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The large virus family Paramyxoviridae includes some of the most significant human and 

livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-,  

respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new 

paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals).  

Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, 

identification of a bat virus conspecific with the human mumps virus, detection of close relatives 

of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as 

direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations 

suggests a predominance of host switches from bats to other mammals and birds. Hypothesis 

tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative 

hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and 

Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans 

and livestock will have to rely fundamentally on these data. 
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T
he ability to predict and prevent viral epidemics has become 
a major objective in the public health disciplines. Knowledge 
of viral hosts enables the identi�cation of maintenance popu-

lations from which epidemics may emerge1–4. From an ecological 
perspective, the natural host of a given virus may be regarded as its 
habitat5,6. Unfortunately, unbiased assessment of habitat is impos-
sible, as it requires the investigation of all host species in all possible 
geographical locations. Moreover, the delimitations of viral species 
and populations are o�en not well de�ned. However, viral phylog-
enies can identify whether extant viruses encountered in a given 
host are less or more directly linked to common ancestors, provid-
ing clues to virus origins4–6.

Hosts of relevant infectious disease agents share distinctive prop-
erties that can be summarised into a cumulative de�nition of ani-
mal reservoirs (AR) as of interest in public health. We de�ne as ARs 
those taxa of extant animals that contain higher genetic virus diver-
sity than target taxa, harbour the virus continuously on the level of 
social groups (with or without disease)4,7, and are naturally infected 
beyond the geographical limits of communicating social groups3–4. 
�ese cumulative parameters are amenable to �eld investigations, 
without the requirement to manipulate wild animals and their habi-
tats extensively. Nevertheless, logistical, ethical and ecological limits 
in �eld investigations still require a focussing on appropriate candi-
date taxa. Here, it is helpful to consider that the potential of animals 
to act as AR can be linked to social and behavioural parameters, 
which in turn are inherent to taxa. Virus transmission and mainte-
nance is generally favoured by large social groups, close social inter-
action, high population densities, as well as spatial mobility and fast 
population turnover2,4,8. It is also helpful to consider that genetic 
proximity between species is favourable of cross-species pathogen 
transmission6,9–11. For instance, all cumulative criteria are met by 
the best studied of relationships between a virus genus and its AR, 
the in�uenza A virus in waterfowl3,9–10.

In applying the above considerations to larger taxa of mam-
malian viruses, such as the members of the mammalian para-
myxoviruses (PVs), mammals come into focus as potential AR. In 
mammals, the criterion of large natural group sizes is particularly 
met by species within the orders Chiroptera (bats) and Rodentia 
(rodents)1,8. Indeed, sporadic detection of PV in members of both 
orders has been previously reported by us and other groups12–16. 
Here we tested 119 bat and rodent species worldwide, and identi-
�ed a large range of novel PV related to major pathogens. �ese 
included very large diversities of henipa- and rubulaviruses, as well 
as relatives of respiratory syncytial virus (RSV), mouse pneumonia- 
and canine distemper virus in bats. Multiple morbilli-related viruses 
were found in bats and rodents. �ese data will change our concep-
tion of PV host associations and in�uence future attempts to assess 
and predict epidemic risks.

Results
PV detection in small mammals. To assess the spectrum of PV in 
bats and rodents, 86 species of bats (4,954 individuals) and 33 species 
of rodents (4,324 individuals) were sampled in 15 locations worldwide 
(Fig. 1, Table 1 and Supplementary Table S1). All samples were screened 
for Paramyxoviridae by various reverse transcription (RT)–PCR 
assays. Pooled serum samples were additionally screened by random 
ampli�cation and deep sequencing of serum-derived cDNA. Although 
this approach identi�ed a range of viruses whose full genomes remain 
to be determined, no PVs were detected (Supplementary Table S2). 
�is was presumably due to higher concentrations of the identi�ed 
viruses in blood, or because of properties that technically promote 
detection by random ampli�cation, such as circularity of DNA 
genomes. In contrast, RT–PCR detected a large range of PV cDNA 
sequences as described below.

Phylogenies were inferred using maximum likelihood and Baye-
sian approaches (Fig. 2a–e and Supplementary Fig. S1). Detection 

rates of viruses in bats and rodents were similar at 3.3 and 3.1%, 
respectively, but bat viruses were dispersed across the phylogenetic 
tree with pronounced genetic divergence, whereas rodent viruses 
belonged to three clades with relatively low divergence that were not 
exclusively detected in rodents (Supplementary Fig. S1). PVs were 
detected in six of ten families of bats tested, representing all major 
chiropteran phylogenetic lineages (Fig. 3a,b). A simpli�ed criterion 
based on pairwise amino acid distance matrices was used to esti-
mate how many novel virus species might have been detected (refer 
to Methods section). In total, 66 novel PV taxa at the level of puta-
tive species were discernible. �is number exceeded the number 
of PV species currently known, as the International Committee on 
Taxonomy of Viruses (ICTV) currently lists 36 species, and even 
upon inclusion of unclassi�ed sequences from GenBank, only an 
estimated 57 species can be discerned.

