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Abstract 

The European Project “Batteries 2020” unites nine partners jointly working on research and the 

development of competitive European automotive batteries. The project aims at increasing both the 

energy density and lifetime of large format pouch lithium-ion batteries towards the goals targeted for 

automotive batteries (250 Wh/kg at cell level, over 4000 cycles at 80% depth of discharge). Three 

parallel strategies are followed in order to achieve those targets: (i) Highly focused materials 

development; two improved generations of NMC cathode materials allows to improve the 

performance, stability and cyclability of state of the art battery cells. (ii) Better understanding of the 



ageing phenomena; a robust and realistic testing methodology has been developed and was carried out. 

Combined accelerated, real driving cycle tests, real field data, post-mortem analysis, modelling and 

validation with real driving profiles was used to obtain a thorough understanding of the degradation 

processes occurring in the battery cells. (iii) Reduction of battery cost; a way to reduce costs, increase 

battery residual value and improve sustainability is to consider second life uses of batteries used in 

electric vehicle application. These batteries are still operational and suitable to less restrictive 

conditions, such as those for stationary and renewable energy application. Therefore, possible second 

life opportunities have been identified and further assessed. In this paper, the main ageing effects of 

lithium ion batteries are explained. Next, an overview of different validated battery models will be 

discussed. Finally, a methodology for assessing the performance of the battery cells in a second life 

application is presented.   

 

Introduction 

The Batteries 2020 project is structured in nine separate work packages and the work plan is designed 

towards efficient achievement of significant results (see Figure 1). A reference first generation (G1) 

battery cell is being used at the beginning of the project as a benchmark for a better and thorough 

ageing understanding, development of standard methodology, modelling and lifetime prediction 

validation. In parallel, advanced active materials have been developed towards an intermediate second 

generation (G2) of improved high-energy cells, that are good performing and age robust. These novel 

G2 cells have been characterized by the optimized test protocols and procedures developed while 

analysing the G1 cells. In parallel to G2 cells ageing, second life uses of G1 cells was assessed and 

further improved materials for the third generation (G3) cells, towards EV targets has been further 

developed. The project is thought in terms of efficient iteration loops promoting rapid generation of 

results and know-how that can be implemented into the new generation of active materials, battery 

cells, testing methodologies and test procedures.  

 

Through the achievement of the different tasks, the project will deliver the knowledge for competitive 

European cell production. Standardized and optimized methods for lifetime testing and a lifetime 

model has been developed. A thorough understanding of ageing and cell degradation has been 

achieved through combination of tests, models and prediction. A complete characterization of the cells 

has been carried out and was used as the basis for the development of an electrical, an electrochemical, 

a thermal and a lifetime model. Further, the effect of variability of the first life aged cells on second 

life use was also analysed, which allow assessing the possible cost reduction of automotive batteries 

due to the identification of the residual value. The methodology employed for such second life battery 

ageing analysis is described in the last section of the present paper. 

 



 
 

Fig.1: work plan of the Batteries 2020 project. 

Lithium ion batteries ageing effects 

2016 the lithium-ion battery is commercially available for 25 years and has improved since the market 

entrance drastically. This shows that a lot of effort was put into research finding new materials for 

longer lifetime, higher energy density and power capability. Since the field of application has changed 

in these 25 years from consumer electronics and handheld devices to a main component of the drive 

train of electric vehicles, the lifetime comes more into focus. Depending of the application goals for 

service life differ drastically. Most challengeable and driving at the moment are mobile automotive 

applications. As explained in the abstract the goal of the project was to develop a battery that stands 

over 4000 cycles at 80% depth of discharge, which would result in a total drivable range from 400,000 

km (100 km range) to 2,000,000 km (500 km range). But beside the total range a car can cover, also 

the stored (idle) time is very important. The typical usage of a vehicle in Europe is between 8-10 

years. This show that lifetime just in storage is also a challenging task. 

To achieve this we have to take a look at this very complex system of many components. Anode, 

cathode, separator and electrolyte interact while charged and discharged and during storage. This 

makes the ageing even a more complex process, where it is not possible to separate different ageing 

mechanisms. But it is possible to determine the most dominant ageing processes for the components of 

the cells, and is shortly discussed below. 

The anode is the best known component in lithium ion batteries and consists in most cases of carbon 

materials, like graphite or hard carbon. For these materials the dominant ageing effects are basically 

known and can be separated in three parts: 

- Surface film formation on the particles 

- Degradation of the active material 

- Lithium metal deposition on the anode surface 



These materials have a typical voltage level of 0.05-0.5 V against metallic lithium when charged and 

discharged. At this potential the commonly used electrolytes (carbonates) are not stable and 

decompose on the anode surface within the first charge. The formed layer is called solid electrolyte 

interphase (SEI) and is necessary for the function of the battery. If this layer is formed well, it prevents 

a further decomposition of the electrolyte on the anode surface. Within this process mobile lithium 

between the electrodes is involved and also integrated into the SEI. Loss of mobile lithium leads to a 

capacity fade. Unfortunately the SEI doesn’t stop after the first cycle, but continues over the whole 

lifetime, which makes it the most dominant ageing effect in a lithium ion battery.  

