAGMA QR DP MAGMA QR SP

(b) Batched QR kernel performance for rectangular
matrices with a fixed column size of 32.

Figure 4: Comparing batched QR kernels for 1000 matrices of varying size on a P100 GPU in single and double precision.

where our kernel can be used to factor relatively large panels in a blocked algorithm will likely show some
additional performance improvements for the large square matrices, but we leave that as future work.

4. Register Memory One-Sided Jacobi

In this section we will discuss the first batched SVD kernel where the matrix data is hosted in registers
and analyze the performance of the resulting kernel.

4.1. Implementation

In this implementation, to avoid repeated global memory accesses, we attempt to fit the matrix in register
memory using the same layout as the panel in the QR factorization, i.e., one row per thread; however, the
number of registers that a thread uses has an impact on occupancy which can potentially lead to lower
performance. In addition, once the register count exceeds the limit set by the GPU’s compute capability,
the registers spill into “local” memory which resides in cached slow global memory. Since we store an entire
matrix row in the registers of one thread, we use the serial one-sided Jacobi algorithm to compute the SVD
where column pairs are processed by the threads one at a time. The bulk of the work lies in the computation
of the Gram matrix G = AT

ijAij (line 3 of Algorithm 2) and in the update of the columns (line 5). Since the
Gram matrix is symmetric, this boils down to three dot products which are executed as parallel reductions
within the warp using warp shuffles. The computation of the 2×2 rotation matrix as well as the convergence
test is performed redundantly in each thread. Finally, the column update is done in parallel by each thread
on its own register data. As with the QR kernel, we keep occupancy up for the smaller matrix sizes by
assigning multiple SVD operations to a single block of threads with each operation assigned to a warp to
avoid unnecessary synchronizations.

4.2. Performance

We generate batches of 1000 test matrices with varying condition numbers using the latms LAPACK
routine and calculate performance based on the total number of rotations needed for convergence. Figures
5a and 5b show the performance on a P100 GPU of the register-based batched SVD kernel and the effect
increased register usage has on occupancy. Profiling the kernel using the clock function, we see that
the Gram matrix computation takes about 500 cycles, column rotations take about 240 cycles, and the
redundantly computed convergence test and rotation matrices dominate at 1900 cycles. The fact that the

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 8

0 5 10 15 20 25 30 35

0

50

100

150

200

Matrix Size

G
fl

o
p

/
s

SP Performance

DP Performance

(a) Kernel performance in GFLOP/s and achieved
occupancy.

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

Matrix Size

O
cc
u
p
a
n
cy

SP Occupancy

DP Occupancy

(b) The effect of increasing the matrix size on the
occupancy of the register kernel.

Figure 5: Performance of the batched register memory SVD on a P100 GPU for 1000 matrices of varying size in single and
double precision arithmetics.

redundant portion of the computation dominates means that it is preferable to assign as few threads as
possible when processing column pairs. Due to the low occupancy for the larger matrix sizes and the
register spills to local memory for matrices larger than 30, it is obvious that the register approach will not
suffice for larger matrix sizes. This leads us to our next implementation based on the slower but more
parallel-friendly shared memory.

5. Shared Memory One-Sided Jacobi

While the register based SVD performs well for very small matrix sizes, we need a kernel that can handle
larger sizes and maintain reasonably high occupancy. This leads us to building a kernel based on shared
memory, the next level of the GPU memory hierarchy. This section discusses the implementation details of
this kernel and analyze its performance when compared with the register kernel.

5.1. Implementation

In this version, the matrix is stored entirely in shared memory, which is limited to at most 48 KB per
thread block on current generation GPUs. Using the same thread assignment as the register based kernel
would lead to very poor occupancy due to the high shared memory consumption, where potentially only a
few warps will be active in a multiprocessor. Instead, we exploit the inherent parallelism of the one-sided
Jacobi to assign a warp to a pair of columns, i.e., there are n/2 warps processing an m × n matrix stored
in shared memory. There are a total of n(n − 1)/2 pairs of columns, so we must generate all pairings in
n− 1 steps, with each step processing n/2 pairs in parallel. There are many ways of generating these pairs,
including round robin, odd-even, and ring ordering [18, 19]. We implement the round robin ordering using
shared memory to keep track of the column indexes of the pairs with the first warp in the block responsible
for updating the index list after each step. Figure 6 shows this ordering for a matrix with 8 columns. When
the number of matrix rows exceeds the size of the warp, the thread-per-row assignment no longer allows us
to use fast warp reductions, which would force us to use even more resources, as the reductions would now
have to be done in shared memory. Instead, we assign multiple rows to a thread, serializing a portion of
the reduction over those rows until warp reductions can be used. This follows our observation in Section
4.2 to assign as few threads as possible to process column pairs, frees up valuable resources and increases
the overall performance of the reduction. Row padding is used to keep the rows at multiples of the warp
size, and column padding is used to keep the number of columns even. Kernels can then be launched using
32 × n/2 threads to process each matrix. Figures 7a and 7b show examples of the thread allocation and
reductions for a 8× 8 matrix using a theoretical warp size of 4.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 9

