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ABSTRACT As batteries become more prevalent in grid energy storage applications, the controllers that

decide when to charge and discharge become critical to maximizing their utilization. Controller design for

these applications is based on models that mathematically represent the physical dynamics and constraints

of batteries. Unrepresented dynamics in these models can lead to suboptimal control. Our goal is to

examine the state-of-the-art with respect to the models used in optimal control of battery energy storage

systems (BESSs). This review helps engineers navigate the range of available design choices and helps

researchers by identifying gaps in the state-of-the-art. BESS models can be classified by physical domain:

state-of-charge (SoC), temperature, and degradation. SoC models can be further classified by the units they

use to define capacity: electrical energy, electrical charge, and chemical concentration. Most energy based

SoC models are linear, with variations in ways of representing efficiency and the limits on power. The

charge based SoCmodels include many variations of equivalent circuits for predicting battery string voltage.

SoC models based on chemical concentrations use material properties and physical parameters in the cell

design to predict battery voltage and charge capacity. Temperature is modeled through a combination of

heat generation and heat transfer. Heat is generated through changes in entropy, overpotential losses, and

resistive heating. Heat is transferred through conduction, radiation, and convection. Variations in thermal

models are based on which generation and transfer mechanisms are represented and the number and physical

significance of finite elements in the model. Modeling battery degradation can be done empirically or based

on underlying physical mechanisms. Empirical stress factor models isolate the impacts of time, current, SoC,

temperature, and depth-of-discharge (DoD) on battery state-of-health (SoH). Through a few simplifying

assumptions, these stress factors can be represented using regularization norms. Physical degradation models

can further be classified into models of side-reactions and those of material fatigue. This article demonstrates

the importance of model selection to optimal control by providing several example controller designs.

Simpler models may overestimate or underestimate the capabilities of the battery system. Adding details

can improve accuracy at the expense of model complexity, and computation time. Our analysis identifies six

gaps: deficiency of real-world data in control literature, lack of understanding in how to balance modeling

detail with the number of representative cells, underdeveloped model uncertainty based risk-averse and

robust control of BESS, underdevelopment of nonlinear energy based SoC models, lack of hysteresis in

voltage models used for control, lack of entropy heating and cooling in thermal modeling, and deficiency

of knowledge in what combination of empirical degradation stress factors is most accurate. These gaps are

opportunities for future research.

INDEX TERMS Batteries, modeling, distributed energy resources, battery energy storage system (BESS),

state-of-charge (SoC), state-of-health (SoH), energy storage, optimal control.
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Term Meaning
Ah - ampere-hour
BESS - battery energy storage system
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BoL - beginning-of-life

BMS - battery management system

CRM - charge reservoir model

EER - energy efficiency ratio

EMS - energy management system

EoL - end-of-life

ERM - energy reservoir model

EPRI - Electric Power Research Institute

HVAC - heating ventilation and air conditioning

kW - kilowatt

kWh - kilowatt-hour

LQR - linear quadratic regulator

MPC - model predictive control

P2D - pseudo two-dimensional model

SEI - solid electrolyte interphase

SNL - Sandia National Laboratories

SPM - single particle model

SoC - state-of-charge

SoH - state-of-health

SoL - state-of-life

ToU - time-of-use

Symbol Decision variable description

p - ac power provided to the BESS

pdc - dc power provided to the battery

ibat - dc current provided to the battery

vbat - battery terminal voltage

voc - open-circuit-voltage

ς - state-of-charge

cp - concentration in the cathode

cn - concentration in the anode

8p - cathode half-cell potential

8n - anode half-cell potential

ηp - cathode overpotential

ηn - anode overpotential

τ - peak net electrical load

T - battery surface temperature

T ′ - battery internal temperature

TEN - BESS enclosure temperature

pHVAC - ac power provided to the HVAC unit of the

BESS

˙̺ - degradation rate (rate of change in SoH)

fd - aggregate degradation stress factor

St - time degradation stress factor

Sς - state-of-charge degradation stress factor

ST - temperature degradation stress factor

δ - depth-of-discharge

Sδ - depth-of-discharge degradation stress factor

x - generalized decision variable in a given

application problem (subscript denotes model

used: ERM, CRM, SPM, T (temperature),

H (degradation))

Simplified vector, vector equation, and vector function

notation

- If z is a decision variable, z is a column vector of decision

variables. This is normally used to indicate decision variables

at discrete times (e.g., p at each time-step in a control horizon

becomes p)

- The expression z[1:3] denotes a column vector with the

elements of z indicated by the index(es) (in this case, the first

three elements)

- The expression z + y denotes a column vector that is the

element-wise addition of the vectors z and y

- For the scalar value b, the expression b[1] denotes the

multiplication of the constant (b), times a vector of ones ([1]),

that produces a column vector that is populated with b

- The vector equation z + y = b[1] denotes a number of

equations equal to the length of z and y, each with indexed

variables (a.k.a, z[1] + y[1] = b, z[2] + y[2] = b, etc.)

- The vector equation z + y = b[1], can alternatively

be written as g(z, y) = [0] where g is the vector function

g(z, y) = z + y − b[1]

Parameters

Model parameters are introduced and explained together

as there are too many to list here. All parameters used in the

application sections can be found in Tables 4, 5, 6, 11, and 13

respectively.

I. INTRODUCTION

Battery energy storage systems (BESS) can play an integral

role in resilient and efficient power systems because of their

ability to provide a range of energy services [1]. One of the

fundamental problems in BESS integration within the electric

power grid is designing control systems to maximize the

value of energy services provided [2]. BESS models used

in control systems formally represent assumptions about the

physics underlying the conversion and storage of electrical

energy. The BESS model is a critical element of effective

control and operation of BESS that, ultimately, enables more

resilient and efficient power systems.

The control objective for a BESS often involves minimiz-

ing an objective function (e.g., cost to the operator) subject

to the constraints of the system. The controller must decide

settings for both real and reactive power (decision variables),

within limits on power, energy, state-of-charge (SoC), volt-

age, current, temperature, and state-of-health (constraints).

Unlike in electric vehicles or consumer electronics (where

the controller is an element of the battery management sys-

tem (BMS) [3]), the BESS controller is an element of the

energy management system (EMS), which is responsible for

issuing control decisions for all devices within its purview

(e.g., a home, building, microgrid, etc.). The BMS and EMS

can share hardware and have overlapping responsibilities,

as shown in Fig. 1, and often do not share a BESS model.

Models used in BMSs are often developed by the battery

manufacturers themselves and hence can contain detailed

information about underlying chemical process not available
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FIGURE 1. Typical energy management system control diagram.

to an EMS controller. Further, for applications that require

accuracy at very high sample rates, such as power system sta-

bility, the inverter can have its own battery model for dynamic

optimal control. This article focuses on optimal BESS control

design within the EMS and so falls between the established

fields of optimal control and battery modeling.

The methods for designing optimal controllers for energy

storage systems have already been reviewed in [2]. Exam-

ple methods as applied to BESS include model predictive

control (MPC) [4]–[7], and linear quadratic regulator (LQR)

control [8], [9]. While there are large differences between the

methods for designing controllers, at the core of any approach

is a model of the battery system. In this article, we will largely

ignore what method is used to design the controller, instead

focusing on the commonalities and differences between the

models.

BESS models mathematically represent the physical

dynamics and constraints of real systems. When choosing

a BESS model, implicit assumptions are made about which

physical dynamics are important to the controller’s operation

and which can be ignored. If a model ignores a state variable

(e.g., temperature) that ends up as a constraining factor in the

physical system, the control will be suboptimal. Similarly,

if a model inaccurately represents a system state variable

(e.g., battery state-of-charge), the controller will have to

constantly correct for the modeling error and again will be

suboptimal. However, consideration of which state variables

to include and what physical dynamics to represent must

inevitably be balanced with the complexity of the model and

the computational burden of the controller [10]–[12]. The

chart in Fig. 2 conceptually illustrates the trade-off between

model accuracy and complexity. The model categories to the

left on the chart are simple enough for control design and do

not require detailed knowledge of battery cell construction

and chemistry. At some level of model complexity there

is a tipping point where the improvements in accuracy are

too costly, in terms of computation or level of information

required, to be useful in control design. Further, as there are

thousands of individual cells in a BESS, there is logically

some point at which it is better to represent more cells at

the same level of detail rather than increasing the level of

detail. These points are different depending on application

and technology.

The goal of this article is to review the forms and functions

of BESS models with critical attention to their advantages,

disadvantages, and characteristics. This work will help read-

ers navigate the complex trade-offs involved in designing a

BESS controller. To explicitly define the scope of this review,

we start with a general optimal control problem and then

add detail relevant to BESS in order to classify different

aspects of battery models. A general optimal control problem

is formulated in:

min
x∈Rm

f (x)

subject to: g(x) = [0]

h(x) ≤ [0] (1)

where x is a vector of decision variables, m is the total

number of decision variables (roughly equal to number of

BESS model variables × the number of time steps in the

optimization time horizon), f : R
m → R is the objective

function, g : Rm → R
r is a vector of equality constraints, and

h : Rm → R
w is a vector of inequality constraints. In general,

for BESS applications, the objective function to beminimized

can be split into two terms: an objective associated with

battery operation and degradation (fb) and an objective asso-

ciated with the service being provided (fs). Further, the sets

of constraints can be split into constraints dealing with the

service (e.g., peak load constraint) and constraints based on

the equipment (e.g., maximum battery voltage). This split is

formalized in the multi-objective optimization problem in:

min
x∈Rm

fs(x) + fb(x)

subject to: gs(x) = [0]

gb(x) = [0]

hs(x) ≤ [0]

hb(x) ≤ [0] (2)

The purpose of splitting the problem up is to isolate the

components of the battery model (fb, gb, and hb), as distinct

from those of the service model (fs, gs, and hs).

This article conducts a review of the battery model com-

ponents of the problem in (2). Specifically, the objective

functions fb(x) and constraints gb(x), and hb(x) associated

with optimal control of BESS. The inequality constraints

hb(x) ≤ 0 ensure safe operation and battery longevity

(e.g., preventing over-temperature T ≤ Tmax, where T is the

battery temperature, and Tmax is the maximum temperature).

The equality constraints generally represent a battery’s phys-

ical dynamics and the mathematical relationships between

variables (e.g., pdc = vbatibat, where pdc is the dc power,

vbat is the battery voltage, and ibat is the battery current).

The expression fb(x) represents the BESS’s contribution

to the objective function based on the control action

(e.g., where the objective is to minimize costs, fb(x) may be

C EoL ˙̺ , where C EoL is the end-of-life cost and ˙̺ is the rate

of change in state-of-health (SoH)). Our goal is to present the
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FIGURE 2. Illustration of the trade-off between model accuracy and complexity (computational complexity equates to CPU time, and model
accuracy has also been referred to as ‘‘predictability’’ [12]).

advantages and disadvantages of various models to inform

design and further research on optimal control of BESS.

This article is organized as follows. Section II establishes

an example scenario used in each model domain section to

demonstrate its application. Section III introduces the various

models for state-of-charge, Section IV discusses temperature

models, and Section V discusses battery degradation models.

Each of these sections first introduces the model’s functions,

state variables and physical dynamics, and then includes a

representative controller design. Section VI discusses broad

trends and observations on the state-of-the-art including

identified gaps, and Section VII provides a summary and

conclusions.

II. PROBLEM STATEMENT

In this article we introduce models for different battery sys-

tem dynamics. To illustrate the impact of different classes of

models on control system performance, a representative con-

troller is formulated for each modeling domain. This section

establishes our example scenario in the form of a problem

statement. A summary of scenario assumptions can be found

in Table 1.

We consider a commercial electrical customer billed for

both time-of-use (ToU) energy and peak-demand charges.

This customer decides to purchase and install a battery to

reduce their electricity bill. The customer’s energy contract

charges 9 g/kWh during off-peak hours, 11 g/kWh during

partial-peak hours, and 15 g during peak hours according to

the schedule in Fig. 3 (top) [13]. The utility then charges a

$50/kW service fee according to the peak net load measured

during the billing period. This price is consistent with demand

charges in specific localities in California and NewYork [14].

TABLE 1. Summary of case study assumptions.

FIGURE 3. Time-of-use price schedule (top), and customer electrical load
(bottom) [15].

The load data used for this problem, as shown in Fig. 3 (bot-

tom), are adapted from the EPRI test circuit ‘Ckt5’ loadshape,

normalized to a 1.0 MW peak [15]. We will assume that

the load and price are known a priori. Without the battery,

the total bill would be calculated according to:

fs = 1t w⊤l + max(l) ν (3)
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where l ∈ R
n is the load (kW) over time, w ∈ R

n is the

ToU energy price ($/kWh) over time, ν is the service fee in

$/kW for peak net load measured during the billing period,

and •⊤ denotes a vector’s transpose. We use a time-step

1t = 15 minutes (0.25 hours), and n = 96 (1 day). For

this problem we assume that the net-load is always greater

than zero. The total baseline electrical bill for this day is

$52,080 ($50,000 demand, $2,080 energy). With the addition

of a BESS that can supply (−), or absorb (+), power p,

the customer’s total bill can be modified to:

fs(p) = 1t w⊤(l + p) + max(l + p) ν (4)

where p is the battery system power that element wise sub-

tracts from l when the battery system is discharging. The

problem formulation can be expressed as: design an opti-

mal battery dispatch control scheme that minimizes the cus-

tomer’s total bill subject to the constraints of the battery and

the customer’s system. The dispatch is open-loop, and we

do not consider modeling uncertainty in this control scheme.

Hence, we do not consider the mismatch between the con-

troller model and a real system. Research into the effects

of modeling uncertainty on BESS controller performance is

ongoing [16].

FIGURE 4. Thought experiment demonstrating how the electrochemical
definition of the SoC of a battery loses physical meaning when applied to
strings [17].

III. STATE-OF-CHARGE MODELS

Electrochemically, a battery cell’s SoC is related to the con-

centration of the limiting active species, in the relevant reac-

tion at the associated electrode [17]. This physical association

however, breaks down when the electrochemical definition of

SoC is applied to strings as the thought experiment in Fig. 4

illustrates.When referring to BESS, it is more common to use

an empirical definition of SoC, represented in:

State of Charge ,
Available Capacity

Nominal Capacity
(5)

which is the ratio of available to nominal capacity. Normal-

izing SoC to the range [0,1] or [0%,100%] is an intuitive

simplification, especially as nominal capacity can change

over time, but it is not mathematically necessary to do so.