Beside the film formation the graphitic anode materials also undergoes a volume change of 10% in the 

intercalation and deintercalation process of lithium. Volume change in active materials is equivalent to 

mechanical stress inside the particle and the SEI and results in cracks. Loss of active lithium by new 

SEI formation and loss of active material by contact loss are the consequences. Additionally a thicker 

surface layer on the anode results also in an impedance rise which is equivalent to power fade of the 

battery. 

As mentioned above the third main ageing mechanism at the anode side of a lithium ion battery is 

lithium metal deposition, which is also known as “plating”. Within the process of lithium plating, the 

intercalation reaction at the anode is too slow and the potential to low, so that the lithium ions tend to 

deposit on the particles in the metallic form. The low intercalation rate and the low potential at the 

anode (or parts of the anode) can be caused by low temperatures, high charging currents and 

inhomogeneous current and potential distributions. Deposited lithium reacts directly with the 

electrolyte and also forms a layer at the metallic surface. This consumes active lithium and electrolyte 

which results in capacity and power loss. Beside the influence on the battery performance, lithium has 

also the tendency to grow in dendritic form, which is a safety risk because these dendrites could grow 

and result in a shortcut between the electrodes.  

The focus in this project is on the development of new and better cathode materials. The ageing effects 

at the cathode, and especially the new materials, are less known, but can also be summarized within 

three groups of effects: 

- Ageing of the active material 

- Surface film formation 

- Interaction of ageing products with the negative electrode 

The active materials of the cathode in nowadays electric vehicles and also in this project are layered 

metal oxides with a variation of the used metals. The changes of these materials and the influence on 

the capacity loss are very small compared to the capacity loss over the lifetime. Similar to the anode 

mechanical stress can cause loss of active material and change of the composition can change the 

lattice structure of the crystals, which both lead to capacity loss and an increase in impedance. Similar 

to the anode, the stability of the electrolytes influences the surface film formation on the cathode side. 

Increasing the voltage of the electrode above 4.5 V against metallic lithium, the electrolyte gets 

decomposed on the cathode. This film formation also plays just a minor role for the total ageing of the 

cell, since tis high potentials are avoided by the upper cut-off voltage of the cell. Some materials, like 

manganese spinel or manganese rich nickel-manganese-cobalt layered oxides (NMC), the dissolution 

of the transition metal manganese plays the major role in the interaction of the anode. The manganese 

ions migrate to the anode and destroy the SEI layer, which leads in new SEI formation and with this an 

accelerated capacity loss and impedance increase. 

All the described ageing effects occur at the same time, but have different accelerators and rates. State 

of the art for identification of the influencing factors is based on accelerated ageing tests. These tests 

are performed with a variation of operating conditions like temperature, current rate, depth of 

discharge (DoD) and state of charge (SoC). The acceleration in comparison to the application is 

realized by deleting pauses and rest times. For studying the ageing mechanisms at storage conditions 

the cells are stored under defined and controlled environmental conditions and capacity fade and 



impedance increase are monitored. To get a good overview, a high number of cells need to be tested 

and each operating condition needs to be represented by multiple cells.  

In the Project “Batteries2020” the first generation of cells was tested with 161 batteries at 47 different 

conditions. In figure 2 you can see the calendric ageing behaviour of the commercial cell which is (in 

most of its behaviour) representative for many different cells. The capacity loss is faster for cells at 

higher temperatures, this indicates that cells should not be stored at high temperatures when not used. 

Additionally we can see in the middle of figure 2 that higher values for the SoC leads to much faster 

capacity degradation. A result from these ageing curves is that for an example an electric vehicle 

should best not be parked or stored for a long time at a high state of charge and only be charged just 

before the use, to achieve maximum battery life. These ageing curves are also used to parameterize the 

models, which are described in the next section. 

 

Fig. 2: Calendric ageing curves from the G1 “Batteries2020”cell at different temperatures and SoC. 

As described above, beside the pure storage of the cell, the use (cycling) of the battery also adds, 

additional capacity loss. Figure 3 shows the remaining capacity curves of cycled cells where the cell 

temperature was kept 25°C while cycling. Also here the cycling depth (DoD) has a big influence on 

the lifetime. Cells that were charged and discharged completely in every cycle are ageing much faster 

than cells that were only discharged partially. As a conclusion we can say that discharging the cell 

more deeply before recharging, is not beneficial for the lifetime. Keeping in mind the findings from 

calendric ageing, long time storage at high SOC levels is not beneficial for the battery ageing. Further 

information on the ageing and the internal processes can be found in our publications that will be 

published in the near future. 

0 200 400 600
80

85

90

95

100

Storage Time / Days

C
a
p
a
c
it
y
 /

 %

Ageing at 25°C

0 200 400 600
80

85

90

95

100

Storage Time / Days

C
a
p
a
c
it
y
 /

 %

Ageing at 35°C

 

 

100% SoC

80% SoC

65% SoC

50% SoC

35% SoC

20% SoC

0 200 400 600
80

85

90

95

100

Storage Time / Days

C
a
p
a
c
it
y
 /

 %

Ageing at 45°C



 

Fig. 3: Remaining capacity curves of cyclic aged cell at 25°C for different values of the depth of 

discharge (DoD). FEC denotes full equivalent cycles and provides a same Ah-throughput value for the 

different depth-of-discharge conditions. 

