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Abstract: Driving a quantum system across quantum critical points leads to non-adiabatic excitations
in the system. This in turn may adversely affect the functioning of a quantum machine which uses a
quantum critical substance as its working medium. Here we propose a bath-engineered quantum engine
(BEQE), in which we use the Kibble–Zurek mechanism and critical scaling laws to formulate a protocol
for enhancing the performance of finite-time quantum engines operating close to quantum phase
transitions. In the case of free fermionic systems, BEQE enables finite-time engines to outperform
engines operating in the presence of shortcuts to adiabaticity, and even infinite-time engines under
suitable conditions, thus showing the remarkable advantages offered by this technique. Open
questions remain regarding the use of BEQE based on non-integrable models.

Keywords: quantum thermodynamics; quantum heat engines; quantum control; quantum phase
transitions; Kibble–Zurek mechanism

1. Introduction

The field of quantum thermodynamics aims to form a coherent understanding of the
thermodynamics of quantum systems [1–7]. In classical thermodynamics, one can then use
this knowledge to understand the limitations on the performance of quantum machines. In
this respect, quantum control can play a significant role in enabling us to go beyond these
limitations and develop high-performing quantum machines [8,9]. This can be especially
significant in the case of finite-time quantum machines [10,11], as non-adiabatic excitations
can be detrimental to the performances of such machines, thus necessitating the application
of controls in order to boost their outputs [12,13].

Control techniques such as shortcuts to adiabaticity (STA) have been shown to be
highly successful in enhancing the output of finite-time quantum engines [14–19]. How-
ever, the application of STA can be highly non-trivial in many-body quantum engines,
owing to the diverging dimensions of the associated Hilbert spaces. This can be especially
challenging in quantum engines operating close to quantum critical points, where the
diverging length and time scales can demand STA protocols involving long-range inter-
actions [20,21]. The above challenges motivated us to search for control protocols beyond
STA for application in quantum engines operating close to quantum phase transitions.

In this work we propose a control protocol aimed at enhancing the efficiency as well
as the output work of quantum engines based on free fermionic working mediums (WMs)
operating close to quantum critical points [22]. Quantum phase transitions have proven
to be beneficial for quantum heat engines [23–27]. The universality in quantum critical
machines arising from the Kibble–Zurek mechanism (KZM) has already been studied
in [28]. Here, we construct a quantum heat engine using a working medium that undergoes
quantum phase transition. The formation of excitations close to the critical point due
to the divergence of relaxation time results in the loss of adiabaticity, thus reducing the
performance of the quantum machine [29–31]. Although conventional control techniques
such as STA involve complex calculations and non-trivial many-body interactions, we
propose the implementation of the bath-engineered quantum engine (BEQE), in which the
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working of the engine can be improved significantly through the simple control of bath
spectral functions.

The present work is organized as follows. We describe a many-body quantum Otto
cycle in Section 2. In Section 3, the operation of the BEQE using a generic free fermionic
WM is explained in detail. We study a specific example of the BEQE using the transverse
Ising model in Section 4. Finally, we summarize our results in Section 5. Details of the
calculations presented in this work are included in the Appendix.

2. Many-Body Quantum Otto Cycle

We consider an Otto cycle with the working medium (WM) described by the Hamilto-
nian H(λ(t)), where λ is a time-dependent parameter. The four-stroke quantum Otto cycle
consists of two non-unitary strokes and two unitary strokes, as described below (Figure 1).

Figure 1. Schematic diagram of a quantum Otto cycle with a many-body spin system as the work-
ing medium.

(i) Non-unitary stroke A → B: The WM with parameter λ = λ1 is connected to an
energizing bath E until it reaches the corresponding steady state at B by receiving
energy Qin from the bath.

(ii) Unitary stroke B→ C: The WM is decoupled from the energizing bath and λ is changed
from λ1 to λ2 at a speed of 1/τ1.
This unitary evolution is described by the Von Neumann equation of motion:

dρ

dt
= −i[H, ρ]. (1)

(iii) Non-unitary stroke C→ D: The WM with λ = λ2 is now connected to a decaying bath
D until it reaches the corresponding steady state at D; energyQout flows from the WM
to the bath during this stroke.

(iv) Unitary stroke D→ A: After decoupling from the decaying bath, the parameter λ is
changed back to λ1 from λ2 with a speed of 1/τ2.

The WM crosses a quantum critical point at λ = λc during the unitary strokes, such
that λ2 ≤ λc < λ1. The energy at the end of stroke i is calculated using the equation

Ei = Tr(Hiρi) (2)
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where Hi and ρi are the Hamiltonian and the density matrix at i = A, B, C, D. The heat
input (Qin) and heat output (Qout) can be calculated using

Qin = EB − EA (3)

Qout = ED − EC. (4)

The output work is given byW = −(Qin +Qout). The sign convention used here is
as follows: energy is taken to be positive (negative) if it enters (leaves) the WM. The Otto
cycle works as an engine when Qin > 0,Qout < 0 and |W| < 0. The performance of the
engine is then characterized using the quantity of efficiency (η), which is defined as

η = − WQin
. (5)

We note that other regimes of operation may arise for different signs of Qin and Qout, as
discussed in [32].