Step 1:

1

2

3

4

5

6

7

8

Step 2:

2

4

1

6

3

7

5

8

Step 3:

4

6

2

7

1

5

3

8

Step 4:

6

7

4

5

2

3

1

8

Step 5:

7

5

6

3

4

1

2

8

Step 6:

5

3

7

1

6

2

4

8

Step 7:

3

1

5

2

7

4

6

8

W
ar
p
1

W
ar
p
2

W
ar
p
3

W
ar
p
4

Figure 6: Distribution of column pairs to warps at each step of a sweep.

Lane 1

Lane 2

Lane 3

Lane 4

Lane 1

Lane 2

Lane 3

Lane 4

Warp 1 Warp 2 Warp 3 Warp 4

Shared Memory

(a) Matrix columns assigned in
pairs to multiple warps and stored
in shared memory.

ShuffleXOR

Lane 1

Lane 2

Lane 3

Lane 4

Lane 1

Lane 2

Lane 3

Lane 4

Serial Reduction

(b) Parallel reduction of a column of data in
shared memory using register shuffles after an
initial serial reduction step.

Figure 7: Shared memory kernel implementation details.

5.2. Performance

Figures 8a and 8b show the performance of the parallel shared SVD kernel compared to the serial register
SVD kernel on a P100 GPU. We can see the improved growth in performance in the shared memory kernel
due to the greater occupancy as well as the absence of any local memory transactions. Looking at the double
precision occupancy, we notice two dips in occupancy at matrix sizes 22 and 32 as the number of resident
blocks become limited by the registers/block limits of the device, dropping to 2 and then 1 resident blocks.
Performance increases steadily from there as we increase the number of threads assigned to the operation
until we reach a matrix size of 64 × 64 where we reach the block limit of 1024 threads. To handle larger
sizes, we must use a blocked version of the algorithm or the randomized SVD as we see in Sections 6 and 7,
respectively.

6. Global Memory One-Sided Block Jacobi

When we can no longer store the entire matrix in shared memory, we have to operate on the matrix in
the slower global memory. Instead of repeatedly reading and updating the columns one at a time, block

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 10

0 10 20 30 40 50 60

0

200

400

600

Matrix Size

G
fl

o
p

/
s

SP SMEM Kernel

SP Register Kernel

DP SMEM Kernel

DP Register Kernel

(a) Shared memory kernel performance in
GFLOPs/s compared to the register kernel.

0 10 20 30 40 50 60 70

0.2

0.4

0.6

Matrix Size

O
cc
u
p
a
n
cy

SMEM SP Occupancy SMEM DP Occupancy

REG SP Occupancy REG DP Occupancy

(b) Comparison of the occupancy achieved by the
register and shared memory kernels.

Figure 8: Performance of the batched shared memory SVD on a P100 GPU for 1000 matrices of varying size in single and
double precision arithmetics.

algorithms that facilitate cache reuse have been developed [20, 21, 22]. The main benefit of the block Jacobi
algorithm is its high degree of parallelism; however, since we implement a batched routine for independent
operations, we will use the serial block Jacobi algorithm for individual matrices and rely on the parallelism
of the batch processing. The parallel version, where multiple blocks are processed simultaneously, can still
be used when the batch size is very small, but we will focus on the serial version. In this section we will
discuss the implementation details for two global memory block Jacobi algorithms that differ only in the
way block columns are orthogonalized and compare their performance with parallel streamed calls to the
cuSOLVER 8 [23] library routines.