Major PV genera in bats. �e genus Rubulavirus contains three 
human pathogens, the mumps virus, as well as the respiratory 
viruses, Parain�uenzavirus 2 and 4. A large range of novel rubu-
laviruses in fruit- and insect-eating African bats were identi�ed in 
addition to those six bat rubulaviruses previously known (Fig. 2a,  
Supplementary Table S1). �e viruses could be classi�ed into  
21 discernible taxonomic entities on the level of putative species. 
No rubulaviruses were detected in rodents. A bat virus of high 
similarity to mumps virus was fully sequenced from a bat spleen 
(15,378 nucleotides, (Supplementary Fig. S2)). Amino acid similar-
ity was well above 90% in all genes except P (89.5%), suggesting this 
virus and human mumps to be conspeci�c. To determine antigenic 
relatedness to human mumps virus, sera from 52 �ying foxes and  
78 insect-eating bats were tested by immuno�uorescence (n = 26 
Eidolon helvum, 5 Epomops franqueti, 5 Micropterus pusillus,  
5 Myonycteris torquata, 11 Rousettus aegyptiacus, 14 Coleura afra, 
21 Hipposideros cf. ca�er, 11 Hipposideros gigas, 17 Miniopterus 
in�atus, 11 Rhinolophus cf. alcyone). Clear reactivity was observed 
in 41.5% of the 130 tested bat sera (Fig. 4a). Speci�city of these reac-
tivities was con�rmed by cross-testing against other PVs, including 
the rubulavirus Parain�uenzavirus 2 (Fig. 4b). �ese data in total 
suggest that mumps and related bat viruses may belong to one same 
serogroup.

Measles is one of the most important childhood diseases. Mea-
sles virus de�nes the genus Morbillivirus that also contains the 
canine and phocine distemper virus, a dolphin morbillivirus, as well 
as Rinderpest and Peste Des Petits Ruminants viruses. Novel mem-
bers of the genus Morbillivirus as currently de�ned by the ICTV 
were detected for the �rst time in bats (neotropical vampire bats) 
but not in rodents (Fig. 2b). A clade of morbillivirus-related rodent- 
and tupaia viruses, forming an unclassi�ed sister clade to the genus 
Morbillivirus, was extended by an estimated 25 novel bat and rodent 
viruses, con�rming the unclassi�ed genus and the Morbillivirus 
genus to form a major stem lineage of PV.

�e genus Henipavirus comprises two known virus species 
causing fatal encephalitis in humans. �ese viruses (Hendra virus 
(HeV) in Australia, Nipah virus (NiV) in Asia) have been sporadi-
cally acquired from bats of the Pteropus genus by humans, swine 
and horses. We have recently detected small sequence fragments 
of potentially related viruses in a colony of E. helvum fruit bats in 
Ghana12. �e present data identify at least 23 distinct viral clades  
in phylogenetic relation to henipaviruses in six bat species sampled 
in �ve di�erent African countries (Fig. 2c). On the basis of the mini-
mal genetic distance between HeV and NiV (7% in the analysed 
L-gene fragment), the African viruses were estimated to pertain to 
19 novel virus species in the genus Henipavirus (Figs 2c and 5). Full 
genome sequencing of a representative virus (GH-M74a) from a 
bat spleen con�rmed formal classi�cation in the genus Henipavi-
rus (18,530 nucleotides, (Supplementary Fig. S3)). It was noted that 
the RdRp gene of the analysed African virus contained the catalytic 
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motif GDNQ, as typical of the order Mononegavirales, whereas HeV 
and NiV have an atypical GDNE motif. Sequencing of this motif in 
representatives of all major African virus clades also yielded GDNQ, 
supporting the idea that African rather than Asian viruses are iden-
tical to generic ancestors in this highly conserved motif. In addition, 
the GDNE signature typical of HeV and NiV was found in a small 
fraction of African viruses, and these were in closest phylogenetic 
relationship to HeV and NiV (Fig. 2c). �e most parsimonious 
explanation for the diversion of signatures in this highly conserved 
motif was a single change in a common ancestor to the GDNE- 
containing clade, as opposed to hypothetical convergent acquisitions  
of GDNQ in all but one of the parallel lineages. �e GDNE- 
ancestral virus would most likely have existed in Africa, and would 
have been ancestral to HeV and NiV as well.

Close relatedness between NiV and these African viruses was 
also demonstrated by immuno�uorescence staining. To this end, 
Vero cells were infected in a biosafety level 4 laboratory with NiV 
and incubated with serum from E. helvum before staining with a 
polyclonal anti-bat antibody. Clear reactivity was seen (Fig. 4c).

In two di�erent widely distributed species of New World bats, 
one frugivorous (Carollia perspicillata, rate 0.5%) and one insectivo-
rous (Pteronotus parnellii, rate 7.5%), we identi�ed virus sequences 
that were phylogenetically closely related to the genus Henipavi-
rus (area of distribution shown in Supplementary Fig. S4). �ese 
viruses formed a sister clade to the genus Henipavirus, including 
its novel African representatives (Figs 2c and 5a). It was impossible 
for ethical and logistical reasons to euthanise Neotropical bats and 
sample internal organs that might have enabled the completion of 
full genome sequences. Nevertheless, the N protein gene at the far 
opposite end of the genome of one of these viruses was successfully 
sequenced from a faecal sample. RdRp- and N-gene fragments were 
phylogenetically congruent and no signs of genomic recombination 
were seen (Fig. 5b).

RSV and the related human metapneumovirus, belonging to 
the Pneumovirinae subfamily, are the leading causes of morbidity 

and mortality in children worldwide. We identi�ed a clade of novel 
bat viruses also in this subfamily, which formed a sister clade to 
the human and bovine RSV (Fig. 2d). No bat viruses were detected 
in direct relationship to the genus Metapneumovirus, whose only 
human member, the human metapneumovirus, is most closely 
related to avian metapneumovirus C. �ese data support the notion 
that the metapneumoviruses are of direct avian, rather than direct 
mammalian descent17.

Sendai virus, a member of the genus Respirovirus, was detected 
in wild rodents from �ailand (Fig. 2e), con�rming this virus not 
to be restricted to laboratory animals. No viruses belonging to this 
genus were detected in bats, but bat sera were found to react with 
respirovirus antigens (Fig. 4b), supporting previous assumptions 
that bats should carry closely related viruses18.