3. Bath Spectral Form Engineering

We consider a free fermionic WM, described by a Hamiltonian of the form

H = ∑
k

ψ†
k Hkψk

Hk = ~f (k).~σk (6)

where~σk =
(

σx
k , σ

y
k , σz

k

)
denotes the Pauli matrices corresponding to the k-th mode; ~f (k) is

a model-dependent function for the k-th mode; and ψ†
k =

(
c†

1k c†
2k
)
, where cjk and c†

jk (with
j = 1, 2) denote the fermionic operators corresponding to the k-th mode.

For non-interacting k modes, the density matrix ρ of the system can be written as
ρ = ⊗kρk. The WM undergoes unitary dynamics during the strokes D→ A and B→ C,
described by the Von Neumann equation:

ρ̇k = −i[Hk, ρk] (7)

for each k mode. Furthermore, we assume fermionic baths such that each k mode evolves
independently during the non-unitary strokes, described by the master equation [33]

dρk
dt

= Gα(∆k)Lk[ρk(t)] + Gα(−∆k)L†
k [ρk(t)] (8)

where, following the Kubo–Martin–Schwinger condition, we have

Gα(−∆k) = exp(−∆k/Tα)Gα(∆k). (9)

Here Gα(ν) denotes the spectral function of the α = E ,D bath at frequency ν, whereas
Tα is the effective temperature of the α bath [28,34]. The superoperator Lk and L†

k are of
the form

Lk =

(
LkρkL†

k −
1
2
{L†

k Lk, ρk}
)

(10)

L†
k =

(
L†

k ρkLk −
1
2
{LkL†

k , ρk}
)

with Lk being the Lindblad operators denoting jumps between the different eigenenergy
levels. The above dynamics given in Equations (8)–(10) ensures that each k mode thermal-
izes independently with the bath, such that the steady state of the WM at the end of an
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isochoric stroke is given by ρ = ⊗kρth
k , where ρth

k is the Gibbs state corresponding to the
k-th mode [35]. However, in general, ∆k can be expected to vary with k, which may result in
the global state ρ = ⊗kρth

k being non-thermal. We emphasize that even though globally the
WM remains in a non-thermal state, in contrast to quantum engines powered by squeezed
thermal baths, none of the k modes receive any ergotropy from the E and D baths in this
setup [36,37]. Furthermore, this global steady state becomes thermal for ∆k becoming a
positive k-independent constant, which may happen far away from a quantum critical
point, or in the limits Tα → ∞ and Tα → 0. In addition, we note that the bath considered
here is local in k space, and therefore can be expected to be non-local in real space. However,
this bath can become local far away from the critical point, in which regime the system may
be composed of effectively non-interacting particles (see Section 4). A detailed discussion
regarding the bath considered here is given in [33].

Non-adiabatic excitations are inevitable when a quantum system is driven across
quantum critical points [29]. This results in a reduction in output work as well as efficiency
when a quantum critical substance is made the working medium of a quantum Otto
engine [28]. Here, we propose bath spectral form engineering to prevent these excitations
from reducing the performance of the engine, henceforth called the bath-engineered quantum
engine (BEQE).

In the bath engineering technique, we choose bath spectral functions Gα with appro-
priate cut-offs, such that the modes which have higher probabilities of getting excited,
and which are therefore detrimental to the performance of the finite-time quantum engine,
are not allowed to participate in the dynamics. Although techniques such as shortcuts to
adiabaticity are applied in the unitary strokes, bath engineering is performed during the
non-unitary strokes (Figure 2a).

BEQE STA

BATH

(a)

(b)

Figure 2. (a) Schematic diagram showing bath engineering being applied during the non-unitary
strokes, whereas shortcuts to adiabaticity are applied during the unitary strokes. (b) A k mode is
coupled to the bath if ∆k > ∆∗ (k > k∗) and is not coupled to the bath if ∆k < ∆∗ (k < k∗), where
∆k∗ = ∆∗.
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The physics of excitations generated in a system which is driven at a finite rate across
a quantum critical point (QCP) are well established and are described by the Kibble–Zurek
mechanism (KZM) [31,38,39], which was also experimentally demonstrated in [40,41].
According to the adiabatic-impulse approximation [42], these excitations occur due to
vanishing energy gaps which are below a threshold value (say, ∆∗), the expression of which
can be obtained using KZ arguments as described below. Bath engineering is carried out
such that the energy levels having gaps less than ∆∗ are not allowed to interact with the
bath, i.e, G(∆k < ∆∗) ≈ 0, thus preventing them from participating in the operation of the
cycle (Figure 2b).