6.1. Gram Matrix Block Jacobi SVD

The block Jacobi algorithm is very similar to the vector Algorithm 2, orthogonalizing pairs of blocks
columns instead of vectors. The first method of orthogonalizing pairs of block columns is based on the

SVD of their Gram matrix. During the p-th sweep, each pair of m × k block columns A
(p)
i and A

(p)
j is

orthogonalized by forming a 2k× 2k Gram matrix G
(p)
ij = [A

(p)
i A

(p)
j]

T
[A

(p)
i A

(p)
j] = A

(p)
ij

T
A

(p)
ij and generating

a block rotation matrix U
(p)
ij , computed as the left singular vectors of G

(p)
ij (or equivalently its eigenvectors,

since it is symmetric positive definite). Updating Ap+1
ij = Ap

ijU
(p)
ij orthogonalizes the block columns, since

we have

Ap+1
ij

T
Ap+1

ij = U
(p)
ij

T
Ap

ij
T
Ap

ijU
(p)
ij = U

(p)
ij

T
G

(p)
ij U

(p)
ij = Λp

ij ,

where Λp
ij is a diagonal matrix of the singular values of G

(p)
ij . Orthogonalizing all pairs of block columns until

the entire matrix is orthogonal will give us the left singular vectors as the normalized columns and the singular
values as the corresponding column norms. If the right singular vectors are needed, we can accumulate the
action of the block rotation matrices on the identity matrix. For our batched implementation, we use highly
optimized batched syrk and gemm routines from MAGMA to compute G and to apply the block rotations,
while the SVD is computed by our shared memory batched kernel. Since different matrices will converge in
different numbers of sweeps, we keep track of the convergence of each operation l by computing the norm el
of the off-diagonal entries of G scaled by its diagonal entries. While this term is an inexact approximation
of the off-diagonal terms of the full matrix in each sweep, it is still a good indication of convergence and
will cost us at most an extra cheap sweep, since the final sweep will not actually perform any rotations
within the SVD of G. The entire batched operation will then converge when e = max el < ε, where ε is

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 11

Algorithm 3 Batched One-sided block Jacobi SVD

1: while e > ε do
2: el = 0
3: for each pair of block columns Aij = [Ai, Aj] do
4: if method = GRAM then
5: G = batchSyrk(Aij)
6: else
7: [Aij , G] = batchQR(Aij)

8: el = max(el, scaledOffdiag(G))
9: U = batchSvd(G)

10: Aij = batchGemm(Aij , U)

11: e = max(el)

our convergence tolerance. This gives us the Gram matrix path of the batched block Jacobi Algorithm 3 to
compute the SVD of a batch of matrices in global memory. It is worth noting that the computation of the
Gram matrix can be optimized by taking advantage of the special structure of G, but since the bulk of the
computation is in the SVD of G, it will not result in any significant performance gains.

6.2. Direct Block Jacobi SVD

The Gram matrix method is an indirect way of orthogonalizing block columns and may fail to converge
if the matrix is very ill-conditioned. Ill-conditioned matrices can be handled by directly orthogonalizing the
columns using their SVD. Since the block columns are rectangular, we first compute their QR decomposition
followed by the SVD of the triangular factor R. Overwriting the block column Ap

ij by the orthogonal factor
Q and multiplying it by the left singular vectors of R scaled by the singular values will give us the new block
column Ap+1

ij :

Ap
ij = Qp

ijR
p
ij =

(
Qp

ijU
p
ijΣ

p
ij

)
V p
ij

T
= Ap+1

ij V p
ij

T
.

If the right singular vectors are needed, we can accumulate the action of V p
ij on the identity matrix. For

our batched implementation, we use the batch QR routine developed in Section 3 and gemm routines from
MAGMA to multiply the orthogonal factor by the left singular vectors, while the SVD is computed by our
shared memory batched kernel. The same convergence test used in the Gram matrix method can be used
on the triangular factor, since the triangular factor should be close to a diagonal matrix if a pair of block
columns are orthogonal. This gives us the direct path of the batched block Jacobi Algorithm 3 to compute
the SVD of a batch of matrices in global memory.

6.3. Performance

Figures 9a and 9a show the profiling of the different computational kernels involved in the batched
block algorithms with a block width of 32, specifically percentages of total execution time for determining
convergence and memory operations, matrix multiplications, QR decompositions and the SVD of the Gram
matrix. For the Gram matrix approach, the SVD is the most costly phase, even for the larger operations,
while the QR and SVD decompositions take almost the same time for the larger matrices in the direct
approach. Figure 10a shows the performance of the batched block Jacobi SVD of 200 matrices using both
methods and Figure 10b compares the performance of our batched SVD routine with a batched routine that
uses the cuSOLVER SVD routine using 20 concurrent streams on a P100 GPU. Increasing the number of
streams for cuSOLVER showed little to no performance benefits, highlighting the performance limitations of
routines that are bound by kernel launch overhead. The matrices are generated randomly using the latms

LAPACK routine with a condition number of 107. The Gram matrix approach fails to converge in single
precision for these types of matrices, whereas the direct approach always converges; however the Gram matrix
approach performs better when it is applicable for the larger matrices due to the strong performance of the
matrix-matrix multiplications. The performance of the block algorithm can be improved by preprocessing

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 12

the matrix using QR and LQ decompositions to decrease the number of sweeps required for convergence [24]
as well as by adaptively selecting pairs of block columns based on the computed offdiagonal norms of their
Gram matrices. These changes are beyond the scope of this paper and will be the focus of future work.