In this context, capacity can be measured in energy with units

of kilowatt-hours (kWh), charge with units of ampere-hours

(Ah) or in concentration with units of moles-per-liter (mol/L).

Constraints on SoC are shown in:

ςmin ≤ ς ≤ ςmax (6)

where ς is the SoC, ςmax is the maximum SoC, and ςmin is

the minimum SoC. These box constraints are often enforced

by a controller to ensure safety and design life, but many

alternative methods for incorporating degradation into opti-

mal control are discussed in Section V. Note that a BMS can

also prevent overcharge/overdischarge by constraining SoC,

but these bounds are generally set at or outside the normal

operational range the controller uses.

Modeling SoC helps the controller knowwhen in the future

it is likely to encounter these limits and to make control deci-

sions accordingly. In optimal control, SoC models inform the

controller how control decisions affect future SoC and enable

the controller to adjust decisions to optimize an objective.

Therefore, errors in SoC models can lead to poor control

performance or even infeasible solutions.

The various models for SoC can be classified by the

units with which they define nominal and available capacity

according to (5). Models that define capacity in units of

energy (kWh) can be classified as energy reservoir models

(ERMs), those which define it in units of charge (Ah) can

be classified as charge reservoir models (CRMs), and those

which define it in units of concentration (mol/L) can be

classified as concentration-based models. ERMs, discussed

in Section III-A, do not include dc voltage or current, so they

generally have fewer variables and constraints. This simpli-

fication can lead to unrepresented physical dynamics that

can, under some circumstances, have negative effects. CRMs,

discussed in Section III-B, include expressions to represent

current-voltage (I-V) dynamics which can improve accuracy

at the expense of increased model complexity. Concentra-

tion based models, discussed in Section III-C, include many

parameters associated with the specific electrochemical reac-

tion and cell design that can predict battery dynamics. Each

has its appropriate applications in control design as well as

difficulties and drawbacks. Table 2 shows a summary of these

trade-offs as discussed in detail in the following subsections.

A. ENERGY RESERVOIR MODELS

ERMs are a class of SoC model that define capacity in units

of energy (kWh). An example ERM for SoC is shown in:

Qcap
∂ς

∂t
= ηep

+ + p− (7)

where ς is the SoC, p+ and p− are the charge and discharge

ac power respectively, Qcap is the energy capacity, ηe is the

round trip energy efficiency, and ∂ς/∂t represents the rate

of change of SoC. To make this constraint convex, charge

power and discharge power are formulated as independent

decision variables.While thismeans that simultaneous charge

and discharge would not violate the explicit constraints,

the objective function is often structured such that there is no

advantage to candidate solutions that do so. Hence, as long as

energy prices are positive, and efficiency is in the range [0, 1],

the optimal solution to a control problem with this SoC con-

straint will always satisfy complementary slackness between
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TABLE 2. Summary of SoC models.

charge and discharge power. When objective does not have

these properties, an additional non-convex constraint can be

added to prevent solutions with simultaneous charge and

discharge (p+p− = 0).

Rather than a constant, as shown in (7), the energy effi-

ciency of a BESS can be a time-varying, nonlinear function

of battery SoC, voltage, current, temperature, and state-of-

health (SoH). Assuming a constant energy efficiency can,

by extension, be an implicit assumption these states are also

constant. Some of these assumptions are valid for a range

of applications. SoH, for instance, changes very slowly with

respect to a control horizon. Other assumptions however, are

only valid for a narrow operational range. Howwide the oper-

ational range can be, while the ERM remains a sufficiently

accurate approximation, depends on how flat the energy

efficiency curve is with respect to each variable. For example,

changing battery voltage can change BESS efficiency but

some battery types have a wide range of SoC where the open-

circuit-voltage is nearly constant. ERMs are more accurate

over a wider range of SoC for these types of batteries than

for a batterywhose open-circuit-voltage changes quicklywith

respect to SoC. ERMs use a simple representation of SoC

that is based on many assumptions, so it may or may not be

appropriate for a given application.

Some previous work using ERM ignore efficiency losses

entirely [7], [18], [20]–[22]. However, due to the error it

incurs, this is ill-advised for controllers that schedule SoC

over any significant time horizon. Much work includes both

charge and discharge efficiencies [6], [23]–[25], [27]–[32].

Self-discharge power can also be included in an ERM

[6], [25], [27], [31]–[34] as shown in:

Qcap
∂ς

∂t
= ηep

+ + p− + psd (8)

where psd is the self-discharge power.

We refer to (8) as a Type 1 model, in that it only includes

charge efficiency. Models that include both charge and

discharge efficiencies are referred to as Type 2 models, while

those that only include discharge efficiency are referred to

as Type 3 models. These model types are able to produce

equivalent relationships between power and the rate of change

in SoC over time. Table 3 shows the conversion calculations

needed to move from one type to another while maintaining

this equivalence. We use a Type 1 model in this paper (with
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TABLE 3. Conversion between equivalent efficiency representations.

ηcha = ηe the round trip energy-efficiency) because it has

the intuitive property that the SoC multiplied by the capacity

directly reflects how much energy is expected to be available

from the battery on discharge.

While most ERM use ac power, a few use dc power [59] by

including many of the constraints in the CRM. The manufac-

turer dc kWh rating for batteries is calculated based on either

the Ah rating multiplied by the nominal battery voltage or the

energy extracted during a constant current discharge test.

Hence, this approach is still subject to the inaccuracy of other

ERM, over a wide operational range, if voltage is far from

the nominal voltage assumed or the constant current rate used

during testing.

Though it is not commonly done, all three parameters can

be functions of the SoC or temperature or both (Qcap(ς,T ),

ηe(ς,T ), and psd(ς,T )) [38]–[40]. Themost common version

of this is SoC dependent losses psd(ς ) = msdς + bsd where

msd is the proportional power loss and bsd is the power

loss at ς = 0 [23], [26]. Adding nonlinearity to these

functions has the potential to increase predictive accuracy

over a wider operational range of SoC and warrants further

investigation [38].

To represent the relationship between SoC and the power

limits (pmax and pmin) a two reservoir ERM, also called the

kinetic battery model, is sometimes used [36], [37]. The

FIGURE 5. Energy Based Kinetic Battery Model [36].

FIGURE 6. Feasible region for ac power described by the kinetic battery
model.

kinetic battery model splits the reservoir into available energy

and bound energy as shown in Fig. 5 and in:

(1 − cf)Qcap
∂ς1

∂t
= Ŵe(ς2 − ς1) (9a)

cf Qcap
∂ς2

∂t
= ηep

+ + p− + Ŵe(ς1 − ς2) (9b)

where cf is the fraction of total capacity in the available

reservoir, and Ŵe is a time constant that governs the rate

of energy transfer between the two reservoirs. The physical

intuition of this model is that the higher the discharge rate the

more quickly the available energy is depleted, and the low-

level limit of the tank is reached. This is equivalent to the

linear inequality constraints on power in:

pmin ≤ p ≤ pmax (10a)

m1ς + b1 ≤ p ≤ m2ς + b2 (10b)

where pmin is the discharge power limit, pmax is the charge

power limit, m1 and b1 are the slope and intercept of the

linear power limit on discharge, respectively, and m2 and

b2 are the slope and intercept of the linear power limit on

charge, respectively. These constraints are encountered at

high discharge rate more quickly according to the slope m1

and intercept b1. These constraints then reduce maximum

power linearly as SoC approaches its minimum, the same as if

the maximum power is constrained by the difference between

tank levels in the kinetic battery model. The limits defined in

(10) are shown in Fig. 6

Injection and absorption of reactive power can be an impor-

tant capability for BESS in many applications [1]. While
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reactive power does not directly affect SoC, it can indirectly

affect SoC by constraining real power. Constraints on appar-

ent power and power factor are presented in [28]:

p = p+ + p− (11a)

p2 + q2 ≤ S2max (11b)
∣

∣

∣

∣

∣

p
√

p2 + q2

∣

∣

∣

∣

∣

≥ p.f.min (11c)

where q is the reactive power (var), Smax is the apparent power

limit, and p.f.min is the minimum power factor. While there

are no direct incentives for reactive power, there might be

penalties on poor power factors. Therefore in many cases,

constraint 11 must be enforced.

TABLE 4. Energy reservoir model parameters.

1) ERM APPLICATION

In this section we solve the problem outlined in Section II

with an optimal controller designed using an ERM. The ERM

is used here to demonstrate its application, however, it is

not the most appropriate model for this problem because of

its inaccuracy over a wide range of voltage in this scenario.

In cases where the performance of the ERMmodel is less than

desirable, it is sometimes employed because of the computa-

tional simplicity. The example scenario listed here serves to

demonstrate how the ERM can be applied to solve a simple

problem, and one can extrapolate it to how it could be used to

solve a more complicated problem. Example parameters for

the ERM are listed in Table 4.

We can express the constraint described in (8) between

each SoC using the vector equation (12).

QcapDς = ηep
+ + p− + psd[1] (12)

where ς ∈ R
n+1 is the SoC at each time step, p+ ∈ R

n
+ and

p− ∈ R
n
− are the ac charge and discharge power during each

time step, and the matrix D is defined below.

D =
1

1t













−1 1 0 . . 0

0 −1 1 0 . .

. .

. .

0 0 −1 1













n×(n+1)

(13)

The SoC constraint in (12) can be included with the kinetic

battery model constraints in (10) yielding the problem formu-

lation in:

min
x ERM∈R3n+2

1tw⊤(l + p+ + p−) + ντ (14a)

subject to: QcapDς = ηep
+ + p− + psd[1]

ς [1] = ς0 (14b)

ς [1] = ς [n] (14c)

pmin[1] ≤ p+ + p− ≤ pmax[1] (14d)

ςmin[1] ≤ ς ≤ ςmax[1] (14e)

m1ς + b1[1] ≤ p+ + p− ≤ m2ς + b2[1]

(14f)

l + p+ + p− ≤ τ [1] (14g)

where x ERM =
{

p+,p−, ς , τ
}

∈ R
3n+2, and τ ∈ R is

a dummy variable that represents the peak net load. The

constraint (14b) ensures that control decisions aremade based

on the current estimated SoC. The constraint (14c) represents

the intuitive assumption that the BESS will continue to oper-

ate after the end of the current control horizon and that the

next period will be similar to this one. In this application,

(14c) is used to make simulation results easier to interpret

and compare. The objective has been modified to use the

dummy variable τ to represent peak load in the objective and

add a constraint that it be greater than the net load at every

time (14g).

In the code accompanying this article the minimum heat

generation regularization term, described in Section V-A.1

(5||p+ + p−||22, with a very small weight 5 = 1e-5),

is applied to the objective in this and each application script.

This has the effect of avoiding spikes or abrupt changes in

power, while not significantly impacting the minimum value

achieved.

Information on numerical algorithms for solving general

linear and nonlinear optimization problems can be found

in [60], [61]. We solve this using the Pyomo optimization

modeling language [62], [63] and the Ipopt interior point

optimization problem solver [64]. The solution is shown

in Fig. 7. Note that even though the maximum discharge

power is 500 kW, the battery is only able to reduce the peak

net load by approximately 85 kW because of limitations

on energy. The effect of the kinetic battery model can be

observed around hour 10, when the battery finishes charging

then pauses for one time step only to then charge at a low

level to maintain 94.8% SoC. This artifact of the model is

because the maximum charge rate at 95% SoC is 0 kWwhich
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FIGURE 7. Results calculated with the ERM: (a) Net load with BESS power
control, (b) Battery power, (c) Battery SoC (bottom).

is insufficient to counter self-discharge power. The ERM

expects to be able to reduce the peak to 914.7 kW and it

is clear from the calculated net load the schedule allocates

charging to the periods of low electricity price.

The control solution reduces the total electrical bill

from $52,080 ($50,000 demand, $2,080 energy) to $47,837

($45,737 demand, $2101 energy). The net effect is a

$4,243, or 8.15%, reduction in the electrical bill. Note that

while the demand charge is reduced significantly, the energy

bill increases due to efficiency losses in the BESS.

B. CHARGE RESERVOIR MODEL (CRM)

CRMs are a class of BESS models that define capacity in

units of charge (Ah). An example CRM is shown in:

Ccap
∂ς

∂t
= ηci

+
bat + i−bat (15)

where i+bat and i
−
bat are the charge and discharge current respec-

tively, ς is the battery SoC, Ccap is the charge capacity, ηc
is the coulombic efficiency, and ∂ς/∂t represents the rate of

change of SoC. Like with the ERM, to make this constraint

convex, charge current and discharge current are formulated

as independent decision variables. Simultaneous charge and

discharge is avoided in the same way, by structuring the

objective function such that there is no advantage to those

candidate solutions.

Peukert’s equation relates the charge capacity to the dis-

charge rate in amps [65], [66]:

Ccap = (i−bat)
kpeu tdischarge (16)

where kpeu is the Peukert exponent, and tpeu discharge

time before the battery reaches its low voltage limit. Peuk-

ert’s equation is sometimes used in control design [67].

However, it makes several simplifying assumptions that

do not make sense for optimal control applications. The

parameters of Peukert’s equation assume a constant-current

discharge, where 0% SoC corresponds to battery reaching its

minimum voltage under load. This model implies a battery

equivalent circuit, that is better to represent explicitly, and a

static operating condition (constant-current discharge) that is

one of the decision variables in our problem formulation.

While some previous work ignore efficiency losses

[41]–[45], this many not be accurate for controllers that pre-

dict SoC over an extended time horizon for the same reason

as discussed in Section III-A. Self-discharge current can be

included in a CRM [42], [52], [68] as in:

Ccap
∂ς

∂t
= ηci

+
bat + i−bat + isd (17)

where isd is the self-discharge current. While less common

for CRM, efficiency in this model can be represented equiv-

alently with Type 2 and Type 3 models as shown in Table 3.

FIGURE 8. Equivalent Circuit Models.