Natural history of infection. To compare organ-speci�c compart-
ments of PV replication, virus concentrations in internal organs 
were determined in 22 African E. helvum bats infected with heni-
paviruses. �e spleens of 21 of 22 animals tested positive with high 
virus concentrations, whereas all other internal organs as well as 
blood yielded virus at lower rates and concentrations (Fig. 4d). 
Organ distribution of morbilli-related PV in 28 rodents was strik-
ingly di�erent from that in bats, with broader and less organ-speci�c 
distribution of virus. Highest viral loads and most frequent virus 
detections in rodents were seen in the kidneys, and in bats in the 
spleens (Supplementary Fig. S5, Supplementary Tables S3 and S4).

We next looked for evidence of continuous virus excretion 
on population level in bats7. A colony of Myotis myotis in Ger-
many known to carry members of the Morbillivirus-related clade 
was monitored over 3 years for shedding of virus. Shedding rates 
and concentrations were constant over three observation periods 
throughout 2008 to 2010 (Fig. 6). �is colony was a maternity col-
ony, and parturition times fell in the middle of observation periods 
but did not in�uence excretion, suggesting natural infection with 
little di�erences in shedding between young and adult animals.  

Figure 1 | Sampling sites and specimens. The bat samples used in this study and their countries of origin are depicted in red, rodent samples in blue. 

Sampled animals are listed by species in Table 1. Numbers indicate paramyxovirus-positive individuals and individuals tested in total. DRC = Democratic 

Republic of Congo, RCA = Central African Republic. Sampling years and results of individual RT–PCR assays are given in Supplementary Table S1.
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It was noted that this pattern was very di�erent from that of measles 
virus in humans19,20.

Interestingly, the morbilli-related viruses from M. myotis in Ger-
many were also observed in genetically distant Coleura afra bats 
in Ghana. For several other PV clades, evidence of their associa-
tion with bats beyond the limits of communicating social groups 
was obtained, as summarised in Fig. 7a and b. One pneumovirus, 
six henipaviruses and eight rubulaviruses were detected through-
out several sampling years and sites across four di�erent Western 
and Central African countries. Notably, widespread and constant 
detection of several viruses was observed in cave-roosting Rousettus 
aegyptiacus that do not participate in annual migrations and whose 
populations are isolated from each other (Fig. 7c).

To identify signs of PV-dependent disease in bats, paramount 
serum chemistry parameters were compared between infected and 

non-infected bats. No infection-dependent alterations were seen 
in concentrations of lactate dehydrogenase, gamma glutamyltrans-
ferase, aspartate aminotransferase, alanine transferase, bilirubin and 
albumin (Supplementary Table S5). In summary, bats show an over-
whelming PV diversity, continuous PV shedding without evidence 
of e�cient immune control, signs of organ-speci�c replication and 
absence of PV-related pathogenicity. It was noted that these traits 
taken together are typical of viral ARs.

Tracing hosts in PV phylogeny. To extract information on hosts 
during the more recent evolution of extant mammalian PV, the  
most parsimonious hypothesis of historical host trait changes was 
reconstructed along the PV tree. To take topological uncertainty  
into account, this analysis was done on a large set of phylogenetic 
trees extracted from the terminal phase of an optimised Bayesian  

Table 1   

Chiroptera per sampling site (virus detection rate (pos./indiv.)) Rodentia per sampling site (virus 
detection rate (pos./indiv.))

Costa Rica/Panama Gabon/Congo/DRC/RCA Germany Netherlands
Anoura geoffroyi (0/100) Casinycteris argynnis (0/21) Eptesicus serotinus (0/1) Apodemus sylvaticus (0/137)
Artibeus jamaicensis (0/50) Coleura afra (1/25) Myotis bechsteinii (1/37) Microtus arvalis (0/15)
Artibeus lituratus (0/3) Eidolon helvum (17/49) Myotis brandtii (0/18) Myodes glareolus (0/155)
Carollia castanea (0/12) Epomophorus gambianus (3/48) Myotis dasycneme (0/101) Germany
Carollia perspicillata (1/209) Epomophorus labiatus (0/1) Myotis daubentonii (1/259) Apodemus agrarius (0/92)
Chiroderma villosum (0/2) Epomophorus minimus (3/6) Myotis myotis (5/240) Apodemus flavicollis (8/667)
Enchisthenes hartii (0/3) Epomophorus sp. (4/17) Myotis mystacinus (3/55) Apodemus sp. (0/51)
Glossophaga commissarisi (0/3) Epomophorus wahlbergi (0/4) Myotis nattereri (0/43) Apodemus sylvaticus (0/127)
Glossophaga soricina (0/27) Epomops franqueti (0/99) Nyctalus leisleri (0/4) Arvicola amphibius (0/3)
Lophostoma silvicolum (0/4) Hip. cf caffer/ruber (3/337) Nyctalus noctula (0/7) Micromys minutus (0/3)
Micronycteris hirsuta (0/1) Hipposideros gigas (3/196) Pipistrellus nathusii (0/19) Microtus agrestis (3/114)
Micronycteris microtis (0/4) Hypsignathus monstrosus (4/53) Pipistrellus pipistrellus (0/43) Microtus arvalis (3/530)

