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Abstract

DNA methylation plays a crucial role in higher organisms. Coupling bisulfite treatment with next generation

sequencing enables the interrogation of 5-methylcytosine sites in the genome. However, bisulfite conversion

introduces mismatches between the reads and the reference genome, which makes mapping of Illumina and

SOLiD reads slow and inaccurate. BatMeth is an algorithm that integrates novel Mismatch Counting, List Filtering,

Mismatch Stage Filtering and Fast Mapping onto Two Indexes components to improve unique mapping rate, speed

and precision. Experimental results show that BatMeth is faster and more accurate than existing tools. BatMeth is

freely available at http://code.google.com/p/batmeth/.

Background
DNA methylation modifies the nucleotide cytosine by the

addition of methyl groups to its C5 carbon residue by

DNA methyltransferases [1]. This modification can be

inherited through cell division and it plays an important

role in many biological processes, such as heterochromatin

and transcriptional silencing [2,3], imprinting genes [4],

inactivating the × chromosome [5] and silencing of repeti-

tive DNA components in healthy and diseased (including

cancerous) cells [6,7]. Methylation analysis can also be

used to diagnose pre-natal Down’s syndrome [8]. Thus,

the genome-wide methylation profiles of different tissues

are important to understand the complex nature and

effects of DNA methylation.

In the past decade, quantum leaps have been made in

the development of sequencing technologies by vendors

such as Illumina-Solexa and Applied BioSystems (AB)-

SOLiD. These can generate millions of short reads at a

lower cost compared to traditional Sanger methods

[9-13]. Bisulfite (BS) treatment converts unmethylated

cytosines (Cs) to uracils (which are then amplified by

PCR as thymine (T)) without affecting the other nucleo-

tide bases and methylated cytosines [14]. Next-generation

sequencing coupled with bisulfite treatment enables us to

produce a methylome of a genome at single base resolu-

tion and low cost.

One important step in calling methylation of a genome

is to map bisulfite reads. Mapping of bisulfite reads is dif-

ferent from that of ChIP-Seq and RNA-Seq data since

the non-methylated Cs are converted to Ts by bisulfite

treatment and subsequent PCR. The bisulfite reads are

difficult to map to the reference genome due to the high

number of mismatches between the converted Ts and

the original Cs. For mapping Illumina bisulfite reads, the

pioneering published methods are BSMAP [15] and

RMAP [16]. BSMAP aligns a bisulfite read to the refer-

ence genome by first enumerating all C-to-T combina-

tions within a user-defined length k seed of the reads;

then, through hashing, BSMAP aligns the seeds onto the

genome and putative alignments are extended and vali-

dated with the original reads. After this step, BSMAP can

output an unambiguous hit for each read, if available.

BRAT [17] uses a similar strategy as BSMAP. It converts

the reference genome into a TA reference and a CG

reference (each converted reference uses one bit per

base). Using a 36-mer hash table, BRAT aligns the first

36 bases of every read and its 1-neighbors on the two

converted references to identify possible alignments.

RMAP uses layered seeds as a bit-mask to select a subset

of the bases in the reads and constructs a hash table to

index all the reads. However, these seed-hash-based

approaches are slow.
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Subsequently, several methods were proposed to map

bisulfite reads onto the converted genomes. MethylCoder

[18] surfaced as a bisulfite read mapper that uses GSNAP

[19] to do a primary mapping of in silico converted reads

(that is, all Cs in the reads are converted to Ts) onto a

converted reference genome (that is, all Cs in the genome

are converted to Ts). Those reads that fail to map onto the

converted genome will be remapped again in their original

forms onto the original reference. BS-Seeker [20] and

Bismark [21] use a similar conversion strategy as BSMAP

except that they align the reads with Bowtie [22] and

unique hits are found by a seed-then-extend methodology.

(Note that every tool has its own uniqueness criterion. A

tool will denote a read to have a unique hit if it finds

exactly one occurrence of the read in the reference gen-

ome.) Both methods trade accuracy for efficiency.

AB-SOLiD color reads are different from Illumina reads

since they encode every pair of bases with four different

colors. (For more details on this sequencing technology

and how it differs from sequencing by synthesis, see

[23-26].) Unlike bisulfite mapping of Illumina reads onto

converted genomes, mapping bisulfite color reads onto

converted genomes produces many mismatches when the

regions are highly methylated [27]. This also causes a dra-

matic decrease in the unique mapping rate and unbiased

measurements of hypomethylation sites. In addition, a sin-

gle color error in a read will lead to incorrect conversions

throughout the rest of the read (Figure 1a,b). Although in

silico conversion of Cs to Ts guarantees unbiased align-

ments in base space, this is not preferred for color reads.

SOCS-B [28] and B-SOLANA [29] were developed to

map bisulfite color reads. SOCS-B splits a color read into

four parts and tries to get hits for any combination of

two parts via an iterative Rabin-Karp approach [30].

SOCS-B uses a dynamic programming approach to con-

vert an aligned read to the aligned portion of the refer-

ence genome. The conversion starts with all possible four

nucleotides as the pseudo-terminal base (rather than just

the terminal base from the read). Subsequently, the sub-

strings of the four translations are used to generate par-

tial hashing seeds that are then mapped onto the hashed

reference genome. However, the running time of SOCS-

B is long and the unique mapping rate is too low to be

practical. B-SOLANA improves speed and unique map-

ping rate by aligning against both fully converted and

non-CpG converted references simultaneously with

Bowtie. The final hits are determined by checking their

number of mismatches.