Several additional constraints are needed to govern inter-

nal relationships between voltage, current, dc power, and ac

power. The foundation of these is an equivalent circuit model

[49], [50], [69], [70]. The most common battery equivalent

circuit models are shown in Fig. 8 and described in:

ibat = i+bat + i−bat (18a)

∂v1

∂t
=

−1

R1C1
v1 +

1

C1
ibat (18b)

∂v2

∂t
=

−1

R2C2
v2 +

1

C2
ibat (18c)

voc + R0ibat + v1 + v2 = vbat (18d)

where R0, R1, C1, R2, and C2 are equivalent circuit resistor

and capacitor parameters. The 0th order equivalent circuit

is accurate for steady state analysis as it accounts for bat-

tery ohmic resistance R0 but not any time-domain dynamic

response. The 1st and 2nd order models are increasingly

accurate for analyses requiring short time steps (roughly

faster than 10 minutes between samples or (1/600)Hz) [48].

The R-C parallel elements of the circuit can represent

different chemical reaction dynamics within battery cells:

R1 & C1 can represent ion-diffusion (Warburg impedance)

whereas R2 & C2 can represent anode-cathode capaci-

tance or constant phase element [69]. Note that the time
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FIGURE 9. Charge Based Kinetic Battery Model [72], [73].

constant of the diffusion element (τ1 = R1C1) is generally

much larger than the time constant of the capacitance element

(τ2 = R2C2). The equivalent circuit’s impedance parame-

ters can be calculated using least squares system identifica-

tion [71]. These parameters can be functions of current, SoC,

SoH, temperature, or any combination thereof [52].

There are many variations of these equivalent circuits.

Adding a resistor across the voltage source is equivalent to

making isd a linear function of voc. Adding a resistor across

the battery terminals is equivalent to making isd a linear func-

tion of vbat. Several other configurations are discussed in [48],

but it is unclear how these additions affect the accuracy of the

model.

Though it is rare to do so in a controller, battery voltage

hysteresis can be incorporated into the equivalent circuit

model [17] as shown in:

∂vhys

∂t
= γhys sgn(ibat) (M (ς, ibat) − vhys) (19)

where vhys is the dynamic voltage hysteresis, γhys is a decay

rate tuning constant, and M : R
2 7→ R is a function

that returns the maximum voltage hysteresis. Specifically,

M (ς, ibat) is an empirical approximation based on experimen-

tal data that is positive for charge and negative for discharge.

Alternatively, the hysteresis can be modeled using an addi-

tional charge reservoir as in [72], [73]. This approach splits

the total charge capacity into two states: bound charge, and

available charge as shown in Fig. 9 and in:

(1 − cf)Ccap
∂ς1

∂t
= Ŵc(ς2 − ς1) (20a)

cf Ccap
∂ς2

∂t
= ηci

+
bat + i−bat + Ŵc(ς1 − ς2) (20b)

where cf is the fraction of total capacity in the available

reservoir, and Ŵc is a time constant that governs the rate

of charge transfer between the two reservoirs. The open-

circuit-voltage is then based on the available charge level

only. This effectively represents energy recovery effect and

is structurally similar to the discrete version of the single

particle model discussed in Section III-C.

Open-circuit-voltage voc, also referred to as electromotive

potential or force, is the terminal voltage of the battery when

measured ‘at-rest’ and is a function of the SoC, SoH and

temperature of the cell. Several example functions for voc are

given in:

voc = vmς + v0 (21a)

voc = kT(T − Tref)(mς + v0) (21b)

voc = aς2 + bς + c (21c)

voc = ας3 + βς2 + γ ς + δ (21d)

voc = bk − mk
(1 − ς )

ς
+ cke

dkς (21e)

voc = α(ς )ς3 + β(ς )ς2 + γ (ς )ς + δ(ς ) (21f)

where vm and v0 are the slope and intercept of a linear voc
model, respectively, kT is a linear temperature adjustment,

T and Tref are the battery temperature and reference battery

temperature, respectively, a, b, and c are the coefficients for

a quadratic polynomial fit, α, β, γ , and δ are the coefficients

for a cubic polynomial fit, bk, mk, ck, and dk are the coeffi-

cients for a negative reciprocal and exponential function fit,

and α(ς ), β(ς ), γ (ς ), and δ(ς ) are piecewise functions that

collectively comprise a cubic spline. The simplest function

for voc is a linear approximation (21a) which can be accurate

within a narrow range of SoC [4], [35], [50], [74]. A temper-

ature adjustment can also be applied (21b) to improve accu-

racy [50], [68]. Polynomial approximations are also used,

(21c) or (21d), but these are sometimes non-convex and so

can be more computationally intensive to work with. Another

approach is to model voc as a combination of a negative recip-

rocal and exponential functions (21e) [75], [76]. This model

works better for lithium-cobalt batteries or other chemistries

with exponential curves near 100% and 0% SoC but that

are relatively flat and straight in a wide range around 50%

SoC. Note that (21e) has an asymptote at ς = 0, and hence

the model must constrain SoC to some positive threshold to

workwell. Piecewise cubic splines (21f) are themost accurate

[48], but these can be very difficult functions to work with in

optimization. Example open-circuit-voltage data along with

different fit types are shown in Fig. 10. Battery voltage

hysteresis can alternatively be represented within the open-

circuit-voltage function bymodeling voc differently on charge

and discharge [75].

Battery power is modeled through Ohm’s power law:

pdc = ibatvbat (22)

where pdc is the dc power.

The conversion efficiency from ac to dc power, or vice

versa, is sometimes ignored. When it is modeled, conversion

efficiency is commonly modeled as a constant [28]. One way

of modeling inverter efficiency as a constant is shown in:

pdc = φep
+ +

1

φe
p− (23)

where φe ∈ [0, 1] is the conversion efficiency con-

stant. Alternatively, a linear fit or quadratic fit can be

used [77]:

pdc = φmp+ φb (24)

pdc = φ0p
2 + φ1p+ φ2 (25)

where φm and φb are the slope and intercept of a linear

efficiency function, respectively, and φ0, φ1, and φ2 are the
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FIGURE 10. Open-Circuit-Voltage Models.

coefficients of a quadratic efficiency function. Inverter effi-

ciency can be a nonlinear function of ac voltage, dc voltage,

and temperature [78].

While CRMs normally include box constraints on SoC and

real/reactive power, additional box constraints on current and

battery voltage are shown in:

imin ≤ ibat ≤ imax (26a)

vmin ≤ vbat ≤ vmax (26b)

Unlike the ERM, it is not necessary to add SoC dependent

power constraints as the voltage constraints handle these

limits implicitly.

An important factor to consider is that battery cells within

a string may have significantly different parameters resulting

from normal manufacturing variation. When using a CRM

in a controller design, there are at least three methods for

accounting for distributions in parameters and states within

a BESS [69], [79]. What follows is a discussion of these

methods and their relative advantages for optimal control.

‘‘Big cell’’ method: This method is based on a simplifica-

tion that models a battery pack as one large battery cell. In this

approach, the battery voltage is the individual cell voltage

multiplied by the number of cells in series, the capacity

is the total capacity and so on. Intercell balancing is gen-

erally handled within the self-discharge current parameter.

This method is most accurate when a string is made up of

very well-matched cells, which are manufactured to have a

very narrow distribution of performance. For poorly matched

cells, or for cells that have degraded and hence have widened

in their performance distribution, this approach is optimistic

in its approximation of string capacity on both charge and

discharge.

‘‘Short board effect’’ method: This method uses models

of the extreme cells in a string to better represent limiting

factors. The maximum SoC cell and minimum SoC cell are

tracked independently, each with their own decision variables

and limits. The total string voltage is then the sum of the

highest SoC cell voltage, the lowest SoC cell voltage, and

the voltage of a ‘‘big cell’’ representing all remaining cells.

This approach more accurately models when the string will

encounter cell voltage or SoC limits. There is some increase

in the computational complexity as there must be additional

decision variable for voltage, dynamic voltage, and SoC as

well as their associated constraint sets.

‘‘One-by-one calculation’’ method: This method explic-

itly represents all cells in a battery pack. In cases where cells

have a wide variance in capacity and coulombic efficiency,

it is possible that the highest SoC cell and/or lowest SoC

cell will switch cells within the control horizon. This method

will be able to predict and optimize operation whichever cell

is the limiting factor for a given cycle. Explicitly modeling

every cell within a string also enables the direct represen-

tation of cell balancing circuits within the controller, as in

[79], [80]. This also enables the representation of unequal cur-

rent splitting in parallel cells or strings.With hundreds or even

thousands of cells in a grid scale BESS, this approach

can easily become computationally infeasible to apply in

practice.

As CRMs account for changes in battery dynamics over

the range of voltage and current, they are more accurate than

ERMs in applications where the SoC and charge/discharge

currents vary significantly. However, given the increase in

complexity, they are much more difficult to use in the design

of optimal controllers. Hence, CRMs are best used in appli-

cations relying on long duration, if sparse, charge/discharge

schedules (e.g., day-ahead hourly energy arbitrage). In such

applications the high rate battery dynamics in (18) can often

be ignored.

1) CRM APPLICATION

In this section we solve the problem outlined in Section II

with an optimal controller designed around a CRM. Exam-

ple parameters for a CRM are listed in Table 5.

The ‘CRM: no dynamic voltages’ from Table 2 is the

most appropriate model for this problem because of the

long forecast horizon, low (15 minute) time resolution,

and because we are only controlling one battery system.

We also use the ‘‘big battery’’ approach to modeling the

dc battery string. Implementing the CRM into a usable for-

mat requires reformulating the differential equation for SoC

defined in (15) into the vector of equality constraints as

shown in:

CcapDς = ηci
+
bat + i−bat (27)

where ς ∈ R
n+1 is the vector of SoC at each time step,

i+bat ∈ R
n
+ and i−bat ∈ R

n
− are the vectors of charge and

discharge dc current respectively, and D is a matrix defined
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TABLE 5. Battery system charge reservoir model parameters.

above in (13). Like with the ERM, charge current and dis-

charge current are formulated as separate decision variables.

While this does not make the optimization problem convex,

it does improve the convergence time of the solver without

affecting the solution. The resulting problem formulation is

shown in:

min
x CRM∈R6n+2

1t w⊤(l + p) + ντ (28a)

pdc = φ0p
2 + φ1p + φ2 (28b)

pdc = (i+bat + i−bat)vbat (28c)

vbat = voc[1:n] + R0(i
+
bat + i−bat) (28d)

voc = ας3 + βς2 + γ ς + δ (28e)

CcapDς = ηci
+
bat + i−bat (28f)

ς [1] = ς0 (28g)

ς [1] = ς [n] (28h)

pmin[1] ≤ p ≤ pmax[1] (28i)

ςmin[1] ≤ ς ≤ ςmax[1] (28j)

vmin[1] ≤ vbat ≤ vmax[1] (28k)

imin[1] ≤ i−bat ≤ [0] (28l)

[0] ≤ i+bat ≤ imax[1] (28m)

l + p ≤ τ [1] (28n)

where x CRM = {p,pdc, ibat, vbat, voc, ς , τ } ∈ R
6n+2, pdc ∈

R
n is the dc electrical power provided to the battery, vbat ∈ R

n

is the battery terminal voltage, voc ∈ R
n+1 is the battery open-

circuit-voltage, and τ is the dummy variable for peak power.

The CRM includes constraints on inverter conversion effi-

ciency (28b), Ohm’s law relating dc power, voltage and cur-

rent (28c), the battery equivalent circuit model (28d), and

the open-circuit-voltage curve (28e). The constraint (28g)

ensures that control decisions are made based on the current

estimated SoC. The constraint (28h) represents the intuitive

assumption that the BESS will continue to operate after the

end of the current control horizon and that the next period

will be similar to this one. In this application, (28h) is used

to make simulation results easier to interpret and compare.

Again, while simultaneous charge and discharge does not vio-

late explicit constants, the structure of the objective ensures

that solutions will comply with complementary slackness

between charge and discharge current.

FIGURE 11. Results calculated with the CRM: (a) net load with BESS
power control, (b) battery power, (c) battery SoC, (d) battery current, and
(e) battery voltage.

The resulting customer’s net load and optimal control

schedule for the BESS are shown in Fig. 11 (a) and (b)

respectively. The simulated battery current and voltage

are shown in Fig. 11 (c) and (e) respectively. The CRM

based controller expects to be able to reduce the peak

load by approximately 83 kW. The peak battery voltage

reached 780 V and the dc current reached −120 A on dis-

charge. The control solution reduces the total electrical bill

from $52,080 ($50,000 demand, $2,080 energy) to $47,948

($45,871 demand, $2077 energy). The net effect is a $4,132,

or 7.93%, reduction in the electrical bill.

If we assume that the example ERM and CRM represent

the same physical BESS, then we can investigate which one

is a better controller. We can observe that the ERM expects to

be able to reduce the peak load, and the total bill, more than

the CRM. If the ERM is the more accurate model, then the

CRM will underutilize the batteries. However, if the CRM is
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more accurate, as we expect it to be, then the control solution

from the ERM controller may be infeasible.

C. CONCENTRATION BASED MODELS

Concentration based models measure capacity in units of the

concentration (mol/L) of the active materials of the elec-

trodes. These models can be further classified into single par-

ticle model (SPM), pseudo-two-dimensional model (P2D),

and many others [12]. In this section we briefly cover SPM

and P2D models as these are the concentration models most

widely used in controllers. Note that concentration mod-

els may require parameters based on cell construction and

chemistry that manufacturers consider proprietary and would

not be available to the controller. However, there are meth-

ods available to estimate some or all of these parameters

empirically [55], [58].

FIGURE 12. Single particle model (SPM).

SPMs represent each electrode as a single particle

[54], [81]–[83] which is useful for modeling the effects of

transport phenomena but loses some accuracy at high cur-

rent, or wherever variations across the electrodes are signif-

icant [11], [84]. Figure 12 shows an simple generic SPM.

