
39

Batched Triangular Dense Linear Algebra Kernels

for Very Small Matrix Sizes on GPUs

ALI CHARARA, DAVID KEYES, and HATEM LTAIEF, Extreme Computing Research Center, King

Abdullah University of Science and Technology

Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor
contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within
a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix
computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the
underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset
of the required batched operations is implemented by the vendors, with limited support for very small problem
sizes. We describe the design and performance of a new class of batched triangular dense linear algebra
kernels on very small data sizes (up to 256) using single and multiple GPUs. By deploying two-sided recursive
formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and
fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

CCS Concepts: •Mathematics of computing→ Mathematical so�ware; •Computing methodologies

→Massively parallel algorithms; •�eory of computation→ Divide and conquer;

Additional Key Words and Phrases: KBLAS, Recursive Formulation, Batched BLAS Kernels, Dense Linear

Algebra, Hardware Accelerators

ACM Reference format:

Ali Charara, David Keyes, and Hatem Ltaief. 2017. Batched Triangular Dense Linear Algebra Kernels
for Very Small Matrix Sizes on GPUs. ACM Trans. Math. So�w. 9, 4, Article 39 (March 2017), 26 pages.
DOI: 0000001.0000001

1 INTRODUCTION

�e Basic Linear Algebra Subprograms (BLAS) [Dongarra et al. 1988] and the Linear Algebra
Package (LAPACK) [Anderson et al. 1999] libraries have been the foundation of the usual high-
performance computing (HPC) so�ware stack chain for decades. In fact, most of the today’s scientific
applications rely on a de facto highly optimized BLAS implementation, o�en provisioned by the
vendor chip manufacturers, to extract performance from the underlying processing units. �ese
architecture-dependent libraries (e.g., available in the Intel MKL [Intel 2017] for x86 or the NVIDIA
cuBLAS/cuSOLVER libraries [NVIDIA 2017a,c] for GPUs) may allow applications developers to
achieve close to bandwidth or floating-point performance sustained peak for memory-bound or
compute-bound kernel workloads, respectively, across various hardware systems.

Author’s addresses: Author’s addresses: A. Charara (Ali.Charara@kaust.edu.sa), D. Keyes (David.Keyes@kaust.edu.sa) and

H. Ltaief (Hatem.Ltaief@kaust.edu.sa), Extreme Computing Research Center, King Abdullah University of Science and

Technology, �uwal 23955, Saudi Arabia,
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM. 0098-3500/2017/3-ART39 $15.00

DOI: 0000001.0000001

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:2 A. Charara et al.

However, some of the most critical applications currently of high interests in the HPC community,
especially in data analytics, face a major performance bo�leneck due to the inadequacy of legacy
BLAS/LAPACK frameworks. For instance, tensor contractions [Abdelfa�ah et al. 2016] for deep
learning and hierarchical low rank data-sparse matrix computations [Hackbusch 1999; Hackbusch
and Khoromskij 2000] are key operations for solving partial differential equations. Interestingly,
the bulk of the computation of these operations typically resides in performing thousands of
independent dense linear algebra operations on very small sizes (usually less than 100). Even
the highly vendor-optimized sequential implementations may not cope with the overhead of the
memory latency at these tiny sizes. Moreover, calling the sequential version of the dense linear
algebra functions within an embarrassingly parallel OpenMP loop may not be an option, due
to the API overhead (i.e., parameters sanity check, memory initialization, etc.), which does not
get compensated in return because of the low arithmetic intensity of the kernel operations. �is
is further exacerbated by hardware with a large number of threads, such as GPUs with many
streaming multiprocessors, for which high occupancy may not be reached, bandwidth may not
get saturated, and thread parallelism may not be exploited given the small workloads. At present,
vendors currently provide only a subset of the overall batched linear algebra operations, with
limited support for very small problem sizes.

�is paper describes the high-performance implementations on GPUs of various batched trian-
gular dense linear algebra operations targeting very small sizes (up to 256 in dimension), which
are currently either poorly supported or not at all. �ere are two main algorithmic adaptations,
which may address this challenge: designing synchronization-reducing (i.e., strong scaling) and
communication-reducing (i.e., data motion avoiding) algorithms. Although both features are im-
portant moving forward with extreme scale simulations on future exascale systems, they also turn
out to be crucial to get performance out of small workloads on highly parallel GPU devices. Our
fundamental strategy consists in using a recursive formulation of the linear algebra operation,
which inherently encompasses both algorithmic features, by recasting most of the memory-bound
computations into compute-bound operations. In fact, performance optimizations and modeling of
numerical kernels based on matrix-matrix multiplications (GEMM) have been well studied [Goto
and Van De Geijn 2008; Igual et al. 2012; Kågström et al. 1998] due to the fact that the GEMM

operation is highly parallel and maps well to the hierarchical memory of modern CPUs and ac-
celerators, which also performs very close to the peak performance of such hardware devices.
Recursive formulations leverage the performance of LAPACK/dense linear algebra (DLA) kernels by
converting them into mostlyGEMMs . Employing a recursive formulation is not a new technique
in DLA [Andersen et al. 2001; Eliahu et al. 2015; Elmroth et al. 2004; Elmroth and Gustavson
2000; Kågström 2006; Peise and Bientinesi 2016]. Recursive DLA has been employed to minimize
data motion across the hierarchical memory layers on x86 architectures [Elmroth et al. 2004;
Kågström 2006]. It has also been applied to speed up large bandwidth-limited workloads, seen
during the panel computation during factorizations of dense matrices. Recursion has been recently
employed [Charara et al. 2016a,b] on large workloads to greatly enhance the performance of some
already compute-bound triangular DLA kernels operating over NVIDIA GPUs. For GPU-based DLA
kernels operating on much smaller workloads, the recursive scheme is even more of a necessity
as it allows to maintain the data freshly fetched in from global memory at the level of the caches.
Furthermore, to reduce vertical data motion and diminish the overheads of going to shared-memory
back and forth, we stress register usage on the GPUs and utilize the CUDA shuffle instruction,
which enables threads within a warp to communicate without having to rendezvous at the level of
shared-memory. Additionally, we reduce synchronizations by operating on a whole matrix within
a single warp.

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:3

We target some of the Level 3 BLAS triangular operations (symmetric rank-k update, triangular
matrix-matrix multiplication and solve) as well as some triangular matrix computations from
LAPACK (Cholesky factorization, corresponding linear solvers and matrix inversions). Some of
our batched LAPACK functions reuse internally our batched BLAS kernels in a nested recursion
fashion and create further optimizations opportunities by fusing the batched BLAS inner kernels
for be�er performance. Our new implementations of single and nested batched kernels outperform
existing state-of-the-art open-source and commercial implementations on GPUs.
�e remainder of the paper is organized as follows. Section 2 presents related work. Section 3

outlines the operations currently supported in the KBLAS library. Section 4 recalls the challenges
of designing triangular BLAS and LAPACK operations. Section 5 describes the fundamental
algorithmic techniques to extract performance when dealing with a batch of matrix operations
of very small sizes. �e implementation details of the various batched GPU kernels are given
in Section 6. Section 7 provides the performance results of various herein introduced batched
triangular dense linear algebra operations on GPUs and compares them against existing state-of-
the-art implementations. We conclude in Section 8.

2 RELATED WORK

�eneed for batched operations on BLAS routines – as well as on LAPACK routines – has been under
thorough investigation lately [Dongarra et al. 2015]. �e effectiveness of batched operations has
been demonstrated in several applications [Abdelfa�ah et al. 2016; King et al. 2014]. Both vendors
and academic institutions have contributed batched operations in their library recent releases.
For instance, NVIDIA and Intel provide only a subset of batched operations in cuBLAS [NVIDIA
2017a] and the MKL [Intel 2017] / LIBXSMM [Heinecke et al. 2016] libraries, respectively, while
MAGMA [MAGMA 2017] from the University of Tennessee supports further batched BLAS and
LAPACK kernel operations.
In particular, batched GEMM has probably drawn the most a�ention since it is ubiquitous in

emerging wide range of applications, e.g., related to the convolution operations in deep learning.
cuBLAS [NVIDIA 2017a] provides a batchedGEMM implementation on NVIDIA GPUs with both
strided and non-strided forms. MKL [Intel 2017] provides an implementation for batchedGEMM on
Intel CPUs, in addition to the LIBXSMM [Heinecke et al. 2016] library, which is based on low-level
code generation. MAGMA also provides an implementation for batchedGEMM on both NVIDIA
GPUs and on CPUs [Abdelfa�ah et al. 2016c; Masliah et al. 2016] for mid-range as well as very
small matrix sizes, which are optimized at the register operations level. Besides batched GEMM ,
MAGMA implements other Level 3 BLAS batched operations, such as triangular solves (TRSM)
and symmetric rank-k update (SYRK).

For advanced dense linear algebra algorithms from LAPACK, MAGMA leads the quest for devel-
oping high performance batched matrix factorizations: (1) batched Cholesky factorizations [Dong
et al. 2014b], where three algorithms, i.e., non-blocked, blocked, and recursive blocked, are exam-
ined in contrast to the traditional hybrid CPU-GPU based factorization, (2) superseded later by
batched Cholesky/LU/QR factorizations [Dong 2015; Dong et al. 2014a; Haidar et al. 2015a,b,c,d]
using batched BLAS as building blocks and more recently, (3) revisited batched Cholesky factoriza-
tion [Kurzak et al. 2016] using an auto-tuning framework. All these aforementioned batched kernels
operate on matrices with same sizes. In [Abdelfa�ah et al. 2016a,b,d], a newer implementation in
MAGMA is proposed for handling batched matrix factorizations with variable sizes, which has also
been of interests in the context of accelerating sparse linear algebra [SuiteSparse 2017] during the
Schur complement calculations. More recently, some of the authors have proposed new batched QR

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:4 A. Charara et al.

and SVD kernels for very small matrix sizes with applications in the compression of hierarchical
matrices [Boukaram et al. 2017].

In this paper, we focus our a�ention on batched Level 3 BLAS operations that involve triangular
matrices (i.e., TRSM , SYRK , TRMM). We then derive several batched LAPACK algorithms that
involve symmetric positive definite (SPD) matrices (Cholesky based factorization, solve, and inver-
sion) using these aforementioned Level 3 BLAS triangular kernels. We have previously discussed
and evaluated alternative formulations for the standard (non-batched) Level 3 BLAS triangular
operations on large matrix sizes [Charara et al. 2016a,b] and have shown that recursive formulations
may provide superior performance by optimizing the memory access pa�erns. Herein, we aim at
extending this strategy to very small matrix sizes and improving parallel performance by means
of batched operations, with a careful treatment on memory accesses. Moreover, at the time of
writing, we only consider uniform sizes, which may be critical for accelerating low-rank matrix
approximations and arithmetics during the preconditioning phase of sparse iterative solvers.