Mimon crenulatum (0/1) Lissonycteris angolensis (0/3) Pipistrellus pygmaeus (0/54) Microtus sp. (0/37)
Molossus molossus (0/1) Megaloglossus woermanni (1/34) Plecotus auritus (0/8) Mus musculus (0/15)
Myotis nigricans (0/3) Micropteropus pusillus (0/139) Plecotus austriacus (0/3) Myodes glareolus (32/1203)
Natalus lanatus (0/3) Miniopterus inflatus (2/125) Bulgaria/Romania Rattus norvegicus (0/131)
Peropteryx kappleri (0/5) Mops sp. (0/1) Barbastella barbastellus (0/14) Sciurus vulgaris (0/12)
Phylloderma stenops (0/1) Myonycteris torquata (3/111) Miniopterus schreibersii (0/87) South Africa/Namibia
Phyllostomus hastatus (0/3) Plerotes anchietae (0/1) Myotis alcathoe (1/4) Aethomys namaquensis (0/6)
Platyrrhinus helleri (0/1) Rhinolphus alcyone (0/15) Myotis bechsteinii (0/56) Desmodillus sp. (0/1)
Pteronotus parnellii (5/40) Rousettus aegyptiacus (18/183) Myotis capaccini (1/9) Mastomys sp. (0/1)
Rhogeessa tumida (0/1) Ghana Myotis daubentonii (0/17) Otomys sp. (0/21)
Saccopteryx bilineata (0/85) Coleura afra (0/71) Myotis emarginatus (0/6) Parotomys littledaly (0/1)
Tonatia saurophila (0/5) Eidolon helvum (67/673) Myotis myotis (0/18) Parotomys sp. (0/28)
Trachops cirrhosus (0/4) Epomophorus gambianus (0/6) Myotis mystacinus (0/1) Petromyscus sp. (0/2)
Uroderma bilobatum (0/3) Epomops buettikoferi (0/1) Myotis nattereri (0/27) Rattus rattus (0/1)
Brazil Epomops franqueti (0/1) Myotis oxygnathus (0/22) Rhabdomys pumilio (88/518)
Carollia perspicillata (1/88) Glauconycteris beatrix (0/1) Nyctalus leisleri (0/9) Gabon
Carollia brevicauda (4/50) Hipposideros abae (1/80) Nyctalus noctula (0/9) Cricetomys gambianus (0/1)
Carollia sp. (0/1) Hipposideros cf caffer (1/20) Pipistrellus pygmaeus (0/3) Heimyscus fumosus (0/1)
Desmodus rotundus (4/29) Hipposideros cf ruber (2/117) Plecotus auritus (0/2) Hybomys univittatus (0/1)
Glossophaga soricina (1/2) Hipposideros sp. (1/80) Plecotus austriacus (0/2) Lemniscomys striatus (0/18)
Lonchorhina aurita (0/1) Hypsignathus monstrosus (0/1) Rhinolophus blasii (0/82) Lophuromys sp. (0/1)
Trachops cirrhosus (0/1) Micropteropus pusillus (0/13) Rhinolophus euryale (0/245) Malacomys longipes (0/1)
Molossus rufus (0/17) Nanonycteris veldkampi (0/23) Rhi. ferrum-equinum (0/46) Mus musculus (0/1)
Molossus currentium (0/5) Micropteropus/Nanonycteris (0/2) Rhinolophus hipposideros (0/6) Nannomys setulosus (0/7)

Nycteris hispida (0/1) Rhinolphus mehelyi (0/13) Praomys misonnei (0/25)
Nycteris sp. (0/3) Rattus rattus (0/113)
Pipistrellus deserti (0/1) Thailand
Pip. cf nanus (1/9) Bandicota indica (0/151)
Pipistrellus sp. (0/7) Bandicota savilei (0/9)
Rhinolophus landeri (0/1) Bandicota sp. (0/1)
Rousettus aegyptiacus (0/30) Rattus argentiventer (0/28)
Tadarida sp. (0/7) Rattus exulans (0/2)

Rattus losea (0/7)
Rattus norvegicus (0/10)
Rattus rattus (1/49)
Rattus tiomanicus (0/27)

Abbreviations: DRC, Democratic Republic of the Congo; indiv, individual; pos, positive; RCA, Central African Republic. 
Numbers indicate paramyxovirus-positive individuals and individuals tested in total. Sampling years and results of individual RT–PCR assays are given in Supplementary Table S1. 
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inference of phylogeny. �e numbers of deduced transitions  
between ordinal categories of hosts including bats, rodents, primates,  
carnivores, ungulates and birds were estimated and averaged 
over  > 10,000 trees. To achieve a proper representation of PV from 
hosts other than bats and rodents, reference sequences were selected 
from GenBank so as to provide a maximal genetic diversity per ordi-
nal host category (Fig. 8a). In summary, these analyses determined 
host switches from bats into other host categories to have occurred 
more o�en than switches originating from any other of these host 
categories (Fig. 8b).

To achieve a statistical exclusion of alternative hypotheses 
regarding the host switching process, maximum likelihood analyses 
of ancestral state reconstruction were done under di�erent model 
restrictions as summarised in Fig. 8c. All of these analyses suggested 
that bats but not rodents, primates or birds should be preferred 
donors of PV along the tree. Moreover, although assumptions of 
fossilised bat hosts at the root points of both PV subfamilies did not 
signi�cantly reduce the model likelihood, all other fossilised host 
assumptions did.

Discussion
In this study, we have gathered evidence of bats being in close evolu-
tionary and ecological relationship with several genera of mamma-
lian PVs. �e investigation of viral host associations can be a lengthy 

and controversial process that depends on targeted and ecologically 
informed sampling21–29. We believe that we have assembled the larg-
est and most diversi�ed single-sample set for investigating viruses 
in mammalian hosts. We focused on bats and rodents because of 
their unique properties among the mammals in terms of large social 
group sizes, intense social interaction and high population densi-
ties. Further criteria included high spatial mobility in the case of 
bats, and high population turnover in the case of rodents1–2,4,30. 
However, our data were not limited to these taxa, as an essential part 
of our analysis involved database-derived PV from a large range of 
other mammals as well as birds. �e evolutionary distance between 
the analysed host taxa considerably exceeded that of either the bats 
or the rodents studied. It should be mentioned that PV entries in 
GenBank with and without our new data were not over-emphasising  
chiropteran or rodent hosts. As shown in Supplementary Fig. S6,  
the majority of PV entries were from primates, birds, carnivores and 
ungulates. Even a�er addition of our novel data to GenBank data 
sets, the number of PV sequences from bats was just even with that 
from ungulates.