The differential equation for mass balance in an intercalation

particle is governed by Fick’s law in a spherical coordinate

system [85], [86]:

∂cs,j

∂t
=
Ds,j

r2j

∂

∂rj

(

r2j
∂cs,j

∂rj

)

(29)

where cs,j is the concentration of electrode j as a function

of both time t and particle radius rj, Ds,j is the solid phase

diffusion coefficient, and the subscript j ∈ {p, n} represents

the positive/negative electrode. The SoC is a function of

the average normalized concentration (stoichiometry) in each

electrode (30). To calculate SoC, we first define xs,j,100%
and xs,j,0% as the stoichiometry at which electrode j is at

its maximum and minimum respectively. Using these defini-

tions, SoC is the state of the anode’s stoichiometry between

xs,n,100% and xs,n,0% (or equivalently, 1 - the state of the

cathode’s stoichiometry between xs,p,100% and xs,p,0%) [17]

as expressed in:

xs,j,ave =
1

r̄jcs,j,max

∫ r̄j

0

cs,jdr (30)

ς =
xs,n,ave − xs,n,0%

xs,n,100% − xs,n,0%
(31)

= 1 −
xs,p,ave − xs,p,0%

xs,p,100% − xs,p,0%
(32)

where ς is the SoC of the cell, cs,j,max is the maximum

concentrations of electrode j, and r̄j is the radius of the

representative particle.

Battery voltage in the SPM is based on the open cir-

cuit voltage, the chemical overpotential, and the electrical

resistance. while the SoC is based on average concentration

throughout the particle, open-circuit-voltage is based only

on its surface concentration [17]. These relationships are

shown in:

voc = 8p

(

xs,p,surf
)

− 8n

(

xs,n,surf
)

(33)

xs,p,surf =
cs,p|r=r̄p

cs,p,max
(34)

xs,n,surf =
cs,n|r=r̄n

cs,n,max
(35)

where 8p : [0, 1] 7→ R and 8n : [0, 1] 7→ R are

the positive and negative electrode potentials as functions of

their normalized surface concentrations (xs,p,surf and xs,n,surf
respectively). Like with open circuit voltage in the CRM, 8p

and8n can be approximated using polynomial or exponential

functions. Authors in [17], [53] use a Redlich-Kister expan-

sion as a general best fit function for 8p and 8n:

8j = v0bat +
RT

F
ln

(

1 − xs,j,surf

xs,j,surf

)

+

{

N
∑

k=0

Ak

F

(

(2xs,j,surf − 1)k+1

−
2xs,j,surfk(1 − xs,j,surf)

(2xs,j,surf − 1)1−k

)}

(36)

where 8j is the potential at electrode j, xs,j,surf is the nor-

malized surface concentration at electrode j, R is the ideal

gas constant (8.314 J mol/K), T is the battery temperature

in Kelvin,1 F is Faraday’s constant 96,487 coulombs/mol,

k is the summation index number, and N , v0bat and Ak are

the fitting parameters. Figure 13 shows example anode and

cathode equilibrium potential functions. When fully charged,

the active material concentration is at its maximum in the

anode and at its minimum in the cathode. This means there

is potential for ion movement from anode to cathode and

electron movement from cathode to anode (a.k.a. discharge).

Chemical overpotential can be calculated according to the

Butler-Volmer equation [17], [87], [88]:

Jj =
ibat

asAL
= kjcs,j,maxc

1−αc
e (1 − xs,j,surf)

1−αcx
αc
s,j,surf

×

{

exp

(

(1 − αc)F

RT
ηj

)

− exp

(

−
αc F

RT
ηj

)}

(37)

1Note that battery temperature can be assumed to be constant, or this can
be coupled with one of the thermal models discussed in Section IV
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FIGURE 13. Equilibrium potentials (open-circuit-voltages) of
lithium-cobalt-oxide (LiCO2) cathode (top) and MesoCarbon MicroBeads
(MCMB) anode (bottom) [53].

kj = kj,ref exp

[

Ek,j

R

(

1

T
−

1

Tref

)]

(38)

where ηj is the reaction overpotential, Jj is the current density

on the particle’s surface, as is the specific interfacial sur-

face area (volumetric fraction of the active material ×3/r̄j),

A is the current collector area, L is the electrode thickness, kj
is the Arrhenius rate of the electrochemical reaction, Ek,j is

the activation energy of the Arrhenius relationship, ce is the

concentration of the electrolyte, and αc is the charge-transfer

coefficient. This equation can be solved for ηj in terms of

ibat making it possible to compute the Jacobian metrics with

respect to the parameters as was demonstrated in [88].

Electrical resistance is a combination of resistances in the

electrolyte, the current collectors, the tabs, and the terminals.

These can all be modeled using an single constant resistor

Rcell, but it is also common to apply a temperature correction

factor, current correction factor, or both [88]. With the open-

circuit-voltage, the chemical overpotential, and the electrical

resistance calculated, the SPM battery voltage is shown in:

vbat = 8p − 8n + ηp − ηn + Rcellibat (39)

To make this model more accurate at high currents, we can

extend it to an additional spatial dimension along the length

from the anode current collector, through the separator, to the

cathode current collector, as illustrated in Fig. 13. With

one dimension along the cell’s thickness and the pseudo

dimension describing a concentration gradient within spher-

ical particles, this is called a pseudo-two-dimensional (P2D)

model [17], [89], [90]. Whereas with the SPM, ce, xs,j,surf,

ηj, and therefore the Jj are essentially averaged over each

electrode, the P2D represents these quantities as functions of

the dimension from one current-collector to the other [91].

Full order P2D built with the partial differential equations

are too computationally complex for most real-time control

applications [57]. However, discretized or reformulated P2D

models can be applied successfully in control applications

[10], [57], [58].

FIGURE 14. Pseudo two-dimensional model (P2D).

1) SPM APPLICATION

In this section we solve the problem outlined in Section II

with an optimal controller designed around a SPM.

Example parameters for the SPM are listed in Table 6 with

Redlich-Kister expansion parameters for the anode and cath-

ode voltages listed in Table 7. The SPM is used here to

demonstrate its application, however, it is not the most appro-

priate model for this problem because of its high complexity

relative to the time resolution and scale required. This model

would be more appropriate for higher sample rate appli-

cations where voltage dynamics are more salient. Further,

the model parameters used here are derived from literature

sources on cell-level design. With calculated capacity of

roughly 1.9 Ah per cell, 445 parallel cells were simulated to

achieve a comparable capacity to the CRM (800 Ah). This

means that the ‘‘Big Cell’’ modeling assumption extrapolates

the performance of a single cell to 445×196 = 87, 220 cells.

One advantage of the SPM is that it enables investigation

of how changes to cell level design parameters might affect

simulated system level performance.

Within each particle we model five discrete volumes to

approximate the radial dimension of the model. The core

volume is spherical with radius drj which is surrounded by

four shell volumes each with a thinness of drj. Fig. 15 illus-

trates how electrical current is transformed to current density

which is transformed in turn to changes in the chemical

concentrations within the modeled volumes. Fick’s second

law describes a concentration gradient in the representative

particle that can be approximated using discrete volumes,

each being shells around a spherical core. Each of these

shells has a chemical concentration capacity proportional

to its volume and the maximum concentration. The surface

between each volume has a chemical resistance proportional

to the surface area and inversely proportional to the diffusion

coefficient. The current density at each particle’s surface

is proportional to the battery current (ibat). The resulting

optimization problem is formulated in:

min
x SPM∈R18n+13

1t w⊤(l + p) + ντ

subject to: (40a)

pdc = φ0p
2 + φ1p + φ2 (40b)

pdc = ibatvbat (40c)

vbat = 8p[1:n] − 8n[1:n] + ηp − ηn + R0ibat
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FIGURE 15. Concentration reservoir analogy of the SPM with five discrete volumes per particle.

TABLE 6. Battery System Single Particle Model (SPM) parameters.

8j = v0bat +
RT

F
ln

(

cj,max − cj,0

cj,0

)

(40d)

+

N
∑

k=0

Ak

F





(

2cj,0

cj,max
− 1

)k+1

−
2cj,0k(cj,max−cs,j,0)

cj,max(2
cj,0
cj,max

−1)1−k





ibat

as,jAs,jLs,j
= ks,jcj,maxc

0.5
e (−cj,0[1:n])

0.5c0.5j,0[1:n] (40e)

TABLE 7. Equilibrium potential Redlich-Kister expansion parameters,
reproduced from [53].

×

{

exp

(

0.5F

RT
ηj

)

− exp

(

−
0.5F

RT
ηj

)}

(40f)

Vj,0Dcj,0 =
Sj,0 ibat

F as,jAs,jLs,j
−
Ds,jSj,1(cj,1[1:n]−cj,0[1:n])

dr

(40g)
dr Vj,1

Ds,j
Dcj,1 = Sj,1(cj,0[1:n] − cj,1[1:n])

+ Sj,2(cj,2[1:n] − cj,1[1:n]) (40h)

dr Vj,2

Ds,j
Dcj,2 = Sj,2(cj,1[1:n] − cj,2[1:n]) (40i)

+ Sj,3(cj,3[1:n] − cj,2[1:n]) (40j)

dr Vj,3

Ds,j
Dcj,3 = Sj,3(cj,2[1:n] − cj,3[1:n]) (40k)

+ Sj,4(cj,4[1:n] − cj,3[1:n]) (40l)

dr Vj,4

Ds,j
Dcj,4 = Sj,4(cj,3[1:n] − cj,4[1:n]) (40m)

cj,{0:4},[1] = cj,init[1] (40n)

cj,{0:4},[n] = cj,init[1] (40o)

pmin[1] ≤ p ≤ pmax[1] (40p)

vmin[1] ≤ vbat ≤ vmax[1] (40q)

imin[1] ≤ ibat ≤ imax[1] (40r)

[0] ≤ cj,{0:4} ≤ cj,max[1] (40s)

l + p ≤ τ [1] (40t)

where x SPM =
{

p,pdc, ibat, vbat, 8p, 8n, ηp, ηn, cp,{0:4},

cn,{0:4}, τ
}

∈ R
18n+13, 8p ∈ R

n+1 and 8n ∈ R
n+1 are the
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open-circuit-voltages of the cathode and anode respectively,

ηp ∈ R
n and ηn ∈ R

n are the overpotential voltages of the

cathode and anode respectively, and cp,{0:4} ∈ R
5×(n+1) and

cn,{0:4} ∈ R
5×(n+1) are the molar concentrations of active

material in the five discretized volumes of the cathode and

anode respectively.

Under this control design customer’s net load and optimal

control schedule for the BESS are shown in Fig. 16 (a) and (b)

respectively. The simulated battery current and voltage are

shown in Fig. 16 (c) and (e) respectively. The SPM based

controller expects to be able to reduce the peak load by

approximately 86 kW. The peak battery voltage reached

800 V and the dc current reached -125 A on discharge. Note

that the dc voltage is based on the anode and cathode voltage

functions which are in turn based on anode and cathode

concentration fractions. As these functions are different from

what the CRM uses, the results are not directly comparable.

As shown in Fig. 16 (f) and (g), the cathode concentration

fraction ranges from 0.50 at peak SoC to 0.87 at minimum

SoC while the anode concentration ranges from 0.76 at peak

SoC to 0.2 at minimum SoC. At low current densities there

is almost no difference between core and surface particle

concentrations. The control solution reduces the total elec-

trical bill from $52,080 ($50,000 demand, $2,080 energy) to

$47,754 ($45,682 demand, $2072 energy). The net effect is a

$4,325, or 8.31%, reduction in the electrical bill.

The SPM is structurally similar to the CRM, as illustrated

in the comparison of Fig. 9 and Fig. 15. However, the SPM

accounts for overpotential voltages in a different way from the

equivalent circuit models in the CRM. These differences are

not salient at the low sample rate in the example application

and hence the models appear to have very similar results.

IV. TEMPERATURE MODELS

Temperature is a critical factor to consider when controlling

BESS. Cell temperature can affect many of the parameters for

the SoC and SoHmodels discussed in Sections III and V. The

highest cell temperature can be the limiting factor for control

action in hot environments or under high power conditions.

Constraining temperature prevents over-temperature and, in a

few cases, under-temperature conditions which can shorten

battery life or cause hazards such as thermal run-away. The

following constraint enforces limits on temperature:

Tmin ≤ T ≤ Tmax (41)

where T is the battery temperature, Tmin is the minimum

battery temperature, and Tmax is the maximum battery

temperature.

Battery specification sheets will often define a lower max-

imum charge rate at higher temperatures [92]. This require-

ment would specify a conditional dynamic charge limit based

on if the battery temperature exceeds a given threshold,

an example of which is shown in:

imin ≤ ibat ≤ imax (42a)

ibat ≤ i′max (42b)

FIGURE 16. Results calculated with the SPM (a) net load with BESS power
control, (b) battery power, (c) battery SoC, (d) battery current, (e) battery
voltage, (f) cathode concentration fraction, (g) anode concentration
fraction.

i′max =











imax if T ≤ Tthr

imax/2 if Tthr < T ≤ Tmax

0 if T > Tmax

(42c)

where i′max is a dynamic charge current limit, Tthr is the tem-

perature threshold. This type of constraint is non-convex and

difficult to work with in optimal control design. Alternatively,

these restrictions can be implemented with affine constraints

on current as in:

m1T + b1 ≤ ibat ≤ m2T + b2 (43a)

m3T + b3 ≤ ibat ≤ m4T + b4 (43b)
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TABLE 8. Summary of temperature models.

FIGURE 17. Notional examples of temperature dependent current limits.

wherem1−4 and b1−4 are the slopes and intercepts of the tem-

perature dependent current constraints. Fig. 17 shows how the

constraints in (42) and (43) enclose different feasible regions.

This kind of limit can be imposed on dc power instead of

current [93].

Battery temperature models are based on howmuch heat is

generated in the cell, and how much heat is lost to the envi-

ronment. As controllers must balance accuracy with model

complexity, we cannot use the high order finite-element-

models used in simulation based design, like in [94]. Instead

controller models choose a few critical temperatures to repre-

sent. Section IV-A explains the physical mechanisms under-

lying heat generation and transfer for batteries. Section IV-C

then introduces several specific modeling approaches that

can incorporate temperature into optimal control decisions.

Table 8 shows a summary of the benefits and tradeoffs of

the different temperature models as they apply to optimal

controller design.