 

Validated dynamic electrical battery model 

Models that describe the electrical behaviour of the battery have been extensively studied and 

developed in academia [1]–[9]. There exist multiple models that can be used to describe the electrical 

response of the battery and in this study those have been categorized as follows: 

• Analytical models; 

• Electrical ECM models; 

• Frequency domain models. 

Electrical models are mainly semi-empirical models where characterization techniques are 

performed to identify the different parameters of the battery. Those characterization techniques have 

been extensively described in different standardization documents [6], [7], [10]–[13] and they are 

generally composed of: 

• Capacity test: defining the discharge/charge capacity of the battery; 

• Open circuit voltage (OCV) versus SoC test: relating the SoC levels with the open circuit voltage 

of the battery; 

• Hybrid pulse power characterization (HPPC) test: to define the internal resistances and SoC of the 

battery; 

• Electrochemical impedance spectroscopy (EIS) test: define the internal resistance and impedance 

of the battery. 
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Equivalent Circuit Model for NMC lithium-ion battery cells 

A set of ECM models has been created to simulate the behaviour of the battery cell under 

different ECM topologies and temperatures conditions of the battery NMC chemistry of the Batteries 

2020 project. In addition, different SoC-estimation techniques (Coulomb counting and extended 

Kalman Filter) have been incorporated into the electrical battery models. 

The battery models created are based on parameters calculated from two types of characterization 

tests: the so-called normal and advanced characterisation tests. Normal and advanced characterization 

tests have been developed to acquire a better understanding of the battery cell behaviour at the 

complete rang of (from high to low) SoC levels. The normal characterization tests consists of 

performing a specific test (i.e., HPPC, OCV-SoC) at each 5% step of the total SoC window, while 

advanced characterization tests consists of separating the total SoC window into three parts where the 

high SoC levels (from 100% to 90%) and the low SoC levels (from 10% to 0%) tests are performed in 

2% steps of the SoC, while the middle SoC window (from 90% to 10%) with 5% steps. Two types of 

ECM topologies were utilized: the 1st order and the 2nd order Thévenin battery model. The extended 

Kalman filtering technique was applied on this 2nd order Thévenin battery model. Further, this 

topology that has also been validated with a more dynamic profile based on the Worldwide 

Harmonized Light vehicle (WLTC) driving profile. The validation of all models has been performed at 

multiple values of the temperature (from 15 °C, 25 °C, 35 °C and 45 °C) by means of the dynamic 

discharge pulse test (DDPT). The voltage response error between the simulated and measured results 

is calculated according to the Equation 1 below. 

 

err % = 100×
𝑉!"#$%&"' −  𝑉!"#$%&'()

𝑉!"#$%&"'

 (1) 

 

Table I: Results of the 1
st
 Order Thevenin ECM models at different temperatures with 

normal characterization parameters in which the error remains lower than the proposed in the 

given specific SoC-window. 

Temperature SoC window ≤Error 

15 °C 100%–16% ±2% 

25 °C 100%–10% ±2% 

35 °C 100%–12% ±2% 

45 °C 100%–5% ±2% 

 

Table II: Results of the 1
st
 Order Thevenin ECM models at different temperatures with 

advanced charracterization parameters in which the error remains lower than the proposed 

±2% in the given specific SoC-window. 

Temperature SoC window  ≤Error 

15 °C 100%–15% ±2% 

25 °C 100%–7% ±2% 

35 °C 100%–8% ±2% 

45 °C 100%–4% ±2% 

 



 

Fig. 4: Comparison of the 2
nd

 order Thévenin ECM model simulated voltage response (red) 

with the measured voltage response (blue) based on the DDP test at 25 °C with Coulomb 

counting SoC estimation and with advanced characterization parameters. 

 

Fig. 5: Error of the 2
nd

 order Thévenin ECM model based on the DDP test at 25 °C with 

Coulomb counting SoC estimation and with advanced characterization parameters. 

 



 

Fig. 6: Comparison of the dynamic behaviour of the 2
nd

 order Thévenin ECM model 

simulated voltage response (red) with the measured voltage response (blue) based on the 

DDP test at 25 °C with Coulomb counting SoC estimation and with advanced 

characterization parameters. 

 

Table III: Results of the 2
nd

 Order Thévenin ECM models at different temperatures with 

advanced characterization parameters in which the error remains lower than the proposed 

error in the given specific SoC-window. 

Temperature SoC-window  ≤Error 

15 °C 100%–9% ±2% 

25 °C 100%–7% ±2% 

35 °C 100%–10% ±1% 

45 °C 100%–4% ±1% 

 

Table IV: Results of the 2
nd

 Order Thévenin models at different temperatures with advanced 

characterization parameters & extended Kalman filter in which the error remains lower than 

the proposed error in the given specific SoC-window. 