Kibble–Zurek-Mechanism-Assisted BEQE

According to KZM, the response of a system driven across a quantum critical point is
determined by the inherent time scale (relaxation time ξτ) of the system, and the rate of
change of the system Hamiltonian [38,39,42]. When the relaxation time ξτ of the system is
greater than the rate at which the Hamiltonian parameter λ is changed, the system stops
evolving adiabatically, thus resulting in non-adiabatic excitations. In order to arrive at a
more quantitative analysis, let us assume that t∗ is the time at which the system looses
adiabaticity and excitations begin to occur. The energy gap ∆kc at the critical mode kc scales
with the distance from the critical point λc as [22]

∆kc ∼ |λ− λc|νz, (11)

where ν and z are the correlation length and dynamical critical exponents, respectively.
When the parameter λ is varied using the quench protocol λ = λ2 + (λ1 − λ2)

t
τ , one

can write
λ− λc = λ2 − λc + (λ1 − λ2)

t
τ

. (12)

According to the adiabatic-impulse approximation [42], the time t∗ is determined by the
condition that the relaxation time ξτ is of the order of the time scale with which λ is
changed, i.e.,

∆kc

∆̇kc

|t=t∗ ∼ ξτ . (13)

Furthermore, the relaxation time diverges according to the scaling

ξτ ∼
1

∆kc

∼ |λ− λc|−νz. (14)

Using the expressions (11)–(14) one obtains

∆kc

∆̇kc

|t=t∗ ∼
(λ2 − λc) + (λ1 − λ2)

t∗
τ

νz( λ1−λ2
τ )

∼ [(λ2 − λc) + (λ1 + λ2)
t∗

τ
]−νz (15)

⇒ t∗ ∼ tc +
τ

λ1 − λ2

(
νz(

λ1 − λ2

τ
)

) 1
1+νz

(16)

where tc = τ(λc − λ2)/(λ1 − λ2) is the time such that λ(tc) = λc, and we have assumed
that (λ− λc) > 0 for simplicity.

Thus, the energy gap at which the excitations begin to happen for the critical mode is
given by

∆̃∗ = ∆kc |t∗ ∼ (λ(t∗)− λc)
νz ∼

(
νz(λ1 − λ2)

τ

) νz
1+νz

. (17)
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In the quantum Otto cycle, bath engineering is implemented during the non-unitary strokes
C → D and A→ B by choosing

GD(∆k) ≈ 0 for ∆k < ∆∗

GE (∆k) ≈ 0 for ∆k < γ∆∗

∆∗ = C1∆̃∗ (18)

respectively, such that small energy gaps which have a higher probability of getting ex-
cited do not participate in the dynamics. The scaling parameter C1 (C1 > 0), along with
Equations (17) and (18), determine the lower cut-offs for the bath spectral functions; one
can choose an appropriate C1 depending on the details of the setup and the constraints
involved in order to improve the performance of an engine. In the numerical results given
below, we have chosen C1 = 1 for simplicity; γ is the scaling factor by which a typical
energy gap changes in the D → A stroke, and we have assumed that λ2 is close to the
quantum critical point, i.e.,

|λ2 − λc|νz � ∆̃∗. (19)

For non-critical λ2 (i.e., |λ2 − λc|νz � ∆̃∗), the energy gaps of the system at λ2 are of the
order of

∆k ≈ C2|λ2 − λc|νz + f (k, h2), (20)

where C2 is a model-dependent constant related to the minimum energy gap of the system,
whereas f (k, h2) is a model-dependent function for the mode k. For low-energy modes, one
can expect | f (k)| � C2|λ2 − λc|νz [22]. Consequently, in this case we take

GD(∆k) ≈ 0 for ∆k < ∆∗

GE (∆k) ≈ 0 for ∆k < γ∆∗

∆∗ = C2|λ2 − λc|νz + C3. (21)

As before, C3 (|C3| � C2|λ2 − λc|νz) is a constant which we choose depending on the
details of the WM and constraints on the bath spectral functions. We note that ideally one
should consider C3 to be a function of τ; however, in contrast to Equations (17) and (18),
here we consider a τ-independent ∆∗ since C3 can be considered to be a small correction
over the first term C2|λ2 − λc|νz (see Equation (20) and the text below).

In this control protocol, the bath spectral functions of the modes with large ∆k (see
Equations (18) and (21)), and therefore the thermalization times for these modes, remain
unchanged and finite. On the other hand, the modes with small ∆k do not evolve during
the non-unitary strokes. Consequently, the durations of the non-unitary strokes of a BEQE,
and in turn the total cycle period, remain the same as that of a finite-time engine without
controls. Furthermore, only the modes with large ∆k values go to their respective steady
states at the end of a non-unitary stroke in a BEQE, thereby in general giving rise to
non-thermal global steady states at B and D.