A. HEAT GENERATION, CONSUMPTION, AND TRANSFER

The temperature of the battery is a function of the rate of

heat generated by the battery during operation (Jin) and the

rate of heat lost to the environment (Jout). Heat is gener-

ated or consumed by an electrochemical cell in three ways:

change in entropy, overpotential losses, and resistive heat-

ing. Changes in entropy from the electrochemical reactions

reversibly generate and consume heat within cells. This pro-

cess is referred to as reversible heat generation because the

heat generated during charge or discharge is consumed during

the reverse reaction. Charging a battery can be endothermic

(e.g., some types of lithium batteries in specific ranges of

SoC), or exothermic (e.g., lead-acid batteries) [10], [65], [88],

[100], [102], [103]. When losses are considered, we reintro-

duce the equivalent circuit models outlined in Section III-B.

Overpotential losses result from the kinetic and mass trans-

port aspects of the chemical recreation which are modeled

by the resistor-capacitor ladder in the 2nd order equivalent

circuit. The voltage drop across these elements are v1 and

VOLUME 7, 2019 178373



D. M. Rosewater et al.: Battery Energy Storage Models for Optimal Control

FIGURE 18. Computed full cell 1S from individual electrode 1S for three
types of lithium-ion batteries, replotted with data from [104].

v2 respectively. Alternatively, if the SPM or P2D model is

used for a SoC model, the overpotential voltages ηp and

ηn can be used in place of v1 and v2. Resistive or joule

heating losses result from the power dissipated to the battery’s

internal resistance. Combining these three sources of internal

heat generation yields :

Jin = ibatT
1S(ς )

nmolF
+ (v1 + v2)ibat + R0(ibat)

2 (44)

where Jin is the rate of heat generation (W ), ibat is the bat-

tery current (A), T is battery temperature (K ), 1S is the

change in entropy (1S = nmolF(∂voc/∂T )), nmol is the

number of electrons per reaction, F is the Faraday constant

(-1/96,485 Coulombs per electron), v1 and v2 are the dynamic

battery voltages from the equivalent circuit (V), R0 is the

battery internal resistance (�), and voc is the open-circuit-

voltage (V). The total change in entropy in a battery can

change drastically as a function of SoC which can be difficult

to model for the purposes of control design. The change in

entropy over the domain of SoC was calculated from precise

measurements of ∂voc/∂T for a selection of lithium-ion bat-

tery types as shown in Fig. 18 [104]. From these data we can

contrast the low entropic heat generated on discharge from

lithium-iron-phosphate (LFP) batteries to the relatively high

entropic heat from lithium-cobalt-oxide (LCO), especially in

the range of 10% to 40% SoC. Lithium-manganese-oxide

(LMO) batteries in further contrast change from generating

heat (negative 1S) to consuming heat (positive 1S) when

passing 50% SoC on discharge. Depending on the battery

chemistry, and the range of operational SoC, the 1S(ς )

function may be neglected entirely, or approximated by a

constant, a linear function, a quadratic function, or cubic

function, or even a cubic spline [56], [105]. Accurate yet

simple models for changes in entropy that controllers can

use to predict temperature are an underdeveloped area that

warrants additional research.

Most of the heat generated in a cell, especially in high

power applications, comes from the resistive heating term.

Because of this, some choose to ignore overpotential losses

and the thermochemistry entirely [95]. Just as with the equiv-

alent circuit, the heat generation can be calculated with differ-

ent sets of parameters depending on if the battery is charging

or discharging. However, the accuracy improvement may not

warrant the increased computational complexity.

Heat can be transferred between the battery and the envi-

ronment through conduction, radiation, and convection. Heat

conduction is proportional to the temperature difference

while heat radiation is proportional to the temperature of

the surface raised to the 4th power according to Stefan-

Boltzmann’s law [106]. The combined heat loss function is

shown in:

Jout = U (Tenv − T ) + ǫσem(T
4
env − T 4) (45)

where Jout is the rate of heat loss (W ), U is the battery’s

thermal transmittance with its environment (W/K ), Tenv is the

environmental temperature (K ), ǫ is the Stefan-Boltzmann

constant (5.6 × 10−8 Wm−2 K−4), σem is the emission ratio

with respect to the ideal (0.95 is common for plastics in a

variety of battery designs [106]).

In an unregulated environment Tenv can be forecasted

based on local weather data. In a temperature controlled

environment, it can sometimes be assumed that Tenv is a

constant. The heat transfer from radiation is normally much

smaller than then heat conduction meaning that it can be

ignored in many systems. A simplifying assumption is that

the airflow rate is constant, thereby yielding a constant U .

However, in some cases variable speed fans can be integrated

into the optimal control design. Under variable airflow condi-

tions the rate of heat transfer is described by Nusselt number

(Nu) which itself is a function of Reynolds number (Re)

and Prandtl number (Pr). One example of this relationship,

from [107], is shown in:

Re =
ρ u∞ lmm

µ
(46a)

Nu = Cl Re
θ Pr

1
3 (46b)

U =
Nu ktc

lmm
(46c)

where ρ is the fluid’s density, u∞ is the unobstructed velocity

of the fluid, lmm is the characteristic length, µ is the dynamic

viscosity, Cl and θ are empirically derived model parameters,

and ktc is the thermal conductivity of the fluid.

Table 9 shows the thermodynamic constants associated

with air and water under standard temperature and pressure.

As water has a much higher density and thermal conductivity,

some BESS designs include water cooling systems [108].

For a cylinder in cross-flow, the characteristic length lmm

equals the diameter (18.63 mm for an 18650-type cell). The

parameters Cl and θ , shown in Table 10, are properties of

the geometry of the fluid flow over the battery surface and

change with the Reynolds number. Together, these material

properties yield the functional relationship between air speed

thermal transmittance shown in Fig. 19.

The complex relationships described in (46) impact control

design in several ways. First, heat transfer rate increases with

increasing fluid velocity u∞. However, there are diminish-

ing returns meaning that the marginal improvement in heat

transfer decreases with increased fluid velocity. Hence there
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TABLE 9. Thermodynamic properties of common battery cooling
fluids* [107].

TABLE 10. Fluid flow geometry constants for a cylinder in
cross-flow [107].

FIGURE 19. Thermal transmittance for a 18650 battery cell in cross flow
as a function of air speed [107].

is likely to be an optimal, non-zero flow rate that effectively

transfers heat while not consuming too much power to move

air. A fan controller can be implemented to optimize battery

temperature along with charge/discharge [101].

B. ENCLOSURE THERMAL MODEL

The simplest enclosure thermal model is implicit in the

assumption of constant environmental temperature. This is

valid if the BESS is small and installed in a temperature-

controlled space. Temperature forecasts can be used in envi-

ronments where temperature is weather dependent. As there

is generally thermal separation between the weather depen-

dent environment and the environment that the batteries are

operating in, we can model these temperatures separately.

For a given BESS and environment, the heat transfer

rate between the enclosure and the environment U EN can

be empirically calculated with heating ventilation and air

conditioning (HVAC) systems off, and over their range of

control. We may also consider the effect of solar heating

which is proportional to irradiance. The HVAC power draw

can also be calculated under these conditions, and the result-

ing functions can be included in the BESS model. Further,

an HVAC system can transfer a greater amount of heat

from the enclosure to the environment, or vice versa, than

it requires in electrical energy. The efficiency of a room

air conditioner is measured in the energy efficiency ratio

(EER), which is the ratio of Btu per hour cooling to power

input (W). The EER ranges from roughly 10-20 for high

efficiency units [109] which, given that 1 Btu per hour =

0.293 watts, correlates to a energy efficiency (η HVAC) of

300-700%. A modified version of the heat dissipation equa-

tion for a BESS enclosure is shown in:

JEN,out = U EN(Tenv − T EN) + ǫσem(T
4
env − T 4

EN)

+ ǫσemp irr − η HVACp HVAC (47)

where U EN is the thermal transmittance between the enclo-

sure and the environment, T EN is the enclosure tempera-

ture, p irr is solar irradiance, p HVAC is the ac power load

of the HVAC unit, and η HVAC is the HVAC’s energy effi-

ciency. This approach assumes constant airflow and temper-

ature in the HVAC’s heat exchanger. By modeling the heat

exchanger temperature and fan, we can improve the con-

troller’s accuracy predicting temperature management costs.

The expanded enclosure thermal model is shown in:

J EN,out = U EN(Tenv − T EN) + ǫσem(T
4
env − T 4

EN)

+ ǫσemp irr+U EX(u∞) (T EX−T EN) (48a)

C EX
∂T EX

∂t
= U EX(u∞) (T EN − T EX) − η HVACp HVAC

(48b)

u∞ = η fanp fan (48c)

where U EX(u∞) is the thermal transmittance between the

HVAC heat exchanger and the air, which is a function of the

airflow u∞, T EX is the heat exchanger temperature, C EX is

the heat exchanger’s heat capacity, p fan is the fan power, and

η fan is the fan’s efficiency (m s−1 kW−1).

Many HVAC systems are controlled using thermostats,

which activate heating or cooling modes when outside a set

temperature range. The simplest thermostat implementation

is shown in:

p HVAC =











p cool T EN > T high

0 T low ≤ T EN ≤ T high

p heat T EN < T low

(49a)

where p cool is the power of the HVACwhen in cooling mode,

p heat is the heating power of the HVAC when in heating

mode, and T high and T low are the high and low environment

temperature limits respectively. To limit the on/off cycling

frequency, the mode will often stay latched for a set dura-

tion, or until the desired temperature is reached. However,

this operational mode is recursive, meaning it is difficult

to incorporate into a computationally efficient optimal con-

troller design. If it is feasible in the design of the HVAC

system, HVAC power (p HVAC) and/or fan power (p fan) can be

decision variables available to the controller. This modeling

approach enables optimal HVAC control scheduling, includ-

ing pre-cooling batteries [101] or pre-heating batteries [98]

to prepare for usage later in the control horizon.
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FIGURE 20. Cell thermal model w/ a lumped-volume, resistive-heating,
and conduction-cooling.

C. TEMPERATURE MODEL TYPES

In this section we develop several increasingly complex,

battery-cell thermal models to illustrate the different options

for thermal model design. To build these models we pull

together the physical mechanisms discussed in Sections IV-A

and IV-B into systems of constraints. The simplest, and most

widely used, model is to only represent a single temperature

(often the hottest cell), considering only resistive heating and

conduction-based cooling. An example of this type of model

is shown in Fig. 20 and in:

CT
∂T

∂t
= R0(ibat)

2 + U (Tenv − T ) (50)

where CT is the heat capacity of the lumped-volume.

In this lumped-volume model the measurable surface tem-

perature is assumed to be the temperature throughout the cell

[95], [96]. Note that while we have depicted the cell geom-

etry as cylindrical, this approach works equally well for

pouch or prismatic cells. Note that when only the hottest

cell is represented, imposing a low temperature constraint

is unnecessary and potentially misleading. Instead, the low

temperature limit is enforced either by battery selection at the

design stage (i.e. picking a battery chemistry that is suitable

for its environment) or by designing a HVAC system with a

thermostat that regulates environmental temperature.

Where the BESS includes an enclosure with a controllable

HVAC system, the model can include an additional state vari-

able for the enclosure temperature [98] as in Fig. 21 and in:

CT
∂T

∂t
= R0(ibat)

2 + U (T EN − T )

C EN
∂T EN

∂t
= Ncell (U (T − T EN)) + U EN(Tenv − T EN)

− η HVACp HVAC (51a)

where C EN is the heat capacity of the BESS enclosure, U EN

is the thermal transmittance between the enclosure and the

environment, andNcell is the number of cells in the enclosure.

This model assumes constant or no airflow.

While temperature measurement is performed on the sur-

face of batteries it is a better practice to constrain opera-

tion based on limiting the maximum internal temperature

[51], [99]. The internal temperature can be estimated based

on the surface temperature and the battery’s operation.

We can also include battery over-potential heating to improve

FIGURE 21. Enclosure model with lumped-air-volume and HVAC
efficiency cooling.

accuracy as shown in:

C ′
T

∂T ′

∂t
= (v1 + v2)ibat + R0(ibat)

2 (52a)

+U ′(T − T ′) (52b)

CT
∂T

∂t
= U ′(T ′ − T ) + U (Tenv − T )

+ ǫσem(T
4
env − T 4) (52c)

where C ′
T is the heat capacity of the internal mass of the cell,

T ′ is the internal temperature, and U ′ is the thermal transmit-

tance between the internal mass to the surface. As the model

now distinguishes between surface and internal temperature,

CT is now the heat capacity of the surface of the cell, T is

the surface temperature, and U is the thermal transmittance

between the battery surface and its environment. The result-

ing model structure is illustrated in Fig. 22.

FIGURE 22. Cell thermal model w/ internal and surface-volumes, resistive
and overpotential heating, and conduction/radiation cooling.

Building on this framework we can add additional internal

volumes, entropy based heating, and convection cooling as a

function of air velocity as shown in:

C ′
T1

∂T ′
1

∂t
= U ′

1(T
′
2 − T ′

1)

+V1

(

ibatT
′
1

1S(ς )

nmolF
+ (v1 + v2)ibat + R0(ibat)

2

)

C ′
T [2:K ]

∂T ′
[2:K ]

∂t
= U ′

[2:K ](T
′
[3:K+1]) − T ′

[2:K ]) (53a)

+V[2:K ]

(

ibatT
′
[2:K ]

1S(ς )

nmolF
+ (v1 + v2)ibat + R0(ibat)

2

)

+U ′
[1:K−1](T

′
[1:K−1] − T ′

[2:K ]) (53b)
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CT
∂T

∂t
= U (u∞) (Tenv − T ) + U ′

K (T
′
K − T )

+ ǫσem(T
4
env − T 4) (53c)

where TT [1:K ]′ are the K internal temperatures, CT [1:K ]′ are

each internal volume’s heat capacity,V ′
[1:K ] are the volumetric

fractions of each internal volume normalized to the total

internal volume, and U ′
[1:K ] are the thermal transmittances

between internal volumes. Note that for notation simplicity

the surface temperature T ′
K+1 = T in (53b). The resulting

model structure is illustrated in Fig. 23.

FIGURE 23. Cell model with multiple-internal-volumes,
resistive/overpotential/entropy-heating, and
conduction/radiation/convection-cooling.