Temperature SoC-window  ≤Error 

15 °C 100%–5% ±2% 

25 °C 100%–0% ±2% 

35 °C 100%–3% ±1% 

45 °C 100%–0% ±1% 

 

Observing these modelling results, some general observations can be mentioned: 

• Higher temperature conditions leads to more efficient NMC lithium ion ECM modelling results; 

• More complex ECM topologies (second order vs. first order ECM) will increase the accuracy of 

NMC lithium-ion ECM models; 

• Applying a more advanced SoC estimation technique (Extended Kalman Filter vs. Coulomb 

counting) will increase the accuracy of NMC lithium-ion ECM models; 

• The models created, can deal with dynamic profiles such as the WLTC profile. 

 



The main conditions that are predominantly affecting the accuracy of the models is the 

temperature and the state of charge. This effect can be observed on both ECM topologies, for both 

types of characterization results used and for both the Coulomb counting and the extended Kalman 

filtering SoC estimation technique. This phenomenon can be explained by the fact that when operating 

a battery cell at higher temperatures, the kinetic electrochemical reactions inside the cell are improved, 

making the behaviour of the cell at this condition more pronounced and homogeneous compared to 

that at lower temperatures. Operating the cell at low SoC levels (typically below 10% SoC) at any 

temperature also results in a more unpredictable (nonlinear) manner. Thus, when determining the 

model parameters from the characterisation tests at low temperature and/or low SoC values, the 

resulting electrical ECM model will suffer from more non-linear errors during the simulation. The 

main errors that have been encountered during the simulations can be identified at the high and low 

SoC window of the simulations. This effect as described above is minimized when increasing the 

temperature condition at which the model parameters were created. Further, a clear improvement is 

observed in the models when changing the topology of the models from 1
st
 to 2

nd
 order Thévenin 

model. This effect can be clearly observed between the 1st and 2nd order Thévenin model at 25 °C 

models while also at the others temperatures. The 1st order Thévenin model at 25 °C using advanced 

characterization datasets has a similar overall accuracy as the 2nd order Thévenin model at 25 °C 

using advanced characterization datasets. However, the error at very high and low SoC-levels in the 

case of the 2nd order Thévenin model is further reduced. 

Inspecting the 2nd order Thévenin models with Coulomb-counting and extended Kalman filtering 

SoC-estimation technique we observe a clear improvement in the accuracy of the model. Due to the 

extended Kalman filtering method, used to recalculate and actualize the SoC-value of the cell in the 

model, the overall accuracy of our models is further increased while we observed a clear improvement 

in the dynamic representations of the models. Comparing the 1st order models created with normal 

characterization and advance characterization datasets we observed that the accuracy of the models is 

increased but is not substantial as it is when changing temperature, topologies and SoC-estimation 

techniques. Furthermore, the dynamic behaviour has been improved more than the overall accuracy of 

these models by the change of the characterization datasets from normal to advanced. 

Collecting all these observations the electrical model that should provide the best simulation 

accuracy and dynamic behaviours during the simulation should be models with complex topologies. In 

this regard, the most efficient model created for this study was the 2nd order Thévenin model with 

advanced characterization datasets and extended Kalman filtering SoC-estimation technique. The best 

performance is achieved when considering higher operating temperatures, in particular in when the 

cell is operated at 45 °C. Future work will investigate more in-depth the development of ECM models 

based on a high number of cells creating average parameters for a batch of cells and comparing them 

to average validations profiles provided by the combination of the validations results (average DDP 

and WLTC profiles for a batch of cells). This analysis will provide a better understanding of the 

behaviour of a set of NMC cells, which represents with higher fidelity the situation observed in an 

automotive battery pack combined with a BMS. 

  

  



Development of a lifetime model 

 

The aim of a lifetime model is to estimate the evolution of one or more performance parameters 

during the lifetime of the cell. For the “Batteries2020” project, these performance parameters are 

the following:  

- Capacity  

- Power capability 

 

The capacity evolution is straightforward: it describes the total available charge or discharge 

capacity while the battery is subjected to various operating conditions (stress conditions), and thus 

degrading. The power capability evolution describes the capability of the cell to deliver power 

over the course of the lifetime of the cell, and this parameter is directly related to the internal 

resistance (RINT) of the cell.  

Cell degradation happens both during operation (Cycling ageing) and during stationary time 

periods (Calendar Ageing), when no current is flowing through the cell. These are two 

independent factors in the degradation of the cell, and must be modelled independently.  

The stress conditions are the external parameters that influence the cell performance degradation. 

These conditions are classified as follows:  

- Cycling ageing stress factors:  

- Temperature; 

- Depth-of-Discharge (DOD); 

- Middle State-of-Charge (Mid-SOC); 

- Charge current rate; 

- Discharge current rate. 

- Calendar ageing stress factors:  

- Storage Temperature 

- Storage State-of-Charge 

 

All these stress factors are independently influencing the degradation of the cell, and their 

influence must, therefore, be modelled separately. It is important to note that while the cell is 

subjected to cycling, calendar ageing will still take place. 