Next we demonstrate the bath engineering technique using a free fermionic model,
which is described in the following section.

4. BEQE with Transverse Ising Model as a WM

A prototypical example of a free fermionic system undergoing quantum phase transi-
tion is the one-dimensional transverse Ising model (TIM). It is an exactly solvable model
and is thus widely studied. The Hamiltonian of the transverse Ising model is

H(t) = −J ∑
n

σx
n σx

n+1 − h(t)∑
n

σz
n (22)
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where J is the nearest neighbor interaction strength; h(t) is the transverse field which is
time-dependent, playing the role of λ in the previous section; and n is the lattice site index.
Here, σi

n with i = x, y, z are the Pauli matrices at each site n. This system shows a zero
temperature quantum phase transition from a paramagnetic to ferromagnetic state at the
quantum critical point h = ±J [43–45]. We set J = 1 throughout the paper so that h = ±1
are the critical points.

After performing Jordan–Wigner fermionization and taking the Fourier transform, the
Hamiltonian Hk takes the form [44]:

Hk = −2(h− cos k)σz + 2 sin kσx. (23)

Even though unitary dynamics allows transitions only between |0〉 and |k,−k〉 = c†
k c†
−k|0〉,

the system bath interactions lead to transitions to the | ± k〉 = c†
±k|0〉 states as well, resulting

in the mixing of states [33,46]. Therefore, the Hamiltonian is rewritten in the basis |0〉, |k〉,
| − k〉, |k,−k〉 as

Hk =


−2(h− cos k) 0 0 2 sin k

0 0 0 0
0 0 0 0

2 sin k 0 0 2(h− cos k)

 (24)

with eigenenergies −εk, 0, 0, εk where εk = 2
√
(h− cos k)2 + sin k2.

We now focus on the strokes of the Otto cycle with the TIM as the WM. The density
matrix at B is given by ρB (=⊗kρB

k ), where

ρB
k =


eβεk
Zk

0 0 0
0 1

Zk
0 0

0 0 1
Zk

0

0 0 0 e−βεk
Zk

 (25)

is the thermal state for the mode k corresponding to T = TH and h = h1.
Here β = 1

kBTH
(kB is set to unity for the rest of the paper) and Zk = 2 + eβεk + e−βεk

are the partition functions for each k mode. In the unitary stroke (B→ C), the transverse
field is changed from h1 to h2 according to the protocol,

h(t) = h1 + (h2 − h1)(
t

τ1
), t ∈ [0, τ1] (26)

in a time τ1 with h1 � h2. During the non-unitary stroke (C→ D) the system again reaches
a state ρD = ⊗kρD

k , where ρD
k is the thermal state for the mode k corresponding to TC and

h = h2 at D. The transverse field h2 is then changed back to h1 using the same quench
protocol but in time τ2 in the unitary stroke D→ A.

Now let us examine how bath engineering is implemented in TIM. We first focus on
the case of h2 → 1. As discussed before, we make use of selective coupling between the
bath and the working medium so that some k modes close to the critical mode kc, having

an energy gap ∆k lower than the threshold value ∆∗ (=
(

νz(h1−h2)
τ

) νz
1+νz ), are prohibited

from interacting with the bath, thereby preventing these modes from thermalizing.

The energy gaps between the adjacent non-degenerate eigenstates of the Hamiltonian (24)
are given by

∆k = εk = 2
√
(h− cos k)2 + sin2 k. (27)
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For TIM, the critical exponents are ν = 1 and z = 1 so that ∆∗, as obtained in
Equations (17) and (18), is given by

∆∗ =

√
h1 − h2

τ2
(28)

Below we present the steps required to incorporate bath engineering into the quantum
Otto cycle.

(a) As discussed above, we consider a lower cut-off for the decaying bath spectral function,
given by GD(∆) ≈ 0 for ∆k < ∆∗ (see Equations (18) and (28)). This choice of bath
spectral function ensures that modes with ∆k < ∆∗ are not allowed to interact with
the decaying bath, so that ρD

k = ρC
k for these modes.

On the other hand, modes with ∆k > ∆∗ thermalize with the decaying bath and reach

the state ρD
k = e−βC Hk(h2)

Zk
at D.

(b) In the D→ A stroke, the Hamiltonian is changed from h2 to h1, starting from the state
ρD

k to reach ρA
k .

(c) At A, the lower cutoff for the energizing bath is chosen to be GE ≈ 0 for ∆k < γ∆∗

where γ is chosen in such a way that γ∆∗ is of the order of the lower-energy gaps for
h = h1 which allows for some modes to be bath-engineered in the energizing bath
stroke. This results in ρB

k = ρA
k for such modes.