To take advantage of the convection cooling term,

the enclosure model can be further developed to include fan

power, air velocity, and the temperature of the HVAC heat-

exchanger. To accomplish this, we replace Tenv with T EN in

(53c) and add the additional constraints shown in:

C EN
∂T EN

∂t
= Ncell

(

U (u∞) (T−T EN)+ǫσem(T
4−T 4

EN)
)

+U EN(Tenv − T EN) + ǫσ EN(T
4
env − T 4

EN)

+U EX(u∞) (T EX − T EN) (54a)

C EX
∂T EX

∂t
= U EX(u∞) (T EN − T EX) − η HVACp HVAC

(54b)

u∞ = η fanpfan (54c)

where T EX is the heat-exchanger temperature, C EX is the

heat exchanger heat capacity, U EX(u∞) is the air velocity

dependent thermal transmittance between the air and heat-

exchanger, p fan is the fan power, and η fan is the fan efficiency.

The resulting model structure is illustrated in Fig. 24.

There are many useful combinations of these models. For

example, a controller may want to have a more detailed cell

model and a less detailed enclosure model or vice-versa.

Alternatively, these models can be customized to a specific

cell design or enclosure architecture. The ‘‘Big cell’’ mod-

eling assumption is commonly used but the ‘‘Short-board

effect’’ and ‘‘One-by-one calculation’’ can be used in ther-

mal modeling as well. A similar model extension to the

enclosure would be to represent a finite number of internal

volumes. Each cell would reside within a volume and the

heat transfer would only depend on that volume’s temper-

ature. Each of these options greatly increases model com-

plexity with unknown, perhaps limited, benefits to controller

performance.

FIGURE 24. Enclosure model with, lumped-air-volume, heat-exchanger
temperature, HVAC efficiency and fan speed based cooling.

TABLE 11. Example battery system temperature model parameters.

1) TEMPERATURE MODEL APPLICATION

For this application we solve the optimal control problem in

Section II using a thermal model. However, in this section

we assess how the control changes if it is in a very hot envi-

ronment. In some regions, the temperature can commonly

reach 43.3 ◦C (110 ◦F) during the day. BESS in such an

environment are generally installed in enclosures with HVAC

systems. Given this environment, we determine an optimal

control schedule for both the BESS power and the HVAC

system power using the parameters in Table 11. The modified

objective and constraints, in addition to those for the CRM

defined in Section III-B.1, are shown in:

min
x T∈R9n+5

1t w⊤(l + p + p HVAC) + ντ (55a)

subject to:

... in addition to the constraints in (28)

l + p + p HVAC ≤ τ (55b)

CTDT = R0(ibat)
2 + U (T EN[1:n] − T[1:n]) (55c)

C ENDT EN = K H(T[1:n] − T EN[1:n])

+U EN(Tenv − T EN[1:n])

−η HVACp HVAC (55d)

T[1] = T0 (55e)

T EN[1] = T0 (55f)

T ≤ Tmax[1] (55g)

[0] ≤ p HVAC ≤ p HVAC-max[1] (55h)
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where x T = {p,pdc, ibat, vbat, voc, ς ,T,p HVAC,T EN, τ, } ∈

R
9n+5, T ∈ R

n+1 is the temperature of the hottest cell at each

time step, T EN ∈ R
n+1 is the enclosure temperature, and

ibat ∈ R
n is the dc current. The environmental temperature is

assumed to be sinusoidal, with a period of 24 hours, a peak

of 45◦C at 3:00 pm, and a magnitude of 2.5◦C. The formal

expression for the temperature is shown in:

Tenv = 2.5 cos

(

2π 1t

24
k − 15

)

+42.5 ∀ k ∈ {1, 2, . . . n}

(56)

where Tenv ∈ R
n is the environmental temperature at each

time step.

The net load achieved over the control horizon from the

combined SoC-Thermal model is shown in Fig. 25 (a). The

optimal control schedule calculated is shown in Fig. 25 (b).

The HVAC power schedule is shown in Fig. 25 (d) and the

environmental, battery, and enclosure temperature trajecto-

ries are shown in Fig. 25 (e). The controller can anticipate

a period of high temperature and pre-cool the enclosure, and

hence the battery, to achieve the desired schedule. Note also

that the pre-cooling takes place during the off-peak electricity

pricing period. The magnitude and duration of the HVAC

cooling is precisely tuned such that the battery’s temperature

reaches its limit (45 ◦C) exactly at the end of the sched-

ule. Note also that the power profile no-longer preferentially

charges during off-peak times. This is a result of the quadratic

increase in temperature from high rate charging that generates

too much heat for the system to transfer to the environment

cost-effectively.

The control solution reduces the total electrical bill

from $52,080 ($50,000 demand, $2,080 energy) to $48,001

($45,871 demand, $2,130 energy). Within the energy bill,

the energy required to cool the battery accounts for $51. The

net effect is a $4,079 (7.83%) reduction from the baseline

electrical bill, or a $53 (0.11%) increase in the electrical

bill calculated using only the CRM. The more important

comparison is that if we model battery temperature in this

environment under the control solution developed using only

the CRM, the hottest battery reaches a peak temperature

of 55.6 ◦C . By incorporating a thermal model into the con-

troller, we can plan control actions to maintain defined tem-

perature limits.

V. DEGRADATION MODELS

As batteries age with time and use, their energy storage and

supply capabilities degrade until they no-longer meet the

requirements of their designed services. When degradation

is included in optimal control, it tends to rely on empirical

degradation models that abstract many of the physical pro-

cesses in favor ofmodel simplicity. However, there are several

studies that use the SPM or a simplified P2D to incorpo-

rate physical degradation models into a controller design

[46], [81], [110]–[113].

This section first establishes definitions for state-of-health

(SoH) and how they fit into optimal control. We then

FIGURE 25. Results from control incorporating temperature model:
(a) net load with BESS power control, (b) battery power, (c) battery SoC,
(d) enclosure ac power, and (e) battery, enclosure, and environmental
temperatures.

introduce and assess empirical stress factor based models for

accurate degradation modeling. Linearizing and simplifying

the detailed empirical degradation model allows us to calcu-

late several norm-based regularization factors that efficiently

incorporate degradation into optimal control objectives. Last,

we cover physical degradation models based on intercala-

tion stresses and two different side-reactions in lithium-ion

batteries.

We use the terminology beginning-of-life (BoL) to denote

the conditions when the battery is new, end-of-life (EoL) to

denote the conditions when the battery can no-longer reliably

supply energy services, and state-of-life (SoL) to denote the

conditions, between BoL and EoL, that the battery is in at

a given state. The EoL conditions are often specified by the

battery or BESSmanufacturer as a part of a warranty. Because

of this lack of standardization, SoH can be defined in many

ways (e.g., based on changes in capacity [114], resistance,

round trip efficiency, etc.). We use a more general definition

of SoH (̺), represented in:

̺ = 1 −

∣

∣

∣

∣

y BoL − y SoL

y BoL − y EoL

∣

∣

∣

∣

(57)

where ̺ is the SoH of the battery and y is a critical param-

eter for the battery to reliably supply services. In (57),

SoH is defined as the ratio of a specific parameter’s (or

combination of parameters) movement from its initial state
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at BoL to its final state at EoL. In this context, SoH can

represent movement in energy capacity (kWh), available

energy (kWh), charge capacity (Ah), available active material

(e.g. through ‘‘loss-of-lithium’’ in mols), coulombic effi-

ciency (%), or internal resistance (�). Available energy is a

combination of available charge/discharge power, and energy

capacity that is defined very precisely in the electric vertical

context [114] but analogs can be imagined for energy storage

applications as well. Using this definition, no matter what

parameter is used, and whatever the BoL and EoL conditions

are specified, ̺ at BoL always equals 1, and ̺ at EoL always

equals 0. As we are focused on controller design, this def-

inition does not account for ‘‘rejuvenation’’ cycles wherein

lead-acid and some types of flow batteries can recover some

loss of SoH.

For the purposes of control design, we can assume that

the change in model parameters from degradation over any

forward-looking control horizon is extremely small. That is,

absolute changes in parameters from degradation happen over

the course of months or even years, while controllers operate

over hours or days. For this reason, from the perspective of

control design, it is unimportant which parameter is used

to calculate SoH. The rate of degradation, in contrast, can

change quickly and is a critical factor in determining optimal

control. Hence, rather than modeling SoH, we model the rate

of degradation directly as a calculated variable.

There are at least two ways to incorporate the rate of degra-

dation into optimal control design. The first way is to add

incremental battery replacement/refurbishment cost in the

objective [30]. The secondmethod is to constrain operation to

a maximum degradation rate to ensure a warranty period [28].

The following is a detailed introduction to these twomethods.

When batteries reach EoL, they can be replaced with

new batteries that restore the system’s functionality to BoL

conditions. In certain cases, the old batteries can be resold/

re-purposed in a new application. The net costs predicted to

be incurred at EoL, denoted by C EoL, provide a quantitative

estimate of how much the controller should weight battery

degradation. The cost incurred through battery degradation is

calculated in:

fb = C EoL
∂̺

∂t
= C EoL ˙̺ (58)

where fb is the cost of the battery degradation over a full

control horizon, C EoL is the net cost at EoL, ̺ is the present

SoH, and ˙̺ is the average degradation rate over the control

horizon.

As the cost incurred in (58) is the present value of a pre-

dicted future cost, it is possible to apply a discount rate based

on an assumed interest rate. The number of compounding

periods would then be estimated linearly from the current

SoH, the average rate of degradation, and an assumed com-

pound period, as shown in:

fb = (1 + i)−n C EoL ˙̺ (59a)

n =

(

1

tcomp

)

̺

˙̺
(59b)

where i is the interest rate, n is the number of compounding

periods between SoL and EoL, and tcomp is the duration of

each compounding period. This is meant to illustrate only

one of many methods available for discounting future cost.

It is sensible that control design using this method reflects

whatever financial structure and assumptions are used for

projected EoL costs.

Alternatively, a controller can be designed to maximize

value while enforcing a designed or warranted service life.

This method does not include an additional cost term in the

objective and instead includes an additional constraint on the

average rate of degradation, as shown in:

˙̺ ≥ −
̺

Lwar − L
(60)

where Lwar is the total warranty life (e.g., 15 years), and L

is the current life (years that the BESS has been in service).

Critically, the degradation rate should be allowed to temporar-

ily exceed the rate at which the BESSwould reach EoL before

the warranted service life as this allows for periods of rest to

counterbalance period of high utilization. If this method is

used, it is important to account for how the controller should

transition operation past EoL as (60) is infeasible if L ≥ Lwar.

Note that (60) can be imposed as a soft constraint, with a

slack variable subtracted from the limit and maximized in

the objective. This approach can handle infeasibility at the

expense of additional decision variables, which can be helpful

when more complex degradation models are used.

A useful reformulation of this is for a manufacturer to

supply a ‘‘warranty life curve’’ as shown in Fig. 26. This

curve has a maximum warranty life and a function that

describes how the warranty period would be shortened based

on BESS operation increasing a supplied degradation metric

(e.g., cycles as in [115]). This curve may or may not be

accompanied by an equation to calculate the degradation

metric as it is often described by just a few points to prevent

reverse engineering. The warranty life can be interpreted in

the context of control as the reciprocal of the rate of degrada-

tion, as in:

˙̺ = −
1

DLwar
≥ −

̺

Lwar − L
(61)

where D : R 7→ R is the warranty life curve supplied by

the battery or BESS manufacturer. This formulation allows a

generic warranty life curve to be implemented as a constraint

into a BESS controller.

This section outlines various models for calculating the

average rate of degradation for use in optimization. We adapt

a stress factor model used for life prediction of lithium-ion

cells for use in control design.We then illustrate how, through

a series of operational assumptions, this stress factor model

can be reduced to simple norm-based regularization. Last,

we introduce several physical degradation models. Table 12

shows a summary of the types of degradation models dis-

cussed in the following sections.
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TABLE 12. Summary of Degradation models.

FIGURE 26. Notional example of a manufacturer supplied degradation
curve (curve value = D).

A. EMPIRICAL DEGRADATION MODELS

Empirical battery degradation models can be classified as

either calendar aging or cycle aging, with total degradation

being the superposition of the two [132]. Calendar aging

models are functions of time, average SoC, and average

temperature and impact SoH whether or not the battery is

charged or discharged. Cycle agingmodels are based on cycle

SoC, current, cycle depth-of-discharge (DoD), and cycle tem-

perature. Models based on current (or C-rate), such as the

models presented in [133] and [134], generally work best

for constant current cycling performed in laboratory experi-

ments and have unknown accuracy in application that require

variable charge or discharge rates.

It is common to represent degradation based on an

exponential decay function of calendar and cycle degrada-

tion [121], as shown in:

̺ = e−fd (62)

where fd is the aggregate degradation stress factor based on

a combination of calendar life stress factors, and cycle life
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stress factors. We can model the value of the aggregate degra-

dation stress factor as an additional variable in our system

representation.

A rainflow cycle counting algorithm originally developed

for material degradation [135] is widely used for accurate

cycle-life modeling [52], [122], [123]:

fd = St Sς ST +

N
∑

i=1

wiSδ Sς ST (63)

where N is the number of cycles in the control horizon, i is a

cycle index variable, wi is a binary variable indicating a full

cycle or a partial cycle, and each stress factor is shown in:

St = kt t (64)

Sς = ekς (ς−ςref) (65)

ST = ekT(T−Tref)
Tref
T (66)

Sδ = a δ4 + b δ3 + c δ2 + d δ + e (67)

where t is time, St is the time stress factor, ς is SoC, Sς is

the SoC stress factor, T is temperature, ST is the temperature

stress factor, δ is DoD, and Sδ is the DoD stress factor. The

parameters Tref, ςref, kt, kς , kT, a, b, c, d , and e enable

their associated stress factors to be tuned to specific bat-

teries. Degradation models that do not use rainflow cycle

counting often make duty-cycle profile assumptions such

as in [136], [137].

Here we could extend the short board and cell-by-cell

modeling approaches introduced in Section III-B to the dis-

tribution of degradation rates within a battery string or pack.

However, from a control perspective, representing the max-

imum and minimum SoH in a string is less critical than

for either SoC or Temperature because particularly low SoH

cells can be replaced during regular maintenance, and hence

would not limit operation. For this reason, the ‘‘big cell’’

representation of string level degradation is generally the

most appropriate for optimal control applications.