96 12
8

16
0

1
92 22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

0

20

40

60

80

100

Matrix size

%
to
ta
l
ti
m
e

Misc.

GEMM

SVD

(a) Gram Matrix batched block Jacobi SVD profile.

96 12
8

16
0

1
92 22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

0

20

40

60

80

100

Matrix size

%
to
ta
l
ti
m
e

Misc.

GEMM

SVD

QR

(b) Direct batched block Jacobi SVD profile.

Figure 9: Profile of the different phases of the block Jacobi SVD for 200 matrices of varying size on a P100 GPU in double
precision. Single precision exhibits similar behavior.

7. Randomized SVD

As mentioned in Section 1, we are often interested in a rank-k approximation of a matrix A ≈ Ũ S̃Ṽ . We
can compute this approximation by first determining the singular value decomposition of the fullm×nmatrix
A and then truncating the n−k smallest singular values with their corresponding singular vectors; however,
when the matrix has low numerical rank k, we can obtain the approximation using very fast randomization
methods [1]. This section will discuss some details of the algorithm and compare its performance with the
full SVD using our one-sided block Jacobi kernel.

7.1. Implementation

When the singular values of a matrix decay rapidly, we can compute an approximate SVD using a simple
two phase randomization method:

1. The first phase determines an approximate orthogonal basis Q for the columns of A ensuring that
A ≈ QQTA. When the numerical rank k of A is low, we can be sure that Q has a small number of
columns as well. In [1] we see that by drawing k+p sample vectors y = Aw from random input vectors
w, we can obtain a reliable approximate basis for A which can then be orthogonalized. This boils
down to computing a matrix Y = AΩ, where Ω is a n× (k+p) random Gaussian sampling matrix, and
then computing the QR decomposition of Y = QRy, where Q is the desired approximate orthogonal
basis.

2. The second phase uses the fact that A ≈ QQTA to compute a matrix B = QTA so that we now have
A ≈ QB. Forming the SVD of B = UBSV

T , we finalize our approximation A ≈ QUBSV
T = USV T .

For the wide (k+p)×n matrix B, we can first compute a QR decomposition of its transpose, followed
by the SVD of the upper triangular factor.

Algorithm 4 shows that the core computations for the randomized method are matrix-matrix multiplications,
QR decompositions, and the singular value decompositions of small matrices. Using the batched routines
from the previous sections, it is straightforward to form the required randomized batched SVD. More robust
randomized SVD algorithms would employ randomized subspace iteration methods to obtain a better basis
Q for the columns of A and rely on these same core kernels, but will not be further discussed here.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 13

100 200 300 400 500

300

400

500

Matrix Size

G
fl

o
p

/s

SP Direct

DP Gram

DP Direct

(a) Batched block Jacobi SVD performance.

100 200 300 400 500

10−1

100

101

102

Matrix Size

T
im

e
(s
)

Streamed DP CUSolver

Streamed SP CUSolver

Batched DP Direct

Batched DP Gram

Batched SP Direct

(b) Comparison between streamed cuSOLVER and
the batched block Jacobi.

Figure 10: Batched block Jacobi performance for 200 matrices of varying size on a P100 GPU in single and double precision
arithmetics.

Algorithm 4 Batched Randomized SVD

1: procedure RSVD(A, k, p)
2: [m,n] = size(A)
3: Ω = Rand(n, k + p)
4: Y = batchGemm(A,Ω)
5: [Q,Ry] = batchQR(Y)
6: B = batchGemm(QT , A)
7: [QB , RB] = batchQR(BT)
8: [UR, S, VR] = batchSvd(RT

B)
9: U = batchGemm(Q,UR)

10: V = batchGemm(QB , VR)

7.2. Performance

Figure 11 shows the profiling of the different kernels used in the randomized batched routine for deter-
mining the top 64 singular values and vectors of randomly generated low rank matrices using the latms

LAPACK routine. The miscellaneous portion includes random number generation using the CURAND li-
brary’s default random number generator and a Gaussian distribution, batched transpose operations and
memory operations. We can see that the performance of all kernels play almost equally important roles in
the performance of the randomized routine as the matrix size grows while keeping the computed rank the
same. Figure 12a shows the performance of the batched randomized SVD of 200 operations and Figure 12b
compares the runtimes of the direct block one-sided Jacobi routine with the randomized SVD on a P100
GPU for the same set of matrices, showing that significant time savings can be achieved even for relatively
small blocks.