3 THE KBLAS LIBRARY

KBLAS1 is an open-source library providing highly optimized kernel implementations of a subset
of BLAS operations on NVIDIA GPUs [Abdelfa�ah et al. 2012, 2016e; Charara et al. 2016a,b]. All
four standard precisions are supported.

3.1 Current Features

KBLAS currently provides support for a subset of the Level 2 and 3 BLAS kernels, i.e., the general
and symmetric matrix-vector multiply (GEMV and SYMV) as well as the triangular matrix multiply
and triangular solve with multiple right-hand sides (TRMM andTRSM), respectively, on single and
multiple GPUs. �e single GPU variant of these aforementioned Level 2 and 3 BLAS routines have
been integrated into NVIDIA’s cuBLAS library version 6.0 and 8.0, respectively [NVIDIA 2017b].
We also provide support for matrix-matrix multiplication GEMM on multiple GPUs.

3.2 Kernel API

We try —whenever possible— to be consistent in the KBLAS API with the standard/legacy BLAS
API for easy code integration. �is is especially true for single GPU routines, which operate on the
default CUDA stream, and thus are considered synchronous ones. Corresponding asynchronous
routines are provided, which accept a CUDA stream as a parameter and are suffixed with async.
Similarly, all KBLAS routines are prefixed with kblas , in accordance with the naming conventions
in MAGMA and cuBLAS. Level 2 and 3 BLAS routines assume their parameter data already reside
on the device memory, thus, categorized as GPU API. KBLAS provides corresponding CPU API
routines which assume data is resident on the host memory and will implicitly handle the data
transfer. �ese routines accept CPU data pointers and are suffixed with cpu. Routines for multiple
GPUs support are suffixed with mgpu, and accept an extra parameter specifying the number of
devices to run on, with an optional parameter specifying the device ID to use.

3.3 New Features

�e new batched Level 3 BLAS kernels supported in KBLAS and targeted in this paper are TRSM ,
TRMM , and the symmetric rank-k update kernel SYRK . We further provide the following batched
operations of high-level LAPACK/DLA, which inherently depend on batched TRSM , TRMM and
SYRK : the Cholesky factorization (POTRF), the positive definite triangular solve (POTRS), the
solution to system of linear equations with positive definite matrix (POSV), the inverse of a real

1Available online at h�p://github.com/ecrc/kblas-gpu.

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

http://github.com/ecrc/kblas-gpu

Batched DLA for Very Small Matrices on GPUs 39:5

upper or lower triangular matrix (TRTRI), the product of upper or lower triangular matrix with
its transpose (LAUUM), the inverse of a real symmetric positive definite matrix (POTRI), and a
new LAPACK routine resulting from the merge of the Cholesky factorization and inversion of
symmetric positive definite matrices (POTI).

�ese new batched routines follow the naming and API conventions adopted inMAGMA/cuBLAS,
and are suffixed with batch. Besides the legacy BLAS and LAPACK parameters, batched routines
have two flavors: one accepting an array of pointers to the batch of matrices assuming the input
data is sca�ered in memory and another that assumes the data have contiguous memory allocation,
thus, accepting a single memory address pointer and a stride value between consecutive input
matrices.

4 LIMITATIONS OF TRIANGULAR DLA OPERATIONS

It is critical, for adequately designing the needed batched CUDA kernels, to study, understand
and expose the level of parallelism inherent in the triangular DLA operations. In fact, the data
dependency in the algorithm of each operation dictates the degree of parallelism of such operation,
and consequently, may limit or enrich the level of parallelism. In the context of our targeted
triangular DLA operations, two key factors play the main role in determining the level of inherent
parallelism: the triangular matrix shape and in-place (IP) nature of the operation.

�e IP nature of triangular DLA operations encounters some data read-write dependency hazards,
since computing some elements need the values of other elements before the la�er get updated
(Write-A�er-Read or WAR hazard) or a�er they get updated (Read-A�er-Write or RAW hazard).
Such dependencies limit the parallelism inherent in the DLA operation and may allow processing
only one row or column of elements at a time. To alleviate these data dependency impacts on
parallelism, one option is to use an out-of-place (OOP) variant at the cost of extramemory allocations
and data transfers, and therefore, limiting the problem size that can be processed within the limited
GPU memory, but most importantly, not conforming to the legacy BLAS API.

�e other key factor, i.e., the triangular or symmetric shape of involved matrices, although only
half of the matrix elements are processed, engenders load imbalance among threads that compute
in parallel a row or a column of entries, and they may have to diverge as they cross the diagonal
entries. Since threads within a CUDA warp execute the same instructions in a lock-step fashion,
thread divergence within a warp is expensive, because it forces diverging threads to idle status
while other lock-step synchronized threads compute, thus wasting valuable core cycles. �e authors
in [Abdelfa�ah et al. 2016d] design two variants of batched Cholesky factorization to cope with
the triangular nature of the matrix: loop-inclusive and loop-exclusive. In the first, all factorization
iterations are executed in one kernel to maximize chances of data reuse. In the later, each iteration
is executed in a separate kernel launch to optimize resource utilization.
Instead, our approach to remedy the effect of both factors, triangular shapes and IP nature, is

based on a holistic set of techniques to increase parallelism while enhancing memory accesses: a)
two-sided recursive formulations, with nested recursion, which help optimize resource allocation
and relieve WAR and RAW data dependency hazards, b) register blocking, which relaxes shared
memory limitation constraint and operates at faster register memory, c) fused kernels, which
improve data reuse, and d) nested batches, which increase concurrency in computation.

5 FUNDAMENTAL ALGORITHMIC TECHNIQUES

In this section, we describe the techniques to improve the performance of batched triangular BLAS
and LAPACK operations for very small sizes on GPUs. Although these operations differ in their
processing algorithms and their outcome, they share a common trait, that is, involving triangular

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:6 A. Charara et al.

matrices. We thus operate on them in a uniform approach, at two levels: 1) for tiny matrices (size
up to 16), we design highly optimized CUDA kernels 2) for matrices of larger sizes (up to 256), we
operate on them recursively, converting most of the computations into GEMM operations, then
stop at the diagonal blocks of size 16 on which we apply the aforementioned CUDA kernels. �e
techniques discussed below apply to either of these two levels.

5.1 Two-Sided Recursive Blocking

Upon processing matrices of medium to large sizes, blocking is a necessary practice because such
matrices cannot fit in the small (first level) caches available in modern CPUs or GPUs. Blocking
helps in stressing the hierarchical memory of both CPU and GPU architectures.

In a recent work [Charara et al. 2016a,b], we have illustrated, for large matrix sizes, how two-sided
recursion reduces data transfer across the GPU memory hierarchy and increases parallel perfor-
mance, when applied to triangular Level 3 BLAS operations, by casting most of the computations
in terms of GEMM operations.

Such blocking may be not necessary when processing small matrices that fit in cache. However,
when processing a large number of small matrices, caches may quickly saturate, and one should still
consider a form of blocking for this case. �erefore, we extend our previous technique for handling
batched operations on small matrix sizes. Fig. 1 illustrates the successive steps for the batched
DPOTRF operation using two-sided recursive blocking. In our design, the two-sided recursive
formulations resort at the recursion base —for processing of diagonal blocks— to highly optimized
CUDA kernels, which store and operate on data at the level of registers, as shown in Fig. 1(a),
Fig. 1(b) and Fig. 1(c) for the recursive POTRF , TRSM and SYRK kernels, respectively.
Note that the two-sided recursive blocking we employ here is fundamentally different from a

one-sided recursive blocking (otherwise known as block algorithm), where a panel with predefined
width is factorized followed by an update to the right side, then single sided recursion is applied
to the right side. Our two-sided recursive formulation starts by spli�ing the triangular matrix at
(usually) half size, then operates recursively on each side either independently or sequentially based
on the involved triangular operation. It is worth mentioning that, with these recursive formulations,

(a) Rec. Batched POTRF (b) Rec. Batched TRSM (c) Rec. Batched SYRK (d) Rec. Batched POTRF

Fig. 1. Illustrating recursive batched POTRF with nested recursion.

the only tuning parameter needed is the recursion stopping case, which is affected empirically
by the register demand of each kernel and the effect it has on the kernel’s occupancy. One may
compare this tuning approach to that adopted by [Kurzak et al. 2016], which requires extensive
tuning through the BEAST (Bench-testing Environment for Automated So�ware Tuning) [BEAST
2017] auto-tuning framework.

5.2 Register Hosted Computations

Similar to the CPU memory hierarchy, an NVIDIA GPU features memory hierarchy structured
as follows, mentioned in their ascending order of access speed: 1) a device on-chip memory that

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:7

resides on the card, with high bandwidth (relative to SDRAM), which is a few GBs in size, 2) a
non-programmable on-chip L2-cache that is shared among all Streaming Multiprocessors (SM), 3) a
local non-programmable L1 / read-only texture cache dedicated to each SM, with a (usually 64KB)
programmable shared memory, and 4) a 32-bit register file accessible by threads running on the
SM’s cores.

Note that registers are the fastest memory, on which it is desirable to make direct computations.
Note also that CUDA imposes a limitation on how much a thread block (TB) can consume of shared
memory. In our case, since the processing of each matrix (of the batched operations) is independent
of the others and no data re-use is possible across the input matrices, it would be necessary to
cache each matrix into shared memory to operate on it. However, saturating the shared memory
per TB prevents other TBs from loading into the same SM and, consequently, sharply decreases the
occupancy of the SMs and prevents proper latency hiding. For that reason, we adopt a different
strategy, which relies on caching data in registers only.

Recall that recursive formulations —explained above— convert off-diagonal block processing into
batched GEMM calls, while diagonal block processing is handled by our CUDA implementations
for the BLAS or LAPACK batched kernels. We design highly optimized kernels that operate on tiny
diagonal blocks (up to 16 in size). We fit the data on the registers of the threads cooperating to
perform each matrix operation. Two key advantages can be mentioned for fi�ing data in registers
only. First, we avoid —in most of the kernel implementations– the need for more expensive shared
memory accesses. Second, we avoid saturating shared memory and consequently avoid limiting
the number of concurrent TBs executing on the same SM. However, since the register file is shared
among the executing threads, saturating register usage may also limit the number of concurrently
executing TBs in an SM. For that reason, careful treatment and pressure on registers is needed to
avoid register spilling into much slower local memory (which is hosted on the device memory).
On the other hand, loading data only in registers limits the possibilities of sharing data among

threads (data sharing is possible only between threads of the same warp), unless we share data
through sharedmemory, whichwe are trying to avoid. For that reason, wemake sure that processing
each matrix is limited to threads of the same warp. Whenever data sharing is needed among threads
processing the samematrix, we utilize the shuffle instruction. �e shuffle instruction allows registers
of the same warp to share their values in four possible ways: shuffle up, shuffle down, bu�erfly and
indexed shuffle [NVIDIA 2017d]. It is also possible to share data among sub-groups of the warp
threads by defining the shuffle width, which allows us, by specializing thread sub-groups within
a warp, to process multiple matrix operations with one warp. Moreover, processing each matrix
operation within one warp provides the extra advantage of removing any artificial synchronizations
since threads in a warp are already lock-step synchronized. By avoiding synchronizations, the warp
scheduler can do a be�er job hiding the data fetch latency, which becomes the main bo�leneck. All
in all, by using register blocking and shuffle instruction, we avoid shared-memory limitations and
latency, can share data between threads at the cost of no extra cycles, and reduce synchronizations
among warps.