As the controller objective is to minimize the change in

SoH, we can take the derivative of (62) to obtain:

˙̺ = −
∂fd

∂t
e−fd = −kt Sς ST e

−fd (68)

yielding the form of SoH used in a controller model.

Modeling SoH in this way presents a fundamental chal-

lenge. The rainflow counting algorithm in (63) is recursive

in that, under most conditions, we cannot determine the

number or time of each cycle within an schedule. When per-

forming a rainflow counting algorithm on a known schedule,

the schedule is broken into many smaller pieces that add

up to the total degradation. However, this schedule split-

ting cannot be done a priori and hence is very difficult

for optimization algorithms to work with. We discuss three

imperfect workarounds and one apparent solution to this

problem. First, there are some cases where the time windows

for each cycle are predetermined (e.g., daily cycling). This

makes the rainflow counting algorithm trivially simple and

easy to implement in optimization. However, under some

circumstances, the optimal solution, assuming only one cycle,

yields two or more cycles. Similarly, the optimal solution

assuming two cycles can often yield an optimal schedule that

includes just one cycle, or cycles with different boundaries

than expected. The second approach is to discretize the con-

trol schedule as demonstrated in [115], [124]. By breaking the

available range of SoC and current into a number of discrete

states it allows the controller to map each state transition

onto a piecewise linearized degradation curve. This approach

has the benefit of accuracy of the degradation function at

the cost of precision of the control solution and computation

time. The third workaround is to linearize the degradation

rate around assumed static operational conditions, including

cycles. Doing this, it can be found that the rate of degra-

dation can be written in the form of a regularization term.

This third approach is discussed in the following section.

Lastly, an apparent solution is presented by Shi et al, who

first prove the convexity of the rainflow counting algorithm

and then demonstrate a subgradient algorithm for efficient

optimal control [125]. This method works by recognizing

that every charge (and discharge) action belongs to either one

charge half cycle or two charge half cycles if it is at the time

boundary between two cycles. The cost of a charge action at

the boundary can be mapped from the cycle depth of either of

its member half cycles. Hence the subgradient algorithm can

avoid the calculation of the number of cycles entirely, instead

adding the cost associated with the member half cycle to the

subgradient of the charge action.

1) DEGRADATION AS REGULARIZATION

In machine learning, regularization is commonly used to

prevent a model from overfitting data. Here we use similar

methods to prevent our controller from over-using batteries.

In this section we derive several different kinds of regular-

ization terms based on the stress factors described above.

While most of the degradation stress factors are nonlinear

functions, their first-order Taylor series approximations can

be reformulated as the norms of specific decision variables.

The simplest approach to calculating the rate of degra-

dation ( ˙̺ ) is to linearize it to an assumed cycle depth-

of-discharge, temperature, and average SoC. Under these

assumptions, the degradation rate can be written:

˙̺ =
|pe|

(1 + 1
ηe
)LcycQcap

(69)

˙̺ =
|ibat|

(1 + 1
ηc
)LcycCcap

(70)

where p is BESS ac real power, ibat is the battery current, ηc is

the coulombic efficiency, Lcyc is the rated cycle-life to EoL,

Qcap is the energy capacity, and Ccap is the charge capacity.

Under these narrow conditions, degradation is proportional

to the absolute value of the battery power as shown in (69)

when using the ERM [28], [30], [116], [138] or to the absolute

value of the battery current as shown in (70) when using

the CRM [46], [74]. A modification to this approach is to
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establish a power or current threshold above which the linear

cost increases as in [33]. Another modification is to multiply

the absolute value of power or current by a stress factor based

on temperature and charge/discharge rate as in [51], [116].

Note that, when adding (69) or (70) up over a discrete control

horizon, this form of degradation is equivalent to applying a

ℓ1 norm power regularization, or ℓ1 norm current regulariza-

tion, as shown in:

fb(p) = 5 cyc ||p||1 (71a)

5 cyc =
1t C EoL

(1 + 1
ηe
)LcycQcap

(71b)

fb(ibat) = 5 cyc ||ibat||1 (72a)

5 cyc =
1t C EoL

(1 + 1
ηc
)LcycCcap

(72b)

The regularization weight 5 cyc has units of $/kW or $/A

depending on which equation it is in because of the units of

the relevant decision variable.

At an assumed static temperature, the derivative of degra-

dation rate with respect to temperature is constant (KT) as

shown in (73). Ignoring the reversible heat generation, over-

potential heating, and assuming that battery temperature and

environmental temperature are very close, the derivative of

temperature in (50) reduces to simply the resistive heating

term, as in:

KT =
∂2̺

∂T ∂t
=

∂

∂T

(

−ḟd e
−fd

)

∣

∣

∣

∣

∣

∣

∣

∣

T=T0

t=t0

δ=δ0

ς=ς0

(73)

∂T

∂t
=

R0

CT
i2bat (74)

where KT is the partial derivative of degradation rate with

respect to temperature, T is the battery temperature, t is time,

R0 is the battery ohmic resistance, and CT is the battery’s

total heat capacity. From (73) and (74), we obtain the second

derivative of degradation:

¨̺ =
KTR0

CT
i2bat (75)

Assuming piecewise constant values for current, integrat-

ing (75) yields an approximation of the average degradation

rate:

˙̺ ≈
1tKTR0

CT
||ibat||

2
2 (76)

Again note that, when added up over the control horizon,

this form of degradation is equivalent to applying a ℓ2 norm-

squared current regularization to the objective function as

shown in:

fb(ibat) = 5T ||ibat||
2
2 (77a)

5T =
1t2C EoLKTR0

CT
(77b)

where the regularization weight 5T in this equation has

units of $/A2. This form of degradation cost has been used

in [117]–[119] to minimize heat generation in hybrid vehicle

energy management optimization.

Further, assuming a constant battery voltage (vbat = v0),

(77) can be reformulated using ac power instead of dc current.

Assuming the ac/dc conversion model in (24), with φb = 0,

the minimum heat generation regularization is shown in:

fb(p) = 5T ||p||22 (78a)

5T =
1t2C EoLKTR0φ

2
m

CTv0
(78b)

where the regularization weight 5T in this equation has units

of $/kW 2.

At an assumed static average SoC (ςavg), the the derivative

of the degradation rate with respect to average SoC is con-

stant, as shown in:

ςavg =
||ς ||1

n
(79)

Kς =
d2̺

dςavg dt
=

∂

∂ςavg

(

−ḟd e
−fd

)

∣

∣

∣

∣

∣

∣

∣

∣

T=T0

t=t0

δ=δ0

ς=ς0

(80)

where Kς is the partial derivative of degradation rate with

respect to SoC, ςavg is the average SoC, and n is the number

of steps in the discrete control horizon. Multiplying both

sides by ∂ςavg and, assuming piecewise constant values for

SoC, integrating yields an approximation for the average

degradation rate:

˙̺ ≈
Kς

n
||ς ||1 (81)

This form of degradation is equivalent to applying a

ℓ1 norm SoC regularization to the objective function as

shown in:

fb(ς ) = 5ς ||ς ||1 (82a)

5ς =
1t C EoLKς

n
(82b)

where the regularization weight 5ς in this equation has units

of $/(%SoC).

At an assumed static cycle DoD, the derivative of degrada-

tion rate with respect to DoD is constant, as shown in:

δ = max(ς ) − min(ς)=||ς ||∞+||1 − ς ||∞−1 (83)

K DoD =
∂2̺

∂δ ∂t
=

∂

∂δ

(

−ḟd e
−fd

)

∣

∣

∣

∣

∣

∣

∣

∣

T=T0

t=t0

δ=δ0

ς=ς0

(84)

where K DoD is the partial derivative of degradation rate with

respect to DoD, and δ is the DoD. Multiplying both sides by

∂δ and, assuming piecewise constant values for SoC, integrat-

ing yields an approximation for the average degradation rate:

˙̺ ≈ K DoDδ = K DoD (||ς ||∞ + ||1 − ς ||∞ − 1) (85)

This form of degradation is equivalent to applying an ℓ∞

norm ς and 1 − ς regularization to the objective function as

shown in:

fb(ς ) = 5 DoD

(

||ς ||∞ + ||1 − ς ||∞
)

(86a)
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5 DoD = C EoLK DoD (86b)

Note that the−1 can be omitted from ς DoD in this formula-

tion because, as a constant, it would not affect the minimizers

of the optimization. This degradation cost has been applied

to BESS in a daily energy market arbitrage application [120].

The regularization weight 5 DoD in this equation has units of

$/(%DoD).

Now that the partial derivatives have each been derived,

we can combine them to yield a function for total degrada-

tion. As the current based cycle-counting and heat-generation

degradation functions require fewer assumptions than their

ac power based counterparts, we use (72a) and (77) instead

of (71) and (78) though either option produces a viable esti-

mate of total degradation. The formulation for linearized total

degradation cost is shown in:

fb(ibat, ς ) = 5 cyc ||ibat||1 + 5T ||ibat||
2
2 + 5ς ||ς ||1

+ 5 DoD

(

||ς ||∞ + ||1 − ς ||∞
)

(87)

B. PHYSICAL DEGRADATION MODELS

Physical degradation models have already been reviewed

in [85], [139], [140]. These models are built on top

of the concentration-based SoC model type discussed in

Section III-C. As with empirical models, physical degrada-

tion models can emphasize calendar aging [141] or cycle

aging [142]. However, a better classification is to distin-

guish models that focus on chemical side-reactions [129],

[141]–[145] or material fatigue [112], [131]. Rather than

duplicating a review of all themodels available, the rest of this

section analyzes the narrower intersection between physical

degradation modeling and optimal control.

In lithium-ion batteries, which are the primary focus of

research on degradation mechanisms, the formation of the

solid electrolyte interphase (SEI) layer both increases resis-

tance and reduces the available lithium resulting in both

power and capacity fade [110]. The current density of the

side-reaction that leads to the growth of the SEI layer

[46], [127], [128] is shown in:

JSEI =
exp

(

− F
RT

ηn
)

1

nSEI FkSEI exp
(

nSEI F
RT (8n−0.4)

) −
δSEI

nSEI F DSEI

(88)

where JSEI is the SEI side-reaction current density, F is

Faraday’s constant, R is the ideal gas constant, T is the battery

temperature, ηn is the negative electrode overpotential, nSEI
is the number of electrons in the SEI side-reaction, kSEI is the

chemical rate constant of the SEI side-reaction,8n is the open

circuit voltage of the negative electrode, δSEI is the thickness

of the SEI layer, and DSEI is the diffusion coefficient of

lithium in the SEI layer.

If power is the critical parameter for operation, then we use

the growth in the thickness of the SEI layer to calculate the

rate of change in SoH as shown in:

∂δSEI

∂t
=

JSEIMSEI

nSEI FρSEI
(89a)

̺ SEI = 1 −
δSEI

δSEI,EoL
(89b)

whereMSEI is the molar volume of SEI reaction products,and

ρSEI is the density of the SEI layer. It should be noted that

there are many other ways of modeling the growth of the SEI

layer [129].

If capacity is the critical parameter for operation, then we

use the loss-of-lithium to calculate the rate of change in SoH

as shown in:

∂LSEI

∂t
= JSEI As,n (90a)

̺ SEI = 1 −
LSEI

LSEI,EoL
(90b)

where LSEI is the lost lithium content, and As,n area of the

negative electrode.

Another side-reaction to consider is lithium-plating, which

can occur under adverse charging conditions or as a result

of accidental overcharge [81], [111]. In this case, the rate of

change in SoH can be calculated as the magnitude of the side-

reaction over-potential if it is negative as shown in:

ηsr = φ1,n − φ2,n − 8sr − F Jsr Rfilm (91)

Jsr = ksr(xs,n,surf)
αsr (92)

×

{

exp

(

(1 − αsr)F

RT
ηsr

)

− exp

(

−
αsr F

RT
ηsr

)}

(93)
∂Ll.p.

∂t
= Cl.p.|min(ηsr, 0)| (94)

where ηsr is the side-reaction overpotential, φ1,n is the solid-

phase potential, φ2,n is the solution-phase potential, ηn is

the anode overpotential, calculated using the Butler-Volmer

equation (37), 8sr is the side reaction reference voltage,

which can be conservatively estimated to be zero in this case

[81], [111], Jsr is the side-reaction current density, Rfilm is the

lithium metal film resistance, ksr is the side-reaction rate con-

stant xs,n,surf is the surface concentration of lithium divided by

the maximum concentration, αsr is the side-reaction transfer

coefficient, Cl.p. is the ratio between negative magnitude of

ηsr and the quantity of lithium-plaiting, Ll.p. is a quantitative

measure of the accumulated lithium plaiting, and Ll.p.,EoL is

the lithium-plaiting limit at EoL. Authors in [81] simplify this

by assuming that Rfilm is zero, meaning that ηsr = ηn − 8n.

Alternatively, a controller can be configured to prevent this

side-reaction entirely by constraining ηsr to be non-negative

as shown in:

ηsr ≥ 0 (95)

A controller can be designed to minimize intercalation-

induced fatigue [112], [113]. Intercalation-induced fatigue

occurs in many battery chemistries, including lithium-ion,

and so this mechanism is more general than the side-reactions

discussed above. The radial and tangential intercalation
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stresses in a spherical partial can be calculated as shown in:

3 σr (r)
(

�nEncn,max
(1−vpoi)

) =
2

3

(∫ 1

0

xs,n(r)r
2dr −

1

r3

∫ r

0

xs,n(r)r
2dr

)

(96a)

3 σt (r)
(

�nEncn,max
(1−vpoi)

) = 2

(∫ 1

0

xs,n(r)r
2dr

+
1

r3

∫ r

0

xs,n(r)r
2dr − xs,n(r)

)

(96b)

∂Lstress

∂t
= max

r∈[0,r̄n]
{σr (r), σt (r)} (96c)

̺stress = 1 −
Lstress

Lstress,EoL
(96d)

where σr is the radial intercalation stress, σt is the tangential

intercalation stress, cn,max is the maximum concentration of

lithium in the negative electrode, �n is the partial molar

volume, En is Young’s modulus, vpoi is Poisson’s ratio, xs,n
is the normalized concentration in the negative electrode,

r is the radial distance, Lstress is the accumulated stress, and

Lstress,EoL is the accumulated stress limit at EoL.