Like almost all PVs currently contained in GenBank, our novel 
viruses were identi�ed by RT–PCR and sequencing. PCR primers 
have an inherent bias due to their sequence speci�city. We have 
applied a large range of published and own primer sets to compen-
sate for this bias. Some of these have been thoroughly validated on 
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Figure 2 | Partial L-gene phylogenies including novel paramyxoviruses (PVs) from small mammals. The genera Rubulavirus (a), Morbillivirus (b), 

Henipavirus (c) and Respirovirus (e), as well as the subfamily Pneumovirinae (d) are shown with bat viruses coloured in red and rodent viruses in blue. Major 

PVs are indicated by a pictogram of typical ordinal host and designations of virus species (SV, simian virus; PorPV, porcine PV; PIV, parainfluenzavirus; 

CDV, canine distemper virus; PPRV, peste des petits ruminants virus; RSV, respiratory syncytial virus; hMPV, human metapneumovirus). Bat and rodent 

viruses marked by an asterisk have been described previously. Values at node points indicate Bayesian posterior probabilities of grouping (only values 

above 0.6 are shown). The scale bar indicates substitutions per site. For selected henipaviruses (c), the four amino acid GDNE/GDNQ motif at the catalytic 

site of the RNA-dependent RNA polymerase is shown. Abbreviations used in virus designations are detailed in Supplementary Table S1.
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clinical panels from a large range of hosts, con�rming high sensitiv-
ity over a large genetic range of viruses31. More recent studies have 
suggested to improve the detection of novel viruses by hypothesis-
free approaches such as random cDNA ampli�cation from serum 
followed by deep sequencing32. Inclusion of such an approach in 
our study indeed revealed novel viral sequences that should be 
investigated further, but did not yield any PV. Low serum concen-
trations of PV RNA may have prevented detection, reminding us 
that hypothesis-free virus testing may not be su�ciently sensitive to 
enable comprehensive detection of viral �ora32,33.

ICTV currently lists 36 accepted PV species. Gene databases 
comprise more viruses, many of which are only partially sequenced 
and not classi�ed into de�ned species (Supplementary Tables S6  
and S7). Although 83 clearly distinct PV taxa could be discrimi-
nated in our data set based on phylogeny, a classi�cation criterion 
using a distance threshold comparable to that between HeV and NiV 
(7.0–7.5% in the L-gene fragment used) identi�ed 66 independent 
novel taxonomic entities on the rank of tentative species to be rep-
resented in our data. Nevertheless, the number of novel taxa added  
to the PV phylogeny is unlikely to cause a bias toward bat- and 
rodent viruses in subsequent analyses of host associations. �is 
is foremostly because reference sequences in these analyses were 
selected to maximise the patristic distance within each genus of PV 
(Fig. 8a). �e algorithm underlying the parsimony-based ancestral 
state reconstruction only counts host switches once per resolved 
phylogenetic root point, irrespective of the number of depending 
leaves carrying identical traits. In general, probabilistic approaches 
such as ML- and Bayesian methods are considered more powerful 
than parsimony models for the reconstruction of character states 
evolving along phylogenetic branches34. However, this is mainly 
because probabilistic models take branch lengths into account, 
whereas parsimony-based methods only consider tree topology34. 
For the particular task of reconstructing viral host associations, 
we favour parsimony approaches out of theoretical considera-
tions. First, we had to assume that host transition happens rarely 
and is unlikely to take place in a bidirectional manner, because of 

the �tness valley e�ect that will prevent host changes to be reversed 
easily4,10. In particular, viruses conquering a new host will leave 
behind population immunity in their original AR, preventing  
re-introduction, and making back and forward transitions (as well 
as host switching as a whole) a rare process4,10. Another argument 
was the uncertainty of deeper branch lengths in viral phylogenies35. 
More recent studies on non-retroviral RNA viruses invading mam-
malian germlines demonstrated tremendous discrepancies between 
apparent evolutionary rates of extant RNA viruses versus those of 
phylogenetic stem lineages36–39. Rate di�erences in deep branches 
will have great in�uence on probabilistic models, but will not  
a�ect parsimony assumptions. Even though recent �ndings of viral 
germline fossils comply with the idea that ancient PV may have 
existed in mammals36–39, such data are so far unavailable for PV, 
and we have not attempted in our analysis to determine the evo-
lutionary origins of PV. Such an analysis would require a di�erent 
approach to sampling, as viruses from taxa other than mammals 
and birds are currently underrepresented in databases. To attenu-
ate the contribution of deep phylogenetic nodes, we have limited 
our analysis to an estimation of trait switches along trees, rather 
than inferring host associations for deep phylogenetic nodes. With 
this limitation in mind, we can conclude that bats have most o�en  
been the donors of those viruses currently encountered in other 
mammals.

In spite of our preference for parsimony-based analysis, we have 
challenged this result by repetition in a probabilistic approach, testing 
the in�uence of alternative hypotheses by either restricting the trait 
change model or imposing fossilised ancestral state assumptions40. 
�ese analyses con�rmed the results of the parsimony model and 
formally excluded other host hypotheses within the available data 
set. However, it should be mentioned that ancestral state analyses 
have not been systematically applied to the theoretical problem of 
viral host switching before. Many open questions remain, including 
the essential issue of developing signi�cance criteria in host hypoth-
esis testing. Only if complex data sets like ours become available for 
several other virus taxa, it will be possible to approach this major 
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theoretical task. �e current limitation, however, is in the sparse and 
incomplete biological sampling of habitat.