5.3 Nested Batching Calls

As explained above, recursion breaks the computation of triangular BLAS or LAPACK routines into
a set of sub-operations involving diagonal or off-diagonal matrix blocks. In some operations, e.g.,
SYRK orTRTRI , computation of some or all of the diagonal or off-diagonal blocks may be indepen-
dent and thus may be computed in parallel, resulting in an additional level of parallelism, referred
to as nested batching calls. Indeed, while a batched sub-call operates on the same corresponding
sub-block of each input matrix, a nested batching call can combine several sub-calls to batched

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:8 A. Charara et al.

routines operating on several sub-blocks —from the same recursion level— into one batched call
with 2D thread-block (TB) grid, or by issuing parallel batched calls on multiple CUDA streams.
Figure 2 illustrates this concept for the batched SYRK . �is is especially effective when the number
of batched matrices does not provide enough workload to saturate the GPU occupancy needed to
utilize all the GPU cores and to hide data fetching latency. �is low occupancy situation is typically
encountered when running strong scaling experiments on multiple GPUs and nested batching calls
may remedy such a bo�leneck by further increasing concurrency.

A1

A2
A3

A4

An

B1
B2
B3

B4

Bn

Fig. 2. Illustration of nested batching calls for the batched SYRK . Blocks of similar green shades can be

processed in one batched GEMM call. Diagonal red-shaded blocks can be processed in one batched SYRK

call.

5.4 Kernel Fusion

Processing thousands of matrices with very small sizes concurrently in batched mode may still fall
into the category of a memory-bound operation because arithmetic intensity is very low, especially
when operating on hardware with over-provisioned flops. It would be, therefore, of high importance
to avoid data transfer, whenever possible, when designing our kernels. Indeed, particular a�ention
should be made when two or more kernels operate successively on the same data block. As outlined
above, we designed our kernels to operate on data that fit in registers. �us, instead of launching
multiple kernels, with its associated kernel launch overhead, and reading / writing the data multiple
times, we fuse the multiple kernels into one code that performs all the corresponding operations
in-place, as long as the data fits in registers and the successive operations occur on the same data
block. As an example, this is the case when solving a system of linear equations (POTRS), which
consists of two consecutive triangular solves.

6 HIGH PERFORMANCE IMPLEMENTATION DETAILS

In this section, we present a detailed description of the implementations of the batched triangular
operations, based on the guidelines outlined in Section 5. �ere are two main components for the
studied batched kernels: the two-sided recursive formulations, and the required techniques for
highly optimized CUDA kernels operating on tiny matrix sizes, which are invoked at the recursion
stopping criterion.

6.1 Two-sided Recursive formulations

Table 1 shows the two-sided recursive formulations we have applied for each of the introduced
batched operations. �e first column of the table lists the mathematical representation of each
operation. �e table lists one variant for each of the operations (the second column); other

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:9

Table 1. Recursive formulations of the batched operations and the CUDA kernels called at the recursion

stop.

Batched operation Variantab Recursive definitionc Splitd Kernel (max)e

TRSM : A X = αB LLN RecTRSM :

A1 X1 = α B1 RecTRSM

B2 = α B2 −A2 B1 GEMM

A3 X2 = B2 RecTRSM

A1

A2 A3

B1

B2

KerTRSM (16)

TRMM : B = α A
T
B LLT RecTRMM :

B1 = α A
T

1 B1 RecTRMM

B1 = α A
T

2 B2 + B1 GEMM

B2 = α A
T

3 B2 RecTRMM

A1

A2 A3

B1

B2

KerTRMM (16)

SYRK : B = αAAT + βB L N RecSYRK :

B1 = αA1A
T

1 + βB1 RecSYRK

B2 = αA2A
T

1 + βB2 GEMM

B3 = αA2A
T

2 + βB3 RecSYRK

A1

A2

B1

B2 B3

KerSYRK (16)

POTRF : A = L L
T L RecPOTRF :

A1 = L1 L
T

1 RecPOTRF

A1 X = A2 RecTRSM

A3 = −A2 A
T

2 +A3 RecSYRK

A3 = L3 L
T

3 RecPOTRF

A1

A2 A3

KerPOTRF (16)

POTRS : A X = B
f L RecPOTRS :

A1 X1 = B1 RecTRSM

B2 = B2 −A2 B1 GEMM

A3 X2 = B2 RecPOTRS

B2 = B1 −A2 B2 GEMM

A1 X1 = B1 RecTRSM

A1

A2 A3

B1

B2

KerPOTRS (16)

POSV : A X = B
g L POSV :

A = L L
T

RecPOTRF

A X = B RecPOTRS

A1

A2 A3

B1

B2

KerPOSV (8)

TRTRI : A = A
−1h L RecTRTRI :

X A1 = −A2 RecTRSM

A3 X = A2 RecTRSM

A1 = A
−1
1 RecTRTRI

A2 = A
−1
2 RecTRTRI

A1

A2 A3

KerTRTRI (16)

LAUUM : A = A A
T L RecLAUUM :

A1 = A1 A
T

1 RecLAUUM

A1 = A
T

2 A2 +A1 RecSYRK

A2 = A
T

3 A2 RecTRMM

A3 = A3 A
T

3 RecLAUUM

A1

A2 A3

KerLAUUM (16)

POTRI : A = A
−1i L POTRI :

A = A
−1

RecTRTRI

A = A A
T

RecLAUUM

A1

A2 A3

KerPOTRI (8)

POTI : A = A
−1j L POTI :

A = L L
T

RecPOTRF

A = A
−1

RecPOTRI

A1

A2 A3

KerPOTI (8)

aVariant legend: Upper/Lower, Le�/Right, Transpose/Non-transpose.
bOther variants bear similar recursive formulations, not mentioned for brevity.

cRec-prefix denotes recursive call.
d denotes input matrix, denotes output matrix, denotes input-output matrix.

eKer-prefix denotes the CUDA kernel. Max is the maximum size the kernel supports.
f
POTRS assumes matrix A is factorized.

g
POSV factorizes matrix A, then applies POTRS .

h
TRTRI assumes matrix A is triangular (a�er factorization).

i
POTRI assumes matrix A is factorized.

j
POSV factorizes matrix A, then applies POTRI .

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:10 A. Charara et al.

variants are supported and can be described in a similar recursive fashion. �e table illustrates the
input/output/input-output matrices and colors them accordingly. Note that, except for SYRK , all
the targeted operations are in-situ (denoted by mixed shade). For example, in TRSM , the output
matrix X overwrites the memory occupied upon input by the matrix B; therefore the second line of
the recursive definition uses B1 where, logically, X1 should appear.

Two-Sided Recursive Implementation. �e two-sided recursive algorithms for triangular matrices
are generally described as follows. Assuming the lower case, split the triangular matrix A into
three sub-matrices: an upper-le� triangular matrix A1, a lower-le� rectangular matrix A2, and
a lower-right triangular matrix A3, as illustrated in Table 1. We split matrix B, if involved, at a
corresponding index, into B1 and B2. �is is translated as spli�ing the rows of B for le�-sided
operations, and the columns of B for right-sided ones. �e split is preferred to be at an index
that is a power of 2 since this produces fewer clean-up trailing matrices and, thus, helps generate
be�er performance at regular sizes; however, to avoid operating on thin matrices produced upon
encountering sizes that are slightly bigger than powers of 2, one may split at a power of 2 that is
not the closest. We proceed by applying the same recursive scheme to the le� side of the recursion
involvingA1, applying any middle updates involving A2, then applying the recursive scheme to the
right side of the recursion involving A3. �e recursive scheme for each operation is also detailed in
Table 1. �e recursion is stopped upon reaching a size that can be handled by our CUDA kernels as
described in Section 6.2.

Nested Recursion. �e main advantage of our two-sided recursive implementation of the batched
DLA kernels is in relaxing theWAR or RAW data dependency hazards. For the case of batched BLAS
operations, the recursive scheme achieves this relaxation by converting the IP BLAS operations
into a set of calls to OOP GEMMs . However, the recursive scheme of some LAPACK operations
does not involve direct conversion to GEMMs , as detailed in Table 1, e.g., in the case of Cholesky
factorization (POTRF). To remedy this shortcoming, it is necessary to use nested recursion, that is,
invoke the recursive formulations of the sub-components of the main recursive call. For example,
RecPOTRF invokes itself as well as RecTRSM and RecSYRK , which, in turn, convert into batched
GEMM calls.

6.2 CUDA Kernels

We discuss the design and implementation of the KBLAS CUDA kernels that process batched
operations on matrices of tiny sizes (up to 16). Table 1 lists the CUDA kernels that are needed
for the corresponding batched operations. Recall our motivation to store and process such tiny
matrices in registers, as explained in Section 5.2, in order to avoid the latency of shared memory,
since such data can fit in registers only. However, we need to carefully cra� the kernel’s pressure
on registers in order to avoid register spillage into much slower local memory.
Note that, since the processing of each matrix in the batched operation is independent, there

is, generally, enough parallelism in batched operations to involve all the cores of the underlying
hardware in the computation, especially when the batch size is large enough. However, that is
not enough to extract high performance from the involved operations for several reasons. First,
due to the low arithmetic intensity of the targeted operations at very small matrix sizes, these
operations are memory bound. �us, proper utilization of the hierarchical GPU memory structure
and bandwidth is needed. Second, since each matrix operation is independent of the other batched
operations, each matrix will need to be loaded into shared memory or registers or both to be
processed, which brings huge pressure on the low capacity shared memory and registers. �e
alternative option of accessing the main memory directly from the CUDA threads is not considered

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:11

due to the inherently slow global memory accesses. Such memory pressure would sharply decrease
the occupancy of the GPU and consequently decrease the kernel’s performance. �ird, the triangular
or symmetric shape may drive threads to an idle state, while other threads are computing.For these
reasons, careful design of the CUDA thread blocks (TB) and TB grid is needed, as discussed in the
next subsections.

6.2.1 Thread-Block Design. Multiple options can be explored for the design of TB and the
distribution of computation on multiple threads, some of which has been explored by [Oreste
et al. 2013] in the context of batched LU factorization. In the next few paragraphs, we explore and
evaluate these options and justify our choice of TB design and TB grid layout.