It can be difficult to know how these physical degradation

mechanisms combine. Each have been shown to be accurate

on their own, meaning that simply adding them would over-

estimate the rate of degradation. One method is to calculate a

weighted combination of degradation factors as shown in:

˙̺ =
α̺ ˙̺ stress + β̺ ˙̺ stress + γ̺ ˙̺ stress

α̺ + β̺ + γ̺

(97)

where α̺, β̺, and γ̺ are unitless weights selected to lin-

early combine physical degradation mechanisms. However,

degradation clearly does not follow simple superposition

(e.g. intercalation stress and loss of lithium may have com-

pounding effects) so this simplistic combination may be inac-

curate. We are not aware of any experimental methods for

isolating the effects of different physical degradation mech-

anisms and so selecting weights to combine them may be

misleading.

C. DEGRADATION MODEL APPLICATION

For this application we solve the optimal control problem in

Section II while incorporating the stress-factor degradation

model with parameters listed in Table 13.

The rainflow, static-cycle model is the most appropriate

for this problem given that there is one-cycle that takes the

whole day, and a low time resolution so low computational

burden. The modified objective and constraints, in addition

to those for the CRM and temperature models defined in

Sections III-B.1 and IV-C.1, are shown in:

min
x H∈R9n+12

1t w⊤(l + p + p HVAC) + ντ + C EoL ˙̺ (98a)

subject to:

... in addition to the constraints in (28) and (55)

˙̺ = −kt Sς ST e
−fd (98b)

TABLE 13. Example battery system degradation model parameters.

fd = St Sς ST + Sδ Sς ST (98c)

St = kt n1t (98d)

Sς = ekς (
||ς ||1
n −ςref) (98e)

ST = e
kT(||T||1−Tref)

Tref
||T||1 (98f)

δ = max(ς ) − min(ς) (98g)

Sδ = a δ4 + b δ3 + c δ2 + d δ + e (98h)

where x H = {p,pdc, ibat, vbat, voc, ς , τ,p HVAC,T,T EN,

˙̺ , fd, St, Sς , ST, δ, Sδ,
}

∈ R
9n+12, ˙̺ ∈ R is the rate of

degradation, fd ∈ R is the degradation forcing function,

St ∈ R is the time stress-factor, Sς ∈ R is the SoC stress-

factor, ST ∈ R is the temperature stress-factor, δ ∈ R is

the cycle depth-of-discharge (DoD), and Sδ ∈ R is the DoD

stress-factor.

The net load achieved using the combined SoC-Thermal-

Degradation model is shown in Fig. 27 (a). The optimal

control schedule calculated over the control horizon is shown

in Fig. 27 (b). Observe that the period of high HVAC power

in Fig. 27 (d), compared to the solution using only the SoC-

Temperature model, simply shifts to the beginning of the

control horizon. The resulting environmental, battery, and

enclosure temperature trajectories are shown in Fig. 27 (e).

The control solution reduces the total electrical bill

from $52,080 ($50,000 demand, $2,080 energy) to $48,006

($45,871 demand, $2,135 energy). Within the energy bill,

the energy required to cool the battery accounts for $56. The

net effect is a $4074 (7.82%) reduction from the baseline

electrical bill, or a $5 (0.01%) increase in the electri-

cal bill calculated using only the charge and temperature

models. The cost of degradation was reduced from $209,

calculated by applying the degradation model to the sched-

ule derived from the SoC-Temperature model application

in Section IV-C.1, to $111 from this schedule (a 47% reduc-

tion in estimated degradation rate). Further, when compared

to the solution calculated using only the SoC model in

Section III-B.1, the cost of degradation was reduced from

$897 to $111 (an 88% reduction). Again, these results are
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FIGURE 27. Results from control incorporating a degradation model:
(a) net load with BESS power control, (b) battery power, (c) battery SoC,
(d) enclosure ac power, and (e) battery, enclosure, and environmental
temperatures.

highly conditional based on the specific BESS parameters.

This analysis demonstrates that even small changes in control

actions can have large impacts on the rate of degradation.

VI. DISCUSSION

Section III introduced several varieties of models for BESS

SoC, with the primary classification distinguishing energy

based models, charge based models, and concentration-based

models. By applying all three to the same problem we

can identify several differences in how controllers might

work differently when operating with each type. Contrasting

Fig. 7 and 11, we can observe that by accounting for the

change in battery voltage, the CRM steadily increases power

as SoC increases. The ERMdoes notmodel voltage and hence

is imprecise in its estimates for how much power is needed to

charge or available for discharge. In general, the ERM is best

for use in large scale systems where a more detailed model

would be impractical (e.g. centralized control of 1000’s of

individual BESS) or in very short duration problems that are

insensitive to changes in voltage. The CRM and SPM are

mathematically similar in structure, in that they both require

empirical open-circuit-voltage functions and several internal

storage elements in the form of either a equivalent circuit

model or a partial concentration model. The CRM tends to

simplify or combine many of the nuances of SPM type mod-

els, such as only using a single open-circuit-voltage function

as opposed to one for the cathode and another for the anode.

The SPM has the advantage of the ability to incorporate the

physical degradation models, while the ERM and CRMmust

rely on empirical degradation models. To give a sense for the

relative complexity of the model types, the minimal ERM

has 3n+ 2 decision variables (were n is the number of time-

steps), the minimal CRM has 6n + 2, and the minimal SPM

has 18n + 13. Further, the ERM is convex, while the CRM

and SPM have several non-convex constraints.

In Section IV we introduce three cell temperature models

and two enclosure temperature models. The primary differ-

ence between the cell models is what heating and cooling

mechanisms are considered, with another distinction being

how many internal volumes are modeled. The enclosure

models generally rely on an assumption of well-mixed air

but can be classified based on how precisely they represent

the HVAC system. As was demonstrated in the application

section, by including the HVAC system in the control design

the batteries can be pre-cooled to have maximum temperature

margin during peak discharge when significant heat is being

generated. Not accounting for temperature in control actions

can lead to over-temperature shutdown or curtailment during

peak times when the battery is needed most.

Lastly, Section V introduces several models to incorporate

battery degradation into control decisions. Including degra-

dation allows for charge/discharge to be balanced against

how much the increase in use also accelerates degradation.

A wide range of empirical degradation models is available

that can be used on their own or in combinations to consider

many different underlying mechanisms. Physical degradation

mechanisms are less widely used but offer the potential to

reduce the uncertainty of degradation modeling. Also, it can

be observed from Fig. 27 that modeling the HVAC system

and degradation together can have compounding benefits

to prolonging battery life. Not accounting for degradation

in control design allows batteries to operate in ways that

could lead to premature EoL conditions. The following is a

discussion of the gaps identified in the current state-of-the-

art in models for optimal control of battery energy storage.

A. GAP IDENTIFICATION

This paper has focused on providing guidance for how and

where to use different types of battery models for optimal

control. In this section we take a broader perspective to

understand the state-of-the-art more generally and identify

opportunities for advancement.

1) REAL-WORLD DATA

There is a significant deficit of operational performance data

in studies on optimal control of battery energy storage. This

results in many of the modeling assumptions that proposed
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controllers are based on having gone unchallenged. This gap

emphasizes the importance of systematic data collection and

publication in BESS demonstration projects.

2) CONTROL OF LARGE-SCALE PARALLEL AND SERIES

COMBINATIONS OF BATTERIES

The ‘big-cell’ assumption is widely used to reduce the com-

plexity of a large battery system to a manageable level.

However, we do not know at what point the uncertainty of

cell-to-cell variations outweighs the uncertainty from other

modeling assumptions. Using a simpler model, with more

representative cells, may yield better performance at a lower

complexity than a highly precise battery model that assumes

all cells behave the same. This trade-off is poorly understood

even though it could greatly impact BESS performance.

3) RISK-AVERSE AND ROBUST CONTROL

While there exists a large body of experimental work quan-

tifying the uncertainty of the different model types, this

uncertainty is rarely incorporated into the battery controller

design. Even many controllers that consider the uncertainty

of renewable power, through risk-averse or robust control, fail

to consider the uncertainty of the battery model’s, implicitly

assuming them to be deterministic systems.

4) NONLINEAR ERM

Nonlinear system dynamics can be integrated into ERM used

in controller design to improve model accuracy. The degree

to which this improved model accuracy improves optimal

control is an under-explored branch of research.

5) VOLTAGE HYSTERESIS IN CONTROL

The path dependence of open circuit voltage can be a large

contributor to error in SoC models. However, few con-

troller designs consider hysteresis in their equivalent cir-

cuit, or solid-electrolyte interface voltage models. As these

models are already nonlinear, and the optimal control prob-

lems are already non-convex, adding hysteresis should have

minimal impact on computation time.

6) ENTROPY IN THERMAL MODELING

The electrochemical reaction in batteries can be exother-

mic or endothermic, depending on the specific chemistry and

the SoC. While this concept is well understood in battery

simulation, it is rare in optimal control. Incorporating the

entropy-based heat generation and consumption into con-

trollers could greatly reduce optimistic shortfall in many

applications.

7) COMPARATIVE ANALYSIS OF EMPIRICAL

DEGRADATION STRESS FACTORS

Battery degradation is a complex phenomenon to research.

Cycling studies try and isolate the stress factors that accel-

erate aging, but many of these factors either can’t be iso-

lated or have nonlinear effects when combined with others.

For example, charge/discharge current generates heat and

leads to higher temperatures. A cycling study cannot fully

isolate these variables because they are interlinked. Further,

if battery degradation is a nonlinear function of both current

and temperature, then a stress factor model that assumes inde-

pendence will be inaccurate. The current direction of research

on degradation models improves accuracy with increasing

complexity, but controllers require computational efficiency

and hence can make limited use of these improved methods.

Research is needed to improve the accuracy of stress factor

models that are simple enough to be incorporated into on-

board controllers.

The literature intersecting battery energy storage modeling

and optimal control is primarily simulation based with very

little work that includes experimental analysis or real-world

application. This is a natural result of the combination of bat-

tery energy storage technologies having tremendous potential

to change grid operation, and only recently coming down

in cost enough to the point where demonstration projects

can proliferate. This means that there is significant academic

interest while there are relatively few operational systems.

A result of this lack of data is that there is little understand-

ing of the impact of modeling assumptions on the design

of controllers. Most of the gaps identified in the state-of-

the-art stem from this lack of understanding. The remaining

gaps can be summarized as an underdeveloped optimiza-

tion framework. Stochastic optimization methods have been

widely used in operation research to incorporate uncertainty

into the optimization problem. This mathematical back-

ground has been underutilized in BESS controller design.

With more data will come improvements in the understand-

ing of uncertainty which can, in turn, be incorporated into

optimal control approaches to achieve risk averse or robust

control.

Broadly speaking, the field on optimal control of BESS

is still nascent when compared to the markets and control

systems for thermal generation systems. The most com-

monly used models (ERM) are a simplistic approximation of

extremely complicated electrochemical systems. If we are to

learn from the historical course of optimization of thermal

generation, we can understand that simplistic models are

normal at this stage of development.Wemay expect that these

models will become more developed and accurate as time

progresses, leading to greater utilization of BESS to supply

services on the grid. Additionally, we might also expect that

the models used to optimize energy storage within markets

will be more abstract than the models used by individual

systems to optimize their operation. Navigating the balance

between the applications that desire model simplicity and

applications that desire model accuracy will require ongoing

research, especially given the accelerated pace of battery

energy storage technology development.

VII. SUMMARY AND CONCLUSIONS

The choice of what model to use is critical in the design of

optimal controllers for any physical system. This is especially

true for electrochemical energy storage as we have shown
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the wide range of physical mechanisms that impact batteries

during operation. Understanding the assumptions that are

implicit in the choice of battery models will help engineers

and researchers to improve the design of optimal controllers

in BESS serving the electric grid.

This paper thoroughly reviews battery models used for

optimal control of BESS. We identify three broad types

of SoC models: energy reservoir models (ERMs), charge

reservoir models (CRMs), and concentration-based models

that include both single partial models (SPMs) and pseudo

two-dimensional (P2D) models. ERMs are computationally

efficient and hence are more appropriate for the optimization

of large fleets of BESS. However, ERMs can be inaccurate

over wide operational ranges. CRMs, in contrast, are more

computationally intensive but have the potential for better

accuracy. An under-explored middle ground for these is a

nonlinear ERM, that may provide improved accuracy with a

modest increase in computational complexity. Concentration

based models are significantly more complex than either

ERM or CRM and include many parameters that may be

considered proprietary by a battery manufacturer. As the

concentration-based SPM has a similar mathematical struc-

ture to the CRM, it is unclear how much this increase in com-

plexity yields increased predictive accuracy. The SPM has

the distinct advantage of enabling the application of physical

degradation models that may reduce modeling uncertainty.

When battery temperature can limit BESS control actions,

it is important to include a temperature model in the con-

troller. Heat is generated in a battery from joule heating,

over potential heating, and thermodynamic entropy. While

the impact of entropy can be significant, it is rarely calculated

in control systems. Heat is transferred from the battery, or the

battery’s enclosure, to the environment through conduction,

convection, or radiation. Representing these mechanisms in

the controller model enables optimal cooling control that

can efficiently enforce temperature limits and significantly

reduce battery degradation.

Lastly, battery degradation can be critical to consider when

making control decisions. Factors such as SoC, temperature,

and DoD can stress the materials in batteries and cause degra-

dation over time and use. The empirical rainflow cycle count-

ing algorithm or physical degradation models for calculating

degradation are both highly accurate but difficult to fully

incorporate into an optimization problem. With a few sim-

plifying assumptions, the stress factor model can be reduced

to take the form of a sum of regularization terms in the objec-

tive function. These assumptions partially justify the more

widely used formulations for degradation based on number

of cycles, heat generation, and DoD. However, by including

the nonlinear models in the controller, we observe that small

changes in controller schedules can have disproportionate

impacts on the rate of degradation. The myriad of trade-

offs between model complexity and model accuracy can be

difficult to navigate, but these engineering decisions can offer

significant benefits in terms of BESS controller performance.
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