Beyond phylogenetic analysis, we have identi�ed traits of the nat-
ural history of infection that suggest a speci�c connection between 
PV and bats. �e epidemiology of a morbilli-related virus was fun-
damentally di�erent from that of measles virus in humans, or that 
of Rinderpest in cattle. Human measles is the prototype of viruses 
depending on steady transmission in su�ciently large social groups, 
potentially absent from isolated and remote populations41. Black41 
has de�ned this pattern of pathogen prevalence as the ‘introduced 
disease’ pattern, based on observations in isolated human tribes. 
Strikingly, in bats, the morbilli-related virus was excreted by adult 
animals at similar rates as by young animals, which is very untypi-
cal of morbilliviruses in other mammals. �is pattern of prevalence 
was classi�ed by Black41 as ‘endemic—high incidence, low morbid-
ity’, as exempli�ed in humans by hepatitis B virus or herpes viruses. 
Some researchers have argued that bats in general might deal with 
viral infections di�erently than other mammals42. However, we 
have recently described a variance of viral persistence patterns in 
bats that is congruent with observations in other mammals, with 
a typical ‘introduced disease’ pattern for astro- and coronaviruses, 
although a bat adenovirus in the same group of animals showed 
Black’s ‘endemic’ pattern41,43. Adenoviruses provide a good tem-
plate to explain the shedding pattern of the morbilli-related virus 
found in the present study, as they are known to persist in tissue 

and to be shed without signs beyond the acute phase of disease—a 
property determining the ability of viruses to persist in small popu-
lations41,44. Accordingly, the morbilli-related virus in our study was 
detected in a species of bats forming small- to medium-sized social 
groups (M. myotis), possibly requiring long-term excretion for virus 
maintenance on group level. �is is rather untypical for morbillivi-
ruses in other mammals that depend heavily on e�cient transmis-
sion and su�cient group size to be maintained30,41,45. In this light, 
the di�erence in organ association between bats and rodents was 
quite interesting. Although PVs in rodents were associated with the 
kidney, favouring excretion, their highest concentrations and preva-
lences in bats were seen in the spleen. Although we have no further 
direct proof, this matches the concept that bat-borne PV might not 
as much depend on highly e�cient transmission, but might rou-
tinely employ mechanisms of persistence to follow Black’s ‘endemic’ 
pattern of prevalence41. �is anomality might indeed identify bats 
as AR of these viruses. Moreover, the morbilli-related bat virus was 
detected in Europe, but also in an unrelated species forming rather 
small social groups in sub-Saharan Africa. Even though we have 
not been able to conduct longitudinal investigations of excretion in 
other PV genera, detection in groups without social connection as 
well as re-detection in subsequent years was seen also for rubula- 
and henipaviruses in this study. Detection of these viruses was not 
associated with changes in serum chemistry parameters, suggesting 
symptomless infection despite virus replication in internal organs, 
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Figure 4 | Serology and virus concentrations for selected bat PV. (a) Reactivity of different sera (diluted 1/40) from African bats with human mumps 

virus in Vero cells by indirect immunofluorescence assay, a) Rhinolophidae (R.s., Rhinolophus sp.), b) Hipposideridae (H.c., Hipposideros ruber/caffer),  

c) Vespertilionidae (M.i., Miniopterus inflatus), d) Pteropodidae (M.t., Myonycteris torquata), e) Emballonuridae (C.a., Coleura afra), f) Pteropodidae  

(M.p., Micropteropus pusillus), g) and h) non-reactive sera from C.a and M.i. (b) Prototype PVs mumps, measles, RSV, parainfluenza 1 (PIV1) and PIV2 

infected in Vero cells, stained with bat sera R.s., H.c., M.p. as above. Signal intensities were rated from negative to +++. (c) Reactivity of Eidolon helvum 

(E.h., sample GH64) serum from Ghana with NiV antigen using an indirect immunofluorescence assay: a) and b) represent 1/10 and 1/40 dilution of  

E.h. serum, c) positive control using a guinea pig anti-NiV serum, including a large NiV-induced syncytia stained in red, and d) E.h. serum GH64 diluted 

1/10 applied on non-infected cells. Bars in a, b and c represent 50 µm. All panels used the same microscope and camera settings to demonstrate the 

strength of cross-reactivity between NiV and African viruses. (d) Henipavirus RNA concentrations in 22 E. helvum solid organs and serum, of which  

21 tested positive in spleens, 5 in livers, 3 in kidneys, 2 in lungs, 1 in intestine and 1 in serum. Virus concentrations (log10 RNA copies per millilitre of  

serum or per gram of tissue) are given on the y axis for each bat organ tested. Organ types are identified on the x axis. Bars represent mean virus 

concentrations per organ type, whiskers show s.d.
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which may be regarded as typical for a virus in its natural host con-
text that is not dependent on e�cient horizontal transmission4,7,46.

Beyond virus evolution and ecology, these data might have 
important implications for public health. HeV and NiV may 
be of African descent and have highly diversi�ed relatives in 
Africa. �ese viruses might be associated with unrecognised 
disease, given the tremendous number of unresolved cases of 
encephalitis o�en ascribed to malaria in Africa47. Observed pat-
terns of viral loads suggest that virus could be acquired dur-
ing slaughtering of bats for alimentary purposes48, but possibly  
also through contact with ubiquitous bat faeces (Supplementary 
Tables S3 and S8). It is for this same reason that the signi�cance 

of Henipavirus-related agents in widely distributed bats in America  
deserves urgent further investigation. Moreover, the �nding of 
agents serologically related to eradicable viruses, such as mumps, 
distemper and measles virus, is highly relevant in assessing per-
spectives and consequences of virus eradication19,49–51. Clearly, the 
bats investigated in this study carried viruses that were only similar 
but not identical to those agents endemic in humans or livestock. 
�ese new data therefore emphasise the importance of investi-
gating possible transmission chains, as exempli�ed by the case of 
severe acute respiratory syndrome, in which an agent derived from 
bats was probably passed to humans by intermediate hosts such as 
carnivores52. In the case of the mumps-related bat virus, a direct 
antigenetic relatedness between human and bat viruses has been 
con�rmed, and the close genetic proximity between both viruses 
suggests that even cross-neutralisation might be possible. In light of 
the still narrow representation of genetic diversity of bats covered 
in this study (ca. 7.5% of bat species), further research might reveal 
further bat-borne PV in close relationship to known pathogens of 
humans and livestock. If antigenic overlap exists, this could become 
relevant for virus eradication concepts. Relevant antigenic overlap 
would be de�ned by proof of cross-neutralisation between reser-
voir-borne and human or livestock pathogens. In this latter case, 
elimination of circulating virus and the subsequent cessation of  
vaccination might leave humans or livestock susceptible for  
reservoir-borne, antigenetically related viruses.