�read Level Parallelism. In this layout, one CUDA thread computes one operation. Such layout
would allow arbitrary matrix sizes to be processed per thread with no idle cycles. However, process-
ing each matrix operation will be serialized being served by one thread. Its main disadvantage is in
having to fetch all data directly from main off-chip memory since neither single thread register
capacity nor shared memory capacity would suffice for caching the involved matrices, unless very
few threads are involved per TB, which in turn engenders very low occupancy, and consequently
very low performance. Obviously, this approach is not the best configuration we can use.

Warp Level Parallelism. In this layout, one warp computes one operation. Since the parallelism
available in all of our target kernels is limited to processing one row (or column) concurrently, due
to the IP requirement, this TB layout allows one thread to compute all elements of a column (or row
resp.) sequentially. �is layout makes be�er utilization of parallel CUDA threads and may allow
data of each matrix to be stored within registers, and eventually may allow supporting matrices of
size up to 32 in dimension per kernel. However, due to the triangular shape of the matrices, a high
percentage of the consumed cycles would be spent by idle threads. Moreover, the register pressure
would be very high (demanding 32 ∗ 32 ∗ 2 = 2048 registers per warp for the double precision case
to process a matrix of size 32x32), which causes register spillage to the slower local memory and
sharply decreases the occupancy. Such configuration is far less than optimal for our purposes.

�read-block Level Parallelism. One TB (including one or more warps) to process one matrix is
also not a suitable choice for the same reasons above. Additionally, only a small number of TBs
can run concurrently on an SM by CUDA design, which definitely does not increase occupancy,
especially when the batch size is huge.

�read-group Level Parallelism. We propose and implement this TB design that makes be�er
utilization of the SM resources and minimizes idle thread cycles. We introduce the notion of thread
groups (TG). A TG is a subset of threads of a warp that can share register values through the CUDA
shuffle instruction. �e shuffle instruction can share data between threads within a thread-index
range. �is range is enforced by CUDA to be a power of 2 (i.e., only possible values are 2, 4, 8,
16, or 32). Consequently, we define a TG size (TGS) in a corresponding manner (i.e., 4, 8, or 16).
For our purposes, a TG would store and compute one matrix operation. �e amount of register
storage needed is also dictated by theTGS for triangular matrices. We, thus, introduce the constant
EPT (elements-per-thread), which is the size of an array statically declared by each thread to
store the input/output matrices elements. �e EPT for a triangular matrix has to be congruent to
TGS ; however, EPT for a rectangular matrix can be tuned for optimal register pressure. We also
introduce the tunable parameterWPTB, representing the number of warps per TB. Consider one
more constantWS representing the warp size (which is fixed by CUDA to 32, but may change
with future GPU architectures). With these notions in place, we design our thread blocks as two-
dimensional blocks (TBx ,TBy), where vertical dimension TBx = TGS , and horizontal dimension

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:12 A. Charara et al.

TBy =WPTB×WS /TBx . Consequently, one warp stores and processes multiple matrices. Figure 3
illustrates a typical example case where the matrix dimension of the batched matrices is 8 or less;
we useTGS = 8, EPT = 8; consequently, a warp is serving four matrices, in this particular example,
(demanding 8x8x2x4 = 512 registers to host four 8x8 matrices). �e choice ofWPTB is empirically
influenced by the register demand of the threads, which in turn affect occupancy. �e options are
limited and range from 1 to 4. Not that these design parameters (TGS , EPT ,WPTB) are templatized
and automatically selected at runtime based on input matrix size, operation variant, and kernel
traits.

6.2.2 TB-Grid Design. CUDA thread blocks can be organized in 1, 2, or 3-dimensional grids.
Given the TB design outlined previously, we use 1D grids for the general cases. �e 1D grid size
(GS) is affected by two values: the batch size (BS), and the number of operations served by a TB,
which is equivalent to TBy. �us, the grid size is determined byGS =

⌈

BS / TBy
⌉

. However, there
are two cases where we employ 2D grids to enable further optimizations as explained in following
paragraphs.

Nested Batching Calls. We discussed in Section 5.3 the concept of nested batching calls. �is can
be achieved by deploying multiple CUDA streams to execute in parallel the independent batched
calls within a recursion level. It can also be achieved in a simpler way by deploying 2D grid of the
involved batched call, the x-dimension is used as usual across the batch size, and the y-dimension
is used to batch across the parallel computations of sub-blocks from the same matrix. �is is the
case, for instance, for the kernels KerSYRK and KerTRTRI . Figure 2 illustrates this concept for
the KerSYRK kernel, applied to the red diagonal blocks, which can be batched within one whole
SYRK operation as well as across the batch size. �e same can be said about similarly green-shaded
blocks.

Enhancing Parallelism for Large Dimension. In this paper, we target matrices with very small
sizes, i.e., up to 256 in dimension. However, some operations accept two inputs for dimensions,
take for example the le�-sided TRSM operation, it takes as input M , the number of rows of the
triangular matrix A, and NRHS , the number of right-hand sides for matrix B. In order to allow
the NRHS to grow beyond the small size, we split the NRHS into chunks, and deploy a 2D grid of
TBs, where the x-dimension works across the batch size as usual, while the y-dimension launches
TBs across the NRHS chunks. Such arrangement of a 2D grid is needed in KerTRSM , KerTRMM ,
KerPOTRS , and KerPOSV .

0

1

2

3

4

5

6

7

8

9

10

16

17

18

24

25

26

T
h
re

a
d
 g

ro
u
p

Elements per thread

Fig. 3. A warp split into 4 thread-

groups (TG). Each thread stores 8

matrix elements in registers. Each

TG stores and processes a matrix.

Table 2. Fused kernels.

Kernel (Max Size) Fused kernels
KerSYRK (16) KerSYRK (8) + KerGEMM (8) + KerSYRK (8)
KerPOTRF (16) KerPOTRF (8) + KerTRSM (8) + KerSYRK (8)
KerPOTRS KerTRSM + KerTRSM

T

KerPOSV KerPOTRF + KerTRSM + KerTRSM
T

KerPOTRI KerTRTRI + KerLAUUM

KerPOTI KerPOTRF + KerTRTRI + KerLAUUM

6.2.3 Additional Optimization Techniques.

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:13

Shared Memory Buffering. In [Abdelfa�ah et al. 2016e], we introduced the concept of double
buffering at the register level. Double buffering is used to hide the latency of fetching data from
main GPU memory by pipelining its instructions with other computation instructions. In this work,
we employ the same concept by buffering at the shared memory level since register space is quite
tight. We use shared memory buffering for two purposes. �e first type of usage is for early fetching
of data that is scheduled to be processed next. By the time the current block is processed, the next
block is being fetched into the shared memory block in parallel, thanks to the possible pipelining of
instructions made possible by the advanced nvcc compiler. When ready, the data at shared memory
buffer would be copied to the register buffer for processing, and then the next block is fetched
again. Shared memory buffering is needed in the kernels KerTRSM , KerTRMM , KerPOTRS , and
KerPOSV . More important, we use shared memory buffering to avoid non-coalesced memory reads.
When fetching data into register blocks, non-coalesced reads may be encountered, especially with
transposed cases. To avoid these slow reads, we fetch the data into shared memory with coalesced
reads, then transpose the data into register blocks for processing.

Kernel Fusion. In Section 5.4, we explain and justify the need and advantage for fusing batched
kernels. We note here the operations where we apply batched kernel fusion within KBLAS imple-
mentation. Table 2 summarizes the fused batched kernels and the corresponding matrix sizes.

Loop Unrolling. Loop unrolling is an effective optimization technique that is widely used. It
enhances instruction level parallelism (ILP) with the aid of the compiler. Loop unrolling can be
automatically applied by the compiler based on the level of optimization flags, or by explicitly
instructing the compiler to apply it with the special pragmas. Using the nvcc compiler from NVIDIA,
loop unrolling can be applied only when the number of iterations of the loop is statically defined
at compile time. For this reason, by parameterizing our kernel implementations with TGS , all the
internal loops that use TGS may be unrolled.

7 PERFORMANCE RESULTS AND ANALYSIS

�is section highlights the impacts of the optimization techniques on the batched DLA operations for
small matrix sizes and compares the performance against existing CPU and GPU implementations
(whenever available) on various hardware configurations.

7.1 Environment Se�ings

Experiments reported below have been conducted on single and multiple NVIDIA K40 GPUs across
all subsequent GPU performance plots (unless noted otherwise). Experiments for CPU based
performance have been conducted on an Intel multi-core Broadwell system with two sockets of 14
cores each and 64 GBs of memory. Since all of our implementations are equivalent in flop count
to the native versions, we report performance results in flops per second, which are obtained by
dividing the theoretical flop count of each algorithm by the execution time, over a range of input
sizes. We use CUDA v7.5, Intel compilers v16, and MAGMA v2.2.0. Performance timing does not
include data transfer to/from GPU since data is assumed to reside on the GPU memory. All results
are reported with IEEE compliant compilation (without fast-math compiler optimization). Although
single and double precision arithmetics (SP and DP) are only shown in the subsequent performance
graphs, KBLAS is distributed with a support to all precisions. Batch sizes considered are enough to
saturate the device and we generally use a batch size in SP twice larger than DP to maintain the
same amount of data for both studied precisions.

CPU Batched DLA. Batched processing on CPU is handled with simple OpenMP parallel loop
since the only library available on x86 architectures that perform batched processing (Intel’s

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:14 A. Charara et al.

MKL [Intel 2017] / LIBXSMM [Heinecke et al. 2016]) provides only batched GEMM so far. In our
experiments, we found out that the best performance —for batched DLA processing on CPUs with
small matrices— are achieved by processing each matrix with a single threaded MKL call embedded
in an OpenMP parallel for loop. �ese findings are also confirmed by [Haidar et al. 2015a].

7.2 Performance Gain Breakdown

To properly assess the fundamental techniques introduced in Section 5, we examine the incremental
performance gain of each optimization technique.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
x
e
c
it

io
n
 T

im
e
 %

DGEMM-kernel Other-kernels

Fig. 4. Profiling of recursive batched operations, showing most of time is spent in batched DGEMM .

Two-sided Recursion. �e two-sided recursive formulations play a major role in accelerating
triangular operations by converting them into mostly GEMMs of (nearly) square sizes. Figure 4
shows a breakdown of the execution time of each kernel in all the triangular operations, expressed
as a percentage of the total time for execution. �e figure shows that time spent in GEMM

operation, due to recursive formulations, is dominant with respect to the other kernels. For
instance, thanks to nested recursion, RecPOTRF is decomposed into a set of batched GEMM calls,
which, in turn, consumes 77% of the execution time. �e performance impact over the non-batched
version is demonstrated in Figure 5 for the case of batched STRSM and DTRSM . �e curves
cuBLAS − xTRSM − Rec show the effect of applying recursion over the corresponding cuBLAS
TRSM , where we call cuBLAS batched GEMM kernel for off-diagonal blocks and cuBLAS batched
TRSM kernel for recursion base. Since recursion in batched RecTRSM begins at size 32 and beyond,
it does not affect at lower sizes. Indeed, the effect of recursion magnifies with the increase in matrix
sizes as larger GEMMs are generated, reaching beyond 2.5X speedup at the higher end of the
targeted matrix sizes. Similarly, �e curvesMAGMA− xTRSM − Rec in Figure 6 show the effect of
applying recursion over the corresponding MAGMA POTRF , where we call KBLAS batched TRSM
and SYRK for off-diagonal blocks and MAGMA batched POTRF kernel for recursion base.