A recent review article [27] reported that Bismark and

BS-Seeker are the most recent published methods for

mapping bisulfite base reads whereas B-SOLANA is the

most recent published method for mapping bisulfite color

reads. This review also highlighted the main challenges to

develop methods that can map reads unbiasedly and to

improve unique mapping rates for mapping color reads.

BatMeth (Basic Alignment Tool for Methylation) was

developed by us to address the issues of efficiency and

accuracy on mapping bisulfite reads from Illumina and

bisulfite color reads from SOLiD. Unlike existing algo-

rithms, BatMeth does not map the bisulfite reads in the

initial stage. Instead, BatMeth counts the number of hits

of the bisulfite reads to remove spurious orientations of a

read. This idea has significantly sped up the mapping pro-

cess and has also reduced the number of false positives.

When dealing with color reads, BatMeth reduced bias on

hypomethylation measurements with high initial mismatch

scanning. BatMeth also employed a dynamic programming

conversion step for the color reads to account for bisulfite

mismatch accurately and an incremental processing step

to produce higher unique mapping rates and speed (refer

to the Materials and methods section for details).

We have compared the performance of BatMeth with

recent stable versions of BSMAP (2.4.2), BS-Seeker,

Bismark (0.5.4), SOCS-B (2.1.1) and B-SOLANA (1.0)

using both simulated and real data sets (BS-Seeker, Bis-

mark and B-SOLANA used Bowtie 0.12.7 in our experi-

ments). With simulated Illumina and SOLiD reads,

BatMeth (default mode) recovered the highest number of

hits, has the lowest noise rate and is the fastest among the

compared programs. BatMeth is also able to produce bet-

ter unbiased results than the other programs by compar-

ing the detected methylation levels in different genomic

contexts over simulated data sets (Illumina and SOLiD

reads) of different methylation levels. With a paired-end

library, we show the specificity of our Illumina results by

counting the pairs of concordant paired reads that fall

within the expected insert size of the library. With a direc-

tional library, we indicate the specificity of our results with

direction-specific information. In summary, BatMeth is an

improved bisulfite mapper in terms of speed, recovery rate

and accuracy, and, in particular, has addressed the main

challenges of mapping color reads identified in [27].

Results
Evaluated programs and performance measures

In order to evaluate the performance of our pipeline, we

have tested the following programs: BSMAP, BS-Seeker,

and Bismark for base-space mapping; and SOCS-B and

B-SOLANA for color-space mapping. BS-Seeker and Bis-

mark only output unique hits for each read. BSMAP,

SOCS-B and B-SOLANA will output at most one hit per

read, with a flag to indicate if a hit is unique. Some reads

can map to multiple genomic locations and since a read

can only come from one origin, retaining such non-unique

mappings will affect the accuracy of downstream analysis

such as unbiased methylation site calls. To avoid the
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Figure 1 Interpreting mismatches between reads in base- and color-space. (a,b) Base call error simulation in Illumina and SOLiD reads

reflecting one mismatch with respect to the reference from which they are simulated in their respective base- and color-space. (b) A naïve

conversion of color read to base space, for the purpose of mapping against the base space reference, is not recommended as a single color

base error will introduce cascading mismatches in base space. (c) A bisulfite conversion in base space will introduce two adjacent mismatches in

its equivalent representation in color space.
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problem of wrong methylation calls, all six programs were

thus compared with their unique mapping rates.

All our experiments were run on a server equipped with

an Intel Xeon E7450 @ 2.40GHz and 128 GB of RAM.

We allowed the same mismatch number and CPU threads

on all the compared programs in our experiments. Other

parameters were kept at default (see Section 1 of Addi-

tional file 1 for the choice of parameters used).

We have not included RMAP in our comparisons as it

only performs biased mapping in a non-CpG context.

MethylCoder was also not included because a newer

variant of it, namely B-SOLANA, has been released

(MethylCoder’s release notes mention that it is now

deprecated due to the release of B-SOLANA). BRAT

was considered impractical as it only considers one base

error in the first 36 bp of a read and therefore was not

included in our experiments.

Below, we define ‘recovery’ to be the portion of the

unique hits recovered by the programs. We also define

‘accuracy’ to be the portion of the recovered hits that are

correct. All recorded timings are wall clock times. A ‘hit’ is

a genomic location to which a read is aligned. Lastly, due

to sequencing errors and bisulfite mismatches, we allow k

(>0) mismatches when mapping a bisulfite read onto a

reference. A genomic location is deemed to be unique for

a read if it is the only location with the lowest number of

mismatches with respect to the read.

Evaluation on the simulated Illumina data

We generated 1 million reads, each 75 bp long, which

were randomly simulated from the human genome hg19

using the simulator found in RMAP-bs [31]. The data set

was built by allowing a maximum of three mismatches per

read. Each C in the simulated read, regardless of its con-

text, was bisulfite converted at a uniform rate of 97%. We

benchmarked BatMeth and the other methods, BSMAP,

BS-Seeker and Bismark, on this data set (see Section 1.1 of

Additional file 1 for parameters used). Since the original

coordinates in the simulated reads are known, we can

evaluate the accuracy of all the programs by comparing

their outputs with the original coordinates. We mapped

the reads onto the reference allowing at most three mis-

matches. BatMeth recovered the most number of true

positives and the lowest number of false positives and is

the fastest program, as shown in Figure 2a.