The modes with ∆k > γ∆∗ are allowed to interact with the energizing bath, leading
the system to the steady state given by Equaion (25).

(d) From B to C, the system is quenched and all modes evolve to reach ρC.

The total heat input and output of the system are calculated using

Qin = ∑
k
Qk

in (29)

Qout = ∑
k
Qk

out (30)

and the work output and efficiency of the engine are obtained using

W = ∑
k
Wk

Wk = −
(
Qk

in +Qk
out

)
η = − W

∑kQk
in

. (31)

As discussed in Section 2, a mode k acts as an engine with non-zero work output for
Qk

in > 0, Qk
out < 0 andWk < 0.

We depict the variation of the output work and the efficiency of the engine after
implementing bath engineering in Figure 3. To obtain a complete picture, we compare
BEQE with finite-time engines without any control, finite-time engines with the presence of
shortcuts to adiabaticity in the unitary strokes, and engines operating in the adiabatic limit,
i.e., τ1 = τ2 = τ → ∞ (or infinite-time engines). As shown in [20], the STA Hamiltonian
involves long-range interactions. However, one can truncate the control Hamiltonian to
M-body terms to obtain a physically realizable approximate STA protocol. In Figure 3,
we present a comparison of the output work as a function of τ (= τ1 = τ2). As expected,
engines using STA always perform better than the finite-time engines without controls.
However, interestingly, the BEQE outperforms the engines using STA, as well as the
perfectly adiabatic engine, for a wide range of τ values, thus exhibiting the remarkable
benefits offered by the bath engineering technique.

Similarly, we also plot the efficiency η as a function of τ (see inset of Figure 3) and
compare BEQE with engines operating with different techniques. Here also we find that
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BEQE outperforms all other engines for the same range of τ values as in the work output
analysis. The expressions for |W|adia and ηadia are given in Appendix A.

The fact that BEQE outperforms other engines can be explained using Figure 4, where
theQin andQout values for a perfect adiabatic engine are plotted as a function of individual
k modes. In Figure 4, it can be seen that even when the engine works in the adiabatic limit,
there are some k modes close to the critical mode which do not function as an ’engine’
(Qin < 0). To understand this better, let us consider the adiabatic limit where ρC

k = ρB
k in

the eigenbasis. In this limit, Qin for each k mode is given by (see Appendix A for details)

Qk
in =

∆k(h1)

2

[(e−
βH ∆k(h1)

2 − e
βH ∆k(h1)

2

)
Z(h1)

−

(
e−

βC∆k(h2)
2 − e

βC∆k(h2)
2

)
Z(h2)

]
(32)

For Qk
in to be positive,

sinh( βH∆k(h1)
2 )

2 + cosh( βH∆k(h1)
2 )

<
sinh( βC∆k(h2)

2 )

2 + cosh( βC∆k(h2)
2 )

. (33)

There can be modes for which this condition is not satisfied, resulting in ’non-engine’ modes
in the adiabatic limit. BEQE helps to remove these non-engine modes from participating
in the non-unitary strokes, thereby boosting the performance of the engine compared to
the perfectly adiabatic engine. It can be noted that the presence of non-engine modes is
essential for the BEQE to outperform the adiabatic engine. For instance, when TH → ∞
(βH → 0), Equation (33) may be satisfied for all modes so that the technique of BEQE will
not provide better results compared to the adiabatic engine. However, we emphasize that
although Equation (33) and the discussion above are specific to TIM WM, BEQE can be
expected to perform better than generic finite-time free fermionic quantum critical engines,
following the arguments presented in Section 3.

100 101 102 103

τ

1600

1800

2000

2200

2400

2600

2800

|W
|

finite time engine

BEQE, ∆ ∗ =
√

(h1 − h2)/τ

STA, M= 4

|W|adia

100 101 102 103

τ

0.76

0.78

0.80

0.82

0.84

η

Figure 3. |W| is plotted as a function of τ for the critical engine using different techniques. Inset: η

is plotted as a function of τ. The parameters used are L = 1000, h1 = 10, h2 = 1, TH = 20, TC = 1,
γ = 6.5, τ1 = τ2 = τ.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

k

5

0

5

10

Qk
in

Qk
out

Figure 4. Qk
in andQk

out are plotted as functions of k modes for the critical engine in the adiabatic limit.
The parameters are L = 1000, h1 = 10, h2 = 1, TH = 20, TC = 1. The green dashed line represents the
zero of heat.

We note that BEQE depends on the appropriate choice of bath spectral function (18),
which again depends on τ through Equation (17). However, in experimental setups, it
might be difficult to change the bath-spectral function for every change of τ. Consequently,
we examine the robustness of the bath engineering protocol by plotting the work output and
efficiency vs τ for constant values of ∆∗. In this case also, the results show that the engine
performance can be enhanced by choosing appropriate constant values of ∆∗ as shown in
Figure 5, thus highlighting the effectiveness of the proposed protocol in practical scenarios.