Register Hosted Computations. �e CUDA kernels —which operate at the register level— are most
effective at the tiny sizes (below recursion base). �eir impact on performance gradually decreases
with the increase in matrix size since other kernel calls (mainly GEMM) become dominant. �e
curves KBLAS − xTRSM in Figure 5 illustrate the additional gain in performance achieved by
replacing the corresponding cuBLAS batched TRSM kernel with a register-hosted KBLAS batched
TRSM kernel for the recursion base, on top of that achieved by recursive formulations. Such gains
range from 1.6X and 1.4X, at the upper spectrum of matrix sizes, up to 3.7X and 3.3X, at the lower
spectrum, for SP and DP respectively. �e curves KBLAS − xPOTRF in Figure 6 also highlight
the additional gain in performance achieved by replacing MAGMA batched PORTF kernel with a

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:15

0

100

200

300

400

500

600

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (M=N, batch=20480)

KBLAS-STRSM

cuBLAS-STRSM-Rec

cuBLAS-STRSM

(a) Batched STRSM .

0

50

100

150

200

250

300

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (M=N, batch=10240)

KBLAS-DTRSM

cuBLAS-DTRSM-Rec

cuBLAS-DTRSM

(b) Batched DTRSM .

Fig. 5. Effect of recursion on performance of batched cuBLAS TRSM running on NVIDIA K40 GPU.

20.6
62.9

162.5

263.9

314.1

455.3

7.9 27.2

78.2

162.1

279.3

374.4

0

50

100

150

200

250

300

350

400

450

500

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (batch=20480)

KBLAS-SPOTRF

MAGMA-SPOTRF-Rec

MAGMA-SPOTRF

(a) Batched SPOTRF .

25.0

50.1

110.5

153.2

208.9

263.5

5.5 17.9

44.6

94.1

158.7

207.6

0

50

100

150

200

250

300

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (batch=10240)

KBLAS-DPOTRF

MAGMA-DPOTRF-Rec

MAGMA-DPOTRF

(b) Batched DPOTRF .

Fig. 6. Effect of recursion on performance of batched MAGMA PORTF running on NVIDIA K40 GPU.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

8 16 32 64 128

S
p
ee

d
u
p

Matrix Size (M=N, batch=10240)

Fused / Non-fused kernels

Fig. 7. Speedup gained by fusing two kernels ofDPOTRS .

register-hosted KBLAS batched POTRF kernel for the recursion base. Such gains range from 1.1X,
at the upper spectrum, up to 2.8X and 4.3X, at lower spectrum, for SP and DP, respectively.

Kernel Fusion. Figure 7 shows a sample of performance gain obtained by fusing the two kernels
of POTRS running on a K40 GPU with 10240 batch size. Note that the gain is maximum (reaching
close to 1.5X) when the execution involves the fused CUDA kernels only (for sizes up to the

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:16 A. Charara et al.

recursion base); It decreases when recursion takes over by ge�ing invoked on top of the fused
kernels, involving GEMM calls for off-diagonal blocks.

Nested Batching Calls. Figure 8 shows the effect of nested batching calls on the batched SYRK
kernel. �e speedups gained for these sample runs range from 11% and 7% up to 18% and 14%,
for SP and DP, respectively. Recall that nested batching calls combine several partial batch calls
into one call —when possible– to improve occupancy and minimize kernel launch overhead. �is
is most effective when the batch size is small, where the workload would not saturate the GPU.
Figure 8(a) demonstrates the speedup gained with nested batching calls for a matrix of size 64 while
varying the batch size. �e plot shows that, indeed, the gain is considerable when the batch size is
small. Such gain gradually decreases with the increase in batch size as expected, since each partial
batch call would bring enough workload to the GPU device. Figure 8(b) shows the speedup gain as
the matrix size changes on a single K40 GPU. Note that the speedup decreases with the increase
of matrix size as largerGEMM calls dominate the execution time. However, this technique is still
effective in a strong scaling setup. Figure 8(c) shows the speedups gained with nested batching
calls on 8 GPUs with batch size of 8K. �e distributed load on each GPU is rather small where
the nested batching becomes effective, thus exposing further parallelism and resulting in be�er
GPU utilization. �e resulting boost in performance reaches up to 22% and 16%, for SP and DP,
respectively.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1 2 3 4 5 6 7 8 9 10

S
p
ee

d
u
p

Batch Size (x 1K)

SSYRK-64-Nested/Non-nested

DSYRK-64-Nested/Non-nested

(a) Varying batch size for square ma-

trices of size 64.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

32 64 128 256

S
p
ee

d
u
p

Matrix Size (M=N, Batch=1K)

SSYRK-Nested/Non-nested-1GPU

DSYRK-Nested/Non-nested-1GPU

(b) Varying matrix size with 1K batch

size on single K40 GPU.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%

32 64 128 256

S
p
ee

d
u
p

Matrix Size (M=N, Batch=8K)

SSYRK-Nested/Non-nested-8GPUs
DSYRK-Nested/Non-nested-8GPUs

(c) Varying matrix size with 8K batch

size on 8 K40 GPUs.

Fig. 8. Speedup gained by nested batching calls for batched SYRK , with SP and DP, running on NVIDIA K40

GPUs.

From now on, we report and evaluate the performance of our KBLAS implementations assuming
all previously mentioned techniques have been activated.

7.3 Performance Comparisons of Batched BLAS Kernels

In this section, we compare our results against MAGMA, cuBLAS, MKL, and Kurzak et. al [Kurzak
et al. 2016], whenever the relevant operations are available within such libraries. We report cuBLAS
batched GEMM (shown as dashed curves) as a sustained upper-bound for the batched BLAS and
DLA operations, as a more realistic bound than the theoretical peak performance of the hardware,
given the low arithmetic intensity of our memory-bound batched kernels. �ese upper-bound
curves are not always appropriate for small matrix sizes, due to the additional memory transfers
required for the matrix-matrix multiply kernel, but they are still considered valid reference bounds.
Furthermore, we do not check on the definiteness property of the matrices in KBLAS (and so is the
implementation of Kurzak et. al [2016]), and we have disabled it in MAGMA for a fair comparison.

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:17

�e overhead for such sanity check is rather minimal, and we intend to have it in KBLAS as well
eventually.

1

2

4

8

16

32

64

128

256

512

1024

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=20480)

cuBLAS-SGEMM

KBLAS-STRSM

cuBLAS-STRSM

MAGMA-STRSM

MKL-STRSM

(a) Batched STRSM .

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DTRSM

cuBLAS-DTRSM

MAGMA-DTRSM

MKL-DTRSM

(b) Batched DTRSM .

Fig. 9. Performance comparison of KBLAS batchedTRSM against MAGMA and cuBLAS (running on NVIDIA

K40 GPU) and MKL (running on Broadwell 28 cores). cuBLAS DGEMM is shown as an upper-bound.

7.3.1 Single GPU. Figures 9, 10, and 11 show the performance comparisons of KBLAS batched
TRSM , TRMM , and SYRK with both SP and DP against MAGMA, cuBLAS (when available) on
single NVIDIA K40 GPU, and against MKL on Broadwell system. �e performance gain for batched
TRSM against MAGMA (Figures 9(a) and 9(b)) ranges from 1.3X and 1.4X (for relatively small
sizes) up to 47X and 43X (for very small sizes), in SP and DP, respectively. Note that our KBLAS

1

2

4

8

16

32

64

128

256

512

1024

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (M=N, batch=20480)

cuBLAS-SGEMM

KBLAS-STRMM

MKL-STRMM

MAGMA-STRMM

(a) Batched STRMM .

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DTRMM

MKL-DTRMM

MAGMA-DTRMM

(b) Batched DTRMM .

Fig. 10. Performance comparison of KBLAS batched TRMM against MAGMA and cuBLAS (running on

NVIDIA K40 GPU) and MKL (running on Broadwell 28 cores).

RecTRSM implementation is in-place (IP), while MAGMA’s implementation is out-of-place (OOP),
thus requiring extra memory allocations for the output matrix and a workspace. �e speedup
ranges from 3.7X and 2.2X until 7.8X and 4.4X against the IP cuBLAS implementation and from 3X
until 1.5X against the IP MKL implementation on Broadwell system, in SP and DP, respectively.

On the other hand, the gain in performance for batched TRMM (Figures 10(a) and 10(b)) is high
for tiny sizes that are handled directly by KBLAS CUDA kernels, reaching up to 22X. However,
since TRMM is basically implemented as a GEMM in MAGMA, speedups for matrix sizes beyond
the recursion base (when recursion is invoked) are minimal and reach up to 1.68X and 1.2X, for SP

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:18 A. Charara et al.

1

2

4

8

16

32

64

128

256

512

1024

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=20480)

cuBLAS-SGEMM

KBLAS-SSYRK

MAGMA-SSYRK

MKL-SSYRK

(a) Batched SSYRK .

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DSYRK

MAGMA-DSYRK

MKL-DSYRK

(b) Batched DSYRK .

Fig. 11. Performance comparison of KBLAS batched SYRK against MAGMA and cuBLAS (running on NVIDIA

K40 GPU) and MKL (running on Broadwell 28 cores).

and DP, respectively. Speedups of KBLAS batched TRMM against MKL on Broadwell system range
between 1.5X and 3.7X in both SP and DP.

Similar observations can be made about the batched SYRK operation, which is also implemented
as a batchedGEMM in MAGMA. Consequently, speedups for sizes below recursion base (32) are
high, (Figures 11(a) and 11(b)) reaching up to 6.3X and 3.7X for SP and DP, respectively, and
relatively lower for sizes beyond recursion base, reaching up to 1.6X and 1.3X for SP and DP,
respectively. Speedups of KBLAS batched SYRK against MKL range from 1.5X and 1.6X up to 3.8X
and 4X, for SP and DP, respectively.

7.3.2 Multiple GPUs. We benchmark and report performance of our implementations on multi-
ple NVIDIA K40 GPUs. Data is assumed to reside on the devices main memories; consequently,
data transfer time is not accounted for. We distribute the data and corresponding operations across
devices equally. Figure 12 shows the performance of KBLAS batchedDSYRK , DTRSM andDTRMM

on multiple NVIDIA K40 GPUs, for DP arithmetic. We show the performance of same kernels on
multi-core CPU with MKL as a reference. With equivalent work-load on the GPU devices, the plots
demonstrate a decent strong scaling in performance on 1 to 8 GPU devices.

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(a) Multi-GPUs batched DTRSM .

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(b) Multi-GPUs batched DTRMM .