We further illustrate that BatMeth can achieve better

unbiased methylation calls than the best published

method, Bismark, by replicating the experimental

settings of Figure 2b in [27]. We used the same simula-

tor, Sherman [32], the same number of reads (1 million),

the same length of read (75 bases) and the same refer-

ence genome (NCBI37) for this comparison. We used

Sherman to simulate 11 sets of data, from 0% to 100%

of bisulfite conversion in increments of 10%. Sherman

emulates bisulfite conversion by converting all Cs

regardless of their genomic context with a uniform dis-

tribution. No non-bisulfite mismatches were allowed in

the reads, during the scanning phase, for both BatMeth

and Bismark. The results produced by Bismark show

exactly the same trends as the graph that was presented

in [27]. Table 1 presents the performance of BatMeth

and Bismark in terms of mapping efficiency, detected

methylation levels in different genomic contexts from

various in silico methylation rates in different contexts

(CG, CHG and CHH genomic contexts, where H stands

for base A/C/T only). BatMeth has an average of

approximately 1.1% better mapping efficiency and about

twice the accuracy as Bismark in estimating methylation

levels of Cs from different genomic contexts with differ-

ent initial methylation levels.

Evaluation on the real illumina data

We downloaded about 850 million reads sequenced by

Illumina Genome Analyzer II (Gene Expression Omni-

bus (GEO) accession number [GSE19418]) [33] on H9

embryonic stem cells. Since BSMAP is not efficient

enough to handle the full data set, 2 million paired-end

reads were randomly extracted from one of the runs in

[GSE19418] for comparative analysis with BSMAP.

Reads were observed to have a lot of Ns near the 3’ end

and were trimmed down to 51 bp before being mapped

onto hg19 with at most two mismatches per read (see

Section 1.2 of Additional file 1 for parameters used).

For this sample data set, BatMeth mapped 1,518,591

(75.93%) reads uniquely compared to 1,511,385 (75.57%)

by BSMAP, 1,474,880 (73.74%) by BS-Seeker and

1,498,451 (74.92%) by Bismark. Out of all the hits

reported by BatMeth, 1,505,190, 1,464,417 and 1,481,251

mapped loci were also reported by BSMAP, BS-Seeker

and Bismark, respectively. BatMeth found 13,401, 54,174

and 37,340 extra hits when compared to BSMAP, BS-

Seeker and Bismark, respectively. BSMAP, BS-Seeker and

Bismark also found 6,195, 10,463 and 17,220 extra hits,

respectively, when compared to our result set.

Next, we mapped the two reads of every paired-end read

independently to investigate the mapping accuracy of the

compared programs. Since the insert size of this set of

paired-end reads is approximately 300 bp, a pair of partner

reads can be expected to be mapped correctly with a high

probability if they are mapped concordantly within a nom-

inal distance of 1,000 bp. The high number of such pair-

able reads (Figure 2b) indicates that BatMeth is accurate.

Figure 2b also shows that BatMeth is fast.

We have also downloaded approximately 28.5 million

reads sequenced by Illumina Genome Analyzer II on the

human H1 embryonic cell line (GEO accession numbers

[SRR019048], [SRR019501] and [SRR019597]) [20]. We

only compared BatMeth with BS-Seeker since BSMAP
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Figure 2 Benchmarking of programs on various simulated and real data sets. (a) Benchmark results of BatMeth and other methods on the

simulated reads: A, BatMeth; B, BSMAP; C, BS-Seeker; D, Bismark. The timings do not include index/table building time for BatMeth, BS-Seeker,

and Bismark. These three programs only involve a one-time index-building procedure but BSMAP rebuilds its seed-table upon every start of a

mapping procedure. (b) Insert lengths of uniquely mapped paired reads and the running times for the compared programs. (c) Benchmark

results on simulated SOLiD reads. Values above the bars are the percentage of false positives in the result sets. The numbers inside the bars are

the number of hits returned by the respective mappers. The graph on the right shows the running time. SOCS-B took approximately 16,500

seconds and is not included in this figure. (d) bisulfite and non-bisulfite induced (SNP) adjacent color mismatches.
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and Bismark are too slow (see Section 1.3 of Additional

file 1 on parameters used). Furthermore, Krueger and

Andrews [21] mention that Bismark is both slower and

less likely to report unique hits than BS-Seeker. Table 2

shows the unique mapping rates and running times of Bat-

Meth and BS-Seeker. In summary, BatMeth achieved the

best mappability rate, lowest estimated false positive rate

and was the fastest on real Illumina data.

Evaluation on the simulated SOLiD data

We generated 10,000 simulated reads, each having 51

color bases, that were randomly extracted from chromo-

some 1 of UCSC hg19 using the simulator from RMAP-bs

[31]. RMAP-bs was used to convert the Cs in the reads,

regardless of its context, to Ts at a uniform rate of 97% to

simulate bisulfite conversions. In addition, for each read,

zero to two non-bisulfite base mismatches were intro-

duced with equal chance before the read was converted to

color space. Lastly, sequencing errors were added at a uni-

form rate of 5% to the reads.

The simulated color reads were mapped using BatMeth,

SOCS-B and B-SOLANA allowing resultant unique hits to

have at most three mismatches. Precisely, BatMeth and

SOCS-B allowed at most three non-bisulfite mismatches

while B-SOLANA did not discount bisulfite mismatches

(see Section 1.4 of Additional file 1 for parameters used).

Figure 2c summarizes the results of the three programs

together with the verification against the oracle set.