Finally, the lifetime model must be able to estimate the capacity loss and power fade of a cell that 

is subjected to a driving profile, which means that both models (cycling ageing model and 

calendar ageing model) have to be able to work together in order to correctly estimate the ageing 

factor. 
 

Cycling ageing modeling Input data 

 

An important factor to take into account when developing a cycling ageing model is that while the 

cell is cycling, it’s also subjected to calendar ageing. This is especially important since the aim of 

the combined ageing model is to estimate the ageing during cycling and calendar ageing 

combined. If we fail to account for the calendar ageing contribution to the overall cycling ageing 

data, the model will effectively estimate the calendar ageing twice. 

This is effectively achieved in the following manner:  

- Extract the dates of each capacity check-up test; 

- Calculate the ageing contribution from ageing using the Calendar Ageing model; 

- Subtract the capacity loss due to calendar ageing from the measured capacity values from 

the capacity tests. 

The resulting capacity values can be considered to be the result of ‘pure’ cycling ageing. An 

example can be seen in Figure 7.  



 
Fig. 7: Calculation of the pure cycling ageing. 

 
Cycling ageing model 

 

The following cycling stress factors are considered in this model1:  

- Temperature (°C) 

- Depth of Discharge (DOD, %) 

- Middle State-of-Charge (Mid-SOC, %) 

 

The general layout of the cycling ageing model can be found in Figure 8. As can be seen, the 

model currently consist of two stages, which are used in a sequential manner:  

- Stage 1: Calculate the influence of the temperature and DOD, with following assumed 

conditions:  

o Mid-SOC: 50%; 

o Charge rate: C/3 

o Discharge rate: 1C 

- Stage 2: Calculate the deviation in Capacity loss due to a Mid-SOC other than 50%.  

- Final result: Add the results from Stage 1 and 2, resulting in the Capacity loss due to 

DOD, Mid-SOC, Temperature and Cycle number. 

 

 
Fig. 8: General layout of the Batteries2020 Cycle Ageing model 

                                                
1
 At the time of writing this paper, the influence of charge and discharge current rates has not been modeled yet, 

however, this is under development.  



 
The model itself is constructed in two successive actions:  

1. Extend the measured input data using a 2D polynomial 

2. Use the extended input vectors as input for a 3D polynomial surface fit.  

These two steps are visualized in Figures 9 and 10.  

 

Fig. 9: 2D Extrapolation of measured input data Fig. 10: 3D Surface fitting of extended input data 

 

The final 3D Surface allows the interpolation between measured DOD levels, as well as extrapolation 

towards the EOL of the cell. As these surfaces are constructed for 3 input temperatures (25, 35 and 

45°C), these are also used for interpolation between temperatures. The exact same methodology is 

used for fitting and modeling the influence of the Mid-SOC.  

 

 

Calendar ageing model 
The following calendar ageing stress factors are considered in the calendar-ageing model:  

- Storage temperature (°C); 

- Storage State-Of-Charge (%). 

 

As the influence of these parameters are often quite hard to predict due to the fact that the time needed 

to perform tests that show sufficient calendar ageing is in most cases prohibitively long, the 

predictions are supported by two electrochemical equations:  

1. Arrhenius equation, describing the evolution of the reaction rate depending on the temperature 

 

𝐴(𝑇)  =  𝑎 ∗ [𝑒𝑥𝑝(𝑏/𝑇)]   (2) 

2. Tafel equation, which relates the rate of an electrochemical reaction to the over-potential 

𝛥𝑉 = 𝐴 ∗ 𝑙𝑛(
!

!!
)   (3) 

The following empirical equation was found to fit the input measurement points: 	

𝑓(𝑡, 𝑆𝑂𝐶,𝑇)  =  𝑎 · 𝑡 𝑏 · 𝑆𝑂𝐶 𝑐 + 𝑑 ·  𝑡 · 𝑆𝑂𝐶		 	 (4)	

With: 

𝑎(𝑇) = 𝑎! ∙ 𝑇
!! 	+ 𝑎!		 	 (5)	

𝑏(𝑇) = 𝑏! ∙ 𝑇
!! 	+ 𝑏!	 	 (6)	



𝑐(𝑇) = 𝑐! ∙ 𝑇
!! 			 (6)	

𝑑(𝑇) = 𝑑! ∙ 𝑇
!
+ 𝑑!	∙ 𝑇 + 𝑑!				 (7)	

And the following variables:  

Table V: numerical values of the variables from equations 5 till 7.	

𝑎!=	-7.007	 𝑏!=	3.459e-14		 𝑐!=	0.003542		 𝑑!=	-2.457e-06		

𝑎!=	-0.6682	 𝑏!=	7.815		 𝑐!=	1.395		 𝑑!=	-0.0001313		

𝑎!=		0.5259		 𝑏!=	0.3124		 	 	

𝑑!=		0.001928	 	 	 	

 

The result of this equation is pictured in Figure 11, where the lifetime, expressed in years, is estimated 

for an EOL criterion of 20% capacity loss, in function of Storage SOC from 20% to 100% SOC, and 

temperature from 25°C to 45°C. 

 

 
Fig. 11: Calendar lifetime at different conditions (SoC and temperature) until 20% capacity degradation. 