8. Application to Hierarchical Matrix Compression

As an application of the batched kernels presented, we consider the problem of compressing/recompressing
hierarchical matrices. This is a problem of significant importance for building hierarchical matrix algorithms
and in fact was our primary motivation for the development of the batched kernels.

Hierarchical matrices [25, 26, 27] have received substantial attention in recent years because of their
ability to store and perform algebraic operations in near linear complexity rather than the O(n2) and
O(n3) that regular dense matrices require. The effectiveness of hierarchical matrices comes from the fact

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 14

96 12
8

16
0

1
92

2
24 25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

0

20

40

60

80

100

Matrix size

%
to
ta
l
ti
m
e

Misc.

GEMM

SVD

QR

Figure 11: Profile of the different phases of the batched randomized SVD for 200 matrices of varying size on a P100 GPU in
double precision. Single precision exhibits similar behavior.

100 200 300 400 500

200

400

600

800

1,000

Matrix Size

G
fl

op
/s

SP Randomized SVD

DP Randomized SVD

(a) Batched randomized SVD performance.

100 200 300 400 500

10−2

10−1

100

101

Matrix Size

T
im

e
(s
)

DP Direct Block SVD

SP Direct Block SVD

DP Randomized SVD

SP Randomized SVD

(b) Comparison between the batched block Jacobi
and the batched randomized SVD.

Figure 12: Batched randomized SVD performance for 200 matrices of varying size on a P100 GPU in single and double precision
for the first 64 singular values and vectors.

they can approximate a matrix by a (quad)-tree of blocks where many of the blocks in the off-diagonal
regions have a rapidly decaying spectrum and can therefore be well-approximated by numerically low rank
representations. It is these low rank representations, at different levels of the hierarchical tree, that reduce
the memory footprint and operations complexity of the associated matrix algorithms. Hackbush [28] shows
that many of the large dense matrices that appear in scientific computing, such as from the discretization of
integral operators, Schur complements of discretized PDE operators, and covariance matrices, can be well
approximated by these hierarchical representations.

Reviewing and analyzing hierarchical matrix algorithms is beyond the scope of this paper. Here we
focus on the narrow task of compressing hierarchical matrices. This compression task may be viewed as a
generalization of the well-known compression (i.e., low rank approximation) of large dense matrices to the
case of hierarchical matrices. For large dense matrices, one way to perform the compression is to generate a
single exact or approximate SVD (UΣV T) and truncate the spectrum Σ to the desired tolerance, to produce
a truncated or “compressed” representation (Ū Σ̄V̄ T). For hierarchical matrices, the equivalent operations
involve batched SVDs on small blocks, with one batched kernel call per level of the tree in the hierarchical
representation. The size of the batch in every such call is the number of nodes at the corresponding level in
the tree.

Compression algorithms with controllable accuracy are important practically, because it is often the case
that the hierarchical matrices generated by analytical methods can be compressed with no significant loss of
accuracy. Even more importantly, when performing matrix operations such as addition and multiplication,

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 15

U1
1

U2
1

U3
1

E3
1

U3
2

E3
2

E2
1

U2
2

U3
3

E3
3

U3
4

E3
4

E2
2

(a) Basis tree U of an H2-matrix. Leaf nodes are
stored explicitly, whereas inner nodes are represented
implicitly using the transfer matrices E.

A2
12 = U2

1S
2
12V

2
2
T

(b) Leaves of matrix tree for a simple hierarchical
matrix. Red blocks represent dense leaves and green
blocks are low rank leaves.

Figure 13: The basis tree and matrix tree leaves of a simple H2-matrix.

the apparent ranks of the blocks often grow and have to be recompressed regularly during the operations to
prevent superlinear growth in memory requirements.

8.1. H2-matrix representation

For our application, we use the memory efficient H2 variant of hierarchical matrices which exhibit linear
complexity in time and space for many of its core operations. In the H2-matrix format, a hierarchical matrix
is actually represented by three trees:

• Row and column basis column trees U and V that organize the row and column indices of the matrix
hierarchically. Each node represents a set of basis vectors for the row and column spaces of the blocks
of A. Nodes at the leaves of the tree store these vectors explicitly, while inner nodes store only transfer
matrices that allow us to implicitly represent basis vectors in terms of their children. A basis tree with
this parent-child relationship of the nodes is called a nested basis. For example, in a binary row basis
tree U with transfer matrices E, we can explicitly compute the basis vectors for a node i with children
i1 and i2 at level l as:

U l−1
i =

[
U l
i1

U l
i2

] [
El

i1
El

i2

]
.