BatMeth gave many more correct hits and fewer wrong

hits than both SOCS-B and B-SOLANA. BatMeth can be

made to offer a flexible tradeoff between unique mapping

rates and speed. In the ‘default’ mode, BatMeth was found

to be more sensitive (approximately 15%) and faster

(approximately 10%) than the most recent published

B-SOLANA. In the ‘sensitive’ mode, BatMeth was found

to be more sensitive (approximately 29%) and slower

(approximately two times) than B-SOLANA. In addition

to producing approximately 15% to 29% more correct

hits, BatMeth had a precision of 94.5% while that of

B-SOLANA and SOCS-B was 92.1% and 91.5%, respec-

tively. These statistics show that BatMeth is an accurate

mapper for color reads.

To illustrate that BatMeth can achieve better unbiased

methylation calls for color reads than the best published

method, B-SOLANA, we replicated the experimental set-

tings of Figure 2c in [27] to compare the two programs; we

used the same simulator (Sherman), the same number of

reads (1 million), the same length of read (75 bp) and the

same reference genome (NCBI37) for this comparison. We

used Sherman to simulate 11 sets of data, from 0% to 100%

of bisulfite conversion at increments of 10%. Sherman emu-

lates bisulfite conversion by converting all Cs regardless of

their genomic context with a uniform distribution. Default

parameters were used for BatMeth and B-SOLANA. The

graph produced by us for B-SOLANA shows the same

trends as that presented in [27]. We further broke down

Table 1 Comparison of mapping efficiencies and estimation of methylation levels in various genomic contexts

BatMeth (%) Bismark (%)

Mapping efficiency CG CHG CHH Mapping efficiency CG CHG CHH Oracle BS rate (%)

94.2 0.0 0.0 0.0 91.1 0.0 0.0 0.0 0.0

94.0 10.0 10.0 10.0 92.1 10.0 10.0 10.0 10.0

93.9 20.0 20.0 20.0 92.4 20.0 20.1 20.0 20.0

93.8 30.0 30.0 30.0 92.5 29.9 30.0 30.0 30.0

93.6 39.9 40.0 40.0 92.5 40.0 40.0 40.0 40.0

93.5 50.0 50.0 50.0 92.6 50.0 50.0 50.0 50.0

93.4 60.0 60.0 60.0 92.6 60.0 60.1 60.0 60.0

93.2 70.0 70.0 70.0 92.7 70.0 70.0 70.0 70.0

93.0 79.9 80.0 80.0 92.6 79.9 80.0 80.0 80.0

92.8 90.0 90.0 90.0 92.6 90.1 90.0 90.0 90.0

92.6 100 100.0 100.0 92.6 100.0 100.0 100.0 100.0

Methylation levels in various genomic contexts, such as CG, CHG and CHH (H is A/C/T only), are called by BatMeth and Bismark and validated against the oracle

bisulfite rate used in Sherman.

Table 2 Comparison of speed and unique mapping rates on three lanes of human bisulfite data

Number of reads Unique mapping (%) a Running time (minutes) a

Read file BatMeth BS-Seeker BatMeth BS-Seeker

SRR019048 15,331,851 37.4 37.2 30 87

SRR019501 7,217,883 44.7 44.5 16 41

SRR019597 5,943,586 58.2 58.1 13 37

aThreshold of two mismatches used.
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the graphs as well as those in Figures 3a (BatMeth) and 3b

(B-SOLANA), which show rates of methylation calling for

various in silico methylation rates (0% to 100% at divisions

of 10% of bisulfite conversion) in different contexts (CG,

CHG and CHH genomic contexts, where H stands for base

A/C/T only) of the genomes, into separate series of data.

Subsequently, we did a direct comparison between Bat-

Meth and B-SOLANA to show that BatMeth is better than

B-SOLANA in all contexts of methylation calling, namely,

CG (Figure 3c), CHG (Figure 3d), CHH (Figure 3e) and

non-unique mapping rates (Figure 3f). To be exact,

BatMeth was approximately 0.7%, 0.7% and 2.2% more

accurate than B-SOLANA in the methylation callings of

the CG, CHG and CHH sites, respectively, and had an aver-

age of approximately 9.2% more non-unique mappings

than B-SOLANA on the tested data sets.

Evaluation on the real SOLiD data

We downloaded about 495 million reads sequenced by

AB SOLiD system 3.0 (Sequence Read Archive (SRA)

accession number [SRX062398]) [13] on colorectal can-

cer. Since SOCS-B is not efficient enough to handle the

full data set, 100,000 reads were randomly extracted from

[SRR204026] to evaluate BatMeth against SOCS-B and

B-SOLANA. The mismatch threshold used was 3 (see

Section 1.5 of Additional file 1 for parameters used).

Table 3 compares the unique mapping rates and running

times between BatMeth, SOCS-B and B-SOLANA. Note

that BatMeth always has a higher unique mapping rate

(from 39.6% to 52.1%; from fast to sensitive mode) than the

next best method, B-SOLANA with 37.4%. At the same

time, BatMeth maintained low rates of noise (from 0.47%

to 1.75%; from fast to sensitive mode). Hence, it is still

more specific than the other programs. In terms of running

time, BatMeth fast mode is approximately 1.7 times faster

and BatMeth sensitive mode is approximately 4 times

slower than B-SOLANA. It was also observed that 3.26% of

the resultant hits from B-SOLANA are duplicated; some of

the reads were given two hit locations as B-SOLANA

traded speed for checking the uniqueness of hits.

Based on the experiments performed, BatMeth’s memory

usage peaked at 9.3 GB (approximately 17 seconds of load

time) for Illumina reads and 18.8 GB (approximately 35

seconds of load time) for color reads while BSMAP and BS-

Seeker peaked at 9+ GB and Bismark peaked at 12 GB.