1
2
4
8

16
32
64

128
256
512

1024
2048
4096

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(c) Multi-GPUs batched DSYRK .

Fig. 12. Performance scalability of KBLAS batched BLAS operations with 10240 batch size running on

multiple NVIDIA K40 GPUs.

7.4 Performance Comparisons of Batched High-Level Triangular DLA / LAPACK

Operations

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:19

7.4.1 Single GPU. �e series of Figures 13–16 show the performance comparisons of KBLAS
batched high-level triangular DLA (POTRF , POTRS , POSV , TRTRI , LAUUM , POTRI and POTI)
against MAGMA on single NVIDIA K40 GPU and MKL on Broadwell 28-core system.
�e performance of KBLAS batched Cholesky factorization (POTRF) —shown in Figures 13(a)

and 13(b)— achieves up to 2.6X and 2.9X speedups against MAGMA for very small sizes in SP and
DP, respectively, and meets MAGMA’s performance at sizes beyond 64. Figure 13(a) also shows
the performance of batched POTRF in SP as implemented and reported by Kurzak et al [2016].
Kurzak’s implementation employed an exhaustive tuning approach for each matrix size using the
BEAST framework. Note that we extracted their POTRF performance from their corresponding
publication (which reports results on a batch of size 10000with SP only running on similar hardware),
because the authors do not provide a so�ware release. �e performance gain against Kurzak’s
implementation is very close to that against MAGMA. Speedups of KBLAS batched POTRF against
MKL on Broadwell system ranges between 2X for moderately small and 9X for very small matrix
sizes in both SP and DP.

1

2

4

8

16

32

64

128

256

512

1024

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (batch=10000)

cuBLAS-SGEMM

KBLAS-SPOTRF

MAGMA-SPOTRF

Kurzak-SPOTRF

MKL-SPOTRF

(a) Batched SPOTRF .

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (batch=10240)

cuBLAS-DGEMM

KBLAS-DPOTRF

MAGMA-DPOTRF

MKL-DPOTRF

(b) Batched DPOTRF .

Fig. 13. Performance comparison of KBLAS batched POTRF against MAGMA (running on NVIDIA K40 GPU)

and MKL (running on Broadwell with 28 cores).

�e positive definite triangular solve (POTRS) is effectively two consecutive triangular solves
(TRSMs); consequently, it inherits the massive speedup brought by the RecTRSM kernel. �e
performance gain, as shown in Figures 14(a) and 14(b), ranges from 1.4X and 1.3X, for moderately
small matrix sizes, up to 87X and 68X, for very small matrix sizes, in SP and DP, respectively. On
the other hand, the larger CPU cache memory offers high level of data locality; consequently, the
speedup of KBLAS batched POTRS over MKL on Broadwell system is less aggressive and ranges
from 1.1X and 1.2X up to 3.8X and 2.3X for SP and DP, respectively. �e MKL performance curve
catches up with KBLAS at matrix sizes beyond 64.
Figure 15 shows performance comparisons of the solution to a system of linear equations with

positive definite matrix (POSV), which decomposes into a Cholesky factorization (POTRF) and two
consecutive triangular solves (TRSMs). �erefore, it inherits the corresponding performance gains.
�e speedups of KBLAS batched POSV against MAGMA ranges from 1.2X and 1.3X, for relatively
small matrices, up to 56X and 49X for very small matrices, in SP and DP, respectively. Last but not
least, Figure 16 draws the performance comparisons of other batched triangular DLA operations
in KBLAS against MKL corresponding implementations (MAGMA does not provide support for
these DLA operations). �ese additional DLA kernels are critical in the context of preconditioners
for finite element discretizations of elliptic partial differential equations using balancing domain
decomposition by constraints (BDDC) algorithm [Dohrmann 2003; Zampini 2016]. �anks to the

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:20 A. Charara et al.

1

2

4

8

16

32

64

128

256

512

1024

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=20480)

cuBLAS-SGEMM

KBLAS-SPOTRS

MKL-SPOTRS

MAGMA-SPOTRS

(a) Batched SPOTRS .

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DPOTRS

MKL-DPOTRS

MAGMA-DPOTRS

(b) Batched DPOTRS .

Fig. 14. Performance comparison of KBLAS batched POTRS against MAGMA (running on NVIDIA K40 GPU)

and MKL (running on Broadwell with 28 cores).

1

2

4

8

16

32

64

128

256

512

1024

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=20480)

cuBLAS-SGEMM

KBLAS-SPOSV

MKL-SPOSV

MAGMA-SPOSV

(a) Batched SPOSV .

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F

lo
p
s/

s

Matrix Size (M=N, batch=10240)

cuBLAS-DGEMM

KBLAS-DPOSV

MKL-DPOSV

MAGMA-DPOSV

(b) Batched DPOSV .

Fig. 15. Performance comparison of KBLAS batched POSV against MAGMA (running on NVIDIA K40 GPU)

and MKL (running on Broadwell with 28 cores).

new technique optimizations described in Section 5, KBLAS batched DLA kernels run close to
the sustained batched cuBLAS GEMM and outperform the MKL implementations for most of the
matrix size ranges.

7.4.2 Multiple GPUs. Figure 17 shows the performance of KBLAS batched DPOTRF , DPOTRS ,
DPOSV , DLAUUM , DTRTRI , DPOTRI and DPOTI on multiple NVIDIA K40 GPUs. Similarly to
the setup described in section 7.3.2, we distribute the load on devices equally and show MKL
performance as a reference. Again, the plots show a decent strong scaling on 1 to 8 GPU devices.

7.5 Portability Across GPU Architectures

Figure 18 demonstrates the performance speedup brought by KBLAS against MAGMA and cuBLAS
(whenever available) across various generations of NVIDIAGPUs. Note that no extensive tuningwas
performed for any of the setups on various GPU architectures. �e performance gain is significant
for matrices with very small sizes and competitive for larger sizes, across all architectures and
batched operations, and therefore, emphasizes that our optimization techniques are portable. It
is noteworthy that the newly released Pascal P100 architecture brings some major changes in its
core technical specifications, e.g., register file size, cores per SM, shared memory capacity, etc.

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:21

1

2

4

8

16

32

64

128

256

512

1024

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (M=N, batch=20480)

cuBLAS-SGEMM

KBLAS-SPOTI MKL-SPOTI

KBLAS-SLAUUM MKL-SLAUUM

KBLAS-SPOTRI MKL-SPOTRI

KBLAS-STRTRI MKL-STRTRI

(a) Batched SP LAUUM -TRTRI -POTRI -

POT I .

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128 256

G
F

lo
p
 /

 s

Matrix size (M=N, batch=10240)

cuBLAS-DGEMM
KBLAS-DPOTI MKL-DPOTI
KBLAS-DLAUUM MKL-DLAUUM
KBLAS-DPOTRI MKL-DPOTRI
KBLAS-DTRTRI MKL-DTRTRI

(b) Batched DP LAUUM -TRTRI -POTRI -

POT I .

Fig. 16. Performance comparison of KBLAS batched LAPACK operations against MAGMA (running on

NVIDIA K40 GPU) and MKL (running on Broadwell with 28 cores).

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(a) MultiGPUs batched DPOTRF .

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(b) MultiGPUs batched DPOTRS .

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (M=N, batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(c) MultiGPUs batched DPOSV .

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(d) MultiGPUs batched DLAUUM .

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(e) MultiGPUs batched DTRTRI .

1
2
4
8

16
32
64

128
256
512

1024
2048

8 16 32 64 128 256

G
F
lo

p
 /

 s

Matrix size (batch=10240)

KBLAS 8-GPUs
KBLAS 4-GPUs
KBLAS 2-GPUs
KBLAS 1-GPU
MKL-28-cores

(f) MultiGPUs batched DPOTRI .

Fig. 17. Performance scalability of KBLAS batched high-Level DLA operations with 10240 batch size running

on multiple NVIDIA K40 GPUs.

Minimal tuning on the register hosted computation technique of the KBLAS code may be necessary
to further increase the performance gain for very small matrix sizes.

7.6 Performance Profiling

To further justify and assess the performance gains recorded in the previous section, we profile
in detail our implementations in regards to data transfer, arithmetic intensity, and bandwidth
saturation. We compare the profiling results to those on MAGMA. FLOPs and data transfer sizes
are measured using NVIDIA profiler (nvprof). Figure 19 show the ratio of MAGMA performed
FLOPs and memory transactions to that performed by KBLAS for the equivalent operations and

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:22 A. Charara et al.

1

2

4

8

16

32

64

8 16 32 64 128

S
p
ee

d
u
p

Matrix Size (M=N, Batch=10240)

DPOSV-MAGMA

DTRSM-MAGMA

DTRSM-cuBLAS

DTRMM-MAGMA

DSYRK-MAGMA

DPOTRF-MAGMA

(a) K20.

0.5

1

2

4

8

16

32

64

8 16 32 64 128 256

S
p
ee

d
u
p
s

Matrix Size (M=N, batch=10240)

DPOSV-MAGMA
DTRSM-MAGMA
DTRSM-cuBLAS
DTRMM-MAGMA
DPOTRF-MAGMA
DSYRK-MAGMA

(b) K40.

1

2

4

8

16

32

64

8 16 32 64 128 256

S
p
ee

d
u
p
s

Matrix Size (M=N, batch=10240)

DPOSV-MAGMA

DTRSM-MAGMA

DTRSM-cuBLAS

DTRMM-MAGMA

DPOTRF-MAGMA

DSYRK-MAGMA

(c) Titan Black.

0.5

1

2

4

8

16

8 16 32 64 128 256

S
p
ee

d
u
p

Matrix Size (M=N, Batch=10240)

DTRSM-MAGMA

DTRSM-cuBLAS

DSYRK-MAGMA

DPOTRF-MAGMA

(d) Pascal P100.

Fig. 18. Performance speedups of KBLAS batched BLAS and LAPACK operations against MAGMA and

cuBLAS (whenever available) across various NVIDIA GPU generations.

matrix and batch sizes at all memory levels: L1 (including shared memory), L2, and global memory.
�e plots show that KBLAS is consistently performing many fewer flops than MAGMA since
MAGMA inverts the diagonal blocks instead for the batchedTRSM , POSV and POTRS kernels and
operates on the full diagonal symmetric blocks for the batched SYRK kernel. In addition, KBLAS
performs many fewer data transfers than MAGMA at the targeted matrix sizes in various triangular
operations, thanks to the optimization techniques described in Section 5. �e plots also show the
recorded speedups by KBLAS against MAGMA, which very much align with the ratios of data
transfer rates.
Figure 20(a) show the roofline performance model [Ofenbeck et al. 2014] of various KBLAS

batched operations based on measured FLOPS and data transfer sizes, with a batch size of 10240
running on NVIDIA K40 GPU, on square matrices of sizes 128. �e figure shows that performance
of KBLAS implementations is very close to the sustained performance of the underlying hardware.
Figure 20(b) shows the ratio of achieved bandwidth in GB/s of KBLAS batched operations using
various matrix sizes to the sustained bandwidth of the used GPU device. Although FLOPs perfor-
mance is way below the theoretical peak of the device, achieved bandwidth ranges from 60% to
80% of the sustained device bandwidth.