Figure 13a shows an example of a binary basis tree.

• A matrix tree for the hierarchical blocking of A formed by a dual traversal of the nodes of the two
basis trees. A leaf is determined by the admissibility condition when the block is either small enough
and stored as an m×m dense matrix, or when a low rank approximation of the block meets a specified
accuracy tolerance. For the latter case, the node is stored as a kl × kl coupling matrix S at each level
l of the tree, where kl is the rank at level l. The block Ats of the matrix, where t is the index set
of a node in the row basis tree U and s is the index set of a node in the column basis V , is then
approximated as Ats ≈ UtStsV

T
s . Figure 13b shows the leaves of the matrix quadtree of a simple

hierarchical matrix.

For the case of symmetric matrices, the U and V trees are identical. Our numerical results below are from
a symmetric covariance matrix.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 16

8.2. Compression

The compression of a symmetricH2-matrix AH , represented by the two trees U (with its transfer matrices

E) and S, involves generating a new optimal basis tree Ũ (with its transfer matrices Ẽ) in a truncation

phase, and a new S̃ that expresses the contents of the matrix blocks in this new basis in a projection phase.
We present a version of the truncation algorithm that generates a memory efficient basis [Ũ , Ẽ] from a

representation of the matrix in a given [U,E] basis. More sophisticated algebraic compression algorithms
that involve the use of S in the truncation phase in order to generate a more efficient basis will be the
subject of future work.

The truncation phase computes the SVD of the nodes of the basis tree U level by level, with all nodes
in a level being processed in parallel to produce the new basis Ũ . We have an explicit representation of the
basis vectors at the leaves, so we can compute the SVD of all leaf nodes in parallel with our batched kernels
and truncate the singular vectors whose singular values are lower than our relative compression threshold ε.
Truncating the node to the relative threshold using the SVD will give us an approximation of the leaf such

that ||Ats−Ãts||F
||Ats||F ≤ ε. With the new leaf nodes, we can compute projection matrices in a tree T for each

node i at the leaf level d as T d
i = Ũd

i

T

Ud
i . Sweeping up the tree, we process the inner nodes while preserving

the nested basis property. Using the parent-child relationship of a node i with children i1 and i2 at level l,
we have:

U l−1
i =

[
U l
i1

U l
i2

] [
El

i1
El

i2

]
≈
[
Ũ l
i1

Ũ l
i2

] [
T l
i1
El

i1
T l
i2
El

i2

]
=

[
Ũ l
i1

Ũ l
i2

]
TEi

After forming the TE matrices using batched matrix-matrix multiplication, we compute their SVD TE =
QSWT using the batched SVD kernel and truncate as we did for the leaves to form the truncated T̃E
matrices as:

T̃Ei = Q̃i

(
S̃iW̃

T
i

)
=

[
Ẽl

i1

Ẽl
i2

]
T l−1
i

where Ẽl, the block rows of Q̃, are the new transfer matrices at level l of our compressed nested basis and
T l−1 are the projection matrices for level (l − 1). The key computations involved in this truncation phase
consist then of one batched SVD involving the leaves of the tree, followed by a sequence of batched SVDs,
one per level of the tree, involving the transfer matrices and data from the lower levels.

The projection phase consists of transforming the coupling matrices in the matrix tree using the generated
projection matrices of the truncation phase. For each coupling matrix Sts, we compute a new coupling
matrix S̃ts = TtStsT

T
s using batched matrix-matrix multiplications. This phase of the operation consumes

much less time than the truncation phase on GPUs, because of substantial efficiencies in executing regular
arithmetically intensive operations on them.

8.3. Results

As an illustration of the effectiveness of the algebraic compression procedure, we generate covariance
matrices of various sizes for a spatial Gaussian process with n observation points placed on a random
perturbation of a regular discretization of the unit square [0, 1] × [0, 1] and an isotropic exponential kernel
with correlation length of 0.1. Hierarchical representations of the formally dense n× n covariance matrices
are formed analytically by first clustering the points in a KD-tree using a mean split giving us the hierarchical
index sets of the basis tree. The basis vectors and transfer nodes are generated using Chebyshev interpolation
[29]. The matrix tree is constructed using a dual traversal of the basis tree [25, 30], and the coupling
matrices are generated by evaluating the kernel at the interpolation points. The approximation error of the
constructed matrix is then controlled by varying the number of interpolation points and by varying the leaf
admissibility condition during the dual tree traversal. An approximation error of 10−7 has been used in the

following tests and a relative truncation error ε = ||AH−ÃH ||F
||AH ||F ≤ 10−7 has been used to maintain the accuracy

of the compressed matrices. Figure 14a shows the memory consumption before and after compression of
hierachical covariance matrices with leaf size 64 and initial rank 64 (corresponding to an 8 × 8 Chebyshev