SOCS-B peaked at 7+ GB and B-SOLANA peaked at

12 GB. Parameters used for all experiments are recorded in

Additional file 1. In summary, the experiments in this

section show that BatMeth is the fastest among all

the compared programs. Furthermore, BatMeth also has

the highest recovery rate of unique hits (exclusive of false

positives) and the best accuracy among all the compared

programs.

Discussion
DNA methylation is an important biological process.

Mapping the bisulfite reads from next-generation

sequencing has enabled us to study DNA methylation at

single-base resolution. This paper aims to develop effi-

cient and accurate methods to map bisulfite reads.

This study employed three methods to evaluate the per-

formance of bisulfite read mapping methods. The first

method measured the ratio of correct and wrong unique

unambiguous mappings. This method only applies to

simulated data when the actual locations of the reads are

known. For real data, the number of unambiguous map-

pings alone may not be a good criterion to evaluate accu-

racy (we can map more reads at a higher mismatch

number, which results in lower specificity). The second

method evaluated the accuracy using the number of reads

that were mapped in consistent pairs, and can only be

employed when paired-end read information is available.

The third method used the directionality of the mapped

reads from SOLiD sequencing. For the SOLiD reads, we

mapped reads unbiasedly onto both forward and reverse

directions of our reference genome. From the unambigu-

ous mappings, we estimated the error rate of our unique

mappings from the proportion of reverse direction unique

mappings in the result sets. All these measures were used

on different sets of simulated and real data and they sug-

gest that BatMeth produces high quality mapping results.

For future work, our team will be working on more

time-efficient data structures to better streamline our

algorithm.

Conclusions
We report a novel, efficient and accurate general-purpose

bisulfite sequence mapping program. BatMeth can be

deployed for the analysis of genome-wide bisulfite

sequencing using either base reads or color reads. It

allows asymmetric bisulfite conversion to be detected by

labeling the corresponding reference genome with the

hit. The components discussed in the Materials and

methods section, such as List Filtering, Mismatch Stage

Filtering, Fast Mapping onto Two Indexes, Handling

Hypo- and Hyper-Methylation Sites and other heuristics

have offered increased speed and mappability of reads. In

addition, BatMeth reduces biased detection of multiple

CpG heterogeneous and CpH methylation across the

whole reference by mapping onto both fully converted

and non-CpG references and then labeling the reference

to which the hits are from to aid biologists to discrimi-

nate each hit easily. Users can also choose to bias against

either reference with varying mismatch scans. In asses-

sing the uniqueness of a hit for bisulfite color reads,

BatMeth considers both strands of the DNA simulta-

neously while B-SOLANA considers both DNA strands
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Figure 3 A total of 106, 75 bp long reads were simulated from human (NCBI37) genomes. Eleven data sets with different rates of bisulfite

conversion, 0% to 100% at increments of 10% (context is indicated), were created and aligned to the NCBI37 genome. (a-e) The x-axis

represents the detected methylation conversion percentage. The y-axis represents the simulated methylation conversion percentage. (f) The x-

axis represents the mapping efficiency of the programs. The y-axis represents the simulated methylation conversion percentage of the data set

that the program is mapping. (a,b) The mapping statistics for various genomic contexts and mapping efficiency with data sets at different rates

of bisulfite conversion for BatMeth and B-SOLANA, respectively. (c-e) Comparison of the methylated levels detected by BatMeth and B-SOLANA

in the context of genomic CG, CHG and CHH, respectively. (f) Comparison of mapping efficiencies of BatMeth and B-SOLANA across data sets

with the described various methylation levels.
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separately. Hence, BatMeth has a stronger uniqueness

criterion for hits as B-SOLANA may produce two hits

for a read, one hit for each separate DNA strand. Lastly,

BatMeth uses an optimal dynamic programming algo-

rithm to convert the color read to base space to check for

non-bisulfite mismatches.

Materials and methods
Methods for base reads

Problem definition and overview of the method

The problem of mapping bisulfite reads is defined as fol-

lows. A bisulfite treatment mismatch is defined as a mis-

match where the aligned position is a T in the read and

the corresponding position in the reference genome is a

C. Given a set of bisulfite reads, our task is to map each

bisulfite read onto the reference genome location, which

minimizes the number of non-bisulfite mismatches.

The algorithm of BatMeth is as follows. BatMeth starts

off by preparing the Converted Genome and does a one-

time indexing on it. Next, Low Complexity BS reads will

be discarded; otherwise, we will do a Counting Hits of BS

Read on them and discard the hits according to List

Filtering. After this, each of the retained hits will be

checked for bisulfite mismatches by ignoring C to T con-

versions caused by the bisulfite treatment. BatMeth

reports the unique hit with the lowest non-bisulfite mis-

matches for each read. Figure 4a outlines the algorithm

and we discuss the novel components that aid BatMeth

to gain speed and accuracy below.

Converted Genome

Similar to BS-Seeker and Bismark, we prepare a con-

verted reference genome with all Cs converted to Ts.

Since the plus and minus strands are not complementary

after Cs are converted to Ts, we have to create two con-

verted references where one is for the plus strand and

the other is for the minus strand. Burrows-Wheeler

transform (BWT) indexing of the two new converted

references is done before the mapping.

Low Complexity BS reads

BatMeth does not map bisulfite reads with low complexity.

The complexity of the raw read is computed as Shannon’s

entropy, and raw bisulfite reads with a differential entropy

H < 0.25 are discarded. In BatMeth, differential entropy is

estimated from the discrete entropy of the histogram of

A/C/G/T in a read. Depending on the design of the wet-

lab experiment, the amount of reads being discarded by

this entropy cutoff varies. In our experiments on Illumina

reads, approximately 0.5% of the reads were discarded.