100 101 102 103

τ

1600

1800

2000

2200

2400

2600

2800

|W
|

finite time engine
BEQE, ∆ = 2. 1

BEQE, ∆ = 0. 3

BEQE, ∆ ∗ =
√

(h1 − h2)/τ

|W|adia

100 101 102 103

τ

0.76

0.78

0.80

0.82

0.84

η

Figure 5. |W| is plotted as a function of τ using constant value of ∆∗ for all τ. Inset: η is plotted
as a function of τ. Here, γ(∆∗ = 2.1) = 9 and γ(∆∗ = 0.3) = 62. Other parameters are same as in
Figure 3.

We point out that one may be able to further simplify the control protocol by imple-
menting bath engineering in only one of the non-unitary strokes (single-stroke BEQE). In
Figure 6 it can be seen that even a single-stroke BEQE performed better than the finite-
and infinite-time engines. Therefore, this simplified protocol can be helpful as long as the
overall work output can be increased, which one can calculate following the mechanism
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discussed above, even though there might be scenarios in which this simplified protocol
may not suffice.
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BEQE

|W|adia
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0.80

0.82

0.84

η

Figure 6. |W| is plotted as a function of τ using a constant value of ∆∗ for all τ with bath engineering
only in the C→ D non-unitary stroke (single-stroke BEQE) and with bath engineering in both the
non-unitary strokes (BEQE). Inset: η is plotted as a function of τ. Here ∆∗ = 0.3, γ = 62. Other
parameters are same as in Figure 3.

Even though we have set h2 = 1 for Figures 3, 5 and 6, the improvement shown by
BEQE persists when one crosses the quantum critical point during the unitary strokes. This
is shown in Figure 7 in which we have used (see Equation (21))

∆∗ = C2(1− h2) + C3 (34)

to improve the output work and efficiency for h2 < 1.
We note that as we decrease τ, more k modes get excited and become detrimental to

the performance of the engine, thereby resulting in a diminishing work output in all cases,
in the small τ regime. This, in turn, is also reflected in the decreasing power output for
small values of τ , as shown in Figures A1 and A2 in Appendix B.
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Figure 7. |W| is plotted as a function of τ for (a) h2 = 0.5, C3 = 0.02 and (b) h2 = 0.8, C3 = 0.08, with
∆∗ given by Eq. (21). Here L = 1000, h1 = 10, TH = 20, TC = 1, τ1 = τ2 = τ, C2 = 2 (see Eq. (27)).
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Figure 7. |W| is plotted as a function of τ for (a) h2 = 0.5, C3 = 0.02 and (b) h2 = 0.8, C3 = 0.08,
with ∆∗ given by Equation (21). Here L = 1000, h1 = 10, TH = 20, TC = 1, τ1 = τ2 = τ, C2 = 2 (see
Equation (27)).
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5. Conclusions

We have proposed the bath-engineered quantum engine, in which, through the ap-
propriate choice of bath spectral functions, one can dramatically boost the performance
of quantum critical engines based on free fermionic WMs. The operation of the BEQE
inherently depends on the Kibble–Zurek mechanism; consequently, knowledge about the
universality class of the WM and the strokes of the Otto cycle suffice to implement this
method. This is in stark contrast to conventional methods such as shortcuts to adiabaticity,
in which one may need detailed knowledge about the eigenspectrum for their applica-
tion. We emphasize that the improvement in performance in the case of the BEQE is also
accompanied by the simplicity of formulating the control protocol, as compared to more
conventional techniques, such as STA, in which the unitary strokes may involve non-trivial
many-body terms in quantum systems driven through quantum critical points [19–21].
We note that the costs of applying STA and the BEQE also raise important questions. The
cost of STA has been widely studied in the literature, for example, in [47–50]. These costs
depend on the control Hamiltonian, which in the case of critical systems may involve
long-range interactions [20] and can be expected to be strongly dependent on the details of
the setup in question. In the case of the BEQE, the control approach involves introducing
lower cut-offs in the bath spectral functions (see Equations (18) and (21)). As discussed
in [51,52], one can engineer these cut-offs by introducing filters in the form of harmonic
oscillators with appropriate frequencies. As for STA, we expect the cost of the BEQE to
depend on the details of the implementation. However, a detailed discussion regarding
the comparison of costs of BEQE and STA goes beyond the scope of the current paper.
Furthermore, interestingly, in spite of the simplicity of the proposed control protocol, our
analysis with TIM WM shows that the BEQE can outperform quantum engines assisted
through STA, and even infinite-time quantum engines, thus highlighting the significant
benefits offered by this control method. We also exhibit the robustness of the BEQE control
protocol by considering constant values of ∆∗.