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 17

grid). The dense part remains untouched, while the low rank part of the representation sees a substantial
decrease in memory consumption after compression with minimal loss of accuracy. Figure 14b shows the
expected asymptotic linear growth in time of the compression algorithm and shows the effect of using the
randomized SVD with 32 samples instead of the full SVD as computed by the shared memory kernel. Figure
15 shows another example where the admissibility condition is weakened to generate a coarser matrix tree
with an increased rank of 121 (corresponding to an 11× 11 Chebyshev grid) and the randomized SVD with
64 samples also reduces compression time when compared to the full SVD using the direct block Jacobi
kernels.

214 215 216 217 218 219

2−5

2−3

2−1

21

23

Problem Size

M
em

or
y
C
on

su
m
p
ti
on

(G
B
)

DP Dense portion SP Dense portion

DP Original low rank SP Original low rank

DP Compressed low rank SP Compressed low rank

(a) Memory savings.

214 215 216 217 218 219

2−3

2−2

2−1

20

Problem Size

C
om

p
re
ss
io
n
T
im

e(
s)

DP Full SVD DP Randomized SVD

SP Full SVD SP Randomized SVD

(b) Compression time using randomized SVD with 32
samples and the full SVD using the shared memory
kernel.

Figure 14: Compression results for sample covariance matrices generated from 2D spatial statistics on a P100 GPU in single
and double precision, using a relative Frobenius norm threshold of 10−7 and initial rank 64.

214 215 216 217 218 219

2−2

2−1

20

21

Problem Size

C
om

p
re
ss
io
n
T
im

e(
s)

DP Full SVD DP Randomized SVD

SP Full SVD SP Randomized SVD

Figure 15: Compression time for a coarser matrix tree with initial rank 121 comparing the randomized SVD with 64 samples
and the full SVD.

9. Conclusions and Future Work

In this paper, we described the implementation of efficient batched kernels for the QR decomposition and
randomized singular value decomposition of low rank matrices hosted on the GPU. Our batched QR kernel

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 18

provides significant performance improvements for small matrices over existing state of the art libraries,
and our batched SVD routines are the first of their kind on the GPU, with performance exceeding 800/400
GFLOP/s on a batch of 1000 matrices of size 512×512 in single/double precision. We illustrated the power
of these kernels on a problem involving the algebraic compression of hierarchical matrices stored entirely
in GPU memory, and demonstrated a high-performance compression algorithm yielding significant memory
savings on practical problems. In the future, we plan to investigate alternatives to the one-sided Jacobi
algorithm for the SVD of the small blocks in the randomized algorithm and improve the performance of the
blocked algorithms using preconditioning and adaptive block column pair selection. We also plan to develop
a suite of hierarchical matrix operations suited for execution on modern GPU and manycore architectures.

Acknowledgments

The work of all four authors was supported by the Extreme Computing Research Center at the King
Abdullah University of Science and Technology. We thank the NVIDIA Corporation for providing access to
the P100 GPU used in this work.

References

References

[1] N. Halko, P.-G. Martinsson, J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions, SIAM Review 53 (2) (2011) 217–288.

[2] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins University Press, 2013.
[3] L. Trefethen, D. Bau, Numerical Linear Algebra, Society for Industrial and Applied Mathematics, 1997.
[4] J. Demmel, K. Veselic, Jacobi’s method is more accurate than QR, SIAM Journal on Matrix Analysis and Applications

13 (4) (1992) 1204–1245.
[5] A. Haidar, T. T. Dong, S. Tomov, P. Luszczek, J. Dongarra, A framework for batched and GPU-resident factorization

algorithms applied to block Householder transformations., in: J. M. Kunkel, T. Ludwig (Eds.), ISC, Vol. 9137 of Lecture
Notes in Computer Science, Springer, 2015, pp. 31–47.

[6] A. Haidar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Optimization for performance and energy for batched matrix
computations on GPUs, in: Proceedings of the 8th Workshop on General Purpose Processing Using GPUs, GPGPU-8,
ACM, New York, NY, USA, 2015, pp. 59–69.