Counting Hits of BS read and List Filtering

For those reads that pass the complexity filter, we first

convert all Cs to Ts and map them against the converted

genomes. In contrast to existing methods, BatMeth does

not obtain the best or second best hits (for example, BS-

Seeker and Bismark) from each possible orientation of a

converted read and reports the lowest-mismatch locus to

be the resultant hit for a read. In the case of hyper-methy-

lation, the correct hit may not be the best or second best

hit as it might contain more mismatches. Thus, this

approach will miss some correct solutions. BatMeth also

does not enumerate all hits like BSMAP, which is slow.

Instead of mapping the reads directly, BatMeth counts the

number of hits where the read or its reverse complement

can occur on the two converted genomes using an in-

house short read mapper, BatMis Aligner [34]. Table 4

shows the four ways of aligning the converted reads onto

the converted genomes, which yield four counts of hits.

Out of the four counts on the four lists, only one list

contains the true hit. List filtering aims to filter away those

spurious lists of hits (represented by the counts) that are

unlikely to contain the true hit. Note that a read can

appear to be repetitive on one strand but unique on the

opposite strand of the DNA. Hence, if a list has many hits

(by default the cutoff is set to be 40 hits) with the same

number of mismatches, we discard such a list since it is

likely to be spuriously reported for one strand of the refer-

ence genome. Another reason for rejecting such lists is

that they may contain hits that may be of the same mis-

match number as the hit that is unique on the opposite

strand, rendering all hits as ambiguous.

Apart from improving the uniqueness of the putative

resultant hit among all reported hits of a bisulfite read,

filtering also reduces the number of candidate hits that

need to be checked. This improves the efficiency of the

algorithm. For example, consider the simulated bisulfite-

converted read ‘ATATATATGTGTATATATATATA-

TATATATATGTGTATATATATGTGTGTATATATA-

TATA TATATATGTATATAT’ being mapped onto the

converted hg19 genomes as discussed earlier. We

obtained four counts of 1, 0, 40 and 40 hits by mapping

Table 3 Unique mapping rates and speed on 100,000

real color reads

SRR204026 Unique mapping
(%)a

Estimated noise
(%)b

Timing

BatMeth (fast) 39.6 0.47 77 s

BatMeth (default) 45.8 0.94 247 s

BatMeth
(sensitive)

52.1 1.75 521 s

B-SOLANAc 37.4 2.06 130 s

SOCS-Bd 28.3 4.55 ~71 h

aWe tabulated the unique mapping rates of the 100,000 reads. bThe error

rates are estimated from the number of reverse-strand mappings as stated by

Equation 2 in Materials and methods. cNote that 3.26% of B-SOLANA’s

resultant reads are double-counted as B-SOLANA reported two hits for them.

One of the two hits is assumed to be correct for the estimation of the noise

rate of B-SOLANA. dReverse-strand mapping is allowed by enabling G-A

transitions in SOCS-B. BatMeth fast, default, and sensitive modes were run

with -n0-N3, -n0-N4, -n0-N5 as parameters, respectively.
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the converted reads onto the converted genomes. The

last two lists are filtered away since they have too many

hits, leaving us to check only one hit instead of 81 for

bisulfite mismatches. Since the data are simulated, the

unfiltered hit is found to be the correct unique hit for

this read, which the other mappers cannot find.

Figure 4 Outline of the mapping procedure. (a) Mapping procedure on Illumina bisulfite base reads. (b) Mapping procedure on SOLiD color-

space bisulfite reads.

Table 4 Possible ways to map a bisulfite read onto the

converted genome

Reference (C®T) RC reference (C®T)

Read (C®T) Count 1 Count 2

RC Read (C®T) Count 3 Count 4

RC, reverse-complement.

Lim et al. Genome Biology 2012, 13:R82
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Table 5 shows the effect of using List Filtering on the

same set of simulated data from Evaluation on the Simu-

lated Illumina Reads. We ran BatMeth with different cut-

offs for List Filtering and we can see that the time taken

increased linearly with increasing cutoffs for List Filtering

while sensitivity and accuracy dropped. With large cutoffs

such as ≥500 (marked by asterisks in Table 5), the number

of wrong hits increased while sensitivity still continued to

drop. Thus, we have chosen a cutoff of 40 for a balance of

speed, sensitivity and accuracy. (Disabling List Filtering

will cause BatMeth to check through all the reported can-

didate locations for a read and will slow BatMeth down by

approximately 20-fol fold, as shown in Table 5.)

Methods for color reads

Overview of the method

Due to the di-nucleotide encoding and sequencing errors

in SOLiD color reads, a naïve conversion from color space

to base space is hardly possible without errors. As a color

error in a read will introduce cascading base-space errors,

we cannot use the method described in Methods for Base

Reads to map bisulfite color reads. This section describes

how we aim to map each bisulfite color read uniquely to

the reference genome while minimizing the number of

non-bisulfite treatment mismatches.

The algorithm of BatMeth is as follows. BatMeth starts

by preparing Converted Genome and Non-CpG Converted

Genome, and does a one-time BWT indexing on them.

For every color read, we do a Counting Hits of BS Color

Read of the read on the references and discard them

according to List Filtering. After applying Mismatch stage

Filtering, the unfiltered hits are converted to base space as

described in Conversion of Bisulfite Color Reads to Base

Reads to allow for the checking of bisulfite-mismatches.