 

 

The schematic overview of the complete ageing model can be seen in Figure 12.  
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Fig. 12: Schematic overview of the complete ageing model 

 

 

Thermal modelling and ageing assessment of the thermal parameters 

 

Thermal modelling of the first generation NMC cells 

 
Along with the electrical performance, the thermal characteristic of li-ion batteries is very important 

topic to study because temperature influences both short-term (capacity, efficiency, self-discharge) 

and long-term (lifetime) behaviour of lithium-ion batteries. Moreover, the thermal modelling is 

gaining its importance due to the increased charging and discharging power capabilities of modern 

batteries and more compact designs of the modern battery packs in order to limit the volumetric 

energy density of the EV batteries. 

 

Thermal behaviour of the li-ion batteries has been studied in a number of publications and they are 

usually complex models and they often require coupled electrochemical model to provide accurate 

information about battery cells temperature evolution at different operating conditions [14-20]. 

In Batteries 2020 project, a reliable thermal model has been developed to describe the thermal 

performance of a small stack composed of two li-ion cells during its first life. A simple but very 

efficient 1D-thermal lumped model has been chosen to limit time and computational resources needed 

to perform transient simulations. The thermal model was developed in Matlab/Simulink® environment 

in order to make viable the future interaction between the diverse models in the Batteries2020 project. 

 

In the present work, a thermal model of a simple Begin of Life (BOL) first generation (G1) dual cell 

system (BOL Stack) has been developed and experimentally validated by means of temperature 

measurements. These measurements are made using K-type thermocouples placed on the symmetry 

plane between the two cells. An average value of both the temperature measurements will be used as 

the experimental reference to check it against the model predictions. The expected thermal 

performance of such a dual system is schematically presented in Figure 13. If the dual system is 

composed of cells at very different ageing states, a different thermal performance could be expected. 

This performance should be easily modeled and traced by following the proposed approach and using 

an adequate test bench. Only the transversal path for the heat diffusion will be considered in this study 

for simplicity, isolating all the lateral zones of the system. 

 
 



       
 

 

t=0         t=1                     t= 2              t= n 

Fig. 13: Thermal transient performance of a dual cell system (green zones represent the cells, orange 

zones are TIM layers to avoid air spaces and blue zones are some hypothetic heat dissipaters). The red 

curve represents the evolution of the temperature in time inside the system as different snapshots. 

 
The thermo-electrical parameters that have been used in this case for G1 cells at BOL can be seen in 

Figure 14 and the used thermo-physical values are provided in Table VI. In order to predict an 
accurate SOC variation, the sensetivity of the electric capacity with the temperature has been taken 

into account in the thermal model by means of simple coulomb counting technique. 
 

    
Fig. 14: Thermo-electrical properties of G1 battery cell: internal resistance (left) and the entropic heat 

coefficient (EHC) (right). 

 
Table VI: Thermo-physical properties of G1 cells. 

Parameter Value Units 

Mass 0.417 kg 

Thermal conductivity 1.9 W/m·K 

Thermal capacity 1254 J/kg·K 

 
The developed thermal model was experimentally validated using a custom-made test bench (wind 

tunnel). In the developed air tunnel, pulse width modulation (PWM) was used to control the value of 

air velocity. The tunnel was calibrated for different values of air velocity (external convective force). 

The heat dissipation by radiation was neglected. 

 

By maintaining the external forced convective boundary conditions invariable, a complete 

experimental validation campaign has been performed consisting of 9 tests in the normal operational 

window (ambient temperatures of 10 °C – 40 °C, C-rates up to 2C, a DOD up to 50% with a middle 

SOC of 50%) for the G1 cells. External ambient temperature has been modified using a climatic 

chamber at three different temperature levels: 15 °C, 25 °C and 35 °C. At each ambient temperature 

level, discharging and charging (DCH/CHA) profiles with different C-rates and different DODs have 

 
 

 
 

 
 

 
 



been applied to both cells in a parallel electric configuration. The obtained results at 25 ᵒC are 

presented in Figure 15. 

 

 
Fig. 15: Comparison between numerical and experimental results for tests at 25ᵒC for L (0.5C current 

rate with a DOD of 40%), M (1C current rate with 30% DOD) and H (1C charge, 2C discharge current 

rate with a DOD of 20%) cycles. 

 
An absolute mean time-averaged error of only 0.5% has been achieved in the temperature prediction 

for very diverse conditions what confirms high accuracy of the developed thermal model. The 

magnitude error is relatively higher at low temperatures. 

The absolute time-averaged error for all 9 tests is presented in Table VII. 

 

Table VII: Absolute time averaged error for 9 tests. 

T(ᵒC) L M H 

15 0.75% 1.46% 2.85% 

25 -0.05% -0.29% 0.81% 

35 -0.38% -0.42% 0.07% 

 
 

The evolution of battery cells thermal parameters with battery ageing 
 

In Batteries2020 project, the evolution of the most important thermal parameters for the NMC against 

grafite G1 cells was investigated in order to determine how battery cell thermal behaviour is changing 

with battery ageing. The thermal parameters, which were considered for this analysis and which have 

been determined experimentally, are the internal resistance and the entropic heat coefficient (EHC). 