The control protocol proposed here can be expected to be most relevant in quantum
critical engines, owing to the high probability of excitations in systems driven through
quantum phase transitions, and the presence of many-body interaction terms in the cor-
responding STA Hamiltonians. However, one can expect the BEQE, which depends on
introducing lower cut-offs into bath spectral functions, to be applicable even away from
criticality, for multi-level WMs involving non-equispaced energy levels. On the other hand,
as one can infer from Equations (18) and (21), this protocol becomes invalid in the presence
of equispaced energy levels.

Several existing setups can be suitable for the experimental realization of the BEQE,
such as trapped ions [53–57], optical lattices [58], superconducting qubits, nitrogen vacancy
centers in diamond [59], NMR qubit systems [60], etc. For example, quantum simulators
based on trapped ions have already been used to study the Kibble–Zurek mechanism in
momentum space [40].

Finally, we note that although this technique appears to be highly successful in the
case of free fermionic WMs, open questions remain in the case of its application with
non-integrable WMs, where such non-interacting k modes may not exist. For example, one
can choose the WM to be the antiferromagnetic transverse Ising model with a longitudinal
field (LTIM), described by the Hamiltonian

H = J ∑
i

σz
i σz

i+1 − Bx(t)∑
i

σx
i − Bz ∑

i
σz

i . (35)

Here J is the strength of antiferromagnetic interaction, Bz is a longitudinal field, and Bx
denotes a time-dependent transverse field. The competition between J and Bz leads to a
quantum phase transition from the antiferromagnetic state to the paramagnetic state at a
critical value of Bc

x for a fixed value of Bz [61,62]. One can model an Otto cycle using LTIM
WM and implement the BEQE as described above (see Appendix C). However, preliminary
studies suggest that, unlike the case of the integrable model, there is no improvement in
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the output of the BEQE in this case (see Figure A3). This can be attributed to the absence
of non-interacting momentum modes, as obtained for free fermionic systems. However,
additional rigorous studies are needed to acquire a deeper understanding of the possibility
of the application of BEQE to quantum engines based on more generic non-integrable WMs.
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Appendix A. Adiabatic Evolution of TIM

The energies at the end of stroke i are calculated using the expresssion

Ei = ∑
k

Tr[Hi
kρi

k]. (A1)

where i = A, B, C, D.

(i) At B: The density matrix is given by Equation (25) and the Hamiltonian in the diagonal
basis takes the form

Hk(h1) =


−εk(h1) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 εk(h1)

. (A2)

The energy EB can be calculated as follows

Tr[Hk(h1)ρ
B
k ] =

εk(h1)

Z(h1)

(
e−βHεk(h1) − eβHεk(h1)

)
(A3)

or

EB = ∑
k

Tr[Hk(h1)ρ
B
k ] (A4)

= ∑
k

εk(h1)

Z(h1)

(
e−βHεk(h1) − eβHεk(h1)

)
(A5)
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(ii) At C: If the evolution is purely adiabatic, the populations in the eigenenergy levels do
not change, resulting in

ρC,adia
k = ρB

k =


eβH εk(h1)

Z(h1)
0 0 0

0 1
Z(h1)

0 0
0 0 1

Z(h1)
0

0 0 0 e−βH εk(h1)

Z(h2)

 (A6)

and

Hk(h2) =


−εk(h2) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 εk(h2)

 (A7)

with εk(h2) = 2
√
(h2 − cos k)2 + sin k2.

Therefore,

Eadia
C = ∑

k

εk(h2)

Z(h1)

(
e−βHεk(h1) − eβHεk(h1)

)
(A8)

(iii) At D: This energy can be calculated similarly to that at B so that

ED = ∑
k

εk(h2)

Z(h2)

(
e−βCεk(h2) − eβCεk(h2)

)
(A9)

(iv) At A: Following the same procedure used to calculate the energy Eadia
C in order to find

the energy Eadia
A , we obtain

Eadia
A = ∑

k

εk(h1)

Z(h2)

(
e−βCεk(h2) − eβCεk(h2)

)
(A10)

The input heat energy absorbed by the WM in the non-unitary stroke A→ B can be
easily calculated, and is given by

Qadia
in = EB − Eadia

A

= ∑
k

εk(h1){

(
e−βHεk(h1) − eβHεk(h1)

)
Z(h1)

−

(
e−βCεk(h2) − eβCεk(h2)

)
Z(h2)

} (A11)

Similarly,

Qadia
out = ED − Eadia

C

= ∑
k

εk(h2){

(
e−βCεk(h2) − eβCεk(h2)

)
Z(h2)

−

(
e−βHεk(h1) − eβHεk(h1)

)
Z(h1)

}. (A12)