The Color Mismatch Count for the retained hits is then

determined and the unique locus with the lowest mis-

match count reported; otherwise, no hits are reported for

this read. We have also utilized additional heuristics, such

as Fast Mapping onto Two Indexes and Handling Hypo-

and/or Hyper Methylation Sites to speed up and improve

the accuracy of BatMeth, which we discuss below. All the

components, namely, List Filtering, Mismatch Stage Filter-

ing, Conversion of Bisulfite Color Reads to Base Reads,

Color Mismatch Count, Fast Mapping onto Two Indexes

and Handling Hypo- and/or Hyper Methylation Sites differ

from existing methods. Figure 4b outlines the algorithm

and shows how the components are assembled for SOLiD

color-space bisulfite read mapping.

Non-CpG Converted Genome

The reference genome and its reverse-complement were

first prepared by converting all its Cs to Ts as described in

the base reads mapping procedures; then, the two con-

verted genomes are encoded into color space. These two

genomes are called fully converted color genomes. In addi-

tion, the reference genome and its reverse-complement

are similarly converted except that the Cs in CpG are left

unchanged. We call these the non-CpG converted color

genomes. Finally, the BWT indexes for these four color

genomes are generated.

In the algorithm, the bisulfite color reads will be mapped

to the fully converted color genomes to identify unique

hits first; if this fails, we will try to map the reads onto the

non-CpG converted color genomes and BatMeth will label

which reference a hit is from.

The reason for using the non-CpG converted genome is

that the conversion step for bisulfite color reads is differ-

ent from that for Illumina. In Illumina reads, the C-to-T

mismatches between the raw bisulfite reads and the refer-

ence genome are eliminated by converting all Cs to Ts in

both the reads and the reference genomes. However, we

cannot make such a conversion in bisulfite color reads as

we do not know the actual nucleotides in the reads. Based

on biological knowledge, we know that CpG sites are

expected to be more methylated [35]. Hence, such conver-

sion reduces the number of mismatches when the color

reads are mapped onto the reference genome in color

space. This aids in gaining coverage in regions with high

CpG content. Thus, BatMeth maps bisulfite reads to both

hyper- and hypo-methylation sites.

Counting Hits of BS-Color Read and List Filtering

Unlike sequencing by Illumina, SOLiD only sequences

reads from the original bisulfite-treated DNA strands.

During PCR amplification, both strands of the DNA are

amplified but only the original forward strands are

sequenced. Subsequently, during the sequencing phase,

reverse-complement reads are non-existent as a specific

5’ ligated P1 adaptor is used. As such, matches to the

reverse-complement of the bisulfite-converted reference

genome are invalid.

In other words, although a bisulfite color read has four

possible orientations to map on the non-CpG converted

color genomes (or the fully converted color genomes),

only two orientations are valid as opposed to the four

orientations in the pipeline on Illumina reads (Table 6).

Table 5 Cutoffs for list filtering on simulated reads from

the Results section

List
size

Mismatch counting in
secondsa

Correct
hit

Wrong
hit

Total
hit

20 136 901,164 1,516 902,680

40 165 901,160 1,462 902,622

60 191 901,165 1,454 902,619

100 279 901,166 1,448 902,614

200 475 901,166 1,447 902,613

500 1,197 901,167 1,450* 902,617

1,000 2,942 901,167 1,450* 902,617

Asterisks indicate increased false-positives produced with large list filtering

cutoffs.
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As opposed to the mapping of Illumina reads, it is not

preferred to do a naïve conversion of color reads to base

space prior to mapping. Figure 1a shows that a single

base call error in an Illumina read will introduce one

mismatch with respect to the reference. However, Figure

1b shows that a single base color call error in a color

read will introduce cascading base mismatches instead of

just one color mismatch if we are to map the color read

as it is onto the reference in color space.

Thus, we will need to do a primary map onto a con-

verted genome with a higher mismatch parameter (by

default, 4) than what we usually use for Illumina bisulfite

reads as a bisulfite mismatch will introduce two adjacent

color mismatches (see Figure 1c for an example of bisul-

fite-induced adjacent color mismatches). Similar to map-

ping Illumina reads, we count the number of possible hits

from the two valid orientations. Then, the List Filtering

step is applied to filter the lists with too many hits (by

default, more than 10). (Note that this property also helps

us to estimate the noise rate; we discuss this further in

Noise Estimation in Color-reads.

Conversion of Bisulfite Color Reads to Base Reads

After the color bisulfite reads are aligned to the reference

genome, we can convert the color bisulfite reads to their

most-likely nucleotide equivalent representation. In the

context of bisulfite mapping, we discount all the mis-

matches caused by bisulfite conversions.

We use a dynamic programming formulation as pre-

sented in [36] to convert color reads to base reads except

that the costs for bisulfite-induced mismatches have to be

zeroed when the reference is C and the read is T. This

conversion is optimal and we use the converted base read

to check against the putative genomic locations from List

Filtering to interrogate all mismatches in the read to deter-

mine if they are caused by bisulfite conversion, base call

error or SNP.

Color Mismatch Count

After converting each color read to its base-space equiva-

lent representation, we can calculate the number of base

mismatches that are actually caused by bisulfite treatment

in the color read. Figure 2d shows two different types of

adjacent color mismatches that are caused by bisulfite

conversion (left) and non-bisulfite conversion (right). For

bisulfite-induced adjacent mismatches, we assign a mis-

match cost of 0 to the hit. For non-bisulfite-induced adja-

cent mismatches, we assign a mismatch cost of 1 to the

hit.