8 CONCLUSION AND FUTURE WORK

�is paper presents a new set of high performance batched BLAS and LAPACK/DLA operations
on GPUs with support for very small matrix sizes. �anks to two-sided recursive algorithmic
formulations and hardware/so�ware-related optimizations (i.e., register pressure, kernel fusions and

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Batched DLA for Very Small Matrices on GPUs 39:23

3.8

2.0
0.95 1.2 1.2

0.25

0.5

1

2

4

8

16

32

64

8 16 32 64 128

M
A

G
M

A
 /

 K
B

L
A

S

Matrix Size (M=N, Batch=10240)

(a) Batched DSYRK .

43.6

12.9

3.9

1.9
1.4

0.5

1

2

4

8

16

32

64

8 16 32 64 128

M
A

G
M

A
 /

 K
B

L
A

S

Matrix Size (M=N, Batch=10240)

(b) Batched DTRSM .

3.3
2.7

1.8

1.2 1.06

0.5

1

2

4

8

16

32

8 16 32 64 128

M
A

G
M

A
 /

 K
B

L
A

S

Matrix Size (Batch=10240)

(c) Batched DPOTRF .

68.9

18

3.8

2
1.4

0.5

1

2

4

8

16

32

64

128

256

512

8 16 32 64 128

M
A

G
M

A
 /

 K
B

L
A

S

Matrix Size (M=N, Batch=10240)

(d) Batched DPOTRS .

50

12.5

3.3

1.8
1.3

0.5

1

2

4

8

16

32

64

128

256

8 16 32 64 128

M
A

G
M

A
 /

 K
B

L
A

S

Matrix size (M=N, batch=10240)

(e) Batched DPOSV .

L1 Mem. Trans.

L2 Mem. Trans.

DRAM Mem. Trans.

FLOPs

KBLAS / MAGMA Speedup

Fig. 19. Profiling of FLOPs and memory transactions of MAGMA vs KBLAS batched operations with 10240
batch size running on NVIDIA K40m GPU.

1

10

100

1000

10000

0.01 0.1 1 10 100

G
F

L
O

P
 /

 s

Measured FLOPs / Byte (batch=10240)

KBLAS-DSYRK
KBLAS-TRMM
KBLAS-DTRSM
KBLAS-DPOTRF
KBLAS-DLAUUM
KBLAS-DTRTRI

1200 GFLOP/s

(a) Roofline performance model of KBLAS

batched operations in double precision and

batched size of 10240 running on NVIDIA K40

GPU, on square matrices of size 128.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128

A
ch

ei
v
ed

 /
 S

u
st

ai
n
ed

B

an
d
w

id
th

(%
)

Matrix Size (M=N, batch=10240)

DSYRK DTRMM DLAUUM

DTRTRI DPOTRF DTRSM

(b) Ratio of achieved to sustained bandwidth

of various KBLAS batched operations in double

precision on a K40 GPU with batch size of 10240.

Fig. 20

nested batching calls), these new GPU batched BLAS and LAPACK kernels outperform existing GPU
andCPU implementations. �ey also requireminimal performance tuning to extract performance on
various GPU generations. �ese new kernels represent critical building blocks for designing efficient
sparse direct solvers on hardware accelerators [Amestoy et al. 2011; Hénon et al. 2002] as well as in
the context of machine learning applications with low-rank matrix approximations [Akbudak et al.
2017]. Future work includes extending these kernels to support non-uniform matrix sizes and a
lightweight auto-tuning framework to optimize these batched operations transparently.

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:24 A. Charara et al.

ACKNOWLEDGMENT

�e authors would like to thank the NVIDIA for their hardware donations and remote access to their
systems in the context of the NVIDIA GPU Research Center awarded to the Extreme Computing
Research Center at KAUST.

REFERENCES

A. Abdelfa�ah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, and

S. Tomov. 2016. High-performance tensor contractions for GPUs. Procedia Comput. Sci. 80 (2016), 108 – 118. DOI:

h�p://dx.doi.org/10.1016/j.procs.2016.05.302 International Conference on Computational Science 2016, {ICCS} 2016, 6-8

June 2016, San Diego, California, {USA}.

A. Abdelfa�ah, J. Dongarra, D. Keyes, and H. Ltaief. 2012. Optimizing memory-bound SYMV kernel on GPU hardware

accelerators. In High Performance Computing for Computational Science - VECPAR 2012, 10th International Conference,

Kobe, Japan, July 17-20, 2012, Revised Selected Papers. 72–79. DOI:h�p://dx.doi.org/10.1007/978-3-642-38718-0 10

A. Abdelfa�ah, A. Haidar, S. Tomov, and J. Dongarra. 2016a. Fast Cholesky factorization on GPUs for batch and native

modes in MAGMA. J. Comput Sci. (2016), –. DOI:h�p://dx.doi.org/10.1016/j.jocs.2016.12.009

A. Abdelfa�ah, A. Haidar, S. Tomov, and J. Dongarra. 2016b. On the development of variable size batched computation for

heterogeneous parallel architectures. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). 1249–1258. DOI:h�p://dx.doi.org/10.1109/IPDPSW.2016.190

A. Abdelfa�ah, A. Haidar, S. Tomov, and J. Dongarra. 2016c. Performance, design, and autotuning of batched GEMM for

GPUs. In High Performance Computing - 31st International Conference, ISC High Performance 2016, Frankfurt, Germany,

June 19-23, 2016, Proceedings (Lecture Notes in Computer Science), Julian M. Kunkel, Pavan Balaji, and Jack Dongarra

(Eds.), Vol. 9697. Springer, 21–38. h�p://dx.doi.org/10.1007/978-3-319-41321-1

A. Abdelfa�ah, A. Haidar, S. Tomov, and J. Dongarra. 2016d. Performance tuning and optimization techniques of fixed

and variable size batched Cholesky factorization on GPUs. Procedia Comput. Sci. 80 (2016), 119 – 130. DOI:h�p:

//dx.doi.org/10.1016/j.procs.2016.05.303 International Conference on Computational Science 2016, {ICCS} 2016, 6-8 June

2016, San Diego, California, {USA}.

A. Abdelfa�ah, D. Keyes, and H. Ltaief. 2016e. KBLAS: an optimized library for dense matrix-vector multiplication on GPU

accelerators. ACM Trans. Math. So�ware 42, 3, Article 18 (May 2016), 31 pages. DOI:h�p://dx.doi.org/10.1145/2818311

K. Akbudak, H. Ltaief, A. Mikhalev, and D. Keyes. 2017. Tile low rank Cholesky factorization for climate/weather modeling

applications on manycore architectures. International Supercomputing Conference (2017).

P. Amestoy, A. Bu�ari, I. Duff, A. Guermouche, J.Y. L’Excellent, and B. Uçar. 2011. MUMPS. Springer US, Boston, MA,

1232–1238. DOI:h�p://dx.doi.org/10.1007/978-0-387-09766-4 204

B. S. Andersen, F. Gustavson, A. Karaivanov, M. Marinova, J. Waśniewski, and P. Yalamov. 2001. LAWRA linear algebra with

recursive algorithms. In Applied Parallel Computing. New Paradigms for HPC in Industry and Academia: 5th International

Workshop, PARA 2000 Bergen, Norway, June 18–20, 2000 Proceedings, T. Sørevik, F. Manne, A. H. Gebremedhin, and Randi

Moe (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 38–51. DOI:h�p://dx.doi.org/10.1007/3-540-70734-4 7

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.

McKenney, and D. Sorensen. 1999. LAPACK User’s Guide (3rd ed.). Society for Industrial and Applied Mathematics,

Philadelphia.

BEAST. 2017. Bench-testing Environment for Automated So�ware Tuning. Innovative Computing Laboratory, University

of Tennessee. (2017). Available at h�p://icl.cs.utk.edu/beast//.

W. H. Boukaram, G. Turkiyyah, H. Ltaief, and D. Keyes. 2017. Batched QR and SVD algorithms on GPUs with applications

in hierarchical matrix compression. Submi�ed to J. Parallel Comput., Special Edition (2017).

A. Charara, D. Keyes, and H. Ltaief. 2016a. A framework for dense triangular matrix kernels on various manycore

architectures. Submi�ed to Concurr. Comput.: Prac. Experience (2016). h�p://hdl.handle.net/10754/622077

A. Charara, H. Ltaief, and D. Keyes. 2016b. Redesigning triangular dense matrix computations on GPUs. In Euro-Par

2016: Parallel Processing: 22nd International Conference on Parallel and Distributed Computing, Grenoble, France, August

24-26, 2016, Proceedings, P. F. Dutot and D. Trystram (Eds.). Springer International Publishing, Cham, 477–489. DOI:

h�p://dx.doi.org/10.1007/978-3-319-43659-3 35

C. R. Dohrmann. 2003. A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput.

25, 1 (Jan. 2003), 246–258. DOI:h�p://dx.doi.org/10.1137/S1064827502412887

T. Dong. 2015. Batched linear algebra problems on GPU accelerators. Ph.D. Dissertation. �e University of Tennessee,

Knoxville.

T. Dong, A. Haidar, P. Luszczek, J. A. Harris, S. Tomov, and J. Dongarra. 2014a. LU factorization of small matrices: accelerating

batched DGETRF on the GPU. InHigh Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

http://dx.doi.org/10.1016/j.procs.2016.05.302
http://dx.doi.org/10.1007/978-3-642-38718-0_10
http://dx.doi.org/10.1016/j.jocs.2016.12.009
http://dx.doi.org/10.1109/IPDPSW.2016.190
http://dx.doi.org/10.1007/978-3-319-41321-1
http://dx.doi.org/10.1016/j.procs.2016.05.303
http://dx.doi.org/10.1016/j.procs.2016.05.303
http://dx.doi.org/10.1145/2818311
http://dx.doi.org/10.1007/978-0-387-09766-4_204
http://dx.doi.org/10.1007/3-540-70734-4_7
http://icl.cs.utk.edu/beast//
http://hdl.handle.net/10754/622077
http://dx.doi.org/10.1007/978-3-319-43659-3_35
http://dx.doi.org/10.1137/S1064827502412887

Batched DLA for Very Small Matrices on GPUs 39:25

Safety and Security, 2014 IEEE 11th Intl Conf on Embedded So�ware and Syst (HPCC,CSS,ICESS), 2014 IEEE Intl Conf on.

IEEE, 157–160. DOI:h�p://dx.doi.org/10.1109/HPCC.2014.30

T. Dong, A. Haidar, S. Tomov, and J. Dongarra. 2014b. A fast batched Cholesky factorization on a GPU. In 2014 43rd

International Conference on Parallel Processing. IEEE Computer Society, 432–440. DOI:h�p://dx.doi.org/10.1109/ICPP.