We can now calculate the output work of the engine in the adiabatic limit, which is
given by

|W|adia = ∑
k
(εk(h1)− εk(h2)){

(
e−βHεk(h1) − eβHεk(h1)

)
Z(h1)

−

(
e−βCεk(h2) − eβCεk(h2)

)
Z(h2)

} (A13)
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resulting in

ηadia = 1−
∑k εk(h2){

(
e−βH εk(h1)−eβH εk(h1)

)
Z(h1)

−
(

e−βCεk(h2)−eβCεk(h2)
)

Z(h2)
}

∑k εk(h1){
(

e−βH εk(h1)−eβH εk(h1)
)

Z(h1)
−
(

e−βCεk(h2)−eβCεk(h2)
)

Z(h2)
}

. (A14)

Appendix B. Power Output for BEQE

The power output for an engine is defined as

P =
−W
τtotal

(A15)

where τtotal = τ1 + τ2 + τH + τC, with τH(τC) being the time duration of the A→ B (C→
D) non-unitary stroke. As shown in Figures A1 and A2, the BEQE outperforms finite-time
engines without controls and with STA for a wide range of τ values.
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Figure A1. |P| is plotted as a function of τ using different values of ∆∗. All parameters are same as
in Fig. 5. We have set τH + τC = 4.
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Figure A2. |P| is plotted as a function of τ for h2 < 1. Here, L = 1000, h1 = 10, TH = 20, TC = 1,
τ1 = τ2, ∆∗(h2 = 0.5) = 1.02, ∆∗(h2 = 0.8) = 0.48. We have set τH + τC = 4.
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Appendix C. BEQE Using LTIM WM

With LTIM as the WM of the quantum Otto cycle, the transverse field Bx is changed
from an h1 to an h2 value during the unitary strokes. Following the technique presented
here, bath engineering can be implemented by evaluating the corresponding ∆∗ using
the Kibble–Zurek mechanism and then choosing an appropriate cut-off for bath spectral
functions such that energy gaps which are less than ∆∗ do not participate in the dynamics.
LTIM falls under the same universality class as that of TIM.

Let us discuss the implementation of single-stroke bath engineering in LTIM. When
performing bath engineering, some levels will not be allowed to thermalize, depending
upon the energy gap. There are 2L energy levels for a system size L and thus 2L − 1 energy

gaps. Those energy levels having gaps less than the threshold value of ∆∗ =
(

νz(h1−h2)
τ

) νz
1+νz

will not thermalize. On the other hand, those with energy gaps greater than
(

νz(h1−h2)
τ

) νz
1+νz

will thermalize according to the equation

pi = pi−1e−(Ei−Ei−1)/T (A16)

where pi and pi−1 are the populations in the ith and (i− 1)th energy levels.

• In the C→ D non-unitary stroke, the Hamiltonian is with a transverse field h2. The
energy gaps are compared with the ∆∗ value. Those energy levels having gaps greater
than ∆∗ are allowed to interact with the decaying bath in the C→ D stroke and thus
thermalize according to

pD
i+1

pD
i

= e−(Ei+1−Ei)/Tc (A17)

where Ei+1 − Ei > ∆∗.
In order to apply bath engineering in the case of gaps that are less than ∆∗, i.e, when
Ei+1 − Ei < ∆∗, we have two possibilities.

(i) If Ei − Ei−1 > ∆∗, the populations are determined by the condition

pD
i + pD

i−1 = pC
i + pC

i−1. (A18)

(ii) If Ei − Ei−1 < ∆∗, the ith level does not interact with any other level, leading to
pD

i = pC
i .

Solving these system of equations, along with the condition that ∑i pD
i = 1, we obtain

the populations of all the other energy levels at D. Thus, we have ρ′D, which is the
state reached after carrying out bath engineering.

• From D to A, h2 is changed back to h1 from ρ′D using the evolution equation

dρ

dt
= −i[H, ρ] (A19)

which gives the new density matrix at A, ρ′A.
• At A, the system with the Hamiltonian H(h1) is connected to the energizing bath. All

energy levels interact with each other, resulting in the steady state at B.
• B→ C stroke, h1 changed to h2 by evolving the system from ρB to obtain ρC.

Now, for the bath-engineered engine,

Q′in = EB − E′A (A20)

Q′out = E′D − EC (A21)

W ′ = −(Q′in +Q′out) (A22)

η′ = −W ′/Q′in (A23)
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Numerical analysis suggests that bath engineering failed to improve the performance of
the engine in this case (see Figure A3). We also investigated the implementation of bath
engineering in both energizing and decaying strokes, and again failed to improve the
performance of the engine.
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Figure A3. η is plotted as a function of τ for the BEQE using LTIM as WM compared with finite
time engine. Inset: |W| as a function of τ. The parameters used are L = 6, h1 = 10, h2 = 0.75, TH =

500, TC = 0.1, τ1 = τ2 = τ.
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