To be precise, we consider a color read as C[1..L], where

L is the read length, and let B[1..L-1] be the converted

base read computed from the dynamic programming

described previously and mm[i] as a mismatch at position

i of C, which is computed using Equation 1. The mismatch

count of C is computed as mm[1]+...+mm[L-1], where:

mm[i] =

{

1, if C[i] and C[i + 1] are color mismatches, B[i] is non-BS mismatch

0, otherwise (1)

Mismatch Stage Filtering

We have developed a set of heuristics to improve the

rate of finding a unique hit among the set of candidate

hits. First, we sort and group the initial hits by their

number of color mismatches; then, we try to find a

unique hit with the minimum non-bisulfite-mismatch

count within each group of hits.

As the bound of color mismatches is known, we can

apply a linear time bucket sort to order all the candidate

hits according to their mismatch counts. The group of

initial mapping loci with the lowest mismatch number is

recounted for their number of base mismatches using the

converted read in base space obtained from the previously

discussed dynamic programming formulation. If a unique

lowest base mismatch hit exists among them, we report

this location as unique for this read. Otherwise, we pro-

ceed to recount the base mismatches for the group of

mapping loci with the next highest color mismatch count.

We continue this procedure until a unique hit is found or

until there are no more color-space mismatch groups to

be examined. A unique hit must be unique and also mini-

mizes the base mismatch counts among all previously

checked hits in the previous groups.

Mismatch stage filtering enables us to check less candi-

date hits, which speeds up the algorithm. It also improves

the unique mapping rate as there are less ambiguous hits

within a smaller group of candidate hits.

When the above components are applied, the mapping

rates on SOLiD data improve progressively as seen

below. By using Equation 1 to count color mismatches,

BatMeth was able to increase the number of unique map-

pings by approximately 9% and by employing Mismatch

Stage Filtering, unique mapping rate is approximately

increased by another 3%. With this increase in unique

mappings of approximately 12%, BatMeth had an esti-

mated noise level of approximately 1% as based on Equa-

tion 2 while B-SOLANA and SOCS-B had an estimated

noise levels of approximately 2.06% and 4.55%, respec-

tively, on the same set of 100,000 reads. These statistics

agree with the results on the simulated data and indicate

that BatMeth is capable of producing low-noise results.

Fast Mapping onto Two Indexes

As mentioned in Non-CpG Converted Genome, we map

bisulfite color reads onto four converted references, two

of which have their Cs converted to Ts at non-CpG

Table 6 Possible ways to map a bisulfite color read onto

the converted color genome

Reference (C®T) RC reference (C®T)

Read Count 1 Invalid

RC read Invalid Count 4

RC, reverse-complement.
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sites and the other two have all their Cs converted to

Ts. It was observed that mappings on both non-CpG

converted and fully converted references highly coincide

with each other with an approximately 95.2% overlap.

Due to this observation, we try to map onto the fully

converted reference first to give us a mapping to regions

of hypo-methylation status. If there are no mappings

found on the fully converted references, then BatMeth

maps the same read again onto the non-CpG converted

references, which biases hyper-methylation sites. This

allows the simultaneous interrogation of canonical CpG

hyper-methylation sites with reduced biased mapping on

the fully converted genome. BatMeth also labels each hit

with the type of converted references it was mapped to.

Overall, this approach can save time by skipping some

scanning of the non-CpG-converted references.

Handling Hypo- and/or Hyper-Methylation Sites

With prior knowledge of the methylation characteristics of

the organism to be analyzed, different in silico conversions

to the reference can be done and the best alignments can

be determined from the combined set of results of differ-

ent mapping runs. BatMeth uses two types of converted

genomes to reduce mapping biases to both hyper- and

hypo-methylation sets. Since the two sets of hits from the

two genomes coincide to a large extent, we can save time

by scanning a read on one genome with a much lower

mismatch number than on the other genome.

BatMeth allows users to choose the mismatch number

they want to scan on each of the two types of genomes.

We now introduce M1 and M2 (capped at 5) as the mis-

match numbers used in the scans against the fully con-

verted and non-CpG-converted genomes, respectively. For

the best sensitivity, BatMeth scans at M1 = M2 = 5 for

both hyper- and hypo-methylation sites. For the highest

speed, BatMeth scans at [M1 = 0, M2 = 3] and [M1 = 3,

M2 = 0], which will perform biased mapping to hyper-

and hypo-methylation at CpG sites, respectively. Figure 2c

shows the results of running the various modes of Bat-

Meth (Fast, Default and Sensitive) on a set of 10,000 simu-

lated color reads.

Noise Estimation in Color-reads

To estimate noise rates, we map the real reads in their

two possible orientations onto the genome. If a hit is

found for a read from the original strands of the genome,

we try to map the same read onto the complement strand

of the genome too. If a lower mismatch hit can be found

from the complement strand of the genome, then we

mark the result for this read as noise. We use the propor-

tion of marked reverse-complement unique mappings to

estimate the noise level, given by Equation 2:

err =
# of reverse-complement mappings

# of mappings
(2)

Handling Ambiguous Bases

For base reads, non-A/C/G/T bases are replaced by A so

they will not affect the callings of methylation sites.

Similarly, color reads with non-A/C/G/T bases are

replaced with 0. Non-A/C/G/T bases on the reference

genome are converted to A to avoid affecting down-

stream methylation callers. We have avoided converting

them to random nucleotides as it may produce false hits

in regions containing ambiguous bases. We mapped 1

million 75 bp reads and have seen reads being mapped

to poly-N regions. This can be mostly attributed to the

reduced alphabet size, from four to three, due to bisul-

fite conversions.

Additional material

Additional file 1: Chosen parameters. This file details the parameters

used by the various programs in the Results section.
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