These two parameters are considered the most important contributors to the heat generation. 

 

In order to analyze the effect of ageing, which is caused by the different stress factors (i.e. 

temperature, charging and discharging C-rate, depth-of-discharge (DOD), and middle SOC), nine 

NMC-based battery cells were aged at the conditions summarized in Table VIII. 

 



 

The DC internal resistance of the NMC battery cell is obtained by following the hybrid pulse power 

characterization (HPPC) test that is presented in Figure 16. 

 

 
Fig. 16: Applied HPPC pulse train for measuring the DC internal resistance 

The obtained results for different test cases are presented in Table IX. 

 

Table IX. DC internal resistance increase for the NMC/C battery cells 

Cell FEC Temp Rin Cell FEC Temp Rin 

G270 1500 25
 o

C 8.1 % G275 1500 35
 o

C 4.8 % 

G271 1100 35
 o

C 24.1 % G276 1500 35
 o

C 46.1 % 

G272 1500 35
 o

C 82.9 % G277 1500 35
 o

C 117 % 

G273 1500 35
 o

C 34 % G278 1300 45
o
C 163.7 % 

G274 1500 35
 o

C 16.3 %     

 

Open circuit potential (OCP) measurements were performed for nine SOC levels, considering a 10% 

SOC resolution (90:10:10%) during a full discharge of the cell in order to determine the EHC. 

Thermal cycle, presented in Figure 17, was utilized at different the different SOC levels of the battery 

cells. The exemplification of the battery cell open circuit voltage response during the thermal cycle is 

presented in Figure 18. 

 

 
Fig. 17:  Applied EHC thermal profile. 

 
Fig. 18 Battery cells voltage variations at 50% 

SOC for thermal profile presented in Figure 17. 
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Table VIII: Cycle ageing test conditions for nine NMC/C battery cells 

Stress factor I II III IV V VI VII VIII IX 

C-rate (cha/dch)C/3 – 1C C/3 – C/3 C/3 – 1C C/3 – 2C C/3 – 1C C/3 – 1C C/3 – 1C C/3 – 1C C/3 – 1C 

T (
o
C) 25 35 35 35 35 35 35 35 45 

DOD (%) 80 80 80 80 80 50 50 50 80 

Middle SOC (%50 50 50 50 65 50 35 50 50 

Max SOC (%) 90 90 90 90 90 75 60 60 90 

Min SOC (%) 10 10 10 10 40 25 10 40 10 

Cell reference G270 G271 G272 G277 G273 G274 G275 G276 G278 
 



 
Fig. 19: The EHC values during ageing for cell G278. 

 

The obtained EHC values during ageing for cell with reference G278 are presented in Figure 19. 

 

The obtained results after performing 1500 FEC have shown that studied thermal parameters have 

shown consistent changes in their values. The DC internal resistance was varying significantly with 

the battery ageing and is strongly contributing to the irreversible heat generation of the cell. 

For the EHC, the most noticeable variations occurred for the most degraded battery cells. The highest 

values of the EHC shifted from the middle SOC range to the higher SOC values (see Figure 19) during 

ageing. This EHC trend was consistent with battery ageing. 

 

Second Life Battery Testing Methodology 

Application profile definition methodology 
 

Two main applications were considered for the second life battery testing. On the one hand, a Spanish 

residential household was considered, which is composed of residential loads, a roof-mounted 

photovoltaic (PV) system and a second life battery energy storage system (herein referred as 

SLBESS). This application represents a low-demand application, in which low current rates (C-rate) 

and low depth of discharge (DOD) cycles are mostly recorded. Further details on this residential 

profile can be found in [21]. 

On the other hand, a SLBESS is considered in order to mitigate the power variability of a grid-scale 

PV plant. The unpredictable nature of intermittent renewable energy resources produces significant 

variability on the power output provided to the grid. Therefore, implementing a SLBESS to reduce 

such power variability represents a high-demand application, especially in terms of C-rate, DOD and 

number of cycles-per-year. Further details can be found in [22]. 

In order to calculate the power demanded from the battery system, the battery pack (BP) sizing 

optimization methodology described in Figure 20 was followed. After obtaining the optimal sizing of 

the SLBESS for the two applications, as described in [21], [22], the power demanded to the battery 

pack during one-year operation is calculated. Considering the G1 cells mentioned before, a series-

parallel configuration of the battery system is then defined, which allows assessing the current 

throughput profile at cell-level. 
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Fig. 20: SLBESS sizing and profile definition methodology. 

  

Figure 21 shows the current demanded to the battery in the two applications described: 

 

 

a)	

 

  b)	

Fig. 21: Current demanded from the battery during one-year operation with the optimal SLBESS 

sizing for a) the residential demand charge management application and b) power smoothing 

renewable integration application. 