Although these data identify a potential reservoir of important 
mammalian viruses, we can only begin to understand their true 
signi�cance by functional investigation. Knowledge on the genetic 
range of pathogens carried by speciose small mammals may enable 
early recognition of zoonotic epidemics and rapid decision-making 
in the public health sector53,54. However, much more (and di�erent) 
work needs to be done to actually assess and ameliorate zoonotic 
risks. �e most relevant provision in this �eld is that epidemic risks 
emanating from wildlife virus reservoirs should trigger wildlife con-
servation rather than interference with wild animal populations2.

Methods
Sampling and specimen preparation. For all capturing, sampling and exporta-
tion of small mammal specimens, permission was obtained from the respective 
countries’ authorities. Bats and rodents were identi�ed by trained �eld biologists. 
Fresh bat droppings were collected on plastic �lm below roost sites12. Additionally, 
bats were caught with mist nets at roost or foraging sites, kept separately in bags 
until individual examination. Sampling relied on faecal pellets produced in bags, 
vein puncture for serum samples and mouth swabs. For organ samples, bats were 
euthanised with ketamine and dissected immediately. Rodents were caught with 
live traps or snap traps, euthanised and dissected. For faecal specimens, ca. 100 mg 
of faeces was suspended in 500 µl of RNAlater solution (Qiagen, Hilden, Germany) 
immediately a�er collection. Suspensions were homogenised by vortexing, and 
50 µl were suspended into 560 µl of bu�er AVL from the Qiagen Viral RNA Mini 
kit (Qiagen) and processed further according to the instructions of the manu-
facturer. For blood or serum samples, up to 140 µl (depending on the available 
quantity) were extracted. For solid organs, approximately 30 mg of tissue were 
homogenised in a TissueLyser (Qiagen) or a ball-mill tissue grinder (Genogrinder 
2000, Spex Centripep), followed by extraction of RNA using the RNeasy Kit  
(Qiagen) or the ABI PRISM 6100 Nucleic Acid PrepStation (Applied Biosystems, 
Foster City, CA, USA). Elution volumes were generally 50 µl for serum/blood and 
faecal specimens, and 100 µl for tissue specimens. RNA specimens were subjected 
to molecular screening for PVs using a panel of oligonucleotides and RT–PCR 
assays listed in Supplementary Tables S9 and S10.

General conditions for RT–PCR. About 100,000 RT–PCR reactions were done 
for this study, using ca. 100 di�erent protocols. �e basic formulation for 25-µl 
RT–PCR reactions used the Invitrogen SuperscriptIII OneStep RT–PCR kit 
(Invitrogen, Karlsruhe, Germany), with 800 nmol l − 1 each of the respective �rst-
round primers, 2.0 mmol l − 1 MgSO4, 200 µmol l − 1 deoxynucleoside triphosphates 
each, 1 µl enzyme mix, 1 µg bovine serum albumin, 10 U RNAseOut (Invitrogen) 
and 5 µl RNA extract. Ampli�cation generally involved 30 min at 50 °C; 3 min at 
95 °C; a touchdown element of 10 cycles of 15 s at 94 °C, 20 s starting at 64 °C with 
a decrease of 1 °C per cycle, and 40 s at 72 °C; and 35 cycles of 15 s at 94 °C, 20 s at 
50 °C, and 40 s at 72 °C, with a �nal elongation step of 2 min at 72 °C. A volume 
of 50 µl second-round PCR reactions used 1 µl of �rst-round PCR product, with 
1×Platinum Taq bu�er (Invitrogen), 200 µmol l − 1 deoxynucleoside triphosphates 
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each, 2.0 mmol l − 1 MgCl2, 800 nmol l − 1 each of the respective second-round 
primers and 1 U Platinum Taq polymerase. All primers are listed in Supplementary 
Tables S9 and S10. Virus quanti�cation was done as described previously55. Brie�y, 
amplicons from initial nested RT–PCR screening assays were TA-cloned (Invitro-
gen), plasmids puri�ed and re-ampli�ed with vector-speci�c oligonucleotides, and 
�nally in vitro transcribed using the T7 promotor-based Megascript kit (Applied 
Biosystems, Darmstadt, Germany). Further details are available upon request from 
the authors.

Next-generation sequencing. Products of random cDNA ampli�cation were 
loaded on 1.2% agarose gels. Primer dimers and large fragments ( > 700 bp) were 
removed, and amplicons were extracted from agarose gels. Fragments were end-
repaired and a 454 sequencing library was constructed according to the GS Junior 
Rapid Library Preparation protocol (Roche, Penzberg, Germany). Emulsion PCR 
and sequencing reaction were performed as recommended by the manufacturer. 
Primer sequences were trimmed from each read, and all reads were aligned against 
the NCBI virus database using the tblastx local alignment algorithm in Geneious. 
All hits were scored and alignments with lengths less than 50 amino acids and  
a bit-score less than 40 were excluded.