[7] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Pearson Education, 2013.
[8] V. Volkov, Better performance at lower occupancy, Proceedings of the GPU technology conference, GTC 10.
[9] A. Charara, D. E. Keyes, H. Ltaief, Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on

GPUs, Submitted to ACM Transactions on Mathematical Software.
URL http://hdl.handle.net/10754/622975

[10] M. Anderson, G. Ballard, J. Demmel, K. Keutzer, Communication-avoiding QR decomposition for GPUs, in: Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE International, 2011, pp. 48–58. doi:10.1109/IPDPS.2011.15.

[11] C. Kotas, J. Barhen, Singular value decomposition utilizing parallel algorithms on graphical processors, in: OCEANS’11
MTS/IEEE KONA, 2011, pp. 1–7. doi:10.23919/OCEANS.2011.6107024.

[12] H.-P. Kang, C.-R. Lee, Improving Performance of Convolutional Neural Networks by Separable Filters on GPU, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 638–649.

[13] I. Badolato, L. d. Paula, R. Farias, Many SVDs on GPU for image mosaic assemble, in: 2015 International Symposium
on Computer Architecture and High Performance Computing Workshop (SBAC-PADW), 2015, pp. 37–42.

[14] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, Dense linear algebra solvers for multicore with GPU accelerators, in: Proc. of
the IEEE IPDPS’10, IEEE Computer Society, Atlanta, GA, 2010, pp. 1–8, DOI: 10.1109/IPDPSW.2010.5470941.

[15] NVIDIA, CUBLAS Library User Guide, NVIDIA, v8.0 Edition (2017).
URL http://docs.nvidia.com/cuda/cublas

[16] J. Cheng, M. Grossman, T. McKercher, Professional CUDA C Programming, EBL-Schweitzer, Wiley, 2014.
[17] J. Kurzak, H. Ltaief, J. Dongarra, R. M. Badia, Scheduling dense linear algebra operations on multicore processors,

Concurrency and Computation: Practice and Experience 22 (1) (2010) 15–44.
URL http://dx.doi.org/10.1002/cpe.1467

[18] B. B. Zhou, R. P. Brent, On parallel implementation of the one-sided Jacobi algorithm for singular value decom-
positions, in: Parallel and Distributed Processing, 1995. Proceedings. Euromicro Workshop on, 1995, pp. 401–408.
doi:10.1109/EMPDP.1995.389182.

[19] B. Zhou, R. Brent, A parallel ring ordering algorithm for efficient one-sided Jacobi SVD computations, Journal of Parallel
and Distributed Computing 42 (1) (1997) 1 – 10. doi:http://dx.doi.org/10.1006/jpdc.1997.1304.

[20] M. Bečka, M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems I: Hypercubes and rings*, Parallel
Algorithms and Applications 13 (3) (1999) 265–287.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Author / Journal of Parallel Computing 00 (2017) 1–19 19

[21] M. Bečka, M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems II: Meshes, Parallel Algorithms
and Applications 14 (1) (1999) 37–56.

[22] M. Bečka, G. Okša, M. Vajteršic, New dynamic orderings for the parallel one–sided block-Jacobi SVD algorithm, Parallel
Processing Letters 25 (02) (2015) 1550003.

[23] NVIDIA, cuSOLVER Library User Guide, NVIDIA, v8.0 Edition (2017).
URL http://docs.nvidia.com/cuda/cusolver

[24] G. Okša, M. Vajteršic, Efficient pre-processing in the parallel block-Jacobi SVD algorithm, Parallel Comput. 32 (2) (2006)
166–176. doi:10.1016/j.parco.2005.06.006.
URL http://dx.doi.org/10.1016/j.parco.2005.06.006

[25] W. Hackbusch, B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application to multi-dimensional problems,
Computing 64 (1) (2000) 21–47. doi:10.1007/PL00021408.

[26] W. Hackbusch, B. Khoromskij, S. Sauter, On H2-matrices, in: H.-J. Bungartz, R. Hoppe, C. Zenger (Eds.), Lectures on
Applied Mathematics, Springer Berlin Heidelberg, 2000, pp. 9–29. doi:10.1007/978-3-642-59709-1 2.

[27] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices, Computing 62 (2)
(1999) 89–108. doi:10.1007/s006070050015.

[28] W. Hackbusch, Hierarchical matrices : Algorithms and Analysis, Vol. 49 of Springer series in computational mathematics,
Springer, Berlin, 2015. doi:10.1007/978-3-662-47324-5.

[29] S. Börm, J. Garcke, Approximating gaussian processes with H2-matrices, in: European Conference on Machine Learning,
Springer, 2007, pp. 42–53.

[30] L. Grasedyck, W. Hackbusch, Construction and arithmetics of H-matrices, Computing 70 (4) (2003) 295–334.
doi:10.1007/s00607-003-0019-1.

19