 

Application Profile Synthesis 

 
With the objective of shortening the testing time and obtaining results in the most effective way, the 

current profiles obtained for each second life application were synthesized. The one-year operation 

profile of each of the two applications was shortened to an accelerated one-month profile (one per 

application). Considering the current profiles of the two applications mentioned before, it was 

observed that most of the time the batteries remain in idle state; this is especially the case of the power 

smoothing renewable integration application, for which the idle time accounts up to c.a. 95% of the 

year. The idling operation contributes to the calendar degradation of the battery cells, but it is expected 

to slow considerably the battery ageing rate. According to the battery ageing behaviour observed in the 

first life, it is expected that this way of shortening the profiles will also accelerate battery ageing due 

to an increased ratio of cycling time versus total testing time. 

 

The steps carried out for the synthesis of the application profiles are summarized as follows: 

1. Elimination of the pauses. The resultant profile after eliminating the pauses in the 

original application profile is considerably shorter. 



2. Selection of one-month length profile. In the case when the shortened profile was still 

longer than the desired one-month profile, the most representative parts of the profile were 

selected to produce a one-month duration profile. 

3. Introduction of reduced storage time in the one-month profile. A certain percentage of 

storage time was introduced intentionally to limit the stress produced by the profile, while 

enabling the analysis of the effect of coupling storage and cycling periods on battery 

ageing. 

Additionally, in the case of the residential application, the electrical current values were magnified by 

a factor of four, while each pulse’s duration was divided by the same factor of four. This scaling factor 

contributes to accelerating battery degradation, while keeping the shape of the SoC profile of the 

tested batteries unchanged. 

 

The one-month duration profile of both residential and power smoothing applications is shown in 

Figure 22. Compared to the original application profiles, obtained from the sizing approach, the power 

smoothing application profile comprises the cycling of two-year operation on a single month, whereas 

the residential application profile covers c.a. 65% of the cycles performed during one-year operation. 

 

 
Fig. 22. One-month synthesized current profile of the two applications considered: power smoothing 

application (blue) and residential application (red). 

 

Second life ageing test plan 
Two experimental activities have been considered for the analysis of the performance and degradation 

behaviour of second life batteries: testing of batteries at cell-level and at stack-level. 

It is expected that both first life history – i.e. the stress condition during electric vehicle (EV) use of 

the batteries – and the selected second life application have a significant effect on second life battery 

degradation. For this reason, cells with different first life ageing conditions are tested under the two 

different application profiles: a residential demand response management application and a power 

smoothing application for a grid-scale PV plant. On the one hand, cells tested in first life with real life 

EV profiles are used for testing second life batteries at cell level (with the two synthetic application 

profiles described above). On the other hand, cells tested in first life according to different static 

ageing conditions (each ageing factor is kept constant over the whole first life testing) are also tested 

both at cell and at stack level. Stack testing covers only the power smoothing renewable integration 

application, due to cell and equipment limitations. Each of the considered stacks consists of 3 cells 

connected in series. 

The SOH level of the cells at the end of first life is expected to be a key factor affecting battery 

performance and degradation behaviour during second life use. For this reason, cells at different SOH 

levels have been included in the analysis, and SOH heterogeneity has also been taken into account to 

group the cells at each of the stacks. Cell-to-cell homogeneity/heterogeneity was evaluated in terms of 

actual capacity, internal resistance and number of cycles performed during first life. Thereby, two 



homogeneous stacks and another two heterogeneous stacks were built. The homogeneous stack is 

composed of cells with similar first life history and similar SOH levels. Contrarily, the heterogeneous 

stacks were built according to two different criteria: 

 a) using cells with very different first life history and with very different SOH level, and 

 b) using two cells coming from the same first life condition and a third one coming from a different 

first life condition, with a SOH level different from the SOH level of the two other cells (with reduced 

heterogeneity).  

 The whole test plan is summarized in Figure 23, where cells coming from different first life 

conditions are distributed and used for cell-level or stack-level second life testing conditions after 

being subjected to End of Test (EOT) characterization procedures.  

 
Fig. 23: Block diagram of the transition from the first life testing conditions to the second life testing. 

 

Conclusions 

 
This paper provides a summary of some main outcome of the Batteries 2020 project. A first section is 

related to the understanding of ageing and degradation mechanisms observed in lithium ion cells. As a 

conclusion we can say that discharging the cell more deeply before recharging, is not beneficial for the 

lifetime. Keeping in mind the findings from calendric ageing, long time storage at high SOC levels is 

not beneficial for the battery ageing. A second section is related to advanced dynamic electrical 

models developed for the NMC lithium ion batteries. Advanced characterisation procedures in 

combination with a proper SoC estimation technique results in a well performing electrical ECM 

model with a good overall accuracy and good representation of the dynamic behaviour of voltage 

response of the cell. A third section describes the development of a lifetime model. This model is 

composed of a cycling ageing model and calendar-ageing model and is based on an extensive set of 

ageing test. A fourth section describes the development of a thermal model and the study of the 

evolution of the thermal parameters with cell ageing. The DC internal resistance was varying 

significantly with the battery ageing and is strongly contributing to the irreversible heat generation of 

the cell. For the EHC, the most noticeable variations occurred for the most degraded battery cells. The 



highest values of the EHC shifted from the middle SOC range to the higher SOC values during ageing. 

Finally, in the fifth section, the methodology designed for second life battery testing was described.  
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