2014.52

J. Dongarra, M. Abalenkovs, A. Abdelfa�ah, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, and A.

YarKhan. 2015. Parallel programming models for dense linear algebra on heterogeneous systems. Supercomput. Front.

Innov.: Int. J. 2, 4 (March 2015), 67–86. DOI:h�p://dx.doi.org/10.14529/jsfi150405

J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. 1988. An extended set of Fortran basic linear algebra subprograms.

ACM Trans. Math. So�ware 14 (1988), 1–17.

D. Eliahu, O. Spillinger, A. Fox, and J. Demmel. 2015. FRPA: A framework for recursive parallel algorithms. Master’s thesis. EECS

Department, University of California, Berkeley. h�p://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-28.html

E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. 2004. Recursive blocked algorithms and hybrid data structures for

dense matrix library so�ware. SIAM Rev. 46, 1 (2004), 3–45. DOI:h�p://dx.doi.org/10.1137/S0036144503428693

E. Elmroth and F. G. Gustavson. 2000. Applying recursion to serial and parallel QR factorization leads to be�er performance.

IBM J. Res. Dev. 44, 4 (July 2000), 605–624. DOI:h�p://dx.doi.org/10.1147/rd.444.0605

K. Goto and R. Van De Geijn. 2008. High-performance implementation of the level 3 BLAS. ACM Trans. Math. So�ware 35,

1, Article 4 (July 2008), 14 pages. DOI:h�p://dx.doi.org/10.1145/1377603.1377607

W. Hackbusch. 1999. A sparse matrix arithmetic based on H -matrices. Part I: Introduction to H -matrices. Computing 62, 2

(May 1999), 89–108. DOI:h�p://dx.doi.org/10.1007/s006070050015

W. Hackbusch and B. N. Khoromskij. 2000. A sparseH -matrix arithmetic. Part II: Application to multi-dimensional problems.

Computing 64, 1 (2000), 21–47. DOI:h�p://dx.doi.org/10.1007/PL00021408

A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra. 2015a. Batched matrix computations on hardware acceler-

ators based on GPUs. Int. J. High Perform. Comput. Appl. 29, 2 (May 2015), 193–208. DOI:h�p://dx.doi.org/10.1177/

1094342014567546

A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra. 2015b. Optimization for performance and energy for

batched matrix computations on GPUs. In Proceedings of the 8th Workshop on General Purpose Processing using GPUs,

GPGPU@PPoPP 2015, San Francisco, CA, USA, February 7, 2015, David R. Kaeli and John Cavazos (Eds.). ACM, 59–69.

h�p://dl.acm.org/citation.cfm?id=2716282

A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra. 2015c. Towards batched linear solvers on accelerated hardware

platforms. SIGPLAN Not. 50, 8 (Jan. 2015), 261–262. DOI:h�p://dx.doi.org/10.1145/2858788.2688534

A. Haidar, T. T. Dong, S. Tomov, P. Luszczek, and J. Dongarra. 2015d. A framework for batched and GPU-resident factorization

algorithms applied to block householder transformations. In High Performance Computing: 30th International Conference,

ISC High Performance 2015, Frankfurt, Germany, July 12-16, 2015, Proceedings. Springer, 31–47.

A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst. 2016. LIBXSMM: accelerating small matrix multiplications by runtime

code generation. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and

Analysis, SC 2016, Salt Lake City, UT, USA, November 13-18, 2016, John West 0001 and Cherri M. Pancake (Eds.). ACM, 84.

h�p://dl.acm.org/citation.cfm?id=3014904

P. Hénon, P. Ramet, and J. Roman. 2002. PASTIX: A high-performance parallel direct solver for sparse symmetric positive

definite systems. Parallel Comput. 28, 2 (2002), 301–321.

F. D. Igual, G. �intana-Ort, and R. A. van de Geijn. 2012. Level-3 BLAS on a GPU: Picking the

low hanging fruit. AIP Conf. Proc 1504, 1 (2012), 1109–1112. DOI:h�p://dx.doi.org/10.1063/1.4772121

arXiv:h�p://aip.scitation.org/doi/pdf/10.1063/1.4772121

Intel. 2017. Math Kernel Library (MKL). (2017). Available at h�p://so�ware.intel.com/en-us/articles/intel-mkl.

B. Kågström. 2006. Management of deep memory hierarchies – recursive blocked algorithms and hybrid data structures

for dense matrix computations. In Applied Parallel Computing. State of the Art in Scientific Computing: 7th International

Workshop, PARA 2004, Lyngby, Denmark, June 20-23, 2004. Revised Selected Papers, Jack Dongarra, Kaj Madsen, and Jerzy

Waśniewski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 21–32. DOI:h�p://dx.doi.org/10.1007/11558958 3

B. Kågström, P. Ling, and C. van Loan. 1998. GEMM-based level 3 BLAS: high-performance model implementations and

performance evaluation benchmark. ACM Trans. Math. So�ware 24, 3 (1998), 268–302. DOI:h�p://dx.doi.org/10.1145/

292395.292412

J. King, S. Yakovlev, Z. Fu, R. M. Kirby, and S. J. Sherwin. 2014. Exploiting batch processing on streaming architectures to

solve 2D elliptic finite element problems: a Hybridized Discontinuous Galerkin (HDG) case study. J. Sci. Comput. 60, 2

(2014), 457–482. DOI:h�p://dx.doi.org/10.1007/s10915-013-9805-x

J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. 2016. Implementation and tuning of batched Cholesky factorization and solve

for NVIDIA GPUs. IEEE Trans. Parallel and Distrib. Syst. 27, 7 (July 2016), 2036–2048. DOI:h�p://dx.doi.org/10.1109/

TPDS.2015.2481890

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

http://dx.doi.org/10.1109/HPCC.2014.30
http://dx.doi.org/10.1109/ICPP.2014.52
http://dx.doi.org/10.1109/ICPP.2014.52
http://dx.doi.org/10.14529/jsfi150405
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-28.html
http://dx.doi.org/10.1137/S0036144503428693
http://dx.doi.org/10.1147/rd.444.0605
http://dx.doi.org/10.1145/1377603.1377607
http://dx.doi.org/10.1007/s006070050015
http://dx.doi.org/10.1007/PL00021408
http://dx.doi.org/10.1177/1094342014567546
http://dx.doi.org/10.1177/1094342014567546
http://dl.acm.org/citation.cfm?id=2716282
http://dx.doi.org/10.1145/2858788.2688534
http://dl.acm.org/citation.cfm?id=3014904
http://dx.doi.org/10.1063/1.4772121
http://arxiv.org/abs/http://aip.scitation.org/doi/pdf/10.1063/1.4772121
http://software.intel.com/en-us/articles/intel-mkl
http://dx.doi.org/10.1007/11558958_3
http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1007/s10915-013-9805-x
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://dx.doi.org/10.1109/TPDS.2015.2481890

39:26 A. Charara et al.

MAGMA. 2017. Matrix Algebra on GPU and Multicore Architectures. Innovative Computing Laboratory, University of

Tennessee. (2017). Available at h�p://icl.cs.utk.edu/magma/.

I. Masliah, A. Abdelfa�ah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra. 2016. High-performance matrix-

matrix multiplications of very small matrices. In Euro-Par 2016: Parallel Processing: 22nd International Conference on

Parallel and Distributed Computing, Grenoble, France, August 24-26, 2016, Proceedings, P. F. Dutot and D. Trystram (Eds.).

Springer International Publishing, Cham, 659–671. DOI:h�p://dx.doi.org/10.1007/978-3-319-43659-3 48

NVIDIA. 2017a. �e CUDA Basic Linear Algebra Subroutines (cuBLAS). (2017). Available at h�p://developer.nvidia.com/

cublas.

NVIDIA. 2017b. �e CUDA Basic Linear Algebra Subroutines (cuBLAS). (2017). Available at h�p://docs.nvidia.com/cuda/

cublas/index.html#appendix-acknowledgements.

NVIDIA. 2017c. �e CUDA solver library (cuSOLVER). (2017). Available at h�p://developer.nvidia.com/cusolver.

NVIDIA. 2017d. CUDA C Programming Guide. (2017). h�p://docs.nvidia.com/cuda/cuda-c-programming-guide/

G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Pschel. 2014. Applying the roofline model. In Performance

Analysis of Systems and So�ware (ISPASS), 2014 IEEE International Symposium on. IEEE Computer Society, 76–85. DOI:

h�p://dx.doi.org/10.1109/ISPASS.2014.6844463

V. Oreste, M. Fatica, N. A. Gawande, and A. Tumeo. 2013. Power/performance trade-offs of small batched LU based solvers

on GPUs, Lecture Notes in Computer Science (Ed.). 19th International Conference on Parallel Processing, Euro-Par 8097

(August 2013).

E. Peise and P. Bientinesi. 2016. Recursive algorithms for dense linear algebra: the ReLAPACK collection. ArXiv e-prints

(Feb. 2016). arXiv:cs.MS/1602.06763

SuiteSparse. 2017. A suite of sparse matrix so�ware. (2017). Available at h�p://faculty.cse.tamu.edu/davis/SuiteSparse/.

S. Zampini. 2016. PCBDDC: a class of robust dual-primal methods in PETSc. SIAM J. Sci. Comput. 38, 5 (2016), S282–S306.

Received March 2017; revised March 2017; accepted March 2017

ACM Transactions on Mathematical So�ware, Vol. 9, No. 4, Article 39. Publication date: March 2017.

http://icl.cs.utk.edu/magma/
http://dx.doi.org/10.1007/978-3-319-43659-3_48
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas/index.html#appendix-acknowledgements
http://docs.nvidia.com/cuda/cublas/index.html#appendix-acknowledgements
http://developer.nvidia.com/cusolver
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://dx.doi.org/10.1109/ISPASS.2014.6844463
http://arxiv.org/abs/cs.MS/1602.06763
http://faculty.cse.tamu.edu/davis/SuiteSparse/

	Abstract
	1 Introduction
	2 Related Work
	3 The KBLAS Library
	3.1 Current Features
	3.2 Kernel API
	3.3 New Features

	4 Limitations of Triangular DLA operations
	5 Fundamental Algorithmic Techniques
	5.1 Two-Sided Recursive Blocking
	5.2 Register Hosted Computations
	5.3 Nested Batching Calls
	5.4 Kernel Fusion

	6 High Performance Implementation Details
	6.1 Two-sided Recursive formulations
	6.2 CUDA Kernels

	7 Performance Results and Analysis
	7.1 Environment Settings
	7.2 Performance Gain Breakdown
	7.3 Performance Comparisons of Batched BLAS Kernels
	7.4 Performance Comparisons of Batched High-Level Triangular DLA / LAPACK Operations
	7.5 Portability Across GPU Architectures
	7.6 Performance Profiling

	8 Conclusion and Future Work
	References