Serological assays. Reactivity of human mumps virus with sera from di�erent 
insectivorous and frugivorous bats was tested using mumps virus (strain Jones)- 
infected cells (Euroimmun EU38, Lubeck, Germany). Prototype PVs used for com-
parison included measles virus (strain Edmonston), RSV (RSV B Wash/18537/’62 
(CH 18537)), parain�uenza virus 1 (PIV1, strain Sendai CPJ-3 13) and PIV2 (EU 
18/9, strain Greer). Bat sera were diluted 1/40 and detection was done using �rst a 
goat anti-bat immunoglobulin (Ig) (Bethyl Laboratories, Montgomery, TX, USA) 
followed by a donkey anti-goat Ig conjugated to cyanine 3 (Dianova, Hamburg, Ger-
many). Nuclei were stained with 4′,6-diamidino-2-phenylindole. Pictures were taken 
with a Motic �uorescence microscope (Zeiss). NiV indirect immuno�uorescence was 
performed with NiV-infected Vero cells and a strain isolated from human brain tis-
sue (kindly provided to AM by Jane Cardosa, Malaysia). Bat serum was diluted 1/10 
and 1/40, and detection was done with the goat anti-bat Ig (Bethyl Laboratories) used 
for mumps immuno�uorescence, followed by an Alexa Fluor 568 donkey anti-goat 
IgG (Invitrogen, Karlsruhe, Germany). A guinea pig anti-NiV serum was used as a 
positive control, followed by an Alexa Fluor 568 goat anti-guinea pig IgG.

Serum chemistry. A total of 119 native sera from E. helvum bats were analysed on 
a Dimension Vista automated analyzer (Siemens, Munich, Germany). �e number 
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of analysed parameters was limited by the amount of available sample material and 
included lactate dehydrogenase, alanine transferase, aspartate aminotransferase, 
gamma glutamyltransferase, albumin and total bilirubin.

Phylogenetic analyses. Nucleic acid alignments based on amino acid code were 
done in Mega4 (www.megaso�ware.net). Gap-free coding nucleotide sequence 
alignments were generated containing the novel viruses as well as reference strains, 
using the complete deletion option in which any site containing gaps was deleted 
from the data set (see Supplementary Table S3 for a list of all reference strains  
with isolation years, host and GenBank accession number). �e data set used for 
inference of Paramyxovviridae phylogenies comprised 559 nucleotide (nt). An 
additional analysis was done for only those rubulaviruses for which only a shorter 
217 nt fragment could be ampli�ed (see Fig. 2a, note that Supplementary Fig. S1 
includes only rubulaviruses with complete 559 nt coverage). Bayesian phylogenies 
were calculated with MrBayes V3.256 using amino acid sequences (WAG + G 
model) and nucleotide sequences (GTR + I + G model). Both analyses yielded 
identical topologies (Fig. 2 and Supplementary Fig. S1). Convergence of chains was 
con�rmed by the PSRF statistic in MrBayes57, as well as by visual inspection of 
individual traces using TRACER from the BEAST package58. Outgroups were  
Rabies virus (GenBank, NC_001542) for phylogenies, including the complete 
family Paramyxoviridae, Newcastle Disease virus for phylogenies of the genus 
Rubulavirus (GenBank, NC_002617) and Human Parain�uenzavirus 1 (GenBank, 
NC_003461) for the genera Henipa- and Morbillivirus. In parallel to the Bayesian 
analyses, maximum likelihood algorithms (WAG + G substitution model, 5 gamma 
categories and 1,000 bootstrap replicates) were applied using PhyML V3.059.  
Trees were visualised with FigTree V1.3.1 from the BEAST package58.

Estimation of known PV taxa and their GenBank representation. �e known 
diversity of PVs and their hosts is shown in Supplementary Tables S6 and S7. Sup-
plementary Fig. S6 summarises the numbers of GenBank entries of PV by ordinal 
host groups. �reshold amino acid distance values for classifying phylogenetic 
branches were estimated by comparing the maximum amino acid distances within 
and between established PV species in the corresponding sequence fragments. 
Measles virus, mumps virus and RSV were selected to determine the maximum 
within-species distances per fragment, based on their good coverage in sequence 
databases. Maximum amino acid diversity within all publicly available mumps 
virus sequences was 1.6% in the translated 559 nt fragment, 5.4% for measles virus 
and 6.1% for RSV. For comparison, the amino acid divergence between the species 
HeV and NiV ranged from 7.0 to 7.5% in this fragment. Only taxa exceeding 7.0% 
amino acid distance were therefore counted as separate viruses.

Ancestral state reconstruction. Bayesian phylogenies were calculated using new 
PV sequences from this study, as well as a set of reference sequences from ordinal 
mammalian host categories (bats, rodents, primates, carnivores, ungulates), as well 
as birds. Reference sequences were selected from GenBank to maximise the genetic 
distance per ordinal host category (Fig. 8). A total of 10,294 trees were extracted 
from the Bayesian phylogenetic analysis and ordinal mammalian host categories 
were assigned as noncontinuous state characters in Mesquite. Numbers of  
reconstructed trait changes according to an unordered parsimony assumption  
were summarised and averaged for each ordinal category over all trees. Recon-
structed character traits at root points were also summarised and recorded.

Hypothesis testing was done in Bayestraits40. �is analysis was based on the 
ML phylogenetic tree shown in Supplementary Fig. S1, including its 1,000 boot-
strapped replicas. ML-based reconstructions of trait changes were calculated for 
each of the 1,000 replicas in Bayestraits, and the resulting median and mean values 
were listed in Excel. For hypothesis testing, the whole analysis was repeated under 
di�erent restrictions that either synchronised the substitution rate assumptions of 
two di�erent trait change processes, or that assumed de�ned common ancestor 
nodes within the tree to be fossilised to particular hosts. For each analysis, the 
median and mean log likelihoods were recorded. Relative model likelihoods  
of alternative hypotheses were compared by subtracting the respective median  
log likelihoods and linearising them